
Journal of Graph Algorithms and Applications
http://jgaa.info/

vol. 7, no. 2, pp. 131–140 (2003)

Small Maximal Independent Sets and Faster
Exact Graph Coloring

David Eppstein

Department of Information and Computer Science
University of California, Irvine

eppstein@ics.uci.edu

Abstract

We show that, for any n-vertex graph G and integer parameter k, there
are at most 34k−n4n−3k maximal independent sets I ⊂ G with |I| ≤ k, and
that all such sets can be listed in time O(34k−n4n−3k). These bounds are
tight when n/4 ≤ k ≤ n/3. As a consequence, we show how to compute
the exact chromatic number of a graph in time O((4/3 + 34/3/4)n) ≈
2.4150n, improving a previous O((1 + 31/3)n) ≈ 2.4422n algorithm of
Lawler (1976).
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1 Introduction

One of the earliest works in the area of worst-case analysis of NP-hard prob-
lems is a 1976 paper by Lawler [5] on graph coloring. It contains two results:
an algorithm for finding a 3-coloring of a graph (if the graph is 3-chromatic) in
time O(3n/3) ≈ 1.4422n, and an algorithm for finding the chromatic number of
an arbitrary graph in time O((1 + 31/3)n) ≈ 2.4422n. Since then, the area has
grown, and there has been a sequence of papers improving Lawler’s 3-coloring
algorithm [1, 2, 4, 8], with the most recent algorithm taking time ≈ 1.3289n.
However, there has been no improvement to Lawler’s chromatic number algo-
rithm.

Lawler’s algorithm follows a simple dynamic programming approach, in
which we compute the chromatic number not just of G but of all its induced
subgraphs. For each subgraph S, the chromatic number is found by listing all
maximal independent subsets I ⊂ S, adding one to the chromatic number of
S \ I, and taking the minimum of these values. The O((1 + 31/3)n) running
time of this technique follows from an upper bound of 3n/3 on the number of
maximal independent sets in any n-vertex graph, due to Moon and Moser [6].
This bound is tight in graphs formed by a disjoint union of triangles.

In this paper, we provide the first improvement to Lawler’s algorithm, using
the following ideas. First, instead of removing a maximal independent set from
each induced subgraph S, and computing the chromatic number of S from that
of the resulting subset, we add a maximal independent set of G\S and compute
the chromatic number of the resulting superset from that of S. This reversal
does not itself affect the running time of the dynamic programming algorithm,
but it allows us to constrain the size of the maximal independent sets we consider
to at most |S|/3. We show that, with such a constraint, we can improve the
Moon-Moser bound: for any n-vertex graph G and integer parameter k, there
are at most 34k−n4n−3k maximal independent sets I ⊂ G with |I| ≤ k. This
bound then leads to a corresponding improvement in the running time of our
chromatic number algorithm.

2 Preliminaries

We assume as given a graph G with vertex set V (G) and edge set E(G). We
let n = |V (G)| and m = |E(G)|. A proper coloring of G is an assignment of
colors to vertices such that no two endpoints of any edge share the same color.
We denote the chromatic number of G (the minimum number of colors in any
proper coloring) by χ(G).

If V (G) = {v0, v1, . . . vn−1}, then we can place subsets S ⊆ V (G) in one-to-
one correspondence with the integers 0, 1, . . . 2n − 1:

S ↔
∑
vi∈S

2i.

Subsets of vertices also correspond to induced subgraphs of G, in which we
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include all edges between vertices in the subset. We make no distinction between
these three equivalent views of a vertex subset, so e.g. we will write χ(S) to
indicate the chromatic number of the subgraph induced by set S, and X[S] to
indicate a reference to an array element indexed by the number

∑
vi∈S 2i. We

write S < T to indicate the usual arithmetic comparison between two numbers,
and S ⊂ T to indicate the usual (proper) subset relation between two sets. Note
that, if S ⊂ T , then also S < T , although the reverse implication does not hold.

A set S is a maximal k-chromatic subset of T if S ⊆ T , χ(S) = k, and
χ(S′) > k for every S ⊂ S′ ⊆ T . In particular, if k = 1, S is a maximal
independent subset of T .

For any vertex v ∈ V (G), we let N(v) denote the set of neighbors of v,
including v itself. If S and T are sets, S \T denotes the set-theoretic difference,
consisting of elements of S that are not also in T . Ki denotes the complete
graph on i vertices. We write deg(v, S) to denote the degree of vertex v in the
subgraph induced by S.

We express our pseudocode in a syntax similar to that of C, C++, or Java.
In particular this implies that array indexing is zero-based. We assume the
usual RAM model of computation, in which a single cell is capable of storing an
integer large enough to index the memory requirements of the program (thus, in
our case, n-bit values are machine integers), and in which arithmetic and array
indexing operations on these values are assumed to take constant time.

3 Small Maximal Independent Sets

Theorem 1 Let G be an n-vertex graph, and k be a nonnegative number. Then
the number of maximal independent sets I ⊂ V (G) for which |I| ≤ k is at most
34k−n4n−3k.

Proof: We use induction on n; in the base case n = 0, there is one (empty)
maximal independent set, and for any k ≥ 0, 1 ≤ 34k4−3k = (81/64)k. Oth-
erwise, we divide into cases according to the degrees of the vertices in G, as
follows:

• If G contains a vertex v of degree three or more, then each maximal
independent set I either avoids v (in which case I itself is a maximal
independent set of G \ {v}) or contains v (in which case I \ {v} is a
maximal independent set of G \ N(v)). Thus, by induction, the number
of maximal independent sets of cardinality at most k is at most

34k−(n−1)4(n−1)−3k + 34(k−1)−(n−4)4(n−4)−3(k−1)

= (
3
4

+
1
4
)34k−n4n−3k = 34k−n4n−3k

as was to be proved.

• If G contains a degree-one vertex v, let its neighbor be u. Then each
maximal independent set contains exactly one of u or v, and removing
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this vertex from the set produces a maximal independent set of either
G \N(v) or G \N(u). If the degree of u is d, this gives us by induction a
bound of

34(k−1)−(n−2)4(n−2)−3(k−1) + 34(k−1)−(n−d−1)4(n−d−1)−3(k−1)

≤ 8
9

34k−n4n−3k

on the number of maximal independent sets of cardinality at most k.

• If G contains an isolated vertex v, then each maximal independent set
contains v, and the number of maximal independent sets of cardinality at
most k is at most

34(k−1)−(n−1)4(n−1)−3(k−1) =
16
27

34k−n4n−3k.

• If G contains a chain u-v-w-x of degree two vertices, then each maximal
independent set contains u, contains v, or does not contain u and contains
w. Thus in this case the number of maximal independent sets of cardinality
at most k is at most

2 · 34(k−1)−(n−3)4(n−3)−3(k−1) + 34(k−1)−(n−4)4(n−4)−3(k−1)

=
11
12

34k−n4n−3k.

• In the remaining case, G consists of a disjoint union of triangles, all max-
imal independent sets have exactly n/3 vertices, and there are exactly
3n/3 maximal independent sets. If k ≥ n/3, then 3n/3 ≤ 34k−n4n−3k. If
k < n/3, there are no maximal independent sets of cardinality at most k.

Thus in all cases the number of maximal independent sets is within the
claimed bound. �

Croitoru [3] proved a similar bound with the stronger assumption that all
maximal independent sets have |I| ≤ k. When n/4 ≤ k ≤ n/3, our result is
tight, as can be seen for a graph formed by the disjoint union of 4k−n triangles
and n − 3k K4’s.

Theorem 2 There is an algorithm for listing all maximal independent sets of
size at most k in an n-vertex graph G, in time O(34k−n4n−3k).

Proof: We use a recursive backtracking search, following the case analysis of
Theorem 1: if there is a high-degree vertex, we try including it or not including
it; if there is a degree-one vertex, we try including it or its neighbor; if there is
a degree-zero vertex, we include it; and if all vertices form chains of degree-two
vertices, we test whether the parameter k allows any small maximal independent
sets, and if so we try including each of a chain of three adjacent vertices. The
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// List maximal independent subsets of S smaller than a given parameter.
// S is a set of vertices forming an induced subgraph in G,
// I is a set of vertices to be included in the MIS (initially zero), and
// k bounds the number of vertices of S to add to I.
// We call processMIS(I) on each generated set. Some non-maximal sets may be
// generated along with the maximal ones, but all generated sets are independent.

void smallMIS (set S, set I, int k)
{

if (S = 0 or k = 0) processMIS(I);
else if (there exists v ∈ S with deg(v, S) ≥ 3)
{

smallMIS (S \ {v}, I, k);
smallMIS (S \ N(v), I ∪ {v}, k − 1);

}
else if (there exists v ∈ S with deg(v, S) = 1)
{

let u be the neighbor of v;
smallMIS (S \ N(u), I ∪ {u}, k − 1);
smallMIS (S \ N(v), I ∪ {v}, k − 1);

}
else if (there exists v ∈ S with deg(v, S) = 0)

smallMIS (S \ {v}, I ∪ {v}, k − 1);
else if (some cycle in S is not a triangle or k ≥ |S|/3)
{

let u, v, and w be adjacent degree-two vertices,
such that (if possible) u and w are nonadjacent;

smallMIS (S \ N(u), I ∪ {u}, k − 1);
smallMIS (S \ N(v), I ∪ {v}, k − 1);
smallMIS (S \ ({u} ∪ N(w)), I ∪ {w}, k − 1);

}
}

Figure 1: Algorithm for listing all small maximal independent sets.
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same case analysis shows that this algorithm performs O(34k−n4n−3k) recursive
calls.

Each recursive call can easily be implemented in time polynomial in the
size of the graph passed to the recursive call. Since our 34k−n4n−3k bound is
exponential in n, even when k = 0, this polynomial overhead at the higher levels
of the recursion is swamped by the time spent at lower levels of the recursion,
and does not appear in our overall time bound. �

A more detailed pseudocode description of the algorithm is shown in Fig-
ure 1. The given pseudocode may generate non-maximal as well as maximal
independent sets, because (when we try not including a high degree vertex) we
do not make sure that a neighbor is later included. This will not cause problems
for our chromatic number algorithm, but if only maximal independent sets are
desired one can easily test the generated sets and eliminate the non-maximal
ones. The pseudocode also omits the data structures necessary to implement
each recursive call in time polynomial in |S| instead of polynomial in the number
of vertices of the original graph.

4 Chromatic Number

We are now ready to describe our algorithm for computing the chromatic number
of graph G. We use an array X, indexed by the 2n subsets of G, which will
(eventually) hold the chromatic numbers of certain of the subsets including V (G)
itself. We initialize this array by testing, for each subset S, whether χ(S) ≤ 3;
if so, we set X[S] to χ(S), but otherwise we set X[S] to ∞.

Next, we loop through the subsets S of V (G), in numerical order (or any
other order such that all proper subsets of each set S are visited before we visit
S itself). When we visit S, we first test whether X[S] ≥ 3. If not, we skip
over S without doing anything. But if X[S] ≥ 3, we loop through the small
independent sets of G\S, limiting the size of each such set to |S|/X[S], using the
algorithm of the previous section. For each independent set I, we set X[S ∪ I]
to the minimum of its previous value and X[S] + 1.

Finally, after looping through all subsets, we return the value in X[V (G)] as
the chromatic number of G. Pseudocode for this algorithm is shown in Figure 2.

Lemma 1 Throughout the course of the algorithm, for any set S, X[S] ≥ χ(S).

Proof: Clearly this is true of the initial values of X. Then for any S and any
independent set I, we can color S ∪ I by using a coloring of S and another color
for each vertex in I, so χ(S ∪ I) ≤ χ(S) + 1 ≤ X[S] + 1, and each step of our
algorithm preserves the invariant. �

Lemma 2 Let M be a maximal k + 1-chromatic subset of G, and let (S, I)
be a partition of M into a k-chromatic subset S and an independent subset I,
maximizing the cardinality of S among all such partitions. Then I is a maximal
independent subset of G \ S with |I| ≤ |S|/k, and S is a maximal k-chromatic
subset of G.
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int chromaticNumber (graph G)
{

int X[2n];
for (S = 0; S ≤ 2n; S++)
{

if (χ(S) ≤ 3) X[S] = χ[S];
else X[S] = ∞;

}
for (S = 0; S ≤ 2n; S++)
{

if (3 ≤ X[S] < ∞)
{

for (each maximal independent set I of G \ S with |I| ≤ |S|
X[S]

)

X[S ∪ I] = min(X[S ∪ I],X[S] + 1);
}

}
return X[V (G)];

}

Figure 2: Algorithm for computing the chromatic number of a graph.

Proof: If we have any (k + 1)-coloring of G, then the partition formed by
separating the largest k color classes from the smallest color class satisfies the
inequality |I| ≤ |S|/k, so clearly this also is true when (S, I) is the partition
maximizing |S|. If I were not maximal, due to the existence of another inde-
pendent set I ⊂ I ′ ⊂ G \ S, then S ∪ I ′ would be a larger (k + 1)-chromatic
graph, violating the assumption of maximality of M .

Similarly, suppose there were another k-chromatic set S ⊂ S′ ⊂ G. Then if
S′ ∩ I were empty, S′ ∪ I would be a (k + 1)-chromatic superset of M , violating
the assumption of M ’s maximality. But if S′ ∩ I were nonempty, (S′, I \ S′)
would be a better partition than (S, I), so in either case we get a contradiction.

�

Lemma 3 Let M be a maximal k + 1-chromatic subset of G. Then, when the
outer loop of our algorithm reaches M , it will be the case that X[M ] = χ(M).

Proof: Clearly, the initialization phase of the algorithm causes this to be true
when χ(M) ≤ 3. Otherwise, let (S, I) be as in Lemma 2. By induction on |M |,
X[S] = χ(S) at the time we visit S. Then X[S] ≥ 3, and |I| ≤ |S|/X[S], so the
inner loop for S will visit I and set X[M ] to X[S] + 1 = χ(M). �

Theorem 3 We can compute the chromatic number of a graph G in time
O((4/3 + 34/3/4)n) and space O(2n).
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Proof: V (G) is itself a maximal χ(G)-chromatic subset of G, so Lemma 3 shows
that the algorithm correctly computes χ(G) = X[V (G)]. Clearly, the space is
bounded by O(2n). It remains to analyze the algorithm’s time complexity.

First, we consider the time spent initializing X. Since we perform a 3-
coloring algorithm on each subset of G, this time is

∑
S⊂V (G)

O(1.3289|S|) = O
( n∑

i=0

(
n

i

)
1.3289i

)
= O(2.3289i).

Finally, we bound the time in the main loop of the algorithm, which applies
the algorithm of Theorem 2 to generate small independent subsets of each set
G \ S. In the worst case, X[S] = 3 and we can only limit the size of the
generated independent sets to |S|/3. We spend constant time adjusting the
value of X[S ∪ I] for each generated set. Thus, the time can be bounded as

∑
S⊂V (G)

O(34
|S|
3 −|G\S|4|G\S|−3

|S|
3 )

= O
( n∑

i=0

(
n

i

)
3

7i
3 −n4n−2i

)

= O
(
(
4
3

+
34/3

4
)n

)
.

This final term dominates the overall time bound. �

5 Finding a Coloring

Although the algorithm of the previous section finds the chromatic number of
G, it is likely that an explicit coloring is desired, rather than just this number.
The usual method of performing this sort of construction task in a dynamic
programming algorithm is to augment the dynamic programming array with
back pointers indicating the origin of each value computed in the array, but since
storing 2n chromatic numbers is likely to be the limiting factor in determining
how large a graph this algorithm can be applied to, it is likely that also storing
2n set indices will severely reduce its applicability.

Instead, we can simply search backwards from V (G) until we find a subset
S that can be augmented by an independent set to form V (G), and that has
chromatic number χ(S) = χ(G)−1 as indicated by the value of X[S]. We assign
the first color to G \S. Then, we continue searching for a similar subset T ⊂ S,
etc., until we reach the empty set. Although not every set S may necessarily
have X[S] = χ(S), it is guaranteed that for any S we can find T ⊂ S with
S \ T independent and X[T ] = X[S] − 1, so this search procedure always finds
a correct coloring.

Theorem 4 After computing the array X as in Theorem 3, we can compute
an optimal coloring of G in additional time O(2n) and O(1) additional space.



D. Eppstein, Faster Exact Graph Coloring , JGAA, 7(2) 131–140 (2003) 139

void color (graph G)
{

compute array X as in Figure 2;
S = V (G);
for (T = 2n − 1; T ≥ 0; T−−)
{

if (T ⊂ S and X[S \ T ] = 1 and X[T ] = X[S] − 1)
{

color all vertices in S \ T with the same new color;
S = T ;

}
}

}

Figure 3: Algorithm for optimally coloring a graph.

Proof: Pseudocode for the coloring algorithm is shown in Figure 3. As we saw
earlier, X[S] can only be guaranteed equal to χ(S) when χ(S) ≤ 3 or when S is
maximal k-chromatic; however, X[S] always provides a correct upper bound on
χ(S). So, each iteration of the inner block of Figure 3 correctly decomposes the
problem into a single independent color class and a remaining (k − 1)-coloring
problem. A subset T satisfying the test will always be found, because the
dynamic program must have used some T to set the value of X[S].

The time analysis follows since the algorithm consists of a simple loop over all
subsets, performing simple subset tests and array lookups that can be executed
in constant time each. �

6 Conclusions

We have shown a bound on the number of small independent sets in a graph,
shown how to list all small independent sets in time proportional to our bound,
and used this algorithm in a new dynamic programming algorithm for computing
the chromatic number of a graph as well as an optimal coloring of the graph.

Our bound on the number of small independent sets is tight for n/4 ≤ k ≤
n/3. Very recently, Nielsen [7] has shown similar tight bounds for all ranges
of k. Although this extension of our results does not help our chromatic num-
ber algorithm, Nielsen was able to use it, together with algorithms for listing
small maximal independent sets, as part of improved algorithms for four- and
five-coloring. Both our algorithm and Nielsen’s may take time proportional to
the worst case bound, even for graphs with fewer maximal independent sets.
It would be of interest to find an algorithm for listing all small maximal inde-
pendent sets in time proportional to the number of generated sets rather than
simply proportional to the worst case bound on this number.
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Our worst case analysis of the chromatic number algorithm assumes that,
every time we call the procedure for listing small maximal independent sets,
this procedure achieves its worst case time bound. But is it really possible for
all sets G \ S to be worst case instances for this procedure? If not, perhaps the
analysis of our coloring algorithm can be improved.

Can we prove a bound smaller than
(
n
i

)
on the number of i-vertex maximal

k-chromatic induced subgraphs of a graph G? If such a bound could be proven,
even for k = 3, we could likely improve the algorithm presented here by only
looping through the independent subgraphs of G \ S when S is maximal.

An alternative possibility for improving the present algorithm would be to
find an algorithm for testing whether χ(G) ≤ 4 in time o(1.415n). Then we
could test the four-colorability of all subsets of G before applying the rest of
our algorithm, and avoid looping over maximal independent subsets of G \ S
unless X[S] ≥ 4. This would produce tighter limits on the independent set
sizes and therefore reduce the number of independent sets examined. However
such a result would be significantly better than the best known time bound,
O(1.7504n) for Nielsen’s four-coloring algorithm [7].
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