
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 6, no. 1, pp. 67–113 (2002)

Level Planar Embedding in Linear Time

Michael Jünger

Institut für Informatik
Universität zu Köln, Germany

http://www.informatik.uni-koeln.de/
mjuenger@informatik.uni-koeln.de

Sebastian Leipert

Stiftung caesar
Bonn, Germany

http://www.caesar.de/
leipert@caesar.de

Abstract

A level graph G = (V, E, φ) is a directed acyclic graph with a mapping φ : V → {1, 2, . . . , k},
k ≥ 1, that partitions the vertex set V as V = V 1∪V 2∪· · ·∪V k, V j = φ−1(j), V i∩V j = ∅ for
i 6= j, such that φ(v) ≥ φ(u) + 1 for each edge (u, v) ∈ E. The level planarity testing problem
is to decide if G can be drawn in the plane such that for each level V i, all v ∈ V i are drawn
on the line li = {(x, k − i) | x ∈ R}, the edges are drawn monotonically with respect to the
vertical direction, and no edges intersect except at their end vertices.

In order to draw a level planar graph without edge crossings, a level planar embedding
of the level graph has to be computed. Level planar embeddings are characterized by linear
orderings of the vertices in each V i (1 ≤ i ≤ k). We present an O(|V |) time algorithm for
embedding level planar graphs. This approach is based on a level planarity test by Jünger,
Leipert, and Mutzel (1998).

Communicated by H. de Fraysseix and and J. Kratochv́ıl:
submitted November 1999; revised March 2001.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 68

1 Introduction

A fundamental issue in Automatic Graph Drawing is to display hierarchical network structures
as they appear in software engineering, project management and database design. The network is
transformed into a directed acyclic graph that has to be drawn with edges that are strictly monotone
with respect to the vertical direction. Many applications imply a partition of the vertices into
levels that have to be visualized by placing the vertices belonging to the same level on a horizontal
line. The corresponding graphs are called level graphs. Using the PQ-tree data structure, Jünger,
Leipert, and Mutzel (1998) have given an algorithm that tests in linear time whether such a graph
is level planar, i.e. can be drawn without edge crossings.

In order to draw a level planar graph without edge crossings, a level planar embedding of the
level graph has to be computed. Level planar embeddings are characterized by linear orderings of
the vertices in each level. We present a linear time algorithm for embedding level planar graphs.
Our approach is based on the level planarity test and it augments a level planar graph G to an
st-graph Gst, a graph with a single sink and a single source, without destroying the level planarity.
Once the st-graph has been constructed, we compute a planar embedding of the st-graph. This
is done by applying the embedding algorithm of Chiba et al. (1985) for general graphs, obeying
the topological ordering of the vertices in the st-graph. Exploiting the planar embedding of the
st-graph Gst, we are able to determine a level planar embedding of G.

This paper is organized as follows. After summarizing the necessary preliminaries in the next
section, including the PQ-tree data structure we give a short introduction to the level planarity
test presented by Jünger et al. (1998) in the third section. In the fourth section, we present the
concept of the linear time level planar embedding algorithm. Sections 5 to 8 contain the details of
the embedding algorithm. We close the paper with some remarks on how to produce a level planar
drawing using the result of our algorithm. A short glossary of terms is given as an appendix.

2 Preliminaries

A level graph G = (V, E, φ) is a directed acyclic graph with a mapping φ : V → {1, 2, . . . , k},
k ≥ 1, that partitions the vertex set V as V = V 1 ∪ V 2 ∪ · · · ∪ V k, V j = φ−1(j), V i ∩ V j = ∅
for i 6= j, such that φ(v) ≥ φ(u) + 1 for each edge (u, v) ∈ E. A vertex v ∈ V j is called a level-j
vertex and V j is called the j-th level of G. For a level graph G = (V, E, φ), we sometimes write
G = (V 1, V 2, . . . , V k; E).

A drawing of a level graph G in the plane is a level drawing if the vertices of every V j , 1 ≤ j ≤ k,
are placed on a horizontal line lj = {(x, k− j) | x ∈ R}, and every edge (u, v) ∈ E, u ∈ V i, v ∈ V j ,
1 ≤ i < j ≤ k, is drawn as a monotonically decreasing curve between the lines li and lj. A level
drawing of G is called level planar if no two edges cross except at common endpoints. A level graph
is level planar if it has a level planar drawing. A level graph G is obviously level planar if and only
if all its components are level planar. We therefore may assume in the following without loss of
generality that G is connected.

A level drawing of G determines for every V j , 1 ≤ j ≤ k, a total order ≤j of the vertices of V j ,
given by the left to right order of the vertices on lj. A level embedding consists of a permutation
of the vertices of V j for every j ∈ {1, 2, . . . , k} with respect to a level drawing. A level embedding
with respect to a level planar drawing is called level planar.

A level graph G = (V, E) is said to be proper, if every edge e ∈ E connects only vertices



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 69

belonging to consecutive levels. Usually, a level graph G has sinks and sources placed on various
levels of the graph. Figure 1 shows a proper level graph.

2

1

5

4

3

Figure 1: An example of a level graph. Sources are drawn black.

A PQ-tree is a data structure that represents the permutations of a finite set U in which
the members of specified subsets occur consecutively. This data structure has been introduced by
Booth and Lueker (1976) to solve the problem of testing for the consecutive ones property (see,
e.g., Fulkerson and Gross (1965)). A PQ-tree is a rooted and ordered tree that contains three
types of nodes: leaves, P -nodes, and Q-nodes. The leaves are in one to one correspondence with
the elements of U . The P - and Q-nodes are internal nodes. In subsequent figures, P -nodes are
drawn as circles while Q-nodes are drawn as rectangles.

The frontier of a PQ-tree T , denoted by frontier(T ), is the sequence of all leaves of T read from
left to right, and the frontier of a node X , denoted by frontier (X), is the sequence of its descendant
leaves read from left to right. The frontier of a PQ-tree is a permutation of the set U . We use the no-
tion frontier (T ) and frontier(X) also to denote the set of elements in frontier(T ) and frontier(X),
respectively, its meaning being evident by context. An equivalence transformation specifies a legal
reordering of the nodes within a PQ-tree. The only legal equivalence transformations are

(i) any permutation of the children of a P -node, and

(ii) the reverse permutation of the children of a Q-node.

Two PQ-trees T and T ′ are equivalent if and only if their underlying trees are equal and T can be
transformed into T ′ by a sequence of equivalence transformations. The equivalence of two PQ-trees
is denoted T ≡ T ′. The set of consistent permutations of a PQ-tree is the set of all frontiers that
can be obtained by a sequence of equivalence transformations and is denoted by

PERM(T ) = {frontier(T ′) | T ′ ≡ T } .

If two nodes X and Y of a PQ-tree have the same parent, they are siblings . The nodes are called
adjacent or direct if they are siblings and appear consecutively in the order of children of their
parent.

Let Π := {π | π is a permutation of U} and for any subset S ⊆ U let ΠS := {π ∈
Π | all elements of S are consecutive within π}. Given any PQ-tree T over U , the function



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 70

REDUCE(T, S) computes a PQ-tree T ′ such that PERM(T ′) = PERM(T ) ∩ ΠS . The function
REDUCE applies a sequence of templates to the nodes of a PQ-tree starting at the leaves, and
proceeding upwards until the root of the pertinent subtree is reached. Each template has a pattern
and a replacement . If a node matches the pattern of a template, the pattern is replaced within the
tree by the replacement of the template. The return value of REDUCE is a new PQ-tree. It is the
null tree, a tree with no nodes at all, if the original tree could not be reduced for the specified set
S. If a null tree is returned, the set of permissible permutations on the set U is empty and the
null tree represents an empty set of permutations. Therefore it is convenient to denote the null
tree by ∅. A node X in T is said to be full if frontier (X) ⊆ S. A node X is said to be empty
if frontier(X) ∩ S = ∅. A node X is partial if it is neither empty nor full. Nodes are said to be
pertinent if they are either full or partial.

Each template specifies a local change within the tree. Only the node X that has to be matched
and its children are altered. The patterns to which nodes are matched depend upon the set S and
the frontier of the subtree rooted at the particular node X . The matched pattern is selected by
examining the node X and its children after the children themselves have been matched. Depending
on the situation in the frontier of X the node is labeled indicating whether X is empty, full, or
partial. This bottom-up strategy ensures that all information on the situation in the frontier of the
children of X is available when processing X .

In Figure 2 and Figure 3 we illustrate two of the template matchings, the templates Q2 and
Q3 (see Booth and Lueker (1976) for the templates P1 – P6 and Q1). The pattern at the left hand
side is to be transformed into a pattern at the right hand side. A full node or a full subtree is
hatched, and a partial Q-node that roots a pertinent subtree is hatched partially. We use a triangle
for symbolizing a subtree. A subtree is either full or empty, so its precise form has no effect on the
templates.

... ...

... ... ... ...... ...

Figure 2: Template Q2.

... ...

... ... ...

......

......... ... ... ... ...

Figure 3: Template Q3.

Theorem 2.1 (Booth and Lueker (1976)). The data structure PQ-tree and the template
matchings can be implemented such that the class of permutations in which the elements of each
set Si of a family S = {S1, S2, . . . , Sn} of subsets of U occur as a consecutive sequence can be
computed in O(|U | + n +

∑n
i=1 |Si|) time.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 71

One result that is achieved in the proof of Theorem 2.1 is the following corollary that is needed
later when proving the correctness of a level planar embedding algorithm.

Corollary 2.2 (Booth and Lueker (1976)). Let X be a child of a Q-node Y . Throughout the
template matching algorithm X remains a child of a Q-node.

3 A Linear-Time Level Planarity Test

In this section we give a short introduction to a level planarity test as it has been presented in
Jünger et al. (1998, 1999). Let Gj denote the subgraph of G induced by V 1 ∪ V 2 ∪ · · · ∪ V j . The
basic idea is to perform a top-down sweep, processing the levels in the order V 1, V 2, . . . , V k. The
graph Gj , 1 ≤ j < k, is not necessarily connected, and a separate PQ-tree is introduced for every
component F of Gj to represent the set of permutations of the vertices of F in V j that appear in
some level planar embedding of Gj . The P -nodes of such a PQ-tree correspond to cut vertices in
F , the Q-nodes to connected components with a fixed embedding that can only be reversed. The
leaves correspond either to level-j vertices or to incoming edges of level-l vertices, with l > j.

Performing the top-down sweep, standard PQ-tree techniques are applied, as long as different
components of Gj are not adjacent to a common vertex on level j. If two components are adjacent
to a common vertex v on level j, they have to be merged and a new PQ-tree has to be constructed
from the two corresponding PQ-trees. The new PQ-tree then represents all level planar embeddings
of the merged component. Applying a combination of reduce operations and merge operations for
combining PQ-trees, we maintain for every level V j and for every component F of Gj the set of
permutations of the vertices of F in V j that appear in some level planar embedding of Gj . If the
set of permutations for Gk is not empty, the graph G = Gk is obviously level planar.

Before we describe our algorithm, called LEVEL-PLANARITY-TEST, let us introduce some
new terminology. Let X be a Q-node in T corresponding to a subgraph B of Gj , 1 ≤ j ≤ k. The
children of X each correspond to a cut vertex on the border of the outer face of B (see also Booth
and Lueker (1976); Leipert (1998)). If X is not the root, then there exists an extra cut vertex on
the border of the outer face of B that separates the subgraph G′ induced by the subtree rooted at
X from Gj − G′. This cut vertex is called the connective cut vertex of B.

Since Gj is not necessarily connected, let mj denote the number of components of Gj and let
F j

i , i = 1, 2, . . . , mj , denote the components of Gj . Figure 4 shows a G4 with m4 = 2 components
F 4

1 and F 4
2 . The set of vertices in F j

i is denoted by V (F j
i ). Define LL(F j

i ), the low indexed level,
to be the smallest d such that F j

i contains a vertex in V d and maintain this integer at the root of
the corresponding PQ-tree. The height of a component F j

i in the subgraph Gj is j −LL(F j
i ). The

LL-value merely describes the size of the component. The LL-values of the two components shown
in Figure 4 are LL(F 4

1 ) = 1 and LL(F 4
2 ) = 2.

Let Hj
i be the graph arising from F j

i as follows: For each edge e = (u, v), where u is a vertex
in F j

i and v ∈ V l, l ≥ j + 1, we introduce a virtual vertex with label v and a virtual edge that
connects u and this virtual vertex. Thus there may be several virtual vertices with the same label,
adjacent to different components of Gj and each with exactly one entering edge. The form Hj

i is
called the extended form of F j

i and the set of virtual vertices of Hj
i is denoted by frontier (Hj

i ).
Figure 5 shows possible extended forms H4

1 and H4
2 of the example in Figure 4. The virtual vertices

on level 5 are denoted by their labels. The frontier of H4
1 consists of one virtual vertex labeled u,



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 72

two vertices labeled v, and two vertices labeled w. The set of virtual vertices of Hj
i that are labeled

v ∈ V j+1 is denoted by Sv
i .

F 4
2F 4

1

4

3

2

1

Figure 4: A G4 with m2 = 2 components F 4
1 and F 4

2 .

H4
2H4

1

xx vuvvww

5

4

3

2

1

Figure 5: Two extended forms H4
1 and H4

2 of Figure 4.

The graph that is created from an extended form Hj
i by identifying all virtual vertices with the

same label to a single vertex is called a reduced extended form and denoted by Rj
i . To construct

R4
1 from the example component H4

1 , the vertices labeled w have to be identified and the vertices
labeled v have to be identified. In order to identify the two vertices labeled x in H4

2 for the
construction of R4

2, it is necessary to permute the left most vertex labeled x and the vertex labeled
v. Both forms R4

1 and R4
2 then have exactly one vertex labeled v.

The set of virtual vertices of Rj
i is denoted by frontier(Rj

i ). If Sv
i of Hj

i is not empty, we denote
the vertex with label v of Rj

i (i.e., the vertex that arose from identifying all virtual vertices of Sv
i )



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 73

by vi and update Sv
i = {vi}. The graph arising from the identification of two virtual vertices vi

and vl (labeled v) of two reduced extended forms Rj
i and Rj

l is denoted Rj
i ∪v Rj

l . We call Rj
i ∪v Rj

l

a merged reduced form. The vertex arising from the identification of vi and vl is denoted by v{i,l}
(and labeled by v of course). If LL(Rj

i ) ≤ LL(Rj
l ) we say Rj

l is v-merged into Rj
i . The form that

is created by v-merging Rj
l into Rj

i and identifying all virtual vertices with the same label w 6= v

is again a reduced extended form and denoted by Rj
i (thus renaming Rj

i ∪v Rj
l with the name of

the “higher” form). Figure 6 shows the resulting merged reduced extended form R4
1 ∪v R4

2 after
R4

2 (the smaller form) has been v-merged into R4
1 (the higher form). Since R4

1 is the higher form,
R4

1 ∪v R4
2 is renamed into R4

1.

v uxw

5

4

3

2

1

Figure 6: A merged reduced extended form R4
1 ∪v R4

2 after R4
2 has been v-merged into

R4
1. The former vertices of R4

2 are drawn shaded.

We omit scanning for leaves with the same label after we have v-merged several reduced ex-
tended forms. This is done in order to achieve linear running time. However, this strategy results
in improper reduced extended forms, possibly having several virtual vertices with the same label.
These forms are called partially reduced extended forms.

If any reduced extended form has been v-merged into Rj
i , the form Rj

i is called v-connected ,
otherwise Rj

i is called v-unconnected. The form R4
1 shown in Figure 6 is v-connected.

A reduced extended form Rj
i that is v-unconnected for all v ∈ V j+1 is called primary. A reduced

extended form Rj
i that is v-connected for at least one v ∈ V j+1 is called secondary. Again, R4

1

shown in Figure 6 is secondary. Let Rj
i be a reduced extended form such that Sv

i 6= ∅ for some
v ∈ V j+1 and Sw

i = ∅ for all w ∈ V l − {v}, j + 1 ≤ l ≤ k, then Rj
i is called v-singular.

Let T (Gj) be the set of level planar embeddings of all components of Gj . In case that Gj is level
planar, the set of permutations of level-j vertices in level planar embeddings of each component F j

i

of Gj as well as its extended form Hj
i can be described by a PQ-tree T (F j

i ) or T (Hj
i ), respectively

(Jünger et al. (1998, 1999)). The leaves of T (Hj
i ) correspond to the virtual vertices of Hj

i and we



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 74

label the leaves of T (Hj
i ) as their counterparts in Hj

i . By construction, T (Gj) is a set of PQ-trees.
Considering a function CHECK-LEVEL that computes for every level j, j = 2, 3, . . . , k, the set
T (Gj) of level planar embeddings of the components Gj , the algorithm LEVEL-PLANARITY-
TEST can be formulated as follows.

Bool LEVEL-PLANARITY-TEST(G = (V 1, V 2, . . . , V k; E))
begin

Initialize T (G1);
for j := 1 to k − 1 do

T (Gj+1) = CHECK-LEVEL(T (Gj), V j+1);
if T (Gj+1) = ∅ then

return “false”;
return “true”;

end.

The procedure CHECK-LEVEL is divided into two phases. The First Reduction Phase con-
structs the PQ-trees corresponding to the reduced extended forms of Gj . Every PQ-tree T (F j

i )
that represents all level planar embeddings of some component F j

i is transformed into a PQ-tree
T (Hj

i ) representing all level planar embeddings of the extended form Hj
i . We continue to reduce

in every PQ-tree T (Hj
i ) all leaves with the same label, thereby constructing a new PQ-tree, rep-

resenting all level planar embeddings of Hj
i , where leaves with the same label occupy consecutive

positions. If one of the reductions fails, G cannot be level planar. Leaves with the same label v are
replaced by a single representative vi (see also Booth and Lueker (1976)).

PQ-trees of different components are merged in the Second Reduction Phase if the components
are adjacent to the same vertex v on level j+1. Given the set of leaves labeled v, we first determine
their corresponding PQ-trees. If some leaves labeled v are in the frontier of the same PQ-tree, we
reduce them and replace them by a single representative. The PQ-trees are then merged pairwise
in the order of their sizes. Using this ordering a PQ-tree T (F ) is constructed that represents
all possible level planar embeddings of the merged components. Even though v may not be the
only common vertex in the merged components, we do not reduce leaves with label w 6= v in the
PQ-tree in order to obtain a linear time algorithm. If one of the reduce or merge operations fails
while applied in this phase, the graph G is not level planar. The function REPLACE removes all
leaves with a common label v after these leaves have been reduced (and therefore are consecutive
in all permissible permutations) and replaces them by a single representative (Booth and Lueker
(1976)). Finally we add for every source of V j+1 its corresponding PQ-tree. Thus the set of PQ-
trees constructed by the function CHECK-LEVEL represents all level planar embeddings of every
component of Gj+1 (see Jünger et al. (1998, 1999)).

A short description of the pairwise merge operations of Heath and Pemmaraju (1995, 1996) for
non singular forms is now given. Singular components are handled by examining certain information
on interior faces and regions of the outer face (see Jünger et al. (1999)). Let G = (V, E) be a k-
level graph and Rj

1 and Rj
2 be two components of Gj , 1 ≤ j < k, both being adjacent to the

same vertex v ∈ V j+1. Let T1 and T2 be the PQ-trees of Rj
1 and Rj

2, both representing all level
planar embeddings of their corresponding forms after the application of the first reduction phase
for the level j +1. Identifying the vertices labeled v of the forms Rj

1 and Rj
2 constructs a new form



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 75

Rj
1 ∪v Rj

2. For this new component Rj
1 ∪v Rj

2 a new PQ-tree T is needed that represents all level
planar embeddings of Rj

1 ∪v Rj
2. The construction of the PQ-tree T (Rj

1 ∪v Rj
2) is is based on the

trees T1 and T2.
The merge operation is accomplished using information that is stored at the nodes of the PQ-

trees. For any subset S of the set of vertices in V j+1 ∪ V j+2 ∪ · · · ∪ V k that belongs to a form
Hj

i or Rj
i , define ML(S) to be the greatest d ≤ j such that V d, V d+1, . . . , V j induces a subgraph

in which all nodes of S occur in the same connected component. The level ML(S) is said to be
the meet level of S. For a Q-node Y in the corresponding PQ-tree T (Hj

i ) or T (Rj
i ) with ordered

children Y1, Y2, . . . , Yt, integers denoted by ML(Yi, Yi+1), 1 ≤ i < t, are maintained satisfying
ML(Yi, Yi+1) = ML(frontier (Yi) ∪ frontier (Yi+1)). For a P -node X a single integer denoted by
ML(X) that satisfies ML(X) = ML(frontier(X)) is maintained.

Figure 7 shows the PQ-trees corresponding to the forms Hj
1 and Hj

2 of Figure 5 together with
the ML-values that are stored at the nodes. The maintenance of the ML-values during the pattern
matching algorithm REDUCE is straightforward.

x

x v

u

vv

w w

1

33
43

3

Figure 7: PQ-trees corresponding to H4
1 and H4

2 shown in Fig. 5.

For describing how to merge T1 and T2 corresponding to Rj
1 and Rj

2 we may assume without
loss of generality that LL(T1) ≤ LL(T2). Thus the form Rj

2 is the smaller form and an embedding
of Rj

1 has to be found such that Rj
2 can be nested within the embedding of Rj

1. This corresponds
to adding the root of T2 as a child to a node of the PQ-tree T1 and constructing a new PQ-tree
T ′. In order to find an appropriate location to insert T2 into T1, we start with the leaf labeled v in
T1 and proceed upwards in T1 until a node X ′ and its parent X are encountered satisfying one of
the following five conditions.

Merge Condition A The node X is a P -node with ML(X) < LL(T2). Attach T2 as child of X
in T1.

Merge Condition B The node X is a Q-node with ordered children X1, X2, . . . , Xt, X ′ = X1,
and ML(X1, X2) < LL(T2). Replace X ′ in T1 by a Q-node Y having two children, X ′ and the root
of T2. The case where X ′ = Xt and ML(Xt−1, Xt) < LL(T2) is symmetric.

Merge Condition C The node X is a Q-node with ordered children X1, X2, . . . , Xt, X ′ = Xi,
1 < i < t, and ML(Xi−1, Xi) < LL(T2) and ML(Xi, Xi+1) < LL(T2). Replace X ′ by a Q-node Y
with two children, X ′ and the root of T2.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 76

Merge Condition D The node X is a Q-node with ordered children X1, X2, . . . , Xt, X ′ = Xi,
1 < i < t, and

ML(Xi−1, Xi) < LL(T2) ≤ ML(Xi, Xi+1) .

Attach the root of T2 as child of X between Xi−1 and X ′.
In case that

ML(Xi, Xi+1) < LL(T2) ≤ ML(Xi−1, Xi) ,

attach the root of T2 as child of X between X ′ and Xi+1.

Merge Condition E The node X ′ is the root of T1. Reconstruct T1 by inserting a Q-node Y as
new root of T1 with two children X ′ and the root of T2.

Based on the following theorem, we develop a linear time algorithm for embedding a level planar
graph.

Theorem 3.1 (Jünger, Leipert, and Mutzel (1998)). The algorithm LEVEL-PLANAR-
TEST tests any (not necessarily proper) level graph G = (V, E, φ) in O(n) time for level planarity.

4 Concept of the Embedding-Algorithm

One can easily obtain the following naive embedding algorithm for level planar graphs. Choose any
total order on V k that is consistent with the set of permutations of V k that appear in level planar
embeddings of Gk = G. Choose then any total order on V k−1 that is consistent with the set of
permutations of V k−1 that appear in level planar embeddings of Gk−1 and that, together with the
chosen order of V k implies a level planar embedding on the subgraph of G induced by V k−1 ∪ V k.
Extend this construction one level at a time until a level planar embedding of G results.

However, to perform this algorithm, it is necessary to keep track of the set of PQ-trees of
every level l, 1 ≤ l ≤ k. Besides, an appropriate total order of the vertices of V j , 1 ≤ j < k,
can only be detected by reducing subsets of the leaves of Gj , where the subsets are induced by
the adjacency lists of the vertices of V j+1. More precisely, for every pair of consecutive edges
e1 = (v1, w), e2 = (v2, w), v1, v2 ∈ V j , in the adjacency list of a vertex w ∈ V j+1, we have to
reduce the set of leaves corresponding to the vertices v1, v2 in T (Gj). This immediately yields an
Ω(n2) algorithm for non-proper level graphs, with Ω(n2) dummy vertices for long edges traversing
one or more levels, since we are forced to consider for every long edge its exact position on the
level that is traversed by the long edge.

Instead, we proceed as follows: Let G = (V, E, φ) be a level planar graph with leveling φG :
V → {1, 2, . . . , k}. We augment G to a planar directed acyclic st-graph Gst = (Vst, Est, φGst) where
Vst = V ]{s, t} and E ⊂ Est such that every source in G has exactly one incoming edge in Est \E,
every sink in G has exactly one outgoing edge in Est \E, φGst(s) = 0, φGst(t) = k +1, (s, t) ∈ Est,
and for all v ∈ V we have φGst(v) = φG(v). This process, in which two vertices and O(n) edges
are added to G, is the nontrivial part of the algorithm that will be explained in Sections 6 - 8.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 77

We compute a topological sorting, i.e., an onto function f : Vst → {1, 2 . . . , n+2}. The function
f is comparable with φGst in the sense that for every v, w ∈ Vst we have f(v) ≤ f(w) if and only
if φGst(v) ≤ φGst(w). Obviously f is an st-numbering of Gst (see, e.g., Even and Tarjan (1976)).
Using this st-numbering, we can obtain a planar embedding Est of Gst with the edge (s, t) on the
boundary of the outer face by applying the algorithm of Chiba et al. (1985).

From the planar embedding we obtain a level planar embedding of Gst by applying a function
“CONSTRUCT-LEVEL-EMBED” that uses a depth first search procedure starting at vertex t and
proceeding from every visited vertex w to the unvisited neighbor that appears first in the clockwise
ordering of the adjacency list of w in Est. Initially, all levels are empty. When a vertex w is visited,
it is appended to the right of the vertices assigned to level φGst(w). The restriction of the resulting
level orderings to the levels 1 to k yields a level planar embedding of G.

It is clear that the described algorithm runs in O(n) time if the nontrivial part, namely the
construction of Gst can be achieved in O(n) time. After adding the vertices s and t we augment G to
a hierarchy by adding an outgoing edge to every sink of G without destroying level planarity using
a function AUGMENT, processing the graph top to bottom. Using the same function AUGMENT
again, we process the graph bottom to top and augment Gst to an st-graph by adding the edge
(s, t) and an incoming edge to every source of G without destroying the level planarity. Thus our
level planar embedding algorithm can be sketched as follows.

El LEVEL-PLANAR-EMBED(G = (V 1, V 2, . . . , V k; E))
begin

ignore all isolated vertices;
expand G to Gst by adding V 0 = {s} and V k+1 = {t};
if LEVEL-PLANARITY-TEST(Gst) then

AUGMENT(Gst);
else

return El = ∅;
//Gst is now a hierarchy;
orient the graph Gst from the bottom to the top;
AUGMENT(Gst);
orient the graph Gst from the top to the bottom;
add edge (s, t);
//Gst is now an st-graph;
compute a topological sorting of Vst;
compute a planar embedding Est according to Chiba et al. (1985)

using the topological sorting as an st-numbering;
El = CONSTRUCT-LEVEL-EMBED(Est, Gst);
return El;

end.

Augmenting a level graph G to an st-graph Gst is divided into two phases. In the first phase
an outgoing edge is added to every sink of G. Using the same algorithmic concept as in the first
phase, an incoming edge is added to every source of G in the second phase.

In order to add an outgoing edge for every sink of G without destroying level planarity, we
need to determine the position of a sink v ∈ V j , j ∈ {1, 2, . . . , k − 1}, in the PQ-trees. This is
done by inserting an indicator as a leaf into the PQ-trees. The indicator is ignored throughout the



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 78

application of the level planarity test and will be removed either with the leaves corresponding to
the incoming edges of some vertex w ∈ V l, l > j, or it can be found in the final PQ-tree.

The idea of the approach can be explained best by an example. Figure 8 shows a small part of
a level graph with a sink v ∈ V j and the corresponding part of the PQ-tree. Since v is a sink, the
leaf corresponding to v will be removed from the PQ-tree before testing the graph Gj+1 for level
planarity. Instead of removing the leaf, the leaf is kept in the tree ignoring its presence from now
on in the PQ-tree. Such a leaf for keeping the position of a sink v in a PQ-tree is called a sink
indicator and denoted by si(v).

v

v

Figure 8: A sink v in a level graph G and the corresponding PQ-tree.

As shown in Fig. 9 the indicator of v may appear within the sequence of leaves corresponding
to incoming edges of a vertex w ∈ V l. The indicator of v is interpreted as a leaf corresponding to
an edge e = (v, w) and G is augmented by e. Adding the edge e to G does not destroy the level
planarity and provides an outgoing edge for the sink v.

w wv

w

e

v

Figure 9: Adding an edge e = (v, w) without destroying level planarity.

When replacing a leaf corresponding to a sink by a sink indicator, a P - or Q-node X may be
constructed in the PQ-tree such that frontier(X) consists only of sink indicators. The presence of
such a node is ignored in the PQ-tree as well. A node of a PQ-tree is an ignored node if and only
if its frontier contains only sink indicators. By definition, a sink indicator is also an ignored node.

5 Sink Indicators in Template Reductions

In order to achieve linear time for the level planar embedder, we have to avoid searching for sink
indicators that can be considered for augmentation. Consequently, only those indicators si(v),
v ∈ V , that appear within the pertinent subtree of a PQ-tree with respect to a vertex w ∈ V



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 79

are considered for augmentation. We show that every edge added this way does not destroy level
planarity. The first lemma considers sink indicators appearing within the sequence of pertinent
leaves.

Lemma 5.1. Let si(v) be a sink indicator of a vertex v ∈ V j, 1 < j < k, in a PQ-tree T
corresponding to an extended form H. Adding the edge e = (v, w) to G does not destroy level
planarity if one of the following two conditions holds.

(i) si(v) is a descendant of a full node in the pertinent subtree with respect to a vertex w ∈ V l,
j < l ≤ k.

(ii) si(v) is a descendant of a partial Q-node in the pertinent subtree with respect to a vertex
w ∈ V l, j < l ≤ k, and si(v) appears within the pertinent sequence.

Proof: Since si(v) is the child of a full node or appears at least within a pertinent sequence of
full nodes, adding the edge e = (v, w) does not destroy level planarity of the reduced extended
form R corresponding to H . Thus it remains to show that adding the edge has no effect on merge
operations.

For every embedding E of R, the edge e is embedded either between two incoming edges of w or
next to the consecutive sequence of incoming edges of w. If e is embedded between two incoming
edges, the edge e obviously does not affect the level planar embedding of any nonsingular form and
u-singular form with u 6= w.

If e is embedded next to the consecutive sequence of incoming edges of w, then si(v) must be a
descendant of a full node X . If X is a P -node, there exists an embedding of R such that the edge
e can be embedded between two incoming edges of w. Thus adding the edge does not affect the
level planar embedding of any nonsingular form and any u-singular form, with u 6= w.

Consider now a full Q-node X . By construction, si(v) is a descendant leaf at one end of X .
The Q-node X corresponds to a subgraph B. The vertex v must be on the boundary of the outer
face of the subgraph B and there exists a path P = (v = u1, u2, . . . , uµ = w), µ ≥ 2, on the
boundary of the outer face of B such that φ(ui) < l for all i = 1, 2, . . . , µ − 1. Thus none of the
nodes ui, i = 1, 2, . . . , µ − 1, is considered for a merge operation. Hence, replacing the path P by
an edge (v, w) at the boundary of the outer face does not affect the level planar embedding of any
nonsingular form and any u-singular form, with u 6= w. Figure 10 illustrates the insertion of an
edge e = (v, w) if si(v) is the endmost child of a Q-node.

��
��
��
��

���
���
���
���

w

v

si(v)
w w

Figure 10: The sink indicator si(v) is an endmost child of a Q-node. The path P is
drawn shaded, the edge e = (v, w) is drawn as a dotted line.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 80

Considering w-singular forms, adding the edge e produces one more face but the height of the
largest interior face or the largest region of the outer face with w being adjacent to this region
remains valid. Thus a w-singular form that has to be embedded within an interior face or within
a w-cavity can be embedded level planar after the insertion of e. 2

Lemma 5.1 allows us to consider an edge for insertion if a sink indicator is a descendant of a
full node or a descendant of a partial Q-node within the sequence of full children of the Q-node.
The lemma does not consider a sink indicator si(v) that appears as a child of a partial Q-node X
such that si(v) is a sibling to the pertinent sequence. Although the following lemma shows that
edges corresponding to sink indicators that are endmost children at the full end of a partial Q-node
can be added without destroying level planarity, the case where sink indicators are between the
sequence of full and the sequence of empty children reveals problems.

Lemma 5.2. Let si(v) be a sink indicator of a vertex v ∈ V j, 1 < j < k, in a PQ-tree T and let
si(v) be a descendant of an ignored node X that is a child of a partial Q-node Y in the pertinent
subtree with respect to a vertex w ∈ V l, j < l ≤ k. If X appears at the full end of the partial
Q-node, the edge e = (v, w) can be added without destroying level planarity.

Proof: Analogous to the proof of Lemma 5.1 for the case in which si(v) is a descendant of a full
Q-node. 2

Consider now the situation of an extended reduced form R as shown in Figure 11. The sink
indicator si(v) is a child of a partial Q-node in the pertinent subtree of some vertex w ∈ V l,
j < l ≤ k, and si(v) is adjacent to a full and an empty node. Adding the edge e does not a priori
destroy level planarity in R, but it creates a new interior face, such that the large space between w
and the rightmost vertex of the subgraph corresponding to the subtree rooted at X is destroyed.
Now assume that a nonsingular form R′ has to be w-merged into R, applying merge operation D.
Although the ML-value between the leaf w and the node X allows us to add the form R′ between
w and X , there is, due to the insertion of e, not enough space between w and X . Hence a crossing
is created and a non-level planar graph is constructed as is shown in Figure 12. Consequently, a
sink indicator that is found to be a sibling of a pertinent sequence and an empty sequence is never
considered for edge augmentation.

By applying the results of Lemmas 5.1 and 5.2 during the template matching algorithm, not
all sink indicators are considered for edge insertion. Some of the indicators remain in the final
PQ-tree that represents all possible permutations of vertices of V k in the level planar embeddings
of G. The following lemma allows us not only to insert edges (w, t) for every w ∈ V k but also to
insert an edge (v, t) for every remaining sink indicator si(v).

Lemma 5.3. Let si(v) be a sink indicator of a vertex v ∈ V j, 1 < j < k. If si(v) is in the final
PQ-tree T , the edge e = (v, t) can be added without destroying level planarity.

Proof: Adding to every vertex w ∈ V k an edge (w, t) does not affect the level planarity of the
graph. Thus consider testing the level V k+1 for level planarity. The pertinent subtree of T is equal
to T and thus Lemma 5.1 applies. 2

6 Sink Indicators in Merge Operations

While the treatment of sink indicators during the application of the template matching algorithm is
rather easy in principle, this does not hold for merge operations. We consider all merge operations



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 81

��
��
��
��

��
��
��
��

v

w

X

si(v)X
w w

Figure 11: A doubly partial Q-node and its corresponding part of the form R. The
new inserted edge e = (v, w) is drawn as a dotted line.

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
w w

v
R′

X

Figure 12: Merging R′ into R with the new edge e = (v, w) is not level planar.

and discuss necessary adaptions in order to treat the sink indicators correctly.
If sink indicators and ignored nodes have to be manipulated correctly during the merge process,

ML-values as they have been introduced for non-ignored nodes have to be introduced for ignored
nodes as well. Consider a node X that becomes ignored. We make the following conventions.

(i) If X is a child of a P -node Y , the corresponding ML-value for X is ML(Y ).

(ii) If X is a child of a Q-node, we distinguish two cases:

(a) X does not have an adjacent ignored sibling. Since X has non-ignored siblings on ei-
ther side, let Z and Y be its direct non-ignored siblings. Then we leave the values
ML(Z, X) and ML(X, Y ) at X , and replace according to the level planarity test the val-
ues ML(Z, X) and ML(X, Y ) by a new value ML(Z, Y ) = min{ML(Z, X), ML(X, Y )}
at Z and Y . The case where X has just one non-ignored sibling is solved analogously.

(b) X has adjacent ignored direct siblings. Since X has ignored siblings on either side, let
ZI and YI be the direct ignored siblings and let Z and Y be its direct non-ignored
siblings with Z at the side where ZI is, and Y at the side where YI is. Let ML(Z, X)
and ML(X, Y ) be the ML-values between Z and X , and X and Y , respectively. Let
ML(ZI , X) be the ML-value stored at ZI , and let ML(X, YI) be the ML-value stored
at YI . Then we replace at X the values ML(Z, X) by ML(ZI , X) and ML(X, Y ) by
ML(X, YI), and replace according to the level planarity test the values ML(Z, X) and



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 82

ML(X, Y ) by a new value ML(Z, Y ) = min{ML(Z, X), ML(X, Y )} at Z and Y . The
cases with only one non-ignored or one ignored direct sibling are a handled analogously.

This strategy ensures that non-ignored siblings Z and Y “know” the maximal height of the
space between them, while the knowledge about the height of the space between the sinks
and their corresponding indicators is left at the ignored nodes only.

Lemma 6.1. Let X be an ignored node that is a child of a Q-node and let MLl and MLr be the
ML-values that have been assigned to X by one of the rules (ii)(a) or (ii)(b) described above. Then
the values MLl and MLr are valid for X.

Proof: The sink indicators in frontier(X) can be interpreted as leaves corresponding to long edges.
Thus the ML-values remain valid. 2

Lemma 6.2. Let X be an ignored node that is a child of a P -node Y . Then the value ML(Y ) is
valid for X.

Proof: Analogous to the proof of Lemma 6.1. 2

Suppose now that two reduced forms R1 and R2 and their corresponding trees T1 and T2 with
LL(T1) ≤ LL(T2) have to be w-merged. As described in 3, we start with the leaf labeled w in T1

and proceed upwards in T1 until a node X ′ and its parent X are encountered such that one of
the five merge conditions as described in Section 3 applies. The merge operations are discussed in
an order according to the difficulties that are encountered when handling involved sink indicators.
Before starting with the less problematic ones, one more convention is made. If X is a node in a
PQ-tree, RX denotes the subgraph corresponding to the subtree rooted at the node X .

Merge Operation E
The tree T1 is reconstructed by inserting a Q-node X as new root of T1 with two children X ′ and
the root of T2. The following observation is trivial.

Observation 6.3. There is no need to adapt the merge operation E in order to handle sink
indicators correctly.

Merge Operation A
The root of T2 is attached as a child to a P -node X of T1 thus we have that ML(X) < LL(T2).
Obviously, all ignored nodes that are children of X are allowed to be permuted in the pertinent
subtree. Thus the sink indicators in their frontier are allowed to be considered for edge augmen-
tation. However, the ignored children can only be considered if all children of X are traversed in
order to find the ignored children. This implies that all empty children of X have to be traversed
as well, yielding a quadratic time algorithm. Thus ignored children of X are not considered for
augmentation and we can make following observation.

Observation 6.4. There is no need to adapt the merge operation A in order to handle sink
indicators correctly.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 83

Merge Operation D
Let X be a Q-node of T1 with ordered children X1, X2, . . . , Xη, η > 1. Let X ′ = Xλ, 1 < λ < η,
and ML(Xλ−1, Xλ) < LL(T2) ≤ ML(Xλ, Xλ+1). Thus R2 has to be nested between the subgraphs
RXλ−1 and RXλ

and the root of T2 is attached as a child to the Q-node X between Xλ−1 and Xλ.
Let I1, I2, . . . , Iµ, µ ≥ 0, be the sequence of ignored nodes between Xλ−1 and Xλ with Xλ−1

and I1 being direct siblings, and Xλ and Iµ being direct siblings. As illustrated in Figure 13 there
may exist a ν ∈ {1, 2, . . . , µ} such that for every sink indicator

si(v) ∈
µ⋃

i=ν

frontier (Ii) , v ∈
φ(w)−1⋃

i=1

V i ,

the graph has to be augmented by an edge e = (v, w). Adding these edges does not destroy
level planarity. Furthermore, augmenting the graph G for every si(v) ∈

⋃µ
i=ν frontier (Ii), with

φ(v) ≥ LL(T2), by an edge e′ = (v, u), u ∈
⋃k

i=φ(w) V i, u 6= w destroys level planarity, since such
an edge must cross either a path in R2 connecting w with a vertex v’ of R2, φ(v′) = LL(T2), or a
path in R1 connecting w with a vertex v′′ in R1, φ(v′′) = LL(T2).

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

I1 Iν−1 Iν Iµ Xλ

ww

Xλ−1

Xλ−1

R2

Figure 13: Merging the form R2 into R1 using the merge operation D forces us to
augment G by the edges drawn as dotted lines.

Using the following lemma we are able to find all the sink indicators that have to be considered
for edge insertion when applying the merge operation D.

Lemma 6.5. Let X be a child of a Q-node and let Y be a direct non-ignored sibling of X. Let
I1, I2, . . . , Iµ, µ ≥ 0, be the sequence of ignored nodes between X and Y with X and I1 being
direct siblings, and Y and Iµ being direct siblings. There exists a ν ∈ {1, 2, . . . , µ + 1} such that
ML(X, Y ) = ML(Iν−1, Iν), with I0 = X and Iµ+1 = Y .



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 84

Proof: The lemma follows immediately from Lemma 6.1. 2

Remark 6.6. We store at every pair of direct non-ignored siblings X and Y pointers to the
two ignored siblings Iν−1 and Iν with ML(Iν−1, Iν) = ML(X, Y ). The maintenance during the
application of the template reduction algorithm and the merge operations is straightforward. We
will see later how we benefit from this in the merge operations B and C.

Placing the root of T2 between Iν−1 and Iν constructs a PQ-tree such that the ignored nodes
Iν , Iν+1, . . . , Iµ appear within the pertinent subtree. This permits to augment the graph G by an
edge e = (v, w) for every sink indicator si(v) ∈

⋃µ
i=ν frontier (Ii) during the reduction with respect

to w.

Merge Operation C
Let X be a Q-node with ordered children X1, X2, . . . , Xη, X ′ = Xλ, 1 < λ < η, and
ML(Xλ−1, Xλ) < LL(T2) and ML(Xλ, Xλ+1) < LL(T2). The node Xλ is replaced by a Q-node
Y with two children, Xλ and the root of T2.

Let I1, I2, . . . , Iµ, µ ≥ 0, be the sequence of ignored nodes between Xλ−1 and Xλ with Xλ−1

and I1 being direct siblings, and Xλ and Iµ being direct siblings. Let J1, J2, . . . , Jρ, ρ ≥ 0, be the
sequence of ignored nodes between Xλ and Xλ+1 with Xλ and J1 being direct siblings, and Xλ+1

and Jρ being direct siblings.
As illustrated in Figure 14 there may exist a ν, 1 ≤ ν ≤ µ, such that for every sink indicator

si(v) ∈
µ⋃

i=ν

frontier (Ii) , v ∈
φ(w)−1⋃

i=1

V i ,

G has to be augmented by an edge e = (v, w) if R2 is embedded between RXλ−1 and RXλ
.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Xλ−1 Xλ+1

Iµ XλXλ−1 Xλ+1I1 IνIν−1 JρJ1 Jσ Jσ+1

R2

w w

Figure 14: Merging the form R2 into R1 using the merge operation C and embedding
it between RXλ−1 and RXλ

forces G to be augmented by the edges drawn as dotted
lines.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 85

As is illustrated in Figure 15, R2 can be embedded between RXλ
and RXλ+1 , and there may

exist a σ, 1 ≤ σ ≤ ρ, such that for every sink indicator

si(v) ∈
σ⋃

i=1

frontier(Ji) , v ∈
φ(w)−1⋃

i=1

V i ,

G has to be augmented by an edge e = (v, w).

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Xλ−1 Xλ+1

Iµ XλXλ−1 Xλ+1JρJ1I1 IνIν−1

R2

Jσ Jσ+1

w w

Figure 15: Merging the form R2 into R1 using the merge operation C and embedding
it between RXλ

and RXλ+1 forces G to be augmented by the edges drawn as dotted
lines.

It is not possible to consider both sets of ignored nodes for edge augmentation. Consider
for instance the example shown in Figure 16, where edges for both sets

⋃µ
i=ν frontier(Ii) and⋃σ

i=1 frontier (Ji) have been added, yielding immediately a non-level planar graph.
However, deciding which set of sink indicators has to be considered for edge augmentation is

not possible unless Xλ is a full node (see Leipert (1998)). Extending the level planarity test down
the levels V φ(w)+1 to V k may embed the component R2 on either of the two sides of RXλ

. Since the
side is unknown during the merge operation, we have to keep the affected sink indicators in mind.
Furthermore, we must devise a method that permits recognizing the correct embedding during
subsequent reductions.

The sequences Iν , Iν+1, . . . , Iµ and J1, J2, . . . , Jσ are called the reference sequence of R2 and
denoted by rseq(R2). We refer to Iν , Iν+1, . . . , Iµ as the left reference sequence of R2 denoted
by rseq(R2)left , and to J1, J2, . . . , Jσ as the right reference sequence denoted by rseq(R2)right . The
union

⋃µ
i=ν frontier(Ii)∪

⋃σ
i=1 frontier(Ji) is called the reference set of R2 and denoted by ref (R2).

The left and right reference set ref (R2)left and ref (R2)right , respectively, are defined analogously
to the left and right reference sequence.

In Section 7 a method using a special ignored indicator is developed for deciding which subset
of ref (R2) has to be considered for edge augmentation. Before continuing with the algorithmic



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 86

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Xλ+1

Xλ−1 Xλ+1

wwu

Iµ J1IνXλ−1 I1 Iν−1 JρXλ Jσ Jσ+1

R2

ũ

Figure 16: Merging the form R2 into R1 using the merge operation C does not allow
to consider sinks on both sides of RXλ

for edge augmentation. Independently on the
chosen embedding of R2 there are always crossings between a path connecting ũ and
u and the new edges.

solution, we finish by considering the merge operation B where exactly the same problem occurs
as has been encountered for the merge operation C.

Merge Operation B
Let X be a Q-node with ordered children X1, X2, . . . , Xη, and let X ′ = X1, and ML(X1, X2) <
LL(T2). The node X1 is replaced by a Q-node Y having two children, X1 and the root of T2.

Let I1, I2, . . . , Iµ, µ ≥ 0, be the sequence of ignored nodes at one end of X with X1 and Iµ

being direct siblings and I1 being an endmost child of X . Let J1, J2, . . . , Jρ, ρ ≥ 0, be the sequence
of ignored nodes between X1 and X2 with X1 and J1 being direct siblings, and X2 and Jρ being
direct siblings.

Analogous to the merge operation C, there may exist sink indicators affected by merging R2

into R1 in both sets I1, I2, . . . , Iµ, µ ≥ 0, and J1, J2, . . . , Jρ, ρ ≥ 0. Again it is not possible to decide
if the left reference set ref (R2)left or the right reference set ref (R2)right has to be considered for
edge augmentation.

7 Contacts

In order to solve the decision problem of the merge operations B and C, we examine how R2 is fixed
to either side of the vertex w ∈ V in a level planar embedding of G. For the rest of this section we
consider two PQ-trees T1 and T2, such that T2 has been w-merged into T1 using a merge operation
B or C. Let X be the Q-node with children X1, X2, . . . , Xη, η ≥ 2, and let Xλ, λ ∈ {1, 2, . . . , η},
be its child that is replaced by a new Q-node having two children Xλ and the root of T2. Let RXλ

be the subgraph of R1 corresponding to the subtree rooted at Xλ before merging R1 and R2. Let



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 87

RX be the subgraph corresponding to the subtree rooted at X before merging R1 and R2.

Definition 7.1. Define ~RX to be the set of all vertices u ∈ V such that there exists a vertex
v ∈ RX and a (not necessarily directed) path P connecting u and v not using the connective cut
vertex of X. Define further D(RXλ

∪ R2) ⊂
⋃k

i=φ(w) V i to be the set of vertices u ∈
⋃k

i=φ(w) V i

such that the following two conditions hold.

1. There exists a directed path P = (u1, u2, . . . , uξ = u), ξ > 1, with u1 ∈ RXλ
∪ R2.

2. There exists a vertex ũ ∈
⋃k

i=φ(w) V i and a directed path P̃ = (ũ1, ũ2, . . . , ũι = ũ), ι > 1,
with ũ1 ∈ RXλ

∪R2, such that φ(ũ) ≥ φ(u) and the paths P and P̃ are vertex disjoint except
for possibly u and ũ.

The vertex set D(RXλ
∪ R2) is called the dependent set of RXλ

∪ R2.

Figure 17 illustrates different kinds of dependent sets D(RXλ
∪R2). The dependent set D(RXλ

∪
R2) is drawn shaded in all four cases. The vertex v in all four subfigures denotes the connective
cut vertex of Xλ in Gφ(w) that permits reversing the subgraph RXλ

∪ R2 with respect to RX .
For simplicity, we make the overall assumption for the rest of this section that no vertex

u ∈ D(RXλ
∪ R2) is involved in a merge operation. This matter is discussed in the next section,

handling concatenations of merge operations. However, subsequent merge operations to any other
vertex not contained in D(RXλ

∪ R2) are allowed after w-merging R2 into R1.
Figure 17(a) illustrates the case, where v is not only a cut vertex in Gφ(w) but also a cut vertex

in the graph G. Consequently, RXλ
∪ R2 ∪ D(RXλ

∪ R2) will be embedded within an interior face
or the outer face with the option to chose its embedding unaffected from the embedding of the rest
of the graph. Hence R2 may be embedded on an arbitrary side of RXλ

with respect to RX .
Figure 17(b) illustrates the case, where v is not a cut vertex in the graph G but there exists a

vertex u ∈ D(RXλ
∪ R2) such that u and v form a split pair and

φ(ũ) < φ(u) if ũ ∈ D(RXλ
∪ R2) − {u} .

Thus RXλ
∪ R2 ∪ D(RXλ

∪ R2) forms a split component and its embedding may be chosen freely.
Hence R2 may be embedded on an arbitrary side of RXλ

with respect to RX .
Figure 17(c) illustrates a more delicate situation involving a split pair v and u1. According to

the definition of the dependent set, the vertex u2 is contained in D(RXλ
∪R2) since there exists a

vertex u4 with φ(u2) = φ(u4) and two directed paths P and P̃ , with

(i) P connecting a vertex of RXλ
∪ R2 and u2,

(ii) P̃ connecting a vertex of RXλ
∪ R2 and u4, and

(ii) P and P̃ being disjoint.

Although u2 ∈ D(RXλ
∪ R2), the vertex u2 is not contained in the split component of v and u1.

The vertex u3, however, does not belong to the dependent set D(RXλ
∪ R2) since any directed

path connecting a vertex of RXλ
∪ R2 and a vertex in

⋃k
i=φ(u3) V i must contain the vertex u1.

Hence, the paths are not disjoint and u3 /∈ D(RXλ
∪ R2). Figure 17(c) shows a (not necessarily

directed) path P̂ connecting v and u3 via ṽ, such that P̂ and RXλ
∪R2 ∪D(RXλ

∪R2) are disjoint.
This leads to the interesting situation that u3 and therefore u2 are fixed in their embedding to the



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 88

side where ṽ is, while we are still able to flip the split component of u1 and v around, choosing an
arbitrary side where to embed R2 next to RXλ

with respect to RX .
However, the existence of a split component does not guarantee a free choice of the embedding.

In case that a (not necessarily directed) path P̃ exists, connecting the vertices v and u2 via ṽ such
that the path P̃ and RXλ

∪ R2 ∪ D(RXλ
∪ R2) are disjoint, and the path P̃ uses only vertices in⋃φ(u2)

i=1 V i, we cannot flip the split component of v and u1 anymore.
While Figure 17(a),(b),(c) describe examples of dependent sets such that an embedding of R2

can be chosen freely, Figure 17(d) gives an example of a dependent set that has to be embedded
such that R2 is forced to be embedded on exactly one side of RXλ

with respect to RX . Consider a
vertex u1 ∈ V − (RXλ

∪R2 ∪D(RXλ
∪R2)) and a vertex u2 ∈ D(RXλ

∪R2) such that there exists
path P̂ disjoint to RXλ

∪R2 ∪D(RXλ
∪R2), connecting v and u2 via u1, and the path P̂ uses only

vertices in
⋃φ(u2)

i=1 V i. If there exists a vertex u3 ∈ D(RXλ
∪R2), u3 6= u2, with φ(u3) ≥ φ(u2), the

path P̂ forces R2 to be embedded on one side of RXλ
with respect to RX .

Figure 17 implicitly assumes that the Q-node X remains a node with at least two non-ignored
children, one being the Q-node Y (the node that has been introduced when merging T (R1) and
T (R2)). The example of Figure 18 shows a subgraph corresponding to the subtree rooted at X ,
where X has become a Q-node with only one non-ignored child that is the node Y . Thus, there
exists a split pair v and ṽ in G with ṽ being the connective cut vertex of RX that allows reversing the
split component containing ~RX−(RXλ

∪R2∪D(RXλ
∪R2)). This implies that R2 may be embedded

on either side of RXλ
with respect to RX . We note that a path P = (v = u1, u2, . . . , uµ = u), µ ≥ 2,

may exist, connecting v and a vertex u ∈ D(RXλ
∪ R2) such that P is disjoint to D(RXλ

∪ R2),
and the path P uses only vertices in

⋃φ(u)
i=1 V i. Such a path has no effect on the embedding of R2

next to RXλ
with respect to RX since P must traverse the connective cut vertex ṽ of RX . Figure

18 shows the path P as a dotted line.
However, if there exists a vertex ũ ∈ ~RX − (RXλ

∪R2∪D(RXλ
∪R2)) such that for every vertex

ui ∈ P the inequality φ(ui) ≤ φ(ũ) holds, the embedding of R2 is fixed next to RXλ
with respect

to RX .
Our discussion leads to the following observations.

Observation 7.2. Let v be the connective cut vertex of RXλ
and let ṽ be the connective cut vertex

of RX if X has a parent. The subgraph R2 is not fixed to any side of RXλ
with respect to RX

if and only if for every vertex u in the dependent set D(RXλ
∪ R2) and every undirected path

P = (v = u1, u2, . . . , uµ = u), µ ≥ 2, with ui ∈
⋃φ(u)

i=1 V i for all i = 1, 2, . . . , µ, one of the following
conditions holds.

(i) uµ−1 ∈ RXλ
∪ R2 ∪ D(RXλ

∪ R2).

(ii) ṽ ∈ P and for all v′ ∈ ~RX − (RXλ
∪ R2 ∪ D(RXλ

∪ R2)) the inequality φ(v′) < φ(u) holds.

(iii) v and u form a split pair in G and for all v′ ∈ D(RXλ
∪R2)−{u} the inequality φ(v′) < φ(u)

holds.

Observation 7.3. Let v be the connective cut vertex of RXλ
and let ṽ be the connective cut

vertex of RX if X has a parent. The subgraph R2 is fixed to a side of RXλ
with respect to RX

if and only if there exists a vertex u in the dependent set D(RXλ
∪ R2) and an undirected path

P = (v = u1, u2, . . . , uµ = u), µ ≥ 2, with ui ∈
⋃φ(u)

i=1 V i for all i = 1, 2, . . . , µ, and all of the
following three conditions hold.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 89

(i) uµ−1 /∈ RXλ
∪ R2 ∪ D(RXλ

∪ R2).

(ii) (a) ṽ /∈ P , or

(b) ṽ ∈ P and there exists a v′ ∈ ~RX − (RXλ
∪ R2 ∪ D(RXλ

∪R2)) such that φ(v′) ≥ φ(u).

(iii) There exists a vertex v′ ∈ D(RXλ
∪ R2) − {u} such that the inequality φ(v′) ≥ φ(u) holds.

The path P connecting the vertex v and a vertex u ∈ D(RXλ
∪ R2) uses only level-i vertices

with i ≤ φ(u). This implies that the last edge (uµ−1, u) on the path P must be an incoming edge
of u. We use this fact to determine to which side of RXλ

the form R2 is fixed with respect to
RX . During the reduction of the leaves corresponding to the vertex u we analyze the incoming
edges of u, determining for each edge if it is the last edge of a path that is treated in one of the
Observations 7.2 and 7.3. The following two lemmas help us to perform the case distinction in a
very efficient way. We note that the parent of Y (Y is the Q-node that has been inserted by the
merge operation) does not need to be the node X throughout the algorithm, e.g., it may have been
removed from the PQ-tree when applying a reduction using one of the templates Q2 and Q3.

Lemma 7.4. The subgraph R2 has to be fixed in its embedding at one side of RXλ
with respect to

RX if and only if the Q-node Y is removed from the tree T during the application of the template
matching algorithm using template Q2 or template Q3, and the parent of Y did not become a node
with Y as the only non-ignored child.

Proof: Let R2 be fixed to a side of RXλ
with respect to RX . According to Observation 7.3,

there exists a vertex u in the dependent set D(RXλ
∪ R2) and an undirected path P = (v =

u1, u2, . . . , uµ = u), µ ≥ 2, with ui ∈
⋃φ(u)

i=1 V i for all i = 1, 2, . . . , µ. The last edge e = (uµ−1, u)
on P is therefore an incoming edge of u, and uµ−1 /∈ RXλ

∪ R2 ∪ D(RXλ
∪ R2). Since u is in

D(RXλ
∪ R2), it must have a second incoming edge ẽ, with ẽ being incident to a vertex ũ ∈⋃φ(u)−1

i=1 V i ∩ (RXλ
∪R2 ∪D(RXλ

∪R2)). Thus for the leaf l̃ in T corresponding to ẽ it follows that
l̃ ∈ frontier(Y ). Furthermore, the condition 7.3(i) guarantees that for the leaf l in T corresponding
to e we have l /∈ frontier (Y ).

Let Z be the smallest common ancestor of l and l̃ in the PQ-tree. Obviously, the Q-node Y is
a descendant of Z and we have Y 6= Z.

Let X̃ be the parent of Y . If condition 7.3(ii)(a) holds, then l ∈ frontier (X̃), and ṽ (the
connective cut vertex of RX) and v (the connective cut vertex of RXλ

) do not form a split pair in
G. Thus the parent of Y did not become a node with Y as its only non-ignored child.

If on the other hand condition 7.3(ii)(b) holds, then l /∈ frontier(X̃), but there exists at least
one empty child of X̃ containing a leaf in its frontier corresponding to a vertex v′ ∈ ~RX − (RXλ

∪
R2 ∪ D(RXλ

∪ R2)). Thus again, the parent of Y did not become a node with Y as the only
non-ignored child.

The node Y was a child of the Q-node X when it was introduced into the PQ-tree. Since the
parent of Y did not become a node with Y as the only non-ignored child, according to Lemma 2.2 Y
remains a child of a Q-node throughout the applications of the template matching algorithm. Due
to the overall assumption that no vertex in D(RXλ

∪ R2) is involved in another merge operation,
Y remains a child of a Q-node throughout every merge operation.

Due to condition 7.3(iii) there exists an empty leaf in the frontier of the node Y . Thus Y is a
partial node, and Y and its parent X̃ are traversed during the reduction with respect to the vertex



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 90

u. Since X̃ is a Q-node that is contained in the pertinent subtree with respect to u, either template
Q2 or template Q3 is applied to Y and X̃, removing Y from the PQ-tree.

Now let Y be removed from the tree during the reduction with respect to some vertex u by
applying template Q2 or Q3 and and let the parent of Y never become a node with Y being its
only non-ignored child.

Since the parent of Y always has at least two children, condition 7.3(ii)(a) or (ii)(b) must hold.
Furthermore, the application of template Q2 or Q3 implies that the template matching algorithm
has traversed Y and its parent, which is a Q-node as well. Hence the root of the pertinent subtree
must be a proper ancestor of Y . Thus there exists a pertinent leaf l not in the subtree of Y , and
a path P = (v = u1, u2, . . . , uµ = u), µ ≥ 2, with ui ∈

⋃φ(u)
i=1 V i for all i = 1, 2, . . . , µ, such that

uµ−1 /∈ RXλ
∪R2 ∪D(RXλ

∪R2). Since one of the templates Q2 and Q3 has been applied in order
to remove Y from the tree, Y itself must have been partial, and therefore must have had at least
one empty leaf in its frontier. Thus condition 7.3(iii) holds. It follows that R2 is fixed on one side
of RXλ

with respect to RX . 2

Lemma 7.5. The subgraph R2 is not fixed to any side of RXλ
with respect to RX if and only if

one of the following cases occurs during the application of the template matching algorithm.

(i) The Q-node Y gets ignored.

(ii) The Q-node Y is a non-ignored node of the final PQ-tree.

(iii) The Q-node Y has only one non-ignored child.

(iv) The parent of Y has only Y as a non-ignored child.

Proof: Let R2 be a subgraph not fixed to any side of RXλ
. According to Observation 7.2 the cases

7.2(i), 7.2(ii), or 7.2(iii) apply. If there exists a path P and a vertex u ∈ D(RXλ
∪ R2) in G that

satisfy condition 7.2(ii), it follows that the Q-node X was transformed into a node with only one
non-ignored child and possibly some ignored children. Then the case (iv) follows immediately. If
there exists a vertex u ∈ D(RXλ

∪R2) that satisfies 7.2(iii) then there exists a level l, φ(w) < l ≤ k,
(w being the vertex involved in merging RXλ

and R2) such that D(RXλ
∪ R2) ∩

⋂k
i=l V i = ∅ and

|D(RXλ
∪ R2) ∩ V l−1| = 1. Thus after completing the level planarity test for Gl−1 the node Y is

a Q-node with just one non-ignored child.
Now assume that 7.2(i) holds for all paths in G connecting v and a vertex u ∈ D(RXλ

∪ R2)
and no path matches condition 7.2(ii) and 7.2(iii). It follows from 7.2(i) that 7.3(i) does not hold
for any vertex u ∈ D(RXλ

∪R2). According to Lemma 7.4, the Q-node Y is not removed from the
tree using one of the templates Q2 and Q3, and one of the following two cases must hold.

1. There exists a level l, φ(w) < l ≤ k, such that D(RXλ
∪ R2) ∩

⋂k
i=l V i = ∅ and |D(RXλ

∪
R2) ∩ V l−1| ≥ 1. Thus after completing the level planarity test for Gl−1 the node Y is a
Q-node with non-ignored children. Two subcases occur

(a) Every leaf in the frontier of the non-ignored children of Y is replaced by a sink indicator
before testing Gl for level planarity. It follows that case (i) applies.

(b) All leaves in the frontier of Y except for the leaves in the frontier of one child of Y
become ignored. Thus case (iii) applies

2. The node Y is found in the final PQ-tree.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 91

Conversely, if one of the four cases applies to the Q-node Y , by Observation 7.2 any embedding
may be chosen. 2

Lemmas 7.4 and 7.5 reveal a solution for solving the problem of deciding whether R2 is fixed
to one side of RXλ

with respect to RX . A strategy is developed for detecting on which side of RXλ

the subgraph R2 has to be embedded. One endmost child of Y clearly can be identified with the
side where the root of T2 has been placed, while the other endmost child of Y can be identified
with the side were Xλ is. Every reversal of the Q-node Y corresponds to changing the side were
R2 has to be embedded and all we need to do is to detect the side of Y that belongs to R2, when
finally removing Y from the tree applying one of the templates Q2 or Q3. The strategy is to mark
the end of Y belonging to R2 with a special ignored node. Such a special ignored node is called
a contact of R2 and denoted by c(R2). It is placed as the endmost child of Y during the merge
operation B or C next to the root of T2. Thus the Q-node Y has now three children instead of two.
See Figure 19 for an illustration.

Since the contact c(R2) is related to a w-merge operation, the vertex w is called related vertex
of c(R2) and denoted by ω(c(R2)). The corresponding w-merge operation is said to be associated
with c(R2). Before gathering some observations about contacts, it is necessary to show that the
involved ignored nodes remain in the relative position of Y within the Q-node, and are therefore
not moved or removed.

Lemma 7.6. The ignored nodes of rseq(R2)left and rseq(R2)right stay siblings of Y until one of
the templates Q2 or Q3 is applied to Y and its parent.

Proof: The ignored nodes of rseq(R2)left and rseq(R2)right are children of a Q-node, and there-
fore remain children of a Q-node keeping their order throughout the application of the template
matching algorithm, unless either rseq(R2)left or rseq(R2)right are found to be within a pertinent
sequence. However, this can only happen if the node Y becomes pertinent, provided that the node
Y does not become ignored itself. 2

A contact has some special attributes that are immediately clear and very useful for our ap-
proach. In the following observations we again assume that Y and its parent have not been an
object of another merge operation B or C. Concatenation of contacts is discussed in the next
section.

Observation 7.7. Since the contact is an endmost child of a Q-node Y , it will remain an endmost
child of the same Q-node Y , unless the node Y is eliminated applying one of the templates Q2 or
Q3.

Observation 7.8. If the node Y is eliminated applying the templates Q2 or Q3, the contact c(R2)
determines the side were R2 has to be embedded next to RXλ

with respect to RX . The contact is
then a direct sibling to rseq(R2)i, for some i ∈ {left , right} and ref (R2)i has to be considered for
edge augmentation.

Besides placing c(R2) as endmost child next to the root of T2, c(R2) is equipped with a set of
four pointers, denoting the beginning and the end of both the left and the right reference sequence
of R2. This is necessary, since direct non-ignored siblings of Y may become ignored throughout the
application of the algorithm. Let rseq(R2)left = {Iν , Iν+1, . . . , Iµ} be the left reference sequence and
let rseq(R2)right = {J1, J2, . . . , Jσ} be the right reference sequence. After performing a reduction



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 92

applying template Q2 or Q3 to the node Y , the contact is either a direct sibling of Iµ or a direct
sibling of J1. In the first case, we scan the sequence of ignored siblings starting at Iµ until the
ignored node Iν is detected. In the latter case, the sequence of ignored siblings is scanned by
starting at J1 until the node Jσ is detected. Figure 20 illustrates this strategy for the latter case.
Storing pointers of the ignored nodes Iν , Iµ, J1, Jσ at c(R2), we are able to identify the reference set
ref (R2). The nodes Iν , Iµ, J1, Jσ are called the reference points of the contact c(R2). Analogously
to the definition of a reference set of R2, ref (R2) is said to be the reference set of c(R2) and
denoted by ref (c(R2)).

The section closes with a summary of the results.

Lemma 7.9. Let c(R2) be a contact related to a vertex w and let ref (R2)left be the left reference
set of c(R2) with reference points Iν , Iµ and let ref (R2)right be the right reference set of c(R2) with
reference points J1, Jσ. Then the following statements are true.

(i) If c(R2) is adjacent to Iµ, then augmenting Gst by an edge (u, w) for every si(u) ∈ ref (R2)left

does not destroy level planarity.

(ii) If c(R2) is adjacent to J1, then augmenting Gst by an edge (u, w) for every si(u) ∈
ref (R2)right does not destroy level planarity.

Proof: The lemma immediately follows from Lemmas 7.4 and 7.6. 2

8 Concatenation of Contacts

For clarity, the previous section omitted the concatenation of merge operations applied to the
vertices of the dependent set corresponding to a merge operation B or C. This section deals with
the subject of concatenating merge operations.

Let R1 be a reduced extended form that has been w1-merged into a reduced extended form
R by applying a merge operation B or C. Let T and T1 be the PQ-trees corresponding to R and
R1. Let X be the Q-node with children X1, X2, . . . , Xη, η ≥ 2, and let Xλ, λ ∈ {1, 2, . . . , η}, be
the child that is replaced by a new Q-node having two children Xλ and the root of T1. Let Ri,
i = 2, 3, . . . , µ, be reduced extended forms where every Ri has to be wi-merged into R, and Ri is
wi-merged into R before Ri+1 is wi+1-merged into R, for all i = 2, 3, . . . , µ − 1.

Definition 8.1. Let D(RXλ
∪R1) ⊂

⋃k
ν=φ(w1)

V ν be the dependent set of RXλ
∪R1. The dependent

set of RXλ
∪ R1 ∪ R2 ∪ · · · ∪ Ri, i ∈ {2, 3, . . . , µ}, is denoted by D(RXλ

∪ R1 ∪ R2 ∪ · · · ∪ Ri) ⊂⋃k
ν=φ(w1)

V ν , and is recursively defined to be the set of all vertices u ∈
⋃k

ν=φ(w1) V ν such that the
following conditions hold.

1. wi ∈ D(RXλ
∪ R1 ∪ R2 ∪ · · · ∪ Ri−1).

2. There exists a directed path P = (u1, u2, . . . , uξ = u), ξ > 1, with u1 ∈ RXλ
∪R1∪R2∪· · ·∪Ri.

3. There exists a vertex ũ ∈
⋃k

ν=φ(w1) V ν and a directed path P̃ = (ũ1, ũ2, . . . , ũι = ũ), ι > 1,
with ũ1 ∈ RXλ

∪R1 ∪R2 ∪ · · · ∪Ri, such that φ(ũ) ≥ φ(u) and the paths P and P̃ are vertex
disjoint except possibly for u and ũ.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 93

Definition 8.2. A sequence of wi-merge operations, i = 1, 2, . . . µ, of reduced extended forms Ri

into a reduced extended form R is said to be a concatenation of merge operations if the following
three conditions hold.

(i) R1 is w1-merged using a merge operation B or C.

(ii) For all wi-merge operations we have wi ∈ D(RXλ
∪ R1 ∪ R2 ∪ · · · ∪ Ri−1).

(iii) R1 has not been fixed to one side of RXλ
with respect to RX and it is unknown if its embedding

can be chosen freely.

Interestingly, a concatenation of merge operations does not really affect the results of Observa-
tions 7.2 and 7.3 and the Lemmas 7.4 and 7.5. This is immediately clear for the observations that
we now give for the concatenated case.

Observation 8.3. Let v be the connective cut vertex of RXλ
and let ṽ be the connective cut vertex

of RX if X has a parent. Let Ri, i = 1, 2, . . . , µ, be a sequence of partially reduced extended forms
that are wi-merged into R and where their merge operations are concatenations. The subgraph R1

is not fixed to any side of RXλ
with respect to RX if and only if for every vertex u in the dependent

set D(RXλ
∪ R1 ∪ R2 ∪ · · · ∪ Rµ) and every undirected path P = (v = u1, u2, . . . , uξ = u), ξ ≥ 2,

with ui ∈
⋃φ(u)

ν=1 V ν for all i = 1, 2, . . . , ξ, one of the following conditions holds.

(i) uξ−1 ∈ RXλ
∪ R1 ∪ R2 ∪ · · · ∪ Rµ ∪ D(RXλ

∪ R1 ∪ R2 ∪ · · · ∪ Rµ).

(ii) ṽ ∈ P and for all v′ ∈ ~RX − (RXλ
∪ R1 ∪ R2 ∪ · · · ∪ Rµ ∪ D(RXλ

∪ R1 ∪ R2 ∪ · · · ∪ Rµ)) the
inequality φ(v′) < φ(u) holds.

(iii) v and u form a split pair in G and for all v′ ∈ D(RXλ
∪ R1 ∪ R2 ∪ · · · ∪ Rµ) − {u} the

inequality φ(v′) < φ(u) holds.

Observation 8.4. Let v be the connective cut vertex of RXλ
and let ṽ be the connective cut vertex

of RX if X has a parent. Let Ri, i = 1, 2, . . . , µ, be a sequence of partially reduced extended forms
that are wi-merged into R and where their merge operations are concatenations. The subgraph R1

is fixed to a side of RXλ
with respect to RX if and only if there exists a vertex u in the dependent

set D(RXλ
∪R1 ∪R2 ∪ · · · ∪Rµ) and an undirected path P = (v = u1, u2, . . . , uξ = u), ξ ≥ 2, with

ui ∈
⋃φ(u)

ν=1 V ν for all i = 1, 2, . . . , ξ, and all three of the following conditions hold.

(i) uξ−1 /∈ RXλ
∪ R1 ∪ R2 ∪ · · · ∪ Rµ ∪ D(RXλ

∪ R1 ∪ R2 ∪ · · · ∪ Rµ).

(ii) (a) ṽ /∈ P , or

(b) ṽ ∈ P and there exists a v′ ∈ ~RX−(RXλ
∪R1∪R2∪· · ·∪Rµ∪D(RXλ

∪R1∪R2∪· · ·∪Rµ))
such that φ(v′) ≥ φ(u).

(iii) There exists a vertex v′ ∈ D(RXλ
∪ R1 ∪ R2 ∪ · · · ∪ Rµ) − {u} such that the inequality

φ(v′) ≥ φ(u) holds.

In order to see that the results of Lemmas 7.4 and 7.5 (up to minor differences) still hold, we
show that the “local structure” of the PQ-tree at the Q-node Y and its parent X either does not
change or, if it changes, the embedding of R1 is fixed on one side of RXλ

with respect to RX .
With an “unchanged local structure” we express (informally) that throughout concatenated merge



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 94

operations the node Y (or any node that replaces Y ), and X (or any node that replaces X) stay
Q-nodes with Y (or its replacing node) remaining unchanged in the position of its siblings. The
following lemma formally describes how the Q-node Y is changed during subsequent concatenated
merge operations. The results of the lemma then immediately lead to results similar to the ones in
Lemmas 7.4 and 7.5.

Lemma 8.5. Let Y be a Q-node that has been introduced by w1-merging the PQ-tree T1 into T
using a merge operation B or C, replacing a child Xλ of a Q-node X. Let Ti, i = 2, 3, . . . , µ,
µ ≥ 2, be a sequence of PQ-trees that are wi-merged into T such that the wi-merge operations
are concatenations. Let Y ′ be the node that occupies the position of Y in the PQ-tree after the
wµ-merge operation is complete. Then Y ′ and its parent are Q-nodes.

Proof: Let Ri, i = 1, 2, . . . , µ, be the forms corresponding to the PQ-trees Ti. We prove the lemma
by induction.

According to the definition of a concatenation, R1 has not been embedded at one side of RXλ

with respect to RX and it is unknown if its embedding can be chosen freely. Lemma 7.5 therefore
implies that the parent of Y did not become a node with Y as the only non-ignored child, and
according to Corollary 2.2 the parent of Y must be a Q-node. Furthermore, Lemma 7.5 implies
that Y must have at least two leaves in its frontier both corresponding to different vertices in G.

When applying a w2-merge operation to a vertex w2 ∈ D(RXλ
∪ R1) three cases are possible.

(i) Only descendants of Y are affected by the merge operation.

(ii) The node Y and its parent are affected by the merge operation.

(iii) Proper ancestors of Y are affected by the merge operation.

Consider the first case. If only proper descendants of Y are involved, neither Y nor its parent are
affected. If Y and a child of Y are affected, the merge operations B, C or D are applied to the child
of Y . Thus Y remains a Q-node with unchanged position in the PQ-tree.

Consider the second case. Since the parent of Y is a Q-node, the only allowed merge operations
are B, C, and D. The operations B and C insert a new Q-node Y ′ at the position of Y . Reducing
the leaves labeled w2 after the merge operation does only affect the children of Y ′, since Y ′ is
the root of the pertinent subtree. Therefore, the Q-node Y ′ remains unchanged in its position.
However, if the merge operation D is applied, the template matching algorithm performed directly
after the merge operation removes Y from the tree by applying one of the templates Q2 or Q3.
Hence, according to Lemma 7.4, R1 is embedded at one side of RXλ

with respect to RX . Therefore,
the w1-merge operation of T1 and the w2-merge operation of T2 are not a concatenation.

If proper ancestors of Y are involved, the reduction of the PQ-tree with respect to w2 removes
Y from the PQ-tree by applying one of the templates Q2 or Q3. Again, the w1-merge operation
of T1 and the w2-merge operation of T2 are not concatenated.

The lemma then follows by a simple inductive argument. 2

The following lemmas are almost identical to the Lemmas 7.4 and 7.5, taking into account that
the subgraph induced by the subtree rooted at Y (or any Q-node that replaces Y due to a merge
operation) may have grown by concatenated merge operations.

Lemma 8.6. Let Y be the Q-node that was introduced by a w1-merge operation B or C of a PQ-
tree T1 into a tree T , replacing a node Xλ that was a child of a Q-node X in T . Let Y ′ be a Q-node



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 95

occupying the position of Y , and Y ′ has been introduced during a merge operation concatenating
the w1-merge operation. The subgraph R1 corresponding to T1 has to be embedded at exactly one
side of RXλ

with respect to RX if and only if the Q-node Y ′ is removed from the tree T during the
application of the template matching algorithm using template Q2 or template Q3, and the parent
of Y did not become a node with Y as the only non-ignored child.

Proof: The lemma follows from Lemma 7.4 and Lemma 8.5. 2

Lemma 8.7. Let Y be the Q-node that was introduced by a w1-merge operation B or C of a PQ-
tree T1 into a tree T , replacing a node Xλ that was a child of a Q-node X in T . Let Y ′ be a Q-node
occupying the position of Y , and Y ′ has been introduced during a merge operation concatenating
the w1-merge operation. The subgraph R1 corresponding to T1 is not fixed to any side of RXλ

if and
only if one of the following cases occurs during the application of the template matching algorithm.

(i) The Q-node Y ′ gets ignored.

(ii) The Q-node Y ′ is a non-ignored node of the final PQ-tree.

(iii) The Q-node Y ′ has only one non-ignored child.

(iv) The parent of Y ′ has only Y ′ as a non-ignored child.

Proof: The lemma follows from Lemma 7.5 and Lemma 8.5. 2

Let c be a contact that is a child of the Q-node Y . As long as concatenated merge operations
only affect descendants of the Q-node Y , they have no effect on c and its reference sequence.
However, if Y and its parent are subject to a merge operation B or C, there exists a coherence
between the existing contact c and the new contact that is introduced by the merge operation.

Obviously, the merge operations A, D, and E can be performed one after another without
worrying about the correct treatment of involved sink indicators. However, the merge operations B
and C may “affect” each other. Consider for instance the example shown in Figure 21, presenting
three forms R1, R2, and R3 that have been successively merged into a form R at the vertices
w1, w2, w3. For every form Ri, the example also gives the set of edges that have to be added as
incoming edges to wi, i ∈ {1, 2, 3}, in the given embedding. On the other hand, Figure 22 gives
the same example only with a different embedding showing different sets of edges that have to be
added as incoming edges to wi.

In the rest of this section we discuss how to handle sequences of the merge operations B
and C that affect each other. We say that two contacts c1 and c2 mutually influence each other
if ref (c1) ∩ ref (c2) 6= ∅. Two merge operations B or C mutually influence each other if their
corresponding contacts mutually influence each other.

Consider a Q-node Y that has been introduced as a child of a Q-node X applying one of the
operations B or C. In case of a w-merge operation B or C, we only need to check if the node Y that
has to be replaced by a new Q-node does have a contact as an endmost child. However, the contact
is then separated from its reference sequence since Y is not a child of the Q-node X anymore. This
seems to destroy the strategy of handling the contact and its reference sequence correctly.

However, the new Q-node is obviously the root of the pertinent subtree with respect to w. Since
the two merge operations are concatenated, Lemma 7.5 does not apply to Y1. (Otherwise, simply
remove the contact and either the left or right reference set.) It follows that the node Y1 must be a
partial Q-node. Therefore, template Q2 or Q3 is applied to Y1 and its parent Y2, and Y1 is removed



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 96

from the tree, and the children of Y1 become children of Y2. This ensures that after the reduction
with respect to w, c1 is again a child of a Q-node Y2, where Y2 is a child of X occupying the former
position of Y1. We consider the position of c1 within the sequence of children of Y2. Let c2 be the
contact associated with the merge operation that introduced Y2. Two cases may occur during the
reduction with respect to w.

1. The contact c1 was at the empty end of Y1 and since Y1 was an endmost child of Y2, c1 is
now an endmost child of Y2.

2. The contact c1 was at the full end of Y1, and appears within the sequence of full children of
Y2.

After having finished the reduction with respect to w one of the following two rules is applied to
the contact c1.

Rule I If c1 is an endmost child of Y2, c1 remains in its position as an endmost child of Y2.

Rule II If c1 is found within the sequence of pertinent nodes, c1 is placed as a new endmost child
of Y2 next to c2.

The rules are easily expanded to two or more contacts. Let Yi be the i-th Q-node introduced by
the i-th concatenating merge operation.

Rule I’ If a sequence of contacts c1, c2, . . . , cξ, ξ ≤ i − 1, is endmost at Yi after the reduction is
complete, the contacts c1, c2, . . . , cξ remain in their positions.

Rule II’ If a sequence of contacts c1, c2, . . . , cξ, ξ ≤ i−1, is found within the sequence of pertinent
nodes and c1 was the former endmost child of Yi−1, the sequence c1, c2, . . . , cξ is placed next
to ci that cξ and ci are directly siblings and c1 is a new endmost child of Yi.

Lemma 8.8. Let Ri, i = 1, 2, . . . , µ, be a sequence of partially reduced extended forms that are
wi-merged into a partially reduced extended form R of a level planar graph G such that their
merge operations are concatenations. Let T , T1, T2, . . . , Tµ be the PQ-trees corresponding to R,
R1, R2, . . . , Rµ. Let X, Y1, Y2, . . . , Yµ be Q-nodes and Xλ be a node such that

(a) Xλ was a child of X in a PQ-tree T before w1-merging T1 into T .

(b) Xλ was replaced by Y1 when w1-merging T1 into T using the merge operation B or C.

(c) Yi was replaced by Yi+1 when wi+1-merging Ti+1 into T using the merge operation B or C
for all i = 1, 2, . . . , µ − 1.

Let c(Ri) be the contact that is associated with the introduction of Yi, i = 1, 2, . . . , µ. Let RXλ

be the subgraph corresponding to Xλ, and assume that c(R1), c(R2), . . . , c(Ri−1) have been replaced
by applying one of the Rules I’ or II’ when merging R1, R2, . . . , Ri into R, i ≥ 2. Then exactly one
of the following statements holds.

(i) The contacts c(R1) and c(Ri) are both children at the same end of the Q-node Yi if and only
if their corresponding forms have to be embedded on the same side of RXλ

with respect to RX

in every level planar embedding.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 97

(ii) The contacts c(R1) and c(Ri) are both children on opposite sides of the Q-node Yi if and
only if their corresponding forms have to be embedded on opposite sides of RXλ

with respect
to RX in every level planar embedding.

Proof: Since the merge operations are concatenated, Lemma 7.5 does not apply to Yi, i =
1, 2, . . . , µ − 1. It follows that Yi is a partial Q-node for every i = 1, 2, . . . , µ − 1. Thus there
exist at least two leaves, one corresponding to an incoming edge of wi+1 and one corresponding to
an incoming edge of a vertex u ∈ V l, u 6= w2, φ(wi+1) ≤ l ≤ k.

Let Yi, i ∈ {2, 3, . . . , µ− 1}, be the partial Q-node that has to be replaced by a Q-node Yi+1 in
a wi+1 merge operation. Then the set {R1, R2, . . . , Ri} partitions into two subsets:

• {R1
1, R

1
2, . . . , R

1
ν}, 1 ≤ ν ≤ i, the set of forms that are embedded on the same side as R1 and

• {R2
ν+1, R

2
2, . . . , R

2
i }, the set of forms that are embedded on the opposite side of R1.

Since Yi is a partial Q-node, there exists a level planar embedding of RYi and two paths

P = (u1, u2, . . . , uσ) σ ≥ 2
u1 ∈ R1

1 ∪ R1
2 ∪ · · · ∪ R1

ν

uj /∈ RXλ
∪ R2

ν+1 ∪ R2
2 ∪ · · · ∪ R2

i − {wi} j = 1, 2, . . . , σ
φ(uj) < φ(wi+1) j = 1, 2, . . . , σ − 1
φ(uσ) ≥ φ(wi+1)

and

P ′ = (u′
1, u

′
2, . . . , u

′
ξ) ξ ≥ 2

u′
1 ∈ RXλ

∪ R2
ν+1 ∪ R2

2 ∪ · · · ∪ R2
i

uj /∈ R1
1 ∪ R1

2 ∪ · · · ∪ R1
ν j = 1, 2, . . . , ξ

φ(u′
j) < φ(wi+1) j = 1, 2, . . . , ξ − 1

φ(u′
ξ) ≥ φ(wi+1)

such that

(a) P and P ′ are disjoint,

(b) both P and P ′ are on the boundary of the outer face of the embedding of RYi , and

(c) either uσ = wi+1 or u′
ξ = wi+1, but not both.

See Figure 23 where we have illustrated the case i = 1.
First, case (i) is proven. Let Ri+1 and R1 be embedded on the same side of RXλ

. It follows
that wi+1 ∈ P , otherwise Ri+1 and P would cross each other. Let Z be the child of Yi that is an
ancestor of the leaf labeled wi+1. Since the path P is on the outer face of RYi on the side where R1

is embedded, Z must be an endmost non-ignored child of Yi on the side where c(R1) is an endmost
child. Since Yi is partial, c(R1) will appear within the pertinent sequence of leaves labeled wi+1

after the reduction with respect to wi+1 is complete. Therefore Rule II’ is applied and c(R1) and
c(Ri+1) are both children at the same end of Yi+1.

Now let c(R1) and c(Ri+1) be children on the same side, and assume that R1 and Ri+1 have to
be embedded on opposite sides of RXλ

with respect to RX . It follows that wi+1 ∈ P ′, otherwise Ri+1

and P ′ would cross each other. By construction, c(R1) was found within the pertinent sequence



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 98

with respect to the vertex wi+1 after Ri+1 was wi+1-merged into R. So there exists a path P ′′ on
the boundary of RYi , and P ′′ connects a vertex u ∈ R1

1 ∪ R1
2 ∪ · · · ∪ R1

ν and wi+1, not using any
vertices u′ ∈

⋃k
l=φ(wi+1)

V l. However, P ′′ must cross P , a contradiction.
The case (ii) is proven analogously to case (i). 2

If two contacts c1 and c2 influence each other, and therefore ref (c1) ∩ ref (c2) 6= ∅ holds, we
need to redefine their reference sets such that no conflicts appear when sink indicators for edge
augmentation are considered. A situation, where we can chose for a sink indicator to which reference
set it belongs has to be avoided.

Again let R, R1, R2, X , Xλ, Y1, Y2, c(R1), and c(R2) be defined as in Lemma 8.8. The idea is to
leave the reference set of c(R1) (the contact associated to the “first” merge operation) unchanged,
and adapt the reference set of c(R2) (the contact associated to the “second” merge operation). Let
I1, I2, . . . , Iµ, µ ≥ 0, be the sequence of ignored nodes on the left side of Xλ with Xλ and Iµ being
direct siblings, and let J1, J2, . . . , Jρ, ρ ≥ 0, be the sequence of ignored nodes on the right side of
Xλ with Xλ and J1, being direct siblings. Let

ref (c(R1)) =

(
µ⋃

i=ν1

frontier(Ii)

)
∪
(

σ1⋃
i=1

frontier (Ji)

)

for 1 ≤ ν1 ≤ µ + 1, 0 ≤ σ1 ≤ ρ

be the reference set of c(R1), where we assume without loss of generality that none of the two
subsets is empty. The reference points of c(R1) are Iν1 , Iµ, J1, Jσ1 . Assume further that

ref (c(R2)) =

(
µ⋃

i=ν2

frontier(Ii)

)
∪
(

σ2⋃
i=1

frontier (Ji)

)

for 1 ≤ ν2 ≤ µ + 1, 0 ≤ σ2 ≤ ρ .

After performing the second merge operation including the reduction of the leaves labeled w2, the
contacts c(R1) and c(R2) occupy two relative positions at their parent Y2.

(i) c(R1) and c(R2) are endmost children on different ends of Y2. Due to Lemma 8.8, R1 and
R2 are embedded on opposite sides of RXλ

with respect to RX . Thus c(R1) and c(R2) do
not interfere when finally determining the sets of sink indicators that are considered for edge
augmentation. We determine the reference points Iν2 , Iµ, J1, Jσ2 and store them at c(R2).

(ii) c(R1) and c(R2) are at the same end of Y2 with c(R1) being (by construction) an endmost
child. Due to Lemma 8.8, R1 and R2 are embedded at the same side of RXλ

. Thus c(R1)
and c(R2) interfere when we finally determine the sets of sink indicators that are considered
for edge augmentation.

The new reference set of c(R2) is determined as follows.

ref (c(R2))left =
{ ⋃ν1−1

i=ν2
frontier(Ii) if ν2 < ν1

∅ otherwise
(1)

ref (c(R2))right =
{ ⋃σ2

i=σ1+1 frontier (Ji) if σ2 > σ1

∅ otherwise
(2)



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 99

Then the reference set of c(R2) is

ref (c(R2)) = ref (c(R2))right ∪ ref (c(R2))left .

Hence, the ignored nodes Iν2 , Iν1−1, Jσ1+1, Jσ2 are stored as reference points at c(R2).

The application to the more general case of three or more contacts is straightforward.

Remark 8.9. In order to achieve linear running time, the reference sequence of a newly intro-
duced contact c(Ri) and its associated form Ri is never determined by scanning the sequence of
ignored siblings. Instead we proceed as follows. At every consecutive sequence of contacts, we keep
a pointer at the endmost contact cα towards the innermost contact cω. The contact cω is obviously
the contact that has been introduced last in this sequence of contacts. When introducing a new
contact, we only need to consider the contacts on the same side as the new contact. We check the
reference sequence of the innermost contact cω and determine the ML-values ML(Iνω−1 , Iνω ) and
ML(Jσω , Jσω+1) between the reference sequence and their direct siblings. If ML(Iνω−1 , Iνω ) < LL(Ri)
or ML(Jσω , Jσω+1) < LL(Ri), the left or right reference set of c(Ri), respectively, is empty. If
ML(Iνω−1 , Iνω ) ≥ LL(Ri) or ML(Jσω , Jσω+1) ≥ LL(Ri), the left or right reference sequence of
c(Ri), respectively, is determined in constant time using the pointers that we have installed as
described in Remark 6.6.

Consider the case were c(R1) and c(R2) are at the same end of Y2. when removing the Q-node
Y2 during the application of the template Q2 or Q3. The contact c(R1) is an endmost child of
Y2. Thus, after the application of the template Q2 or Q3 the contact c(R1) is a direct sibling
of either Iµ or J1. Therefore, the identification of sink indicators that have to be considered for
edge augmentation joining the vertex w1 is a straightforward matter. After this identification is
finished, the contact c(R1) and the set of ignored siblings that were considered for augmentation
are removed from the PQ-tree, leaving the contact c(R2) as a direct sibling of either Iν1−1 or Jσ1+1.
Again, the identification of the sink indicators that have to be considered for edge augmentation
joining the vertex w2 is straightforward.

Lemma 8.10. Let ci, i = 1, 2, . . . , µ, µ ≥ 1, be contacts that are endmost children of a Q-
node Y1 in a PQ-tree T . Let contact ci be related to vertex wi ∈ V , such that φ(wi) ≤ φ(wi+1),
i = 1, 2, . . . , µ − 1. In case that φ(wi) = φ(wi+1) holds, let the PQ-tree Ti corresponding to ci be
wi-merged into T before the tree Ti+1 corresponding to wi+1 is wi+1-merged into T . Let ref (ci)left

be the left reference set of ci with reference points Ib
i , Ie

i and ref (ci)right be the right reference set
of ci with reference points Jb

i , Je
i . For every ci, the nodes Ib

i and Jb
i denote the first ignored node

in the reference sequence rseq(ci)left and rseq(ci)right , respectively, and Ie
i and Je

i denote the last
ignored node in the reference sequence rseq(ci)left and rseq(ci)right , respectively. Then the following
statements are true.

(i) If ci is adjacent to Ib
i , then augmenting Gst by an edge (u, w) for every si(u) ∈ ref (ci)left

does not destroy level planarity.

(ii) If ci is adjacent to Jb
i , then augmenting Gst by an edge (u, w) for every si(u) ∈ ref (ci)right

does not destroy level planarity.

Proof: By construction, the sequence of children of Y1 is partitioned into the three sets: C1, N
and C2 where



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 100

• C1 = c1
1 , c1

2 , . . . , c1
ν , 0 ≤ ν ≤ µ, is the sequence of contacts on one end of Y1 with c1

1 being an
endmost child of Y1.

• N is a sequence of ignored and non-ignored nodes.

• C2 = c2
1 , c2

2 , . . . , c2
ϕ, ϕ = µ− ν, is the sequence of contacts on the opposite side of C1 with c2

1

as an endmost child of Y1.

By construction, for Cξ, ξ = 1, 2,

φ(ω(cξ
i )) ≤ φ(ω(cξ

i+1)) i = 1, 2, . . . , |Cξ| − 1

where ω(cξ
i ) denotes the vertex related to cξ

i . For any i ∈ {1, 2, . . . , |Cξ| − 1} with φ(ω(cξ
i )) =

φ(ω(cξ
i+1)) the PQ-tree corresponding to cξ

i has been ω(cξ
i )-merged into T before the tree corre-

sponding to cξ
i+1 has been ω(cξ

i+1)-merged.
It follows that either c1

1 = c1 or c2
1 = c1 and c1

1 and c2
1 do no interfere, since their corresponding

forms are placed on opposite sides with respect to RXλ
and RX . We may assume that c1

1 = c1.
Due to Observation 7.8, c1

1 is either adjacent to Ib
1 or to Jb

1 . Assume without loss of generality that
c1
1 is adjacent to Ib

1 . It follows from Lemma 7.9 that considering ref (c1)left for edge augmentation
does not destroy level planarity. Removing c1

1 and ref (c1)left from the tree, the correctness of the
lemma follows by a simple inductive argument. 2

The function AUGMENT now combines all the described strategies in the level planarity test
of Jünger et al. (1999). It is almost identical to the function LEVEL-PLANARITY-TEST, except
that it does not call the function CHECK-LEVEL but a function EMBED-LEVEL. However, the
function EMBED-LEVEL is almost identical to the function CHECK-LEVEL. We only need the
following modifications.

(i) If v is a sink in V j , 1 < j < k, replace the corresponding leaf by a sink indicator si(v) before
processing Gj+1. If this replacement constructs a node X having only sink indicators in its
frontier, mark X as ignored and update the ML-values as described in Section 6.

(ii) When reducing a set of leaves with respect to a vertex w in a PQ-tree, ignore all sink
indicators and ignored nodes during the application of the template matching algorithm.
After the reduction is complete, the pertinent subtree is removed from the tree and replaced
by a single representative. During the removal of the pertinent subtree with respect to w,
we check for sink indicators in the pertinent subtree. For every si(v) that is found in the
pertinent subtree, we add an edge (v, w) to Gst, unless si(v) is affected by the existence of
a contact c in the pertinent subtree. If the latter applies, add an edge (v, w′), with w′ being
the vertex related to c.

(iii) When w-merging a PQ-tree T ′ into a PQ-tree T , necessary adjustments as described above
have to be applied to the merge operations B or C. If necessary, a contact is introduced as a
third child of the new Q-node. Furthermore, if the new contact mutually influences existing
ones, Rules I or II (see 8) have to be applied after reducing T with respect to w.

(iv) After processing level k, an edge (v, t) is added for every vertex v ∈ V k. Furthermore we scan
the final PQ-tree T for remaining sink indicators, and add for every indicator si(v) an edge
(v, t) to Gst, unless si(v) is affected by the existence of a contact c in the pertinent subtree.
If the latter applies we add an edge (v, w′), with w′ being the vertex related to c.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 101

Theorem 8.11. The algorithm LEVEL-PLANAR-EMBED computes a level planar embedding of
a level planar graph G = (V, E, φ) in O(n).

Proof: From Lemmas 5.1, 5.2, 5.3 and 8.10 it follows that augmenting Gst to a hierarchy using the
function AUGMENT does not destroy level planarity. Consequently, the augmentation of Gst to a
single source, single sink graph does not destroy level planarity either. The vertices s and t are on
the outer face of a level planar embedding of Gst. By the discussion of Section 4 we can compute
a topological sorting of Gst that induces an st-numbering and applying the planar embedding
algorithm of Chiba et al. (1985) to Gst a level planar embedding of G can be constructed. Since
the number of edges added to G to construct Gst is bounded by n, the level planar embedding is
computed in O(n) time.

It remains to show that augmenting Gst to a hierarchy can be done in O(n) time. The function
AUGMENT performs as the function LEVEL-PLANARITY-TEST, with certain modifications. It
is sufficient to show that the amount of extra work performed by these modifications consumes
O(n) time. Clearly, the maintenance of the ignored nodes during all template reductions, and all
merge operations A, D, and E is bounded by the number of ignored nodes in the PQ-trees. The
number of ignored nodes is O(n), thus it remains to show that the number of operations needed
to perform merge operations B and C is as well bounded by the number of ignored nodes.

As described in Remark 8.9 the installation of a contact and the identification of its corre-
sponding reference sequence is bounded by a constant number of operations. Clearly, the number
of operations for deinstalling all contacts and their reference sequences is bounded by the number
of ignored nodes. Hence, the amount of time needed to handle ignored nodes during the application
of the merge operations is in O(n). 2

9 Remarks

Once a level graph has been level planar embedded, we want to visualize it by producing a level
planar drawing. This is very simple for proper graphs. Assign the vertices of every level integer
x-coordinates according to the permutation that has been computed by CONSTRUCT-LEVEL-
EMBED, and draw the edges as straight line segments. This produces a level planar drawing and
after applying some readjustments such a drawing can be aesthetically pleasing.

For level graphs that are not necessarily proper, this approach is not applicable. It would be
necessary to expand the level graph in the horizontal direction for drawing the edges as straight
line segments. If many long edges exist in the graph, the area that is needed will be rather large,
and the drawings are not aesthetically pleasing.

However, there is a nice and quick solution to this problem that uses some extra information
that is computed by our level planar embedding algorithm. Instead of drawing the graph G, we
draw the st-graph Gst, and remove afterwards all edges and the vertices s and t that are not
contained in G.

Drawing st-graphs has been extensively studied recently (see, e.g, Kant (1993), Luccio, Maz-
zone, and Wong (1987), Rosenstiehl and Tarjan (1986), Tamassia and Tollis (1986), and Tamassia
and Tollis (1989)). Suitable approaches for drawing the st-graph Gst have been presented by Di
Battista and Tamassia (1988) and Di Battista, Tamassia, and Tollis (1992). These algorithms con-
struct a planar upward polyline drawing of a planar st-graph according to a topological numbering
of the vertices. The vertices of the st-graph are assigned to grid coordinates and the edges are



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 102

drawn as polygonal chains. If we assign a topological numbering to the vertices according to their
leveling, the algorithm presented by Di Battista and Tamassia (1988) produces in O(n) time a
level planar polyline grid drawing of Gst such that the number of edge bends is at most 6n − 12
and every edge has at most two bends. This approach can be improved to produce in O(n) time a
level planar polyline grid drawing of Gst such that the drawing of Gst has O(n2) area, the number
of edge bends is at most (10n− 31)/3, and every edge has at most two bends. Thus once we have
augmented G to the st-graph Gst, we can immediately produce a level planar drawing of G in
O(n) time.

References

Booth, K. and Lueker, G. (1976). Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13,
335–379.

Chiba, N., Nishizeki, T., Abe, S., and Ozawa, T. (1985). A linear algorithm for embedding planar
graphs using PQ-trees. Journal of Computer and System Sciences, 30, 54–76.

Di Battista, G. and Tamassia, R. (1988). Algorithms for plane representations of acyclic digraphs.
Theoretical Computer Science, 61, 175–198.

Di Battista, G., Tamassia, R., and Tollis, I. G. (1992). Constrained visibility representations of
graphs. Information Processing Letters, 41, 1–7.

Even, S. and Tarjan, R. E. (1976). Computing an st-numbering. Theoretical Computer Science,
2, 339–344.

Fulkerson, D. R. and Gross, O. A. (1965). Incidence matrices and interval graphs. Pacific J.
Mathematics , 15, 835–855.

Heath, L. S. and Pemmaraju, S. V. (1995). Recognizing leveled-planar dags in linear time. In
F. J. Brandenburg, editor, Proc. Graph Drawing ’95 , volume 1027 of Lecture Notes in Computer
Science, pages 300–311. Springer Verlag.

Heath, L. S. and Pemmaraju, S. V. (1996). Stack and queue layouts of directed acyclic graphs:
Part II. Technical report, Department of Computer Science, Virginia Polytechnic Institute &
State University.

Jünger, M., Leipert, S., and Mutzel, P. (1998). Level planarity testing in linear time. In S. White-
sides, editor, Graph Drawing ’98 , volume 1547 of Lecture Notes in Computer Science, pages
224–237. Springer Verlag.

Jünger, M., Leipert, S., and Mutzel, P. (1999). Level planarity testing in linear time (full version).
Technical report, Institut für Informatik, Universität zu Köln.

Kant, G. (1993). A more compact visibillity representation. In J. van Leeuwen, editor, Proc. 19th
International Workshop on Graph-Theoretical Concepts in Computer Science , Lecture Notes in
Computer Science. Springer Verlag.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 103

Leipert, S. (1998). Level Planarity Testing and Embedding in Linear Time. Ph.D. thesis, Univer-
sität zu Köln.

Luccio, F., Mazzone, S., and Wong, C. (1987). A note on visibility graphs. Discrete Mathematics ,
64, 209–219.

Rosenstiehl, P. and Tarjan, R. E. (1986). Rectilinear planar layouts and bipolar orientations of
planar graphs. Discrete and Computational Geometry, 1, 343–353.

Tamassia, R. and Tollis, I. G. (1986). A unified approach to visibillity representations of planar
graphs. Discrete and Computational Geometry, 1, 321–341.

Tamassia, R. and Tollis, I. G. (1989). Tessellation representations of planar graphs. In Proc. 27th
Allerton Conf. Communication Control Computing , pages 48–57.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 104

10 Glossary

c(R) is the contact of a form R. The contact is an ignored node that is placed as an endmost child
of a Q-nodes Y next to the root of the PQ-tree T (R) where Y was introduced by a merge
operation B or C.

D(RXλ
∪ R2) is the dependent set of RXλ

∪ R2 where RXλ
is the subgraph of a form R1 and

corresponds to the subtree rooted at Xλ before merging the forms R1 and R2 using a merge
operation B or C. The dependent set D(RXλ

∪R2) is the set of vertices u ∈
⋃k

i=φ(w) V i such
that there exists a directed path P = (u1, u2, . . . , uξ = u), ξ > 1, with u1 ∈ RXλ

∪ R2, and
there exists a vertex ũ ∈

⋃k
i=φ(w) V i and a directed path P̃ = (ũ1, ũ2, . . . , ũι = ũ), ι > 1,

with ũ1 ∈ RXλ
∪R2, such that φ(ũ) ≥ φ(u) and the paths P and P̃ are vertex disjoint except

for possibly u and ũ.

D(RXλ
∪ R1 ∪ R2 ∪ · · · ∪ Ri) is the dependent set of RXλ

∪ R1 ∪ R2 ∪ · · · ∪ Ri and is recursively
defined to be the set of all vertices u ∈

⋃k
ν=φ(w1)

V ν such that (i) Ri is wi-merged into R and
wi ∈ D(RXλ

∪R1∪R2∪· · ·∪Ri−1), (ii) there exists a directed path P = (u1, u2, . . . , uξ = u),
ξ > 1, with u1 ∈ RXλ

∪ R1 ∪ R2 ∪ · · · ∪ Ri, and (iii) there exists a vertex ũ ∈
⋃k

ν=φ(w1)
V ν

and a directed path P̃ = (ũ1, ũ2, . . . , ũι = ũ), ι > 1, with ũ1 ∈ RXλ
∪R1 ∪R2 ∪ · · · ∪Ri, such

that φ(ũ) ≥ φ(u) and the paths P and P̃ are vertex disjoint except possibly for u and ũ.

F j
i denotes a component of Gj , where i = 1, 2, . . . , mj .

G = (V, E, φ) is called a level graph and is a directed acyclic graph with a mapping φ : V →
{1, 2, . . . , k}, k ≥ 1, that partitions the vertex set V as V = V 1 ∪V 2∪· · ·∪V k, V j = φ−1(j),
V i ∩ V j = ∅ for i 6= j, such that φ(v) ≥ φ(u) + 1 for each edge (u, v) ∈ E.

Gj denotes the subgraph of G induced by V 1 ∪ V 2 ∪ · · · ∪ V j .

Hj
i is the graph arising from F j

i by introducing for each edge e = (u, v), where u is a vertex in F j
i

and v ∈ V l, l ≥ j + 1, a virtual vertex with label v and a virtual edge that connects u and
this virtual vertex.

LL(F j
i ) is the low indexed level of F j

i , the smallest d such that F j
i contains a vertex in V d.

ML(S) For any subset S of the set of vertices in V j+1 ∪V j+2 ∪· · · ∪V k that belongs to a form Hj
i

or Rj
i , ML(S) is the greatest d ≤ j such that V d, V d+1, . . . , V j induces a subgraph in which

all nodes of S occur in the same connected component. The level ML(S) is said to be the
meet level of S.

mj denotes the number of components of Gj .

φ is a mapping φ : V → {1, 2, . . . , k}, k ≥ 1, of a directed acyclic graph G = (V, E) that partitions
the vertex set V as V = V 1 ∪ V 2 ∪ · · · ∪ V k, V j = φ−1(j), V i ∩ V j = ∅ for i 6= j, such that
φ(v) ≥ φ(u) + 1 for each edge (u, v) ∈ E.

RX is the subgraph corresponding to the subtree rooted at a node X of a PQ-tree.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 105

~RX is the set of all vertices u ∈ V such that there exists a vertex v ∈ RX and a (not necessarily
directed) path P connecting u and v not using the connective cut vertex of X .

Rj
i is the reduced extended form that is created from an extended form Hj

i by identifying all virtual
vertices with the same label to a single vertex. If Rj

i has been subject to a merge operation,
it is a partially reduced extended form.

Rj
i ∪v Rj

l is the graph arising from the identification of two virtual vertices vi and vl (labeled v)
of two reduced extended forms Rj

i and Rj
l .

rseq(R) is the reference sequence of a form R. It is the sequence of ignored nodes Iν , Iν+1, . . . , Iµ

left of a node Xλ and J1, J2, . . . , Jσ right of a node Xλ, where Xλ is subject to a merge
operation B or C. The reference sequence describes the two sets of sink indicators of which
exactly one set has to be considered for edge augmentation in combination with the merge
operation and is associated with the ”smaller” form R that has been merged into the larger
form.

rseq(R)right denotes the right sequence of ignored nodes of rseq(R).

rseq(R)left denotes the left sequence of ignored nodes of rseq(R).

ref (R) is the reference set of a form R. It is the union of the frontiers of all elements of the
reference sequence rseq(R).

ref (R)left is the left reference set of a form R.

ref (R)right is the right reference set of a form R.

ref (c(R2)) is the reference set of a contact c(R2).

si(v) is the sink indicator of a sink v. The sink indicator is a leaf for keeping the position of the
sink v in a PQ-tree.

Sv
i is the set of virtual vertices of Hj

i or Rj
i that are labeled v ∈ V j+1.

vi is the vertex with label v of Rj
i , i.e., the vertex that arose from identifying all virtual vertices

of Sv
i .

ω(c(R)) is the related vertex w of a contact c(R) where the contact c(R) was introduced by a
w-merge operation.

Concatenation of merge operations is a sequence of wi-merge operations, i = 1, 2, . . . µ, of
reduced extended forms Ri into a reduced extended form R such that (i) R1 is w1-merged
using a merge operation B or C, (ii) for all wi-merge operations we have wi ∈ D(RXλ

∪R1 ∪
R2 ∪ · · · ∪ Ri−1), and (iii) R1 has not been fixed to one side of RXλ

with respect to RX and
it is unknown if its embedding can be chosen freely.

Connective cut vertex Let X be a Q-node in T corresponding to a subgraph B of Gj , 1 ≤ j ≤ k.
The children of X each correspond to a cut vertex on the border of the outer face of B. If
X is not the root, then there exists an extra cut vertex on the border of the outer face of B
that separates the subgraph G′ induced by the subtree rooted at X from Gj − G′. This cut
vertex is called the connective cut vertex of B.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 106

Contact of a form R is an ignored node that is placed as the endmost child of a Q-node Y next to
the root of the PQ-tree T corresponding to R where Y was introduced by a merge operation
B or C.

Dependent set of RXλ
∪ R2 is the set D(RXλ

∪ R2) of vertices u ∈
⋃k

i=φ(w) V i such that there
exists a directed path P = (u1, u2, . . . , uξ = u), ξ > 1, with u1 ∈ RXλ

∪ R2, and there
exists a vertex ũ ∈

⋃k
i=φ(w) V i and a directed path P̃ = (ũ1, ũ2, . . . , ũι = ũ), ι > 1, with

ũ1 ∈ RXλ
∪ R2, such that φ(ũ) ≥ φ(u) and the paths P and P̃ are vertex disjoint except for

possibly u and ũ.

Dependent set of RXλ
∪R1∪R2∪· · ·∪Ri is denoted by D(RXλ

∪R1∪R2∪· · ·∪Ri) and is recursively
defined to be the set of all vertices u ∈

⋃k
ν=φ(w1)

V ν such that (i)Ri is wi-merged into R and
wi ∈ D(RXλ

∪R1∪R2∪· · ·∪Ri−1), (ii) there exists a directed path P = (u1, u2, . . . , uξ = u),
ξ > 1, with u1 ∈ RXλ

∪ R1 ∪ R2 ∪ · · · ∪ Ri, and (iii) there exists a vertex ũ ∈
⋃k

ν=φ(w1)
V ν

and a directed path P̃ = (ũ1, ũ2, . . . , ũι = ũ), ι > 1, with ũ1 ∈ RXλ
∪R1 ∪R2 ∪ · · · ∪Ri, such

that φ(ũ) ≥ φ(u) and the paths P and P̃ are vertex disjoint except possibly for u and ũ.

Extended form Hj
i of F j

i is the graph arising from F j
i by introducing for each edge e = (u, v),

where u is a vertex in F j
i and v ∈ V l, l ≥ j + 1, a virtual vertex with label v and a virtual

edge that connects u and this virtual vertex.

Ignored node is a node of a PQ-tree such that its frontier contains only sink indicators.

Level graph is a directed acyclic graph G = (V, E, φ) with a mapping φ : V → {1, 2, . . . , k},
k ≥ 1, that partitions the vertex set V as V = V 1 ∪V 2 ∪ · · · ∪V k, V j = φ−1(j), V i ∩V j = ∅
for i 6= j, such that φ(v) ≥ φ(u) + 1 for each edge (u, v) ∈ E.

Merged reduced form is the graph arising from the identification of two virtual vertices vi and
vl (labeled v) of two reduced extended forms.

Mutual influence of two contacts c1 and c2 appears if ref (c1) ∩ ref (c2) 6= ∅.

Mutual influence of two merge operations B or C is at hand if the corresponding contacts
mutually influence each other.

Partially reduced extended form is an improper merged reduced form possibly having several
virtual vertices with the same label. This form is the result of algorithmic design for achieving
linear running time.

Primary A reduced extended form Rj
i that is v-unconnected for all v ∈ V j+1 is called primary.

Reduced extended form Rj
i is the graph that is created from an extended form Hj

i by identi-
fying all virtual vertices with the same label to a single vertex.

Reference points of the contact c(R2) are the nodes Iν , Iµ, J1, Jσ of a reference sequence of the
associated merge operation.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 107

Reference sequence is the sequence of ignored nodes Iν , Iν+1, . . . , Iµ left of a node Xλ and
J1, J2, . . . , Jσ right of a node Xλ, where Xλ is subject to a merge operation B or C. The
reference sequence describes the two sets of sink indicators of which exactly one set has to be
considered for edge augmentation in combination with the merge operation and is associated
with the ”smaller” form that has been merged into the larger form.

Reference sequence, left is the sequence of ignored nodes Iν , Iν+1, . . . , Iµ left of a node Xλ

where Xλ is subject to a merge operation B or C.

Reference sequence, right is the sequence of ignored nodes J1, J2, . . . , Jσ right of a node Xλ,
where Xλ is subject to a merge operation B or C.

Reference set is the union
⋃µ

i=ν frontier(Ii) ∪
⋃σ

i=1 frontier (Ji) of a reference sequence
Iν , Iν+1, . . . , Iµ and J1, J2, . . . , Jσ.

Related vertex ω(c(R)) of a contact c(R) is the vertex w related to the w-merge operation that
introduced contact c(R).

Secondary A reduced extended form Rj
i that is v-connected for at least one v ∈ V j+1 is called

secondary.

Sink indicator is a leaf denoted by si(v) for keeping the position of a sink v in a PQ-tree.

Virtual edge is an edge of a form Hj
i connecting a vertex of the component F j

i that corresponds
to Hj

i and a vertex on a level l ≥ j + 1.

Virtual vertex is a vertex of a form Hj
i on a level l ≥ j + 1.

v-connected A form Rj
i is called v-connected , if any reduced extended form has been v-merged

into Rj
i ,

v-merged If Rj
i and Rj

l are merged at a vertex v and LL(Rj
i ) ≤ LL(Rj

l ) we say Rj
l is v-merged into

Rj
i . The form that is created by v-merging Rj

l into Rj
i and identifying all virtual vertices with

the same label w 6= v is again a reduced extended form and denoted by Rj
i (thus renaming

Rj
i ∪v Rj

l with the name of the “higher” form).

v-unconnected A form Rj
i is called v-unconnected if no reduced extended form has been v-merged

into Rj
i .



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 108

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

v

R1

R2 RXλ

w

(a) Cut vertex v allows a free em-

bedding of RXλ
∪ R2 ∪ D(RXλ

∪
R2).

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

u

R1

R2

v

RXλ

w

(b) Split pair u, v allows a free em-

bedding of RXλ
∪ R2 ∪ D(RXλ

∪
R2).

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

u1

u2

u3

R1

R2

v

ṽ

u4

RXλ

P̂

w

(c) Split pair u, v allows a free em-
bedding of R2.

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������w

v

R1

R2

u1

RXλ

u2

P̂

(d) Fixed embedding of RXλ
∪ R2 ∪ D(RXλ

∪
R2).

Figure 17: The figure illustrates different dependent sets D(RXλ
∪R2). The dependent

sets are drawn shaded and path P̂ is drawn grey.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 109

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������w

R2

v

u

RX

ṽ

RXλ

P

Figure 18: A graph corresponding to the situation where X became a Q-node with
one non-ignored child. The embedding of RXλ

∪ R2 ∪ D(RXλ
∪ R2) with respect to

RX may be chosen freely.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 110

��

����
����
����
����
����

����
����
����
����
����

���
���
���
���

T1

T2

w

Xλ+1Iµ J1IνXλ−1 I1 Iν−1 JρJσ Jσ+1

w

Xλ

(a) ML(Xλ−1, Xλ) < LL(T2) and ML(Xλ, Xλ+1) < LL(T2).

�
�
�
�����
����
����
����

����
����
����
����

���
���
���

���
���
���

w

T1

c(R2)
T2

J1 JρJσ Jσ+1

w

Xλ
IµIνI1 Iν−1

Y

(b) Contact c(R2) is added as a child to Y next to the root of T2.

Figure 19: Adding a contact during the merge operation C.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 111

T1

c(R2)
IµIνI1 Iν−1 J1 JρJσ Jσ+1

Y

(a) The node Y with the contact c(R2) before the application of a template Q2 or Q3.

T1

IµI1 Iν−1 Iν J1 JρJσ Jσ+1c(R2)

(b) The contact c(R2) is adjacent to the ignored node J1. We chose ref (R2)right for augmen-
tation.

Figure 20: The identification of the reference set that has to be chosen for augmenta-
tion. The dotted lines denote the pointers of c(R2) to its reference points.



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 112

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

Edges added to w2 forced by R2

Edges added to w1 forced by R1

Edges added to w3 forced by R3

R1R3

v

w3

w1

R2

w2

Figure 21: A concatenation of merge operations. First possible embedding of the forms
R1, R2, and R3 next to RXλ

with respect to RX .

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

Edges added to w3 forced by R3

Edges added to w2 forced by R2

w3

w1

R1 R3

w2

v

R2

Edges added to w1 forced by R1

Figure 22: A concatenation of merge operations. Second possible embedding for the
forms R1, R2, and R3 next to RXλ

with respect to RX .



M. Jünger, S. Leipert, Level Planar Embedding , JGAA, 6(1) 67–113 (2002) 113

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

u′
1

u′
ν

P ′

v

w1

R1

uµ

P

u1

RXλ

Figure 23: Illustration of the proof of Lemma 8.8.


