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Abstract

An upward embedding of an embedded planar graph specifies, for each
vertex v, which edges are incident on v “above” or “below” and, in turn,
induces an upward orientation of the edges from bottom to top. In this
paper we characterize the set of all upward embeddings and orientations
of an embedded planar graph by using a simple flow model, which is re-
lated to that described by Bousset [3] to characterize bipolar orientations.
We take advantage of such a flow model to compute upward orientations
with the minimum number of sources and sinks of 1-connected embedded
planar graphs. We finally devise a new algorithm for computing visibility
representations of 1-connected planar graphs using our theoretic results.
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1 Introduction

Let G be an undirected planar graph with a given planar embedding. Loosely
speaking, an upward embedding (also called an upward representation) of G is
specified by splitting, for each vertex v of G, the ordered circular list of the
edges that are incident on v into two linear lists (from left to right) Eabove(v)
and Ebelow(v), in such a way that there exists a planar drawing Γ of G with the
following properties: (i) all the edges are monotone in vertical direction; (ii) for
each vertex v the edges in Eabove(v) (Ebelow(v)) are incident on v above (below)
the horizontal line through v.

A drawing Γ that verifies properties (i) and (ii) is said to be an upward
drawing of G. An orientation of all edges of Γ from bottom to top defines an
orientation of G, which we call an upward orientation of G. Hence, each upward
embedding of G induces an upward orientation of G. Figure 1 shows an upward
embedding of an embedded planar graph and the upward orientation induced
by it.

(a) (b) (c)

v
v v

1

2v

3v

4v

5v
6v

7v

1

4v

5v

6v

7v

1

2v2v

3v

4v

5v

6v

7v

3v

Figure 1: (a) An embedded planar graph. (b) An upward embedding of the embedded
planar graph. For each vertex vi of the graph the edges in Ebelow(vi) and Eabove(vi)
are drawn incident below and above the horizontal line through vi, respectively. (c)
The upward orientation induced by the upward embedding.

An embedded planar graph has in general many upward embeddings and
upward orientations within the given embedding. Although upward embed-
dings and orientations have been widely studied within specific theoretic and
application domains, as far as we know no complete combinatorial characteri-
zations have been provided in the case of general embedded planar graphs. In
the present paper we investigate this problem and we show how our theoretic
results have interesting applicability in graph drawing.

An important class of upward orientations, deeply studied in the literature, is
represented by the so called bipolar orientations (or st-orientations). A bipolar
orientation of an undirected planar graph G is an upward orientation of G with
exactly one source s (vertex without in-edges) and one sink t (vertex without
out-edges). A bipolar orientation of G with source s and sink t exists if and
only if G ∪ {(s, t)} is biconnected. Finding a bipolar orientation of a planar
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graph is the first step of many algorithms in graph theory and graph drawing.
A complete and elegant study of the properties of bipolar orientations has been
provided by de Fraysseix et. al. [5], and a characterization of bipolar orientations
in terms of a network flow model has been described by Bousset [3].

Czyzowicz, Kelly and Rival [14, 13, 4, 16] provide several theoretic results
about upward orientations and upward drawings of ordered set and planar lat-
tices, that is, special classes of combinatorial structures.

Several results on upward embeddings of digraphs have been also provided
in the literature. In this case, the orientation of the edges of the graph is
given, and a classical problem consists of finding an upward (planar) embedding
that preserves such an orientation. Clearly, an upward embedding of a digraph
might not exist. Bertolazzi et al. [1] describe a polynomial time algorithm for
testing the existence of upward embeddings of a digraph within a given planar
embedding. The algorithm is also able to construct an upward embedding if
there exists one. In the variable embedding setting the upward planarity testing
problem is NP-complete [9], but it can be solved in polynomial time for digraphs
with a single source [2].

The main contributions of this paper are listed below:

• Starting from the properties on upward planarity of digraphs given in [1],
we provide a complete characterization of the set of all upward embed-
dings and orientations of any embedded planar graph (Section 3.1). It
is based on a network flow model, which is a generalization of that used
by Bousset [3] for characterizing bipolar orientations. In particular, if the
graph is biconnected, our flow model also captures all bipolar orientations
of the graph.

• We describe flow based polynomial time algorithms for computing upward
embeddings of the input graph. Such algorithms allow us to handle partial
specifications of the upward embedding (Section 3.1). Further, we provide
a polynomial time algorithm to compute upward orientations with the
minimum number of sources and sinks (Section 3.2). Upward orientations
with the minimum number of sources and sinks can be viewed as a natural
extension of the concept of bipolar orientations to 1-connected graphs.

• We describe a simple technique to compute visibility representations of 1-
connected planar graphs (Section 4), which can be of practical interest for
graph drawing applications. It is based on the computation of an upward
embedding of the graph, and does not require running any augmentation
algorithm to initially make the graph biconnected. Compared to a stan-
dard technique that uses the good approximation algorithm described by
Fialko and Mutzel [8] to make the graph biconnected, the algorithm we
propose is theoretically faster, simpler to implement, and achieves similar
results in terms of area of the visibility representation.

In Section 2 we recall formal definitions and known results on upward em-
beddings and orientations of undirected planar graphs.
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2 Basic Definitions and Results on Upward Em-
beddings

A graph is 1-connected (or connected) if there exists a path between any pair
of its vertices. A vertex of the graph whose removal disconnects the graph is
called a cutvertex. A connected graph is 2-connected (or biconnected) if it has
no cutvertex. Given a 1-connected graph G, a biconnected component (or block)
of G is a maximal biconnected subgraph of G. Observe that each cutvertex of
G belongs to at least two distinct blocks of G, and that each edge of G belongs
to exactly one block of G. The decomposition of a graph into its blocks can be
easily done in linear time [18].

A drawing Γ of a graph G maps each vertex u of G into a point pu of the
plane and each edge (u, v) of G into a Jordan curve between pu and pv. Γ is
planar if two distinct edges never intersect except at common end-points. G is
planar if it admits a planar drawing. A planar drawing Γ of G divides the plane
into topologically connected regions called faces. Exactly one of these faces is
unbounded, and it is said to be external; the others are called internal faces.
Also, for each vertex v of G, Γ induces a circular clockwise ordering of the edges
incident on v. The choice φ of such an ordering for each vertex of G and of an
external face is called a planar embedding of G. A planar graph G with a given
planar embedding φ is called an embedded planar graph and denoted by Gφ. A
drawing of Gφ is a planar drawing of G that induces φ as the planar embedding.

Let Gφ be an (undirected) embedded planar graph. An upward embedding
Eφ of Gφ is a splitting of the adjacency lists of all vertices of Gφ such that:

(E1) For each vertex v of Gφ the circular clockwise list L(v) of the edges
incident on v is split into two linear lists (from left to right), Ebelow(v)
and Eabove(v), so that the circular list obtained by concatenating Eabove(v)
and the reverse of Ebelow(v) is equal to L(v).

(E2) There exists a planar drawing Γ(Eφ) of Gφ such that all the edges are
monotone in vertical direction and for each vertex v of Gφ the edges of
Ebelow(v) and Eabove(v) are incident on v below and above the horizontal
line through v, respectively. We say that Γ(Eφ) is a drawing of Eφ and an
upward drawing of Gφ.

From (E2) the following is immediate.

Property 1 Given an upward embedding of Gφ, for each edge e = (u, v) of Gφ

either e ∈ Eabove(u) ∩ Ebelow(v) or e ∈ Ebelow(u) ∩ Eabove(v).

An upward embedding Eφ of Gφ uniquely induces an upward orientation
Oφ of Gφ. Namely, for each edge e = (u, v) such that e ∈ Eabove(u) and
e ∈ Ebelow(v), we orient e from u to v (see Figure 1). Conversely, an upward
orientation defines in general a class of possible upward embeddings inducing it
(see Figure 2). A source of Eφ is a vertex v of Gφ such that Ebelow(v) is empty.
A source has only out-edges with respect to orientation Oφ. A sink of Eφ is



W. Didimo and M. Pizzonia, Upward Embeddings, JGAA, 7(2) 221–241 (2003)225

a vertex v of Gφ such that Eabove(v) is empty. A sink has only in-edges with
respect to Oφ.
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Figure 2: Three different upward embeddings that induce the same upward orienta-
tion.

Given a vertex v of Gφ, we denote by deg(v) the number of edges incident on
v. An angle of Gφ at vertex v is a pair of clockwise consecutive edges incident
on v. In particular, if deg(v) = 1, and if we denote by e the edge incident on
v, (e, e) is an angle. Given a splitting of the adjacency lists of Gφ that verifies
(E1), an angle (e1, e2) at vertex v of Gφ can be of three different types (see
Figure 3 for an example):

• large: (i) both e1 and e2 belong to Ebelow(v) (Eabove(v)), and (ii) e1 and
e2 are the first (last) edge and the last (first) edge of Ebelow(v) (Eabove(v)),
respectively. We associate a label L with a large angle.

• flat : if: (i) e1 ∈ Ebelow(v) and e2 ∈ Eabove(v) or, (ii) e1 ∈ Eabove(v) and
e2 ∈ Ebelow(v). We associate a label F with a flat angle.

• small : in all the other cases. We associate a label S with a small angle.

Figure 4 shows the labeling of the angles of an embedded planar graph Gφ

determined by an upward embedding Eφ. Each drawing of Eφ maps the angles
of Gφ to geometric angles such that large and small angles always correspond
to geometric angles larger and smaller than 180 degrees, respectively. Both the
two edges that form a large or a small angle at vertex v are incident on v either
above or below the horizontal line through v. Instead, a flat angle at vertex v
corresponds to a geometric angle that can be either larger or smaller than 180
degrees, but in any case one of its edges is incident on v above the horizontal
line through v while the other edge is incident on v below the same line.

Let f be a face of Gφ. We call border of f the alternating circular list of
vertices and edges that form the boundary of f . Note that, if the graph is not
biconnected an edge or a vertex may appear more than once in the border of f .
We say that an angle (e1, e2) at vertex v belongs to face f if e1, e2, and v belong
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Figure 3: Examples of large, flat, and small angles.
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Figure 4: The labeling of the angles of an embedded planar graph determined by an
upward embedding of the graph.

to the border of f . The degree of f , denoted by deg(f), is the number of edges
in the border of f . Observe that, deg(f) is equal to the number of angles of f .

Consider now any labeling of the angles of Gφ with labels L, S, and F. For
each face f of Gφ denote by L(f), S(f), and F (f) the number of angles that
belong to f with label L, S, and F, respectively. Also, for each vertex v of Gφ

denote by L(v), S(v), and F (v) the number of angles at vertex v with label L,
S, and F, respectively. The following lemma is a direct consequence of a known
result on upward planarity [1].

Lemma 1 Let Eφ be a splitting of the adjacency lists of Gφ that verifies (E1),
and consider the labeling of the angles of Gφ determined by it. Eφ is an upward
embedding of Gφ if and only if the following properties hold:

(FIN) S(f) = L(f) + 2, for each internal face f of Gφ.

(FEX) S(f) = L(f) − 2, for the external face f of Gφ.
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(VL0) F (v) = 2, S(v) = deg(v) − 2, and L(v) = 0, for each vertex v of Gφ

such that both Eabove(v) and Ebelow(v) are not empty.

(VL1) F (v) = 0, S(v) = deg(v) − 1, and L(v) = 1, for each vertex v of Gφ

such that either Eabove(v) or Ebelow(v) is empty.

Properties (VL0) and (VL1) of Lemma 1 state that if Eφ is an upward
embedding of Gφ, each source or sink of Eφ has exactly one large angle and no
flat angle, while each vertex that is neither a source nor a sink has exactly two
flat angles and no large angle. The next lemma provides a different formulation
for properties (FIN) and (FEX).

Lemma 2 Properties (FIN) and (FEX) of Lemma 1 are equivalent to the fol-
lowing properties:

(FIN’) deg(f) − 2 = 2L(f) + F (f), for each internal face f of Gφ.

(FEX’) deg(f) + 2 = 2L(f) + F (f), for the external face f of Gφ.

Proof:
Property (FIN) is equivalent to property (FIN’) since deg(f) = L(f)+S(f)+

F (f). The equivalence between properties (FEX) and (FEX’) can be proved
analogously.

q.e.d.

Let Gφ be an embedded planar graph, Eφ be an upward embedding of Gφ,
and Oφ be the upward orientation induced by Eφ. Also, denote by Dφ the
directed graph obtained by Gφ orienting its edges according to Oφ.

In Section 4 we need to compute a super-digraph of Dφ with only one source
and one sink (st-digraph) and preserving the upward embedding Eφ when re-
stricted to Dφ. In the following we recall an algorithm for this purpose. Further
details can be found in [1].

Given a face f of Dφ, a vertex v of f with consecutive incident edges e1 and
e2 on the boundary of f is a switch of f if e1 and e2 are both incoming or both
outgoing v (note that e1 and e2 may coincide if the graph is not biconnected).
In the former case v is a sink-switch, in the latter a source-switch. Observe that
a source (sink) of Dφ is source-switch (sink-switch) of all its incident faces; a
vertex of Dφ that is not a source or a sink is a switch of all its incident faces
except two.

Consider the labeling of the angles of Dφ induced by its upward embedding.
Let v be a switch of a face f of Dφ, and let e1 and e2 be two consecutive edges
on the boundary of f that are incident on v. Clearly, (e1, e2) is an angle of f .
We call v an sS-switch (sL-switch) of f if v is a source-switch of f and if (e1, e2)
is labeled S (L). We call v a tS-switch (tL-switch) of f if v is a sink-switch of f
and if (e1, e2) is labeled S (L). Note that each S or L labels of a face is associated
with a switch.

A complete saturator of Dφ is a set of vertices and edges, not belonging to
Dφ, with which we augment Dφ. More precisely, a complete saturator consists of
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two vertices s and t, edge (s, t), and a set of edges (u, v) (each edge a saturating
edge), such that (see Figure 5 (a)):

• vertices u and v are switches of the same face, or u = s and v is an sS-
switch of the external face, or u is a tL-switch of the external face and
v = t,

• if u, v �= s, t, either u is an sS-switch and v is an sL-switch or u is a tL-
switch and v is a tS-switch; in the former case we say that u saturates v
and in the latter case we say that v saturates u,

• the graph Dφ augmented with the vertices and the edges of the com-
plete saturator is an upward embedded graph with an st-orientation (st-
digraph); the upward embedding of such a digraph restricted to the ver-
tices and the edges of Dφ coincides with Eφ.

A simple linear time algorithm for computing a complete saturator of Dφ is
given in [1]. This algorithm works in two main steps:

In the first step it recursively decomposes each face f of Gφ adding a suitable
number of saturating edges that split f . After this step, there are no more
sL-switches and tL-switches in the internal faces of the digraph. Also, the sL-
switches and tL-switches of the external face f are not alternated in the border
of f .

In the second step the algorithm further decomposes the external face f ,
adding the vertices s, t and connecting s to every sL-switch of f , and t to every
tL-switch of f .

In the following we briefly recall the algorithm for decomposing a face f of
Dφ. More details can be found in [1]. We denote by σf the sequence of labels
of the angles of f encountered in clockwise order while moving on the boundary
of f . Also, we denote by sL an L label of σf with associated a source-switch of
f and by tL an L label of σf with associated a sink-switch of f . Similarly, we
use symbols sS and tS to denote S-labels with associated a source-switch of f
and a sink-switch of f , respectively.

Algorithm Saturate-Face(f)

1. If f has exactly one source-switch and one sink-switch then return.

2. Find a subsequence (x, y, z) in σf such that x is an L label, and y and z
are S labels. Let vx, vy, and vz be the switches of f associated with x, y,
and z, respectively.

3. Split f into two faces f ′ and f ′′ by inserting one edge; after the split, f ′′

always consists of the part of f containing vx, vy, and vz plus the new
edge; f ′′ has only one source and only one sink. Two cases are possible
for the new edge:
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Figure 5: (a) An upward embedded digraph with a complete saturator. The edges of
the saturator are dashed. (b) Illustration of Case 1 of algorithm Saturate-Face(f). (c)
Illustration of Case 2 of algorithm Saturate-Face(f)

Case 1 (x, y, z) = (sL, tS, sS): Add edge (vz, vx); f ′ consists of the part
of f that does not contain vy plus the new edge. Also, σf ′ is ob-
tained from σf by replacing the subsequence (x, y, z) with an sS.
(see Figure 5 (b)).

Case 2 (x, y, z) = (tL, sS, tS): Add edge (vx, vz); f ′ consists of the part
of f that does not contain vy plus the new edge. Also, σf ′ is ob-
tained from σf by replacing the subsequence (x, y, z) with a tS. (see
Figure 5 (c)).

4. Apply Saturate-Face(f ’).
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3 Characterizing Upward Embeddings

In this section we provide a complete characterization of the set of all upward
embeddings of a general embedded planar graph (Section 3.1); it also implies a
characterization of the upward orientations of the given graph. We model such
a set of upward embeddings by using a simple network flow technique, which
extends and generalizes that described by Bousset [3] for characterizing bipolar
orientations. Also, we show how it is possible to add costs to our flow model in
order to compute in polynomial time an upward orientation with the minimum
number of sources and sinks (Section 3.2).

3.1 A Flow Model Characterizing Upward Embeddings

The following theorem characterizes the class of labelings that can be determined
by any upward embedding of an embedded planar graph. It is important to
observe that the characterization of such a class of labelings does not depend
either on the choice of a splitting of the adjacency lists of the graph, in contrast
to the result given in Lemma 1, or on the choice of an orientation of the graph.

Theorem 1 Let L be any labeling of the angles of an embedded planar graph
Gφ with labels L, S, and F. L is the labeling determined by an upward embedding
of Gφ if and only if the following properties hold:

(FIN’) deg(f) − 2 = 2L(f) + F (f), for each internal face f of Gφ.

(FEX’) deg(f) + 2 = 2L(f) + F (f), for the external face f of Gφ.

(VL) For each vertex v either F (v) = 2 and L(v) = 0 or F (v) = 0 and L(v) = 1.

Proof:
The necessary condition is an immediate consequence of Lemma 1 and

Lemma 2. In fact, if L is determined by an upward embedding, then properties
(FIN), (FEX), (VL0), and (VL1) of Lemma 1 hold. From Lemma 2 proper-
ties (FIN) and (FEX) are equivalent to properties (FIN’) and (FEX’); further,
properties (VL0) and (VL1) imply that one of the two cases of property (VL)
holds, for each vertex of Gφ.

To prove the sufficiency of the condition we consider a labeling L that verifies
properties (FIN’), (FEX’), and (VL), and construct an upward embedding of
Gφ that determines L. From L, we construct a splitting Eφ of the adjacency
lists of Gφ as follows:

• We observe that there exists at least two distinct vertices s and t on the
external face f having an angle labeled with L. In fact, from property
(FEX’) (that is equivalent to property (FEX) of Lemma 1) we must have
that L(f) = S(f) + 2. We assign all the edges incident on s to the list
Eabove(s) (we set Ebelow(s) empty). Namely, if (e1, e2) is the angle with
label L at vertex s, e2 and e1 will be the first edge and the last edge of
Eabove(s), respectively.
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• We execute a breadth first search starting from s. At each step we visit a
different vertex v and split the list of the edges that are incident on v. In
a breadth first search all the edges (and hence all the angles) incident on
a vertex v are explored when v is visited. We chose to scan these edges in
clockwise order. Namely, suppose that v is visited by moving from vertex
u through edge e0 = (u, v) (e0 is the parent edge of v in the breadth
first search). If e0 is in Eabove(u) we put e0 in Ebelow(v), while if e0 is in
Ebelow(u) we put e0 in Eabove(v). Suppose that e0, e1, . . . , ek are the edges
incident on v in this clockwise ordering. For each ei (i = 0, . . . , k − 1)
we consider the label l of angle (ei, ei+1), and we decide if ei+1 has to be
assigned to Eabove(v) or to Ebelow(v). Note that, at this point, ei has been
already assigned to one of the two lists. The following cases are possible:
(1) If l = L and ei ∈ Ebelow(v) then ei+1 is put at the end of Ebelow(v).
(2) If l = L and ei ∈ Eabove(v) then ei+1 is put at the start of Eabove(v).
(3) If l = S and ei ∈ Ebelow(v) then ei+1 is put immediately before ei in
Ebelow(v). (4) If l = S and ei ∈ Eabove(v) then ei+1 is put immediately
after ei in Eabove(v). (5) If l = F and ei ∈ Ebelow(v) then ei+1 is put at
the start of Eabove(v). (6) If l = F and ei ∈ Eabove(v) then ei+1 is put at
the end of Ebelow(v).

It is easy to see that Eφ verifies (E1). To prove that Eφ is an upward embedding
of Gφ we need only to prove that properties (VL0) and (VL1) of Lemma 1 are
verified (since properties (FIN) and (FEX) are equivalent to properties (FIN’)
and (FEX’)). From property (VL) we only have two possible cases for the labels
of the angles at each vertex v of Gφ.

• F (v) = 2 and L(v) = 0. This implies that, for splitting the edges incident
on v cases (1) and (2) are never applied, cases (5) and (6) are applied twice
in the total, and cases (3) and (4) are applied deg(v)−2 times in the total.
Also, cases (5) and (6) imply that neither Eabove(v) nor Ebelow(v) will be
empty. This matches property (VL0).

• F (v) = 0 and L(v) = 1. This implies that, for splitting the edges incident
on v, either case (1) or case (2) is applied once, cases (5) and (6) are never
applied, and either case (3) or case (4) is applied deg(v) − 1 times. Also,
observe that each of the cases (1), (2), (3), and (4) always puts ei+1 in
the same list as ei, and that either (1) and (3) or (2) and (4) are applied.
This guarantees that exactly one of the two lists Eabove(v) and Ebelow(v)
will be empty. This matches property (VL1).

Finally, since no other cases are possible, properties (VL0) and (VL1) of
Lemma 2 hold.

q.e.d.

We call upward labeling of Gφ a labeling of the angles of Gφ that verifies prop-
erties (FIN’), (FEX’), and (VL) of Theorem 1. The result of Theorem 1 allows
the description of all upward embeddings of Gφ in terms of upward labelings
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of Gφ. Note that, the proof of the theorem provides a procedure to construct
the upward embedding associated with an upward labeling. Actually, for each
upward labeling, there are exactly two “symmetric” upward embeddings that
determine it; they are obtained one from the other by simply exchanging list
Eabove(v) with list Ebelow(v) for each vertex v and then reversing such lists (see
Figure 7 (b) for an example).

We now provide a network flow model that characterizes all the upward
labelings of Gφ. Because of the above considerations, this flow model provides
a characterization of all upward embeddings of Gφ. We associate with Gφ a
flow network Nφ, such that the integer feasible flows on Nφ are in one-to-one
correspondence with the upward labelings of Gφ. Flow network Nφ is a directed
graph defined as follows (see Figure 6):

• The nodes of Nφ are the vertices (vertex-nodes) and the faces (face-nodes)
of Gφ. Each vertex-node supplies flow 2 and each face-node associated
with face f of Gφ demands a flow equal to deg(f) − 2 if f is internal and
deg(f) + 2 if f is external.

• With each angle of Gφ at vertex v in face f there is an associated arc
(v, f) of Nφ with lower capacity 0 and upper capacity 2.

(a) (b)

1

1
2

1

13

1

5

Figure 6: (a) An embedded planar graph Gφ. (b) Flow network Nφ associated with
Gφ. The vertex-nodes are circles and the face-nodes are squares. Each face-node is
labeled with its demand. The arcs of the networks are dashed.

Observe that in Nφ the total demand is equal to the total supply. In fact:
∑
f∈F

(deg(f) − 2) + 4 =
∑
f∈F

deg(f) − 2|F | + 4 = 2|E| − 2|F | + 4 = 2|V |.
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The intuitive interpretation of the flow model in terms of upward embedding
is as follows: (i) Each unit of flow represents a flat angle, with the convention
that a large angle counts as two flat angles; an arc a of Nφ has flow 0, 1, or 2,
depending on the fact that its associated angle is small, flat, or large, respec-
tively. (ii) The demand of each face-node and the supply of each vertex-node
reflect the balancing properties (FIN’), (FEX’) and (VL). Figure 7 shows a
feasible flow on the network associated with an embedded planar graph, the
corresponding upward labeling, and the two “symmetric” upward embeddings
associated with the labeling. Theorem 2 formally proves the correctness of the
intuitive interpretation described above .
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Figure 7: (a) A feasible flow on the network associated with an embedded planar
graph. Only the flow values different from zero are shown. (b) The upward labeling
L corresponding to the flow and the two “symmetric” upward embeddings associated
with L.

We remark that network Nφ is related to the flow model used by Bousset
for describing bipolar orientations of biconnected embedded planar graphs. The
flow values in such a model do not allow to represent large angles (the allowed
flow values are only 0 or 1), and the source and the sink of the final orientation
are prescribed. Our flow model extends and generalizes the model of Bousset to
1-connected planar graphs, by allowing the representation of any kind of upward
orientations and embeddings, including the bipolar orientations for biconnected
graphs.

Theorem 2 Let Gφ be an embedded planar graph and let Nφ be the flow network
associated with Gφ. There is a one-to-one correspondence between the set of the
upward labelings of Gφ and the set of the integer feasible flows on Nφ.
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Proof:
Consider an upward labeling L of Gφ. From it we construct an integer

feasible flow x of Nφ as follows. For each angle α of Gφ let a be the arc of Nφ

associated with α. We set x(a) = 2 if α is labeled L, x(a) = 1 if α is labeled
F, and x(a) = 0 if α is labeled S. The above construction is clearly an injective
transformation. In fact, there is a one-to-one correspondence between angles
of Gφ and arcs of Nφ and hence, different labelings of the same angle of Gφ

produces different values of flow on the corresponding arc of Nφ. We now prove
that flow x is feasible. From the construction of x and from property (VL) of
L, it follows that every vertex-node of Nφ supplies flow 2 (and demands flow
0). Hence, the balance property of x on every vertex-node of Nφ is verified.
Let f be an internal face of Gφ, and consider the face-node of Nφ associated
with f . From the construction of x, such a face-node receives a flow equal to
2L(f)+F (f) and supplies flow 0 ; hence, from property (FIN’) of L, it demands
a flow equal to deg(f) − 2. The same reasoning applies for the external face,
using property (FEX’). Hence, also the balance property of x on every face-node
is verified. Finally, since on each arc of Nφ we assign an integer amount of flow
in the range [0, 2], the lower and upper capacities on the arcs of Nφ are respected
by x.

Conversely, consider an integer feasible flow x of Nφ, and construct from
x a labeling L of Gφ, by applying a transformation that is the reverse of that
described above . Namely, for each arc a of Nφ denote by α the corresponding
angle of Gφ. Labeling L is constructed by assigning label L, F, and S to α,
depending on the case that x(a) = 2, x(a) = 1, and x(a) = 0, respectively. By
using the properties of x and the same reasoning applied above, it is easy to
prove that L is an upward labeling of Gφ. q.e.d.

Theorem 1 and Theorem 2 allow us to compute an upward embedding of an
embedded planar graph Gφ by computing an integer feasible flow on network
Nφ. We now analyze the running time complexity of computing an upward
embedding by means of a flow technique.

Network Nφ has O(n) vertices and edges, where n denotes the number of
vertices of Gφ. Both Nφ and an upward embedding associated with a feasible
flow on Nφ can be constructed in linear time. We now observe that Nφ can be
easily reduced to an equivalent unit capacity network N ∗

φ with a single source s
and a single sink t and with O(n) nodes and arcs. On N ∗

φ we can apply Dinic’s
algorithm to compute in O(n3/2) time a feasible (maximum) flow [7]. Namely,
N ∗

φ is obtained from Nφ by replacing each arc a with two unit capacity arcs
having the same direction as a, by connecting s to each vertex-node with two
unit capacity arcs, by connecting each internal face-node f to t with deg(f)− 2
unit capacity arcs, and by connecting the external face-node h to t with deg(h)+
2 unit capacity arcs. Finally, node s supplies flow 2|V | and node t demands flow
2|V |, while all the other nodes demand and supply flow 0. The following theorem
summarizes the complexity analysis.

Theorem 3 There exists a flow technique for computing an upward embedding
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of an undirected embedded planar graph in O(n3/2) time and O(n) space, where
n denotes the number of vertices of the graph.

There are two main advantages of computing upward embeddings of a gen-
eral planar graph Gφ by using the flow model described so far. First, no aug-
mentation algorithm has to be used to make the input graph biconnected (we
just apply a standard flow algorithm). Second, it is possible to deal with par-
tially specified embeddings. In particular it is possible to constrain an angle
to be large by fixing flow 2 on the corresponding arc of the network and to
constrain a vertex to be neither a source nor a sink by reducing to 1 the upper
capacity of its leaving arcs in the network. Also observe that in the presence of
constraints a feasible solution might not exist, and in this case a feasible flow is
not found.

In the next section we describe how to compute upward embeddings with
the minimum number of sources and sinks, by adding costs to our network.

3.2 Minimizing Sources and Sinks

Computing an upward embedding of Gφ with the minimum number of sources
and sinks (which we call optimal upward embedding for simplicity) is equivalent
to computing an upward embedding with the minimum number of large angles.
Clearly, if the graph is biconnected, the problem is reduced to the computation of
a bipolar orientation. For this reason, we regard the concept of optimal upward
embedding as the natural extension of the definition of bipolar orientation to
the case of general connected graphs.

The flow model we use to compute an optimal upward orientation of Gφ is
a simple variation of the one described for characterizing upward embeddings
(see Section 3.1). We add a linear number of arcs to network Nφ and we equip
the arcs of the new network with costs. Each unit of cost represents a large
angle. We also reduce the upper capacity of all the arcs of the network. More
in detail, the new network Ñφ is derived from Nφ as follows: for each angle of
Gφ at vertex v in face f we substitute its associated arc in Nφ with a pair of
directed arcs av = (v, f), a′

v = (v, f). Both the new arcs have lower capacity 0
and upper capacity 1. Also, arc av has cost 0 while arc a′

v has cost 1.
Let x be a minimum cost flow on Ñφ. The interpretation of the flow in terms

of upward labeling is similar to the one given for Nφ, with a slight variation due
to the additional arcs and costs. We first observe that for each pair of arcs av,
a′

v it never happens x(av) = 0 and x(a′
v) = 1, due to the fact that the cost of

av is 0 and that the cost of a′
v is 1. In fact, if x(av) = 0 and x(a′

v) = 1, then
there would exist a negative cost cycle represented by the two arcs a′

v, av, and
it would be possible to derive a new flow x′ from x by simply exchanging one
unit of flow between a′

v and av (i.e., x′(av) = 1 and x′(a′
v) = 0). This would

imply that x′ has a cost smaller than the cost of x, in contrast to the assumption
that x has the minimum cost. Hence, the only possibilities for the flow on arcs
av, a′

v are: (i) x(av) = x(a′
v) = 0, the angle associated with arcs av, a′

v is small.
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(ii) x(av) = 1 and x(a′
v) = 0, the angle associated with arcs av, a′

v is flat. (iii)
x(av) = x(a′

v) = 1, the angle associated with arcs av, a′
v is large.

Note that, only in the third case we have cost 1 on arcs av, a′
v, while in the

other two cases we have cost 0. This implies that the total cost of flow x on
Ñφ represents the total number of large angles of the corresponding upward
embedding of Gφ. Hence, since x has the minimum cost, the corresponding
upward embedding has the minimum number of large angles.

Let n be the number of vertices of Gφ. Since network Ñφ is planar and has
O(n) vertices, and since its total demand (supply) is O(n), a minimum cost flow
on Ñφ can be computed in O(n

7
4 log n) time by the algorithm described in [10].

The following theorem summarizes the main contribution of this section.

Theorem 4 There exists an O(n
7
4 log n) time algorithm that computes an up-

ward embedding of an embedded 1-connected planar graph with the minimum
number of sources and sinks.

We conclude this section by giving an upper bound on the number of sources
and sinks of an optimal upward embedding.

Lemma 3 An optimal upward embedding of an embedded planar graph Gφ has
at most B + 1 sources and sinks, where B is the number of blocks of Gφ.

Proof: We prove the lemma by induction on B. If B = 1, the graph is
biconnected and an optimal upward embedding of it has exactly one source and
one sink. Suppose that the lemma is true for each graph with B ≥ 1 blocks,
and consider a graph Gφ with B + 1 blocks. We select any block C of Gφ such
that C contains exactly one cutvertex of Gφ and there is no block nested into
C. Note that such a block always exists. Let G′

φ′ be the graph obtained from
Gφ by removing C and let E ′

φ′ be an optimal upward embedding of G′
φ′ . From

the inductive hypothesis, E ′
φ′ has at most B + 1 sources and sinks. From E ′

φ′ we
construct an upward embedding of Gφ. Such an upward embedding coincides
with E ′

φ′ for the subgraph G′
φ′ and it is determined on C as follows. We always

embed C above or below its cutvertex v, according to E ′
φ′ and according to

the planar embedding of Gφ. Namely, let e1 and e2 be the two edges (not
necessarily distinct) of Gφ encountered immediately before and after C in the
clockwise ordering around v. Three distinct cases are possible for E ′

φ′ :

• If both e1 and e2 belong to Eabove(v), we compute an upward embedding
of C with exactly one source and one sink, where the source is v, and we
embed it above v in E ′

φ′ (see Figure 8 (a)).

• If both e1 and e2 belong to Ebelow(v), we compute an upward embedding
of C with exactly one source and one sink, where the sink is v, and we
embed it below v in E ′

φ′ (see Figure 8 (b)).

• If one between e1 and e2 belongs to Eabove(v) while the other edge belongs
to Ebelow(v), we arbitrarily choose to compute an upward embedding of
C with exactly one source and one sink, where the source is v, and we
embed it above v in E ′

φ′ (see Figure 8 (c)).
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The obtained upward embedding has at most one source or one sink more
than E ′

φ′ , since vertex v is in common between C and G′
φ′ . Therefore, an optimal

upward embedding of Gφ has at most B + 2 sources and sinks.
q.e.d.
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Figure 8: Illustration of the proof of Lemma 3.

The bound of Lemma 3 is strict and a class of plane graphs whose upward
embeddings have B +1 sources and sinks can be obtained by nesting each block
into another, as shown by the example of Figure 9.
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Figure 9: A class of embedded planar graphs whose optimal upward embeddings have
B + 1 sources and sinks (circles).

4 Algorithms for Visibility Representations

We use the above results on upward embeddings to compute drawings of general
connected planar graphs. Namely, we focus on graph drawing algorithms which
require the computation of a (weak-)visibility representation of the input graph
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as a preliminary step [6]. In a visibility representation (see Figure 10), each
vertex is mapped to a horizontal segment and each edge (u, v) is mapped to
a vertical segment between the segments associated with u and v; horizontal
segments do not overlap, and each vertical segment only intersects its extreme
horizontal segments.

A standard technique [6] for constructing a visibility representation of a
planar graph G first computes a bipolar orientation of G and then computes
the coordinates of the drawing from this orientation. If G is not biconnected
the technique needs to augment the graph to a biconnected planar one, in order
to compute a bipolar orientation of it. The augmentation algorithm adds to G
a suitable number of dummy edges, which will be removed in the final drawing.
However, this technique has several drawbacks: (i) Adding too many dummy
edges may lead to a final drawing with area much bigger than necessary. On
the other side, the problem of adding the minimum number of edges to make
a planar graph biconnected and still planar is NP-hard [12]. (ii) Although a
good approximation algorithm for the above augmentation problem exists [8]
(which reaches the optimal solution in many cases), implementing it efficiently
is quite difficult, because it requires us to deal with the block cutvertex tree [11]
of the graph and with an efficient incremental planarity testing algorithm. In
fact, such an approximation algorithm has O(n2T ) running time, where T is
the amortized time bound per query or insertion operation of the incremental
planarity testing algorithm. (iii) The presence of dummy edges in the graph
makes difficult to handle with partial assignments of the upward embedding.

Tamassia and Tollis [17] provide a different linear time algorithm for com-
puting visibility representations of general connected graphs. At each step of
the algorithm a visibility representation of a new distinct block of the graph is
computed and suitably merged to the current drawing. However, merging op-
erations require the execution of scaling down geometric operations, which may
lead to a final drawing with a big area on an integer grid. Also, the algorithm
has many degrees of freedom about how to perform some topological operations
and about the choice of the ordering in which the blocks are considered; different
decisions may lead to very different results.

v1 v5

v7

v6v2

v4v3

Figure 10: A visibility representation of the upward embedded graph shown in Fig-
ure 1(b).
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We propose the following algorithm for computing a visibility representation
of a 1-connected embedded planar graph Gφ.

Algorithm Visibility-Upward-Embedding

1. Compute an upward embedding Eφ of Gφ by calculating a feasible flow on
network Nφ.

2. Compute an upward embedded st-digraph Sφ including Gφ and preserving
Eφ on Gφ, by using the linear time saturation procedure described at the
end of Section 2.

3. Compute a visibility representation of Sφ (within its upward embedding)
by using any known linear time algorithm [6], and then remove the edges
introduced by the saturation procedure.

Algorithm Visibility-Upward-Embedding has O(n3/2) running time, because
its time complexity is dominated by the cost of computing a feasible flow on
Nφ. We experimentally observed that the area of the visibility representations
produced by this algorithm can be dramatically improved by computing upward
embeddings with the minimum number of sources and sinks. To do that we just
apply a min-cost-flow algorithm in Step 1. Clearly, in this case, the running
time of the whole algorithm grows to O(n

7
4 log n).

We have also slightly refined Algorithm Visibility Upward Embedding aiming
to get a certain control over the width and the height of visibility representa-
tions of 1-connected planar graphs. After we have computed an upward embed-
ding with the minimum number of switches we rearrange the blocks around the
cutvertices in the upward embedding. Namely, if v is a cutvertex we place all
the blocks of v either above or below. This often leads to a reduction of the
height and to an increase in the width. Such a rearrangement is performed in
linear time by exploiting the flow network associated with the embedded planar
graph. We experimented such an approach on a randomly generated test suite
of 1820 graphs whose number n of vertices ranges from 10 to 100 (20 instances
for each value of n). A detailed description of the procedure used to generate
the graphs can be found in [15]. We averaged the width and the height on all
the graphs having the same number of vertices. Charts in Figure 11 graphically
show the results of the experimentation for the maximum number of cutvertices
k(k = 0 . . . 8) whose blocks have been rearranged.

Also, Figure 12 compares the area of the drawings computed with this strat-
egy, where k is chosen equal to the total number of cutvertices of the graph,
against the area of the drawings computed with a standard technique which uses
the approximation algorithm in [8] to initially make the graph biconnected. In
the two strategies we use the same algorithm for constructing the visibility rep-
resentation from the st-digraph. Experimentally, for the considered test suite,
the running time of the two algorithms is comparable (less than one second for
the largest graphs).
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Figure 11: The charts show how rearranging the blocks around cutvertices affects the
width and the height of the visibility representation.
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Figure 12: Area of the drawings computed with our strategy against the area of the
drawings computed with a standard technique based on a sophisticated augmentation
algorithm (average values). The x-axis represents the number of vertices.

5 Open Problems

There are several open problems that we plan to study in the near future. For
example, we are interested in an algorithm for counting and enumerating all
upward embeddings of an embedded planar graph without repetitions. Also,
is it possible to pass from an upward embedding to any other in linear time?
Is there a linear time algorithm to compute optimal upward embeddings of
embedded planar graphs? What about non-embedded planar graphs? Finally,
from an applications point of view we believe that the techniques shown in this
paper may be successfully refined to compute drawings that approximate a given
width/height ratio.
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