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Abstract

This paper investigates the following question: Given a grid φ, where
φ is a proper subset of the integer 2D or 3D grid, which graphs admit
straight-line crossing-free drawings with vertices located at (integral) grid
points of φ? We characterize the trees that can be drawn on a strip, i.e.,
on a two-dimensional n × 2 grid. For arbitrary graphs we prove lower
bounds for the height k of an n × k grid required for a drawing of the
graph. Motivated by the results on the plane we investigate restrictions
of the integer grid in 3D and show that every outerplanar graph with n
vertices can be drawn crossing-free with straight lines in linear volume on
a grid called a prism. This prism consists of 3n integer grid points and is
universal – it supports all outerplanar graphs of n vertices. We also show
that there exist planar graphs that cannot be drawn on the prism and
that extension to an n × 2 × 2 integer grid, called a box, does not admit
the entire class of planar graphs.
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1 Introduction

This paper deals with crossing-free straight-line drawings of planar graphs in two
and three dimensions. Given a graph G, we constrain the vertices in a drawing
of G to be located at integer grid points and aim at computing drawings whose
area/volume is small. The interest in these two requirements is motivated in
part by the fact that the screen of a computer is an integer grid of limited size
and by the fact that a drawing algorithm should not be affected by round-off
errors when representing the output coordinates. Also, the increasing demand
of visualization algorithms to draw and browse very large networks makes it
natural to study what families of graphs can be entirely visualized on a two di-
mensional screen and to investigate how much benefit can be obtained from the
third dimension to represent the overall structure of a huge graph in a small por-
tion of a virtual 3D environment. A rich body of literature has been published
on computing straight-line drawings of graphs, such that the vertices are the
intersection points of an integer 2D grid and the overall area of the drawing is
kept small. Typically, papers that deal with this subject focus on lower bounds
on the area required by straight-line drawings of specific classes of graphs and
on the design of algorithms that possibly match these lower bounds. A very
limited list of mile-stone papers in this field includes the works by de Fraysseix,
Pach, and Pollack [11, 12] and by Schnyder [38] who independently showed that
every n-vertex triangulated planar graph has a crossing-free straight-line draw-
ing such that the vertices are at grid points, the size of the grid is O(n)×O(n),
and that this is worst case optimal; the work by Kant [26, 27], Chrobak and
Kant [6], Schnyder and Trotter [39], Felsner [21] and Chrobak, Goodrich, and
Tamassia [7] who studied convex grid drawings of triconnected planar graphs
in an integer grid of quadratic area; and the many papers proving that linear
or almost-linear area bounds can be achieved for classes of trees, including the
result by Garg, Goodrich and Tamassia [23] and the result by Chan [5]. Sum-
marizing tables and more references can be found in the book by Di Battista,
Eades, Tamassia, and Tollis [14].

While the problem of computing small-sized crossing-free straight-line draw-
ings in the plane has a long tradition, its 3D counterpart has become the subject
of much attention only in recent years. Chrobak, Goodrich, and Tamassia [7]
gave an algorithm for constructing 3D convex drawings of triconnected planar
graphs with O(n) volume and non-integer coordinates. Cohen, Eades, Lin and
Ruskey [9] showed that every graph admits a straight-line crossing-free 3D draw-
ing on an integer grid of O(n3) volume, and proved that this is asymptotically
optimum. Calamoneri and Sterbini [3] showed that all 2-, 3-, and 4-colorable
graphs can be drawn in a 3D grid of O(n2) volume with O(n) aspect ratio and
proved a lower bound of Ω(n1.5) on the volume of such graphs. For r-colorable
graphs, Pach, Thiele and Tóth [31] showed a bound of θ(n2) on the volume.
Garg, Tamassia, and Vocca [24] showed that all 4-colorable graphs (and hence
all planar graphs) can be drawn in O(n1.5) volume and with O(1) aspect ratio
but using a grid model where the coordinates of the vertices may not be integer.
In this paper we study the problem of computing drawings of graphs on integer
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2D or 3D grids that have small area/volume. The area/volume of a drawing Γ
is measured as the number of grid points contained in or on a bounding box of
Γ, i.e. the smallest axis-aligned box enclosing Γ. Note that along each side of
the bounding box the number of grid points is one more than the actual length
of the side. We approach the drawing problem with the following point of view:
Instead of “squeezing” a drawing onto a small portion of a grid of unbounded
dimensions, we assume that a grid of specified dimensions (involving a function
of n) is given and we consider what the graphs are whose drawings fit that
restricted grid. For example, it is well-known that there are families of graphs
that require Ω(n2) area to be drawn in the plane, the canonical example being a
sequence of n/3 nested triangles (see [12, 8, 38]). Such graphs can be drawn on
the surface of a three dimensional triangular prism of linear volume and using
integer coordinates. Thus a natural question is whether there exist specific re-
strictions of the 3D integer grid of linear volume that can support straight-line
crossing-free drawings of meaningful families of graphs. For planar graphs the
best known results for three dimensional crossing-free straight-line drawings on
an integer grid are by Calamoneri and Sterbini [3] who show O(n2) volume for
general planar graphs and by Eades, Lin and Ruskey [9] who show O(n log n)
volume for trees.

The main contributions of the present paper are investigations concerning
the drawability of graphs on 2D and 3D restricted integer grids and new drawing
algorithms for some classes of graphs. An overview of the results is as follows.

• We characterize those trees that can be drawn on a strip, i.e., an integer
2D grid restricted to two consecutive horizontal grid lines. From the char-
acterization we derive a linear time algorithm to generate such drawings,
if possible. This result was independently obtained by Schank [36] in his
Master’s thesis.

• Generalizing the result for strips, we present a lower bound “the strictness
of a tree” for the number k of horizontal grid lines required for grid draw-
ings of trees. A consequence of this bound is that for any given k there
always exist some trees that are not drawable on the n × k grid.

• We show that the strictness of a tree is closely related to the well-known
parameter path-width. For general graphs the path-width is shown to be
a lower bound for the height of grid drawings.

• Motivated by the results on restricted integer 2D grids we explore the capa-
bility of restricted 3D integer grids for supporting linear volume drawings
of graphs. In particular, we focus on two types of 3D integer grids to be
defined subsequently, both having linear volume, called the prism and the
box. We show that all outerplanar graphs can be drawn in linear volume
on a prism. Note that this is the first result on 3D straight-line drawings
of a significant class of planar graphs that achieves linear volume with
integer coordinates.
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• We further explore the class of graphs that can be drawn on a prism
by asking whether the prism is a universal 3D integer grid for all planar
graphs. We answer this question in the negative by exhibiting examples
of planar graphs that cannot be drawn on a prism. We also investigate
the relationship between prism-drawable and hamiltonian graphs.

• We extend our study to box-drawability and present a characterization
of the box-drawable graphs. While the box would appear to be a much
more powerful grid than the prism, we prove that not all planar graphs
are box-drawable.

Several recent related results about 3D straight line drawings of limited
volume have been published after the conference version of this paper was pre-
sented at the Symposium on Graph Drawing GD 2001 [22]. Dujmović, Morin,
and Wood [20] present O(n log2 n) volume drawings of graphs with bounded
tree-width and O(n) volume for graphs with bounded path-width. Wood [42]
shows that also graphs with bounded queue number have 3D straight-line grid
drawings of O(n) volume. A very recent result by Dujmović and Wood [17]
shows that linear volume can also be achieved for graphs with bounded tree-
width; they show 3D straight-line grid drawings of volume c×n for these graphs,
where c is a constant whose value exponentially depends on the tree-width. Di
Giacomo, Liotta, and Wismath [16] show 4 × n volume for a subclass of series-
parallel graphs. The problem of computing straight-line 3D drawings of planar
graphs on an integer grid of o(n2) volume is still open. A recent lower bound
on the volume of 3D straight line drawings as a function of the number of edges
is obtained by Bose, Czyzowicz, Morin, and Wood [2].

The remainder of the paper is organized as follows. Preliminaries and basic
definitions are in Section 2. The study of trees drawable on restricted integer 2D
grids is the topic of Section 3. In this section we also investigate the connection of
grid drawings and path-width. Section 4 presents the linear volume algorithm
for outerplanar graphs. Combinatorial properties of the graphs that can be
drawn on the surface of a prism and on a box are studied in Sections 5 and 6.
Final remarks, directions for further research and open problems can be found
in Section 7.

2 Preliminaries

We assume familiarity with basic graph drawing, and computational geometry
terminology; see for example [33, 14]. Since in the remainder of the paper we
shall only study crossing-free straight-line drawings of planar graphs, from now
on we shall simply talk about “graphs” to mean “planar graphs” and about
“drawings” to mean “crossing-free straight-line drawings”. We use the terms
“vertex” and “edge” for both the graph and its drawing. We will draw graphs
such that vertices are located at integer grid points. The dimensions of a grid
are specified as the number of different grid points along each side of a bounding
box of the grid. In two dimensions, a p× q grid consists of all points (i, j) with
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1 ≤ i ≤ p and 1 ≤ j ≤ q that have integer coordinates. In three dimensions,
a p × q × r grid consists of all points (i, j, k) with 1 ≤ i ≤ p, 1 ≤ j ≤ q and
1 ≤ k ≤ r that have integer coordinates; p, q and r are referred to as the x-, y-,
and z-dimension of the grid, respectively.

We shall deal with the following grids and drawings.

• A 2D 1-track (or simply a track) is an ∞× 1 grid; a 1-track drawing of a
graph G is a drawing of G where the vertices are at distinct grid points of
the track.

• A 2D strip is an ∞ × 2 grid; note that a strip contains two tracks. A
strip drawing of a graph G is a drawing of G with the vertices located at
distinct grid points of the strip and the edges either connect vertices on
the same track or connect vertices on different tracks.

• Next we extend the notion of a strip to multiple overlapping strips. Let
k be a given positive integer value. A 2D k-track grid is an ∞ × k grid
consisting of k consecutive parallel tracks. A k-track drawing of a graph
G is a drawing of G where the vertices are at distinct grid points of the
k-track and edges are only permitted between vertices that are either on
the same track or that are one unit apart in their y-coordinates. Note
that the previous two grids are the specific cases of k = 1 and k = 2.

• Let k be a given positive integer value. In an n × k-grid drawing of a
graph G, the vertices are located at distinct grid points and the edges
may connect any pair of vertices on that grid. To avoid confusion with
track drawings, we refer to the value k as the number of grid lines in the
grid drawing.

• We will also study two different types of n × 2 × 2 grids. A box is an
n × 2 × 2 grid where each side of the bounding box is also a grid line.
Therefore, a box has four tracks which lie on two parallel planes and are
one grid unit apart from each other. A prism is a subset of an n × 2 × 2
grid obtained by removing a track from a box. Figure 1 shows an example
of a box of size 6 × 2 × 2 and an example of a prism.

Figure 1: A box and a prism

Note that k-track drawings differ from the so-called k-level drawings (see, e.g.
[25]) as in a k-track drawing (consecutive) vertices on the same track are per-
mitted to be joined by an edge and the given graph is undirected. Let φ be one
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of the grids defined above. We say that a graph G is φ drawable if G admits a
φ drawing Γ where each vertex is mapped to a distinct grid point of φ.

Property 1 A graph is 1-track drawable if and only if it is a forest whose
vertices have degree at most two.

While in a k-track drawing no edge can connect vertices that are on non-
consecutive tracks, in an n × k-grid this is allowed. As the following property
shows, this difference has immediate consequences on the families of k-track
drawable and n × k-grid drawable graphs.

Property 2 Let k ≥ 3 be a fixed positive integer. There exist graphs with n
vertices that are n × k-grid drawable but are not k-track drawable.

Proof. The graph K4 has an n × 3-grid drawing but it does not have a 3-
track drawing – indeed K4 is not drawable on tracks. Furthermore any graph
containing K4 as a subgraph is not track-drawable. Given a drawing of a graph
on an n × k-grid (for k > 3), we can attach a copy of K4 which makes the
resulting graph not track-drawable.

In the extended abstract for the graph drawing conference GD’01[22] we
incorrectly argued that for trees n × k-grid drawable is equivalent to k-track
drawable. It was first observed by Matthew Suderman that this was false. In
a recent manuscript Suderman [40] describes a family Sk of trees, such that Sk

can be drawn on the n × (k + 1) grid but requires 2k − 1 tracks. Suderman’s
results are actually stated in terms of the pathwidth pw of a tree (a notion
introduced in the next section). He shows that pw(Sk) = k and every tree T
with pw(T ) ≤ k admits a drawing on 2k − 1 tracks.

3 Grids, Path-width and Trees

In this section we investigate the connections between drawability of a graph G
on grids and the path-width of G. The notion of the path-width of a graph G
was introduced by Robertson and Seymour[34] in the first paper of their series
on graph minors. A path decomposition of a graph G = (V,E) is a sequence
W1,W2, . . . , Wt of subsets of V such that

• ∀(u, v) ∈ E, ∃i such that u, v ∈ Wi

• ∀v ∈ V the set I(v) = {i : v ∈ Wi} is an interval of {1, . . . , t},
i.e. if a < b < c and a, c ∈ I(v) then b ∈ I(v).

The width of the path decomposition is max(|Wi| − 1 : i = 1, . . . , t) and the
path-width of G, denoted pw(G) is the minimum width of a path decomposition
of G. The path-width of an independent set is defined as zero.

Several graph parameters have been shown to be equivalent to path-width.
The interval thickness Θ(G) is the smallest max-clique over all interval super-
graphs of G. Since interval graphs are perfect this can also be stated in terms
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of the chromatic number: Θ(G) = min{χ(H) : H is an interval graph with
E(G) ⊆ E(H)}. Möhring [30] has shown that Θ(G) = pw(G) + 1. In node
searching, an undirected graph is considered as a system of tunnels in which
a fugitive is hidden. The node search number ns(G) is the least number of
searchers required to capture the fugitive when the search is governed by the
following rules: A search move consists of placing a searcher at a node or re-
moving a searcher from a node. The fugitive is captured if both ends of the
edge where he hides are simultaneously occupied by a searcher. The fugitive
is allowed to move (at any speed) along edges subject to the condition that he
never passes a node occupied by a searcher. Kiriousis and Papadimitriou [28]
have shown that Θ(G) = ns(G). Moreover there is an optimal search, i.e., a
search requiring only ns(G) searchers, such that after an edge has been cleared
by two searchers simultaneously guarding its end-nodes it never recontaminates,
i.e., there never appears a path that carries no searcher connecting the cleared
edge with a contaminated (uncleared) one.

We now show that the path-width is a lower bound on the number k of grid
lines needed for an n × k grid drawing for general planar graphs. We note that
a similar result was obtained in [19] however in the context of h-layer graph
drawings.

Theorem 1 Let G be a planar graph. Then we have
pw(G) ≤ mink (G is drawable on an n × k grid).

Proof. We prove the inequality in the node searching context; recall ns(G) =
pw(G) + 1. Given a planar graph G which is drawn on an n × k grid, we show
that the layout can be used to design a node search strategy using k+1 searchers
for G. At the beginning a grid-line-searcher is placed on the leftmost node of
each of the k grid lines of the drawing. The invariant is that at any intermediate
step of the search there is a searcher on each grid line and the k nodes occupied
by these searchers form a node separator. Left of the searchers there are cleared
edges and nodes; edges and nodes to the right are not yet cleared and there
is no edge connecting a cleared with an uncleared node. A move consists of
identifying a searcher s sitting on a node v(s) on grid line t(s), such that either
there is no edge connecting v(s) to an uncleared node or there is exactly one
such edge and this edge connects v(s) to the next node right of v(s) on the same
grid line. In both cases the (k+1)st searcher s∗ is placed on the next node v′ on
the same grid line t(s). Then s moves to v′ thus setting s∗ free again. We claim
that a move as described is possible as long as not all the k grid-line-searchers
are sitting on the rightmost node of their line. Since a move clearly keeps the
invariant valid the claim implies that the graph can be decontaminated from
left to right in a sequence of moves. It remains to prove the existence of a move.
Label the grid lines t1, t2, . . . , tk from lowermost to topmost. Denote the node
occupied by the grid-line-searcher on ti by vi. With vi associate the number hi

of the highest grid line such that there is an uncleared edge from vi to a node
on grid line hi; if there is no uncleared edge leaving vi we set hi = 0. Since
hk ≤ k there is a least index i such that hi ≤ i. We claim that we can choose
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the searcher of grid line ti for the move. If i = 1 condition h1 ≤ 1 implies that
we can advance the searcher on the first grid line. If i > 1 consider the edge
emanating from node vi−1 to a node on grid line hi−1 ≥ i. By planarity and
since hi−1 ≥ i this edge shields vi from all uncleared nodes on grid lines tj for
j < i. Therefore, there can be at most one edge leaving vi to an uncleared node
to the right and this node must sit on the same grid line.

Figure 2: Six nested triangles.
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Figure 3: A drawing of G3 on an n × 6 grid.

For the case of trees Suderman [40] has given tight bounds for the gap
between path-width and the required height of the grid. Depending on the
drawing model chosen, this height is bounded by the β fold of the path-width
with β ∈ {3

2 , 2, 3}.
In contrast to the situation with trees, the gap in the inequality of Theorem 1

can be arbitrarily large for other classes of planar graphs. Let Gk be the graph
consisting of 2k nested triangles (see Figure 2 for the case k = 3). It is not
difficult to see that a grid drawing of Gk requires at least 2k grid lines (i.e. an
n × 2k grid). Namely, since Gk is three-connected it is enough to study the
drawings given by all choices of outer faces. If the outer face is a three cycle,
by induction we have that a drawing of Gk requires a number of grid lines that
is at least twice the number of nested triangles, i.e. it requires at least 4k grid
lines. If the outer face is a four cycle, we still have to draw a three cycle with at
least k nested triangles inside, and therefore at least 2k grid lines are required.
However, the node-search number of Gk is 4, independent of k. In an optimal
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search the searchers sweep the triangles starting at the innermost and moving
out. An optimal drawing for G3 is given in Figure 3.

3.1 Minor monotone issues

The contraction of an edge e = (x, y) in a graph means replacing x and y by
a single vertex z which is made adjacent to all the remaining neighbours of x
and y.

Given a graph G we can generate smaller graphs by repeatedly deleting and
contracting edges and deleting isolated vertices. These smaller graphs are called
minors of G. Define G′ ≺ G if G′ is a minor of G. The relation ≺ is an order
relation on the set of all graphs. A set P of graphs is minor monotone if G ∈ P
and G′ ≺ G implies G′ ∈ P.

Important examples of minor monotone sets of graphs are: forests, outer-
planar graphs, planar graphs and for any fixed k, the set of graphs G with
pw(G) ≤ k. A fundamental result of Robertson and Seymour [35] asserts that
every minor monotone set of graphs M is characterized by a finite set of ob-
structions, i.e. there is an integer t and a list of graphs O1, O2, . . . , Ot such that
G ∈ M iff Oi 	≺ G for i = 1, . . . , t. A classical instance is the theorem of Wagner
[41]: G is planar iff it has no minor isomorphic to K5 or K3,3.

From Theorem 1 it is conceivable to view the minimal height k such that a
planar graph admits a drawing on an n × k grid as a more discriminating, i.e.
refined, version of path-width. The following theorem shows that this parameter
‘grid-height’ lacks one very important property.

Theorem 2 Being drawable on an n × k grid is not a minor monotone graph
property for k ≥ 3.

Proof. The graph G shown in Figure 4 is drawn on three grid lines. By con-
tracting the dotted edge we obtain the graph G′ shown to the left in Figure 5.
We show that G′ requires a grid of height at least four.

In Figure 5 the vertex resulting from the contraction is emphasized and
labeled c, another vertex of degree two is labeled t. Let G′

t be the graph obtained
by deleting t.

The first step of the proof is to show that in every drawing of G′
t the bold

vertices are drawn on the middle line. This is based on an observation which is
interesting in its own right.

Figure 4: The graph G drawn on a grid of height 3.
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ca

s

x

t

c

Figure 5: The contraction graph G′ and its subgraph G′
t

Let G be embedded on a grid of height k and let C be the outer cycle
of G. The interior vertices of G, i.e., those not on C, are embedded
on the grid lines from 2 to k − 1.

For the case of three grid lines, k = 3, this implies that all vertices not on
the outer cycle must be drawn on the middle grid line. As a consequence, the
graph induced by the inner vertices must be a subgraph of a path.

In the case of G′
t there are two candidates for the outer cycle namely, the

one shown in the figure and the cycle of length four including the edge (s, c). In
both cases the four black vertices are interior and must be drawn on the middle
grid line. Assume that s is placed on grid line 1; then both vertices a and c
have to go on grid line 3. A drawing of G′ contains a drawing of G′

t, hence, for
a drawing of G′ on a grid of height three we also have: If s is on line 1 then a
and c are on line 3. However, since x and t are common neighbours of a and c
this placement of a and c makes a crossing of edges unavoidable. In conclusion
the minor G′ of G has no drawing on a grid of height 3.

An interesting open problem suggested by one of the referees is whether
for trees and forests the required height for grid drawings might be a minor
monotone parameter.

3.2 Drawings of Trees

Next we consider drawings of trees. As a first step we characterize the family
of strip-drawable trees and give linear time recognition and drawing algorithms
for such trees.

The approach taken applies to strip-drawable trees and has a natural gener-
alization which leads to the notion of a k-strict tree. We show that a (k+1)-strict
tree cannot be drawn on an n × k grid. We then show that the strictness of a
tree is closely related to the path-width. More precisely, there is a difference of
at most one between the two parameters. In his recent paper Matthew Suder-
man [40] has obtained tight bounds on the height of a grid required for drawings
of trees of path-width k in several drawing models.
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3.2.1 Strip-Drawable Trees

Property 1 establishes that all paths are strip-drawable, since they are in fact
1-track drawable. We define a tree as 2-strict if it contains a vertex of degree
greater than or equal to three. An immediate consequence of Property 1 is the
following.

Property 3 A 2-strict tree is not 1-track drawable.

An edge is defined as a core edge if its removal results in two 2-strict components.
For an edge e = (u, v), we refer to the two subtrees resulting from its removal
(but including vertices u, v) as Tu and Tv.

Lemma 1 Core edges are connected.

u x

u x

wv

T T

Figure 6: Core edges are connected

Proof. Let e1 = (u, v) and e2 = (w, x) be two core edges and consider any
edge e on the path connecting e1 to e2. Refer to Figure 6. Edge e receives one
2-strict component from Tu and one from Tx and thus must be core.

Lemma 2 A tree is strip drawable if and only if its core edges form a path.

Proof. (⇒) (by contradiction) By the previous lemma, if the core edges do
not form a path, then there is a vertex v with at least three incident core
edges (v, a), (v, b), (v, c) – see Figure 7. If the subtrees Ta, Tb, Tc are drawable
then by Property 3 their associated drawings Γa,Γb,Γc each require two tracks.
There is no location for v that permits a crossing-free connection to all three
subdrawings. (⇐) Refer to Figure 8. If the core edges form a non-degenerate
path (i.e. a non-zero length path), then draw them consecutively on track t1.
Consider an arbitrary non-core edge e = (u, v) with u on track t1. Since e is
non-core, Tv must not be 2-strict and is thus 1-track drawable. Therefore v
can be placed on track t2 with the drawing of Tv also on the same track, as in
Figure 8. There is one degenerate case to consider. If there are no core edges
(i.e. a path of length 0), then either the tree has no vertex of degree three and
is in fact drawable on a single track, or there exists at most one vertex v with
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v

Figure 7: T is not strip-drawable if the core edges are not a path

e

u

v

t1

t2

Figure 8: Drawing a tree on a strip

neighbours w1, w2, ...wk and each Twi
is not 2-strict. Each of the subtrees can

thus be drawn on track t2 and v on track t1 as in Figure 9.

Based on this characterization, we now consider the complexity of recogniz-
ing and drawing the trees that are strip-drawable.

Lemma 3 Let T be a tree with n vertices. There exists an O(n)-time algorithm
that recognizes whether T is strip-drawable and, if so, computes a strip drawing
of T .

v

5
w w

w
w

v

w w w w
1

2

3

4

1 2 3 4 5

w

w

Figure 9: A degenerate core path
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Proof. Note that a tree is 2-strict if and only if it has more than two leaves;
thus counting leaves is the crucial operation. First the core edges must be
established and then the path condition on the core edges checked. With each
edge e = (u, v) we associate two counters: lu will be the number of leaves in
Tu, and lv will be the number of leaves in Tv. Let l be the number of leaves
in the entire tree T . Since lu + lv = l it follows that e is a core edge if and
only if both lu and lv are larger than 2. Choose an arbitrary non-leaf vertex r
as a root. Each vertex v reports the number of leaves in the subtree below it
to its parent u – thus establishing lv for the edge (u, v) and hence lu. If v has
no children then it is a leaf and reports 1. A simple recursive function can be
used to implement this counting step in linear time. Finally, checking that the
core edges form a path is easily accomplished in linear time and the proof of the
previous Lemma described the construction of the strip drawing.

We can summarize Lemmas 2 and 3 as follows.

Theorem 3 A tree T with n vertices is strip drawable if and only if its core
edges form a path. Furthermore, there exists an O(n)-time algorithm that de-
termines whether T is strip drawable and, if so computes a strip drawing of T .

3.2.2 k-Strict Trees

The results of Theorem 3 can be extended to give a necessary condition for trees
to be drawable on an n × k grid by generalizing the concepts of the previous
section. A tree is k-strict if it contains a vertex adjacent to at least three vertices
whose subtrees are (k − 1)-strict. For example, the tree of Figure 10 is 3-strict
since the vertex u is adjacent to three 2-strict subtrees.

u

Figure 10: A 3-strict tree

Lemma 4 A (k + 1)-strict tree is not drawable on an n × k grid.

Proof. The proof is by induction on k and Property 3 provides the base case.
If a tree T is (k + 1)-strict then it contains a vertex v adjacent to at least three
vertices whose subtrees are k-strict and by the inductive hypothesis each subtree
requires at least k tracks to be drawn. In this case, there is no location for v on
the k tracks that allows it to connect to the three subtrees without creating an
intersection.
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Corollary 1 The complete ternary tree of height1 k + 1 is not drawable on an
n × k grid.

Proof. Such a tree is (k + 1)-strict and hence not drawable on the n × k grid.

3.2.3 k-strict trees and Path-width

In this subsection we show that the strictness of a tree is tightly related to the
well known parameter path-width.

Theorem 4 Let T be a tree. Then
pw(T ) ≤ maxk (T is k-strict) ≤ pw(T ) + 1.

Proof. For the proof we compare the strictness of a tree T to its node search
number ns(T ) = pw(T ) + 1 (refer to the beginning of this section for the def-
initions). In the proof we make use of a lemma attributed to Parsons [32] in
[29]

[Parsons’ Lemma] For any tree T and integer k ≥ 1, ns(T ) ≥ k + 1
if and only if T has a vertex v at which there are three or more
branches that have search number k or more.

First we show that for a tree T k-strictness implies ns(T ) ≥ k, by induction
on k. Assume T is 2-strict. Then T contains a vertex of degree 3; in particular
therefore at least one edge and ns(T ) ≥ 2. Now assume T is k-strict, k > 2.
Then T contains a vertex v at which three branches T1, T2, T3 are (k−1)-strict.
By induction, each Ti satisfies ns(Ti) ≥ k−1, and by Parsons’ lemma ns(T ) ≥ k.

Next we show that ns(T ) ≥ k implies that T is (k − 1)-strict, again by
induction on k. Assume that ns(T ) = 2. Then T contains an edge, and therefore
it is 1-strict. Now ns(T ) = k > 2. By Parson’s lemma T contains a vertex v
with three branches T1, T2, T3 such that ns(Ti) ≥ k − 1. By induction, Ti is
(k − 2)-strict, and therefore T is (k − 1)-strict.

4 Three-Dimensional Drawings of Outerplanar
Graphs

In Section 3, Corollary 1 showed that, for a fixed k, there is no n × k grid that
supports all trees of n vertices. This motivates us to investigate the existence
of three-dimensional restricted grids that support all trees. As it turns out,
the situation in three dimensions is distinctly different. Namely, we show that
all outerplanar graphs are prism-drawable by providing a linear time algorithm

1The height is measured as the number of vertices on the path from the root to the deepest
leaf.
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that computes this drawing. This is the first known three-dimensional straight-
line drawing algorithm for the class of outerplanar graphs that achieves O(n)
volume on an integer grid.

A high level description of our drawing algorithm, called Algorithm Prism
Draw, is as follows. Let G be an outerplanar graph with a specified outerplanar
embedding, i.e. a circular ordering of the edges incident around each vertex such
that all vertices of G belong to the external face. (Such an embedding can be
computed in linear time). Algorithm Prism Draw computes a prism drawing
of G by executing two main steps. Firstly a 2D drawing of G is computed on a
grid that consists of O(n) horizontal tracks and such that adjacent vertices are
at grid points whose y-coordinates differ by at most one. This is done by visiting
G in a breadth-first fashion and setting the x-coordinate to be the breadth-first
search (BFS) number and the y-coordinate to be the depth in the BFS tree.
Secondly, the drawing is “wrapped” onto the faces of a prism by folding it along
the tracks. Refer to Figure 11.

Figure 12 shows an example of the output of Step 1 of the algorithm; for
consistency with track layout terminology, the Y axis points downwards. The
following results establish that Algorithm Prism Draw computes a prism draw-
ing of any outerplanar graph G. First observe that currx is incremented each
time a vertex is drawn, and therefore we have the following proposition.

Proposition 1 No two vertices of Γ are assigned the same X-coordinate.

Also, since the unmarked neighbours of a vertex u are all drawn on the track
consecutive to that of u during Step 1, we have the following.

Proposition 2 A vertex is assigned to track ti+1 if and only if it has not yet
been marked/assigned and has a neighbour on track ti, for i ≥ 0.

The following lemmas establish that the drawing between any two consecutive
tracks forms a strip drawing, and therefore Step 1 of Algorithm Prism Draw
computes a k-track drawing of the input graph.

Lemma 5 Let G be an outerplanar graph with a given embedding and let Γ be
the drawing computed by Step 1 of Algorithm Prism Draw. Then Γ is a k-track
drawing of G for some k ≤ n.

Proof. Step 1 of Algorithm Prism Draw draws G on a 2D k-track, where k ≤ n.
Also, by Proposition 2 we have that an edge of Γ can connect only vertices that
are drawn either on the same track or on two consecutive tracks. In order to
complete the proof we must show that Γ satisfies the following properties.

1. No two edges connecting vertices on consecutive tracks intersect.

2. Let u and v be two vertices of Γ which are drawn on the same track t. If
u and v are adjacent in G, then they appear consecutively on t.

We start by proving that Γ has the first property. Suppose there exist four
vertices a, b, c, d such that
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Algorithm Prism Draw

input: An outerplanar graph G with a given outerplanar embedding.
output: A prism drawing of G.

Step 1. The 2D Drawing Phase: A 2D track drawing Γ of G where vertices
are assigned to different x-coordinates is computed as follows.

• Add a dummy vertex d on the external face and an edge connecting
d to an arbitrary vertex v.

• mark d

• i:=0

• currx :=0

• draw v on track t0 by setting X(v) := currx; Y (v) :=i

• currx := currx +1

• mark v

• while there are unmarked vertices of G do

– visit the vertices on track ti from left to right and for each en-
countered vertex u do
∗ let w be a marked neighbour of u in G

∗ visit the neighbours of u in counterclockwise order starting
from w, and for each encountered vertex r such that r is
unmarked do order
· draw r on track ti+1 by setting X(r) := currx; Y (r) :=

i+1
· currx := currx +1
· mark r

– i := i+1

Step 2: The 3D Wrapping Phase: A prism drawing Γ′ is obtained by folding
Γ along its tracks as follows.

• for each vertex v of Γ define its coordinates X ′(v), Y ′(v) and Z ′(v) in Γ′

by setting:

– X ′(v) := X(v)
– if Y (v) = 0, 1 mod 3 then Y ′(v) := 0, else Y ′(v) := 1
– if Y (v) = 0, 2 mod 3 then Z ′(v) := 0, else Z ′(v) := 1

Figure 11: Algorithm Prism Draw.
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v
v

Figure 12: An outerplanar graph drawn by Step 1 of Algorithm Prism Draw.
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Figure 13: Two cases for the proof of Lemma 5.

• a and b are on track ti and a is to the left of b.

• c and d are on track ti+1.

• There is an edge (a, d) intersecting an edge (b, c).

Note that Algorithm Prism Draw draws all the unmarked neighbours of a on
track ti+1 by following the counterclockwise order of the edges around a given
by the outerplanar embedding of G. Also note that all the neighbours of a on
track ti+1 are assigned an X-coordinate that is strictly smaller than the X-
coordinates assigned to the neighbours of any vertex drawn to the right of a on
track ti. Therefore we may conclude that if (a, d) and (b, c) cross, then one of
the two cases must hold: Case 1: Vertex c is a neighbour of both b and a (see
Figure 13a). Case 2: There is a vertex x, drawn on track ti to the left of a and
such that c is a neighbour of both x and b (see Figure 13b). Consider Case 1. By
Proposition 2 and by the fact that Algorithm Prism Draw places only vertex
v on track t0, it follows that there exists a lowest common ancestor of both a
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and b, say w, drawn on some track tj with 0 ≤ j < i. Let Πwa and Πwb be two
disjoint paths connecting w to a and w to b respectively. Observe that Step 1
of Algorithm Prism Draw computes a drawing that preserves the given outer-
planar embedding of G since it draws the vertices on consecutive tracks with
increasing x values and by following the circular ordering of the edges around
the vertices. Therefore, if edge (a, d) follows edge (a, c) in the counterclockwise
ordering of the edges around a, then in the outerplanar embedding of G there
must be a cycle (namely that formed by the path Πwa, edge (a, c), edge (c, b)
and path Πwb) with vertex d in its interior. But this is a contradiction. Now
consider Case 2. By the same argument used for the previous case, there is a
lowest common ancestor w of x and b on some track tj with 0 ≤ j < i. Let Πwx

and Πwb be two disjoint paths connecting w to x and w to b respectively. Now
observe that vertex d would necessarily lie in the interior of the cycle defined
by Πwx, edge (x, c), edge (c, b) and path Πwb thus contradicting the fact that Γ
preserves the outerplanar embedding of G. Finally, we prove that Γ satisfies the

a

w

b

c
t i

Figure 14: Edges on a given track only join consecutive vertices.

second property and again the proof is by contradiction. Suppose there exist
two vertices a and b on track ti (0 < i ≤ k) such that:

• a and b are adjacent in G.

• There exists a vertex c in Γ such that c is drawn on track ti between a
and b. See also Figure 14.

By the same reasoning as that used in the previous cases, let w be the lowest
common ancestor of a and b on some track tj with 0 ≤ j < i and let Πwa and
Πwb be two disjoint paths connecting w to a and w to b respectively. Consider
the cycle formed by Πwa, Πwb and edge (a, b). This cycle has vertex c in its
interior contradicting the fact that Γ preserves the outerplanar embedding of
G.

Theorem 5 Every outerplanar graph G with n vertices admits a crossing-free
straight-line grid drawing in three dimensions in optimal O(n) volume. Further-
more, Algorithm Prism Draw computes such a drawing of G in O(n) time and
with the vertices of G drawn on the grid points of a prism.
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Proof. Lemma 5 ensures there are no crossings in the k-track drawing. Con-
cerning Step 2 (3D Wrapping Phase), observe that the coordinate assignment
is such that the vertices of Γ′ are grid points of a n × 2 × 2 grid and they all
belong to just three of the four possible tracks of the n× 2× 2 grid. Therefore,
the vertices of Γ′ are drawn on grid points of a prism. Also, no two edges of Γ′

intersect because, as shown above, each subdrawing of Γ′ induced by vertices
on two different tracks is a strip drawing and because the vertices on each track
have distinct X-coordinates. Finally, note that Algorithm Prism Draw runs in
linear time since it is essentially a breadth-first traversal of the graph.

Remark: Note that Step 2 of the algorithm is applicable given any track-
drawing of a graph after suitable shifting to ensure increasing x-coordinates.
Thus, graph G is track-drawable implies that G is prism-drawable. The converse
however does not hold; K4 is an example of a graph that is prism-drawable but
not track-drawable.

5 Prism-Drawable Graphs

Motivated by Theorem 5, we study in this section whether the prism is a uni-
versal grid for planar graphs. For example, Figure 15 shows a maximal planar
graph, and its prism drawing. As another example, note that the family of
maximal planar graphs consisting of a sequence of nested triangles (as in Fig-
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Figure 15: A prism-drawable graph G and its drawing

ure 2) and that are known to require Ω(n2) area in the plane [11], can easily be
drawn on the prism in O(n) volume. Unfortunately, it turns out that not all
planar graphs are prism-drawable. In Section 5.1 we give a characterization of
prism-drawable graphs and in Sections 5.2 and 5.3 we illustrate two different ap-
proaches for constructing planar graphs that violate the characterization. The
first approach is based on the concept of strictly-prism drawable graphs and the
second exploits the relationship between hamiltonicity and prism-drawability.
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5.1 Characterization of Prism-Drawable Graphs

An essential prerequisite of our characterization of prism-drawable graphs, is
the study of the strip-drawable graphs since a prism effectively consists of three
strips. Independently, Cornelsen, Schank and Wagner [10] developed a linear
time algorithm for determining if a graph is strip-drawable. Clearly such graphs
must be (a subset of the) outerplanar graphs since the two tracks, which contain
all vertices, form the exterior face. Our characterization differs significantly from
that contained in [10].

We define a spine in a graph G as a sequence v0, v1, . . . vm of vertices such
that the subgraph induced by v0, v1, . . . vm is a path. The definition of spine
precludes any edge between non-consecutive vertices; we refer to such an edge
as a chordal edge. The characterization of prism-drawable graphs is based on
the observation that in a strip drawing, there must exist two sub-spines (each
defined by the vertices on one of the two tracks of the strip) and that edges con-
necting vertices on these two sub-spines must not intersect. Since every graph
with less than four vertices is clearly strip-drawable (a three cycle is strip-
drawable and therefore every subgraph of a three cycle is strip drawable), the
next theorem considers graphs with at least four vertices. Note that although
this characterization is not efficiently implementable, it is a basis for character-
izing the prism-drawable graphs, the box-drawable graphs and provides a means
for showing that planar graphs are not necessarily prism-drawable.

Theorem 6 A graph G with at least four vertices is strip-drawable if and only
if it is possible to augment G with edges to produce a graph G′ such that:

• G′ contains two edges (r0, b0) and (rz, bt).

• There are two vertex-disjoint spines r0, r1, . . . rz and b0, b1, . . . bt in G′ such
that all vertices of G are on the two spines.

• If there exists an edge (ri, bj) with 0 ≤ i ≤ z and 0 ≤ j ≤ t then there are
no edges of the form (rk, bl) with (0 ≤ k < i and j < l ≤ t) or (i < k ≤ z
and 0 ≤ l < j).

Proof. (⇒)We show how to construct a graph G′ that satisfies the statement.
Let Γ be a strip drawing of G with t1 and t2 as the two tracks of the strip.
Let r0, b0 be the leftmost pair of vertices and let rz, bt be the rightmost pair
of vertices of Γ such that b0 and bt are on track t1. If r0, b0 are not adjacent
in Γ, then edge (r0, b0) is added; similarly, if rt, bt are not adjacent in Γ, then
edge (rt, bt) is added. Also, for each pair of consecutive non-adjacent vertices
encountered when walking along each track an edge is added so to form two paths
Π1 and Π2. Let Γ′ be the new drawing and let G′ be the graph represented by
Γ′. Note that G′ has two edges (r0, b0) and (rt, bt). Since there are no chordal
edges between any two non consecutive vertices of Γ that are on the same track,
it follows from the construction that Π1 and Π2 are spines for G′. Each vertex of
G is drawn either on track t1 or on track t2 and by construction of Γ′ it belongs
either to Π1 or to Π2; it follows that all vertices of G are on the two spines of
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G′. Also, since in Γ there are no crossings between any two edges connecting
vertices on different tracks and since in Γ′ edges (r0, b0) and (rt, bt) do not cross
any other edge, it follows that if there exists an edge (ri, bj) in G′ with 0 ≤ i ≤ z
and 0 ≤ j ≤ t then there cannot be edges of the form (rk, bl) with (0 ≤ k < i
and j < l ≤ t) or (i < k ≤ z and 0 ≤ l < j).
(⇐)Given an augmented graph G′, a strip drawing Γ′ of G′ is obtained as
follows. Spine r0, r1, . . . rz is drawn on one track such that rj is drawn to the
right of ri for 0 ≤ i < j ≤ z. Spine b0, b1, . . . bt is drawn on the second track
such that bj is drawn to the right of bi for 0 ≤ i < j ≤ t. Edges connecting
vertices along the same track and between the two tracks are drawn as straight-
line segments. Since the subgraph induced by each spine is a path and since for
each edge (ri, bj) with 0 ≤ i ≤ z and 0 ≤ j ≤ t there are no edges of the form
(rk, bl) with (0 ≤ k < i and j < l ≤ t) or (i < k ≤ z and 0 ≤ l < j), it follows
that the drawing of G′ does not have crossings. Finally, a strip drawing of G is
obtained by deleting edges from Γ′.

The characterization of prism drawable graphs generalizes Theorem 6 to
three dimensions. Intuitively, it must be possible to augment a given graph
to obtain three spines with two “lids” (three cycles) and between each pair of
spines the strip drawability condition must hold. Since every strip-drawable
graph is also prism-drawable, the next theorem assumes that G has at least
four vertices.

Theorem 7 A graph G with at least four vertices is prism-drawable if and only
if it is possible to augment G with edges to produce a graph G′ such that:

• G′ contains two three-cycles r0, b0, g0 and rz, bt, gs, where z, t, s ≥ 0.

• There are three vertex-disjoint spines, denoted by r0, r1, . . . rz, b0, b1, . . . bt

and g0, g1, . . . gs in G′ such that all vertices of G are on the three spines.

• For each pair of spines x0, x1, . . . xm and y0, y1, . . . yp (x, y ∈ {r, b, g},
x 	= y, m, p ∈ {z, t, s}) , if (xi, yj) is an edge, then there are no edges of
the form (xk, yl) with (0 ≤ k < i and j < l ≤ p) or (i < k ≤ m and
0 ≤ l < j).

Proof. (⇒) We show how to construct a graph G′ that satisfies the statement.
Let Γ be a prism drawing of G and let t1, t2, and t3 be the three tracks of
the prism. Consider the subgraph Gij induced by the vertices that are on two
different tracks ti and tj (i, j = 1, 2, 3, i 	= j); Gij is strip-drawable and therefore
there exists an augmented graph G′

ij with the properties stated by Theorem 6.
A graph G′ that satisfies the statement is then defined as G′ = G′

12∪G′
13∪G′

23.
(⇐) Given an augmented graph G′, a prism drawing Γ′ of G′ is obtained as
follows. Spine r0, r1, . . . rz is drawn on track t1 such that rj is drawn to the
right of ri for 0 ≤ i < j ≤ z. Spine b0, b1, . . . bt is drawn on track t2 such that bj

is drawn to the right of bi for 0 ≤ i < j ≤ t. Spine g0, g1, . . . gs is drawn on track
t3 such that gj is drawn to the right of gi for 0 ≤ i < j ≤ s. Edges connecting
vertices along the same track and between two different tracks are drawn as
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straight-line segments. Since the subgraph induced by each spine is a path and
since for each edge (xi, yj) (x, y ∈ {r, b, g}; x 	= y; m, p ∈ {z, t, s}) there are
no edges of the form (xk, yl) with 0 ≤ k < i and j < l ≤ p or i < k ≤ m and
0 ≤ l < j, it follows that Γ′ does not have crossings. Finally, a prism drawing
of G is obtained by deleting edges from Γ′.

In the rest of the paper it will be convenient to imagine the three spines
r0, r1, . . . rz, b0, b1, . . . bt, and g0, g1, . . . gs of Theorem 7 as colored red, blue and
green, respectively. Also, we shall refer to a graph G′ described in Theorem 7
as an augmented graph of G.

5.2 Prism-Drawability and Planarity

In this section we show that prism drawable graphs are a proper subset of planar
graphs. In the next section we shall further restrict the set of prism-drawable
graphs.

Theorem 8 Let G be a prism-drawable graph. Then G is planar.

Proof. Any prism-drawing of G can be augmented by edges to form a convex
polytope and therefore by the theorem of Steinitz [43] only planar graphs are
prism-drawable.

Corollary 2 If G is a maximal planar graph and is prism drawable, then the
augmented graph G′ coincides with G.

One approach for constructing planar prism-forbidden graphs, i.e. planar graphs
which do not admit a prism drawing, is based on the following definition and
lemma. A graph G is strictly prism-drawable if it is prism-drawable and all
prism drawings of G have at least three edges (x, y), (y, z) and (z, x) such that
x, y and z are on different tracks.

Lemma 6 Let G be a 1-connected planar graph that has a cut vertex v whose
removal separates the graph into h strictly prism-drawable components G1, ...
Gh (h ≥ 3). Then G is prism-forbidden.

Proof. Consider any prism drawing Γi of Gi (0 ≤ i ≤ h). Γi has a three-cycle
which defines a plane that intersects all three facets of the prism, because Gi

is strictly prism-drawable. Thus, Γ1, ...,Γh slice the prism into h + 1 slices (see
Figure 16). Now there is no location for v that permits it to be connected to all
Γi (0 ≤ i ≤ h) without crossing at least one three-cycle.

Lemma 6, provides the key to creating a prism-forbidden graph. Although
K4 can easily be shown to be strictly prism-drawable we choose to show that
the graph in figure 17 is strictly prism-drawable for three reasons: the extension
to the box-forbidden case is more natural, the series-parallel case follows as a
consequence, and the proof portrays the importance of the spine characterization
of Theorem 7.



Felsner et al., Restricted Integer Grids, JGAA, 7(4) 363–398 (2003) 385

v
v

Figure 16: The “slicing” argument in the proof of Lemma 6.
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Figure 17: A strictly prism-drawable graph.

Lemma 7 The graph in Figure 17 is strictly prism-drawable.

Proof. Let G be the graph of Figure 17. We first show that G satisfies The-
orem 7. The augmented graph G′ is defined by adding to G edges (a, b) and
(b, c). We choose the two three-cycles of G′ as follows: One three-cycle consists
of edges (u, v), (v, a), (a, u); the second three-cycle consists of edges (u, v), (u, c),
(c, v). The three spines of G′ are as follows: the red spine is the path of vertices
a, b, c, the blue spine consists of vertex u and the green spine consists of vertex
v. Since G′ is planar and two of the three spines consist of a single vertex, the
non-crossing condition stated by Theorem 7 among edges connecting vertices
on different spines is trivially verified. It follows that G is prism-drawable. It
remains to show that G is strictly prism-drawable. This is done by proving the
following two claims.

1. In any prism drawing of G vertices u and v cannot be on the same track.

2. In any prism drawing of G at least one of vertices a, b, c is drawn on a
track different from that of u and different from that of v.

To prove Claim 1, suppose that there existed a prism drawing Γ of G with u and
v on the same track t1 (see Figure 18(a)). Since u and v are adjacent in G, there
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exists in Γ a straight-line segment connecting u to v. As a consequence neither
a, nor b, nor c can be drawn on t1 or else there would be an edge overlapping
edge (u, v). It follows that vertices a, b, and c are drawn as points of the other
two tracks, and therefore at least two of them are on the same track. Suppose
without loss of generality that a and b are both drawn on track t2. Observe that
there is no way of drawing edges (a, u), (a, v), (b, u), (b, v) avoiding a crossing.
It follows that in any prism drawing of G u and v must appear on different
tracks.

To prove Claim 2 we assume that u is drawn on track t1 and that v is drawn
on track t2. Let t3 be the third track of the prism. Assume there existed a prism
drawing with vertices a, b, and c all on tracks t1 and t2. Assume without loss
of generality that both a and b are on track t1. In order to avoid crossings it
must be that one vertex, say a, is on the right-hand side and the other is on the
left-hand side of u (see Figure 18(b)). Note however that c cannot be drawn on
track t1 or else edge (u, c) would intersect one of the edges (a, u), (b, u). But if
c were drawn on track t2, then edge (c, u) would intersect either (a, v) or (c, v).
It follows that c is drawn on track t3 and therefore G is strictly prism-drawable.

(b)(a)

b a

2

1 1

2

t t

t
a b

t

vu u

cv

Figure 18: Illustration for the proof of Lemma 7.

Theorem 9 There exist prism-forbidden planar graphs.

Proof. Let G be a planar graph with a vertex v adjacent to three copies of
the graph of Figure 16. Let G0 be the subgraph of G induced by v and by
these three copies. By Lemma 6 G0 is prism-forbidden. It follows that also G
is prism-forbidden.

A consequence of the previous lemmas is the following.

Corollary 3 There exist prism-forbidden series-parallel graphs.

Proof. Let G be the graph in Figure 19. By using the same argument in the
proof of Theorem 9 the corollary follows.
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Figure 19: A prism-forbidden series-parallel graph.

5.3 Prism-Drawability and Hamiltonicity

Theorem 9 shows that not all planar graphs admit a prism drawing. In this sec-
tion we further restrict the family of drawable graphs by exploiting the relation
between prism-drawability and hamiltonicity.

A graph is subhamiltonian if it can be augmented with edges to produce a
planar graph having a hamiltonian cycle.

Lemma 8 Let G be a prism-drawable graph. Then G is subhamiltonian.

Proof. Let Γ be a prism drawing of G and let G′ be a maximally augmented
graph obtained from G by adding edges to satisfy the conditions of Theorem 7.
Let the three tracks of the prism be labeled t1, t2 and t3 (see for example Figure
20(a)). Label the vertices on track t2, as r0, . . . rz and the vertices on track t3 as
b0, . . . by. The hamiltonian cycle begins at the start vertex of t1, visits the start
vertex of t2 (denoted as r0), the start vertex of t3 (denoted as b0), and then
alternates between the t2 and t3 track visiting all vertices on those two tracks
and ending at the end vertex of either tracks t2 or t3 (see for example Figure
20(b)). In either case, the cycle then visits the end vertex of t1 and then the
entire t1 spine in reverse order.

We now give a more formal description of the cycle’s traversal of the strip
between tracks t2 and t3. Note that r0 is adjacent to b0 (and 0 or more con-
secutive vertices on track t3). Since G′ is maximally augmented, each vertex bi

(0 < i < y) is adjacent to bi−1 and bi+1 and to a non-empty set of consecutive
vertices on the r-track rj , . . . rj+k. Furthermore, rj is adjacent to bi−1, and
rj+k is adjacent to bi+1. The hamiltonian cycle goes from r0 to b0 and then
applies a greedy-like approach. In general, from bi, the cycle goes to the first
(i.e. lowest-indexed) neighbour rj that has not previously been visited. Only
if all the neighbours of bi on the r-track have been visited, does the cycle go to
bi+1. The rule on the r track is symmetric. Since at each vertex, there is always
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at least one neighbour that has not been visited, namely the next vertex on
the same track, it is clear that the cycle can always proceed. To establish that
all vertices are visited, a straightforward proof by contradiction can be applied.
The (partial) hamiltonian cycle thus ends at the endpoint of either track t2 or
t3 and can be completed as described above.

t2

t3

t2

t3

(a)

(b)

b1

t1

r1

b

r0

0

Figure 20: Illustration for the proof of Lemma 8

A natural question arising from Lemma 8 is whether all subhamiltonian
planar graphs are prism drawable. This is not the case, for example the graph
of Figure 19 is subhamiltonian but not prism drawable. The following lemma
shows that even subhamiltonian graphs with only 9 vertices may not be prism
drawable. In this instance it is the proof technique that is of primary interest.

Lemma 9 The hamiltonian maximal planar graph G of Figure 21 is prism-
forbidden.

Proof. Suppose for a contradiction that G were prism-drawable and let G′ be
the augmented graph of G described in Theorem 5.

Consider the vertex a of G displayed in Figure 21. We start by showing that
vertex a must be an endvertex in one of the three spines of G′.

Let Γ be a prism drawing of G. Since G is maximal planar, by Corollary 2
it follows that G coincides with its augmented graph G′ and that Γ is also a
prism drawing of G′. If a were not an endvertex of a spine, then the point
representing a in Γ would be adjacent to two other points on the same track.
But all neighbours of a are mutually adjacent in G and this would imply a
chordal edge in Γ, which is impossible.
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a b

c

Figure 21: A hamiltonian planar graph G that is not prism-drawable.

By the same argument, also vertices b and c of G (see Figure 21) are end-
vertices of some spine in G′.

By Theorem 5, the endvertices of the spines in G′ belong to two three-cycles.
Therefore, at least two vertices among a, b, and c must be connected in G′. But
G is identical to G′ by Corollary 2 and no pair of these vertices are adjacent in
Figure 21. This provides the required contradiction and proves that G is indeed
prism-forbidden.

Based on Lemmas 8 and 9 we can summarize the discussion of this section
as follows.

Theorem 10 The family of prism-drawable graph is a proper subset of the fam-
ily of subhamiltonian planar graphs.

6 Box-Drawable Graphs

Motivated by Theorems 9 and 10, we consider a restricted integer 3D grid
consisting of four tracks, namely the box, and ask whether this grid supports all
planar graphs. Clearly, the class of box-drawable graphs is larger than the class
of prism-graphs: Every prism-drawable graph can be drawn on the box and it is
easy to draw some non-planar graphs on a box. For example, Figure 22 shows a
box drawing of K5 and a box drawing of K3,3. However we will show that even
the box is not a universal grid for planar graphs.

6.1 Characterization of Box-Drawable Graphs

We start our investigation by characterizing the family of box-drawable graphs
with more than five vertices. Note that any graph with at most five vertices is
box drawable and its box drawing can be obtained by deleting edges and vertices
from the drawing of K5 depicted in Figure 22. The next theorem follows the
same pattern as Theorem 7.
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Figure 22: K5 and K3,3 drawn on a box

Theorem 11 A graph G with at least six vertices is box-drawable if and only if
it is possible to augment G with edges to produce a graph G′ such that:

• G′ contains two four-cycles r0, b0, g0, w0 and rz, bt, gs, wq, where z, t, s, q ≥
0.

• The graph G′ contains four vertex-disjoint spines r0, r1, . . . rz, b0, b1, . . . bt,
g0, g1, . . . gs, and w0, w1, . . . wq such that all vertices of G are on the four
spines.

• For each pair of spines x0, x1, . . . xm and y0, y1, . . . yp (x, y ∈ {r, b, g, w},
x 	= y, m, p ∈ {z, t, s, q}) , if (xi, yj) is an edge, then there are no edges
of the form (xk, yl) with (0 ≤ k < i and j < l ≤ p) or (i < k ≤ m and
0 ≤ l < j).

Proof. (⇒) We show how to construct a graph G′ that satisfies the statement.
Let Γ be a box drawing of G and let t1, t2, t3, and t4 be the four tracks
of the box. Consider the subgraph Gij induced by the vertices that are on
two different tracks ti and tj (i, j = 1, 2, 3, 4, i 	= j); Gij is strip-drawable
and therefore there exists an augmented graph G′

ij with the properties stated
by Theorem 6. A graph G′ that satisfies the statement is then defined as
G′ = G′

12 ∪ G′
13 ∪ G′

14 ∪ G′
23 ∪ G′

24 ∪ G′
34 .

(⇐) Among the four tracks t1, t2, t3, and t4 of the box, we assume that the pairs
t1, t3 and t2, t4 are diagonally opposite and that the four tracks are horizontal
lines. Given an augmented graph G′, a box drawing Γ′ of G′ is constructed by
spiralling the vertices on the four tracks as follows.

• Spine r0, r1, . . . rz is drawn on track t1 such that rj is drawn to the right
of ri for 0 ≤ i < j ≤ z.

• Spine b0, b1, . . . bt is drawn on the diagonally opposite track t3 such that
b0 is given an x-coordinate larger than the x-coordinate of rz and bj is
drawn to the right of bi for 0 ≤ i < j ≤ t.

• Spine g0, g1, . . . gs is drawn on track t2 such that g0 is given an x-coordinate
larger than the x-coordinate of bz and gj is drawn to the right of gi for
0 ≤ i < j ≤ s.
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• Spine w0, w1, . . . wq is drawn on track t4 such that w0 is given an x-
coordinate larger than the x-coordinate of gs and wj is drawn to the
right of wi for 0 ≤ i < j ≤ q.

Then, edges connecting vertices along the same track and between two differ-
ent tracks are drawn as straight-line segments. In order to see that the computed
drawing does not have edge crossings observe the following.

• There are no edges between non consecutive vertices on the same track:
For each spine, the subgraph of G′ induced by the spine is a path which
is drawn sequentially on a track.

• For each pair of tracks th, tf (h, f ∈ {1, 2, 3, 4}, h 	= f) the edges con-
necting vertices on th with vertices on tf do not cross with each other.
Namely, for an edge (xi, yj) connecting a vertex on th with a vertex on tl,
there are no edges of the form (xk, yl) with (k < i and j < l) or (i < k
and l < j).

• For each pair of diagonally opposite edges e1, e2 such that e1 connects a
vertex on track t1 with a vertex on track t3 and e2 connects a vertex on
track t2 with a vertex on track t4 there are no crossings. By construction,
the coordinates of the endpoints of e2 are both strictly larger than those
of the endpoints of e1.

Since Γ′ is a box drawing and G′ is a supergraph of G, a box drawing of G
can be obtained by deleting edges from Γ′.

6.2 Box-Drawability and Planarity

We extend the approach of Section 5.2 to construct planar graphs that cannot
be drawn on a box. We call these graphs box-forbidden. In order to construct a
box-forbidden graph, we need a preliminary lemma.

Lemma 10 In any box drawing of the graph of Figure 23 vertices u and v are
on different tracks.

Proof. Let G be the graph of Figure 23. It is trivial to see that G is prism-
drawable and hence it is also box-drawable. Let Γ be a box drawing of G.
Suppose for a contradiction that vertices u and v in Γ were represented as
points of the same track t1. Observe that no other vertex of Γ can be a point
of t1 or else there would be a crossing. Since G has six vertices, a box consists
of four tracks, and track t1 cannot contain more than two vertices, it follows
that at least two other vertices of Γ must be on another track, say t2 of the box.
But each vertex on t2 is adjacent to both u and v, which forces a crossing in Γ;
contradiction.

A graph G is strictly box-drawable if it is box-drawable and there are four
mutually adjacent vertices a, b, c and d and in all box drawings of G, a, b, c
and d appear on separate tracks.
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v

u

Figure 23: Graph for Lemma 10.

Lemma 11 The graph of Figure 24(a) is strictly box-drawable.

Proof. Let G be the graph of Figure 24(a). We first prove that G is box-
drawable and then that it is strictly box-drawable. We adopt the notation of
Figure 24(a).

We apply Theorem 11 to G. The four spines of G′ are r0, .., r8, b0, .., b4,
g0, .., g8, and w0, .., w4. The two four-cycles have the vertices r0, b0, g0, w0 and
r8, b4, g8, w4. Also, as Figures 24(b), (c), (d), (e), (f), and (g) show, the sub-
graphs of G′ induced by vertices on two different spines are strip-drawable. It
follows that G is box-drawable.

We now prove that G is strictly box-drawable. Graph G consists of six
copies of the graph in Figure 23. By Lemma 10 in any box drawing of G
vertices r0, g4, b4, w4 must be on four different tracks. Furthermore, those four
vertices are mutually adjacent. It follows that G is strictly box-drawable.

Theorem 12 There exist box-forbidden planar graphs.

Proof. Let G be a planar graph with a vertex v adjacent to three copies of the
graph of Figure 24. Let G0 be the subgraph of G induced by v and by these
three copies; see also Figure 25. Removing v and all its incident edges from the
graph G0 splits it into three components that we name G1, G2, and G3. In any
box drawing Γi of Gi (0 ≤ i ≤ 3) there are four mutually adjacent vertices on
four different tracks because by Lemma 11 Gi is strictly box-drawable. Thus,
Γ1, Γ2, and Γ3 slice the box into 4 slices and there is no location for v that
permits it to be connected crossing-free to all Γi (0 ≤ i ≤ 3).

7 Conclusions and Open Problems

In this paper we showed that all outerplanar graphs can be drawn in linear
volume on a prism – a restriction of the three dimensional integer grid. Proofs
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(a)

w3

b0

r0 r1 r3 r6 r7 r8 r0 r1 r2 r3 r4 r5 r6 r7 r8

g0 g1 g2 g3 g4 g6 g7 g8

(b)

b0 b1 b2 b3 b4

r0 r1 r2 r3 r4 r5 r6 r7

w4w3w2w1w0

(d)
b4r3b2b1b0

w4w3w2w1w0

(f)

r8 b0 b1 b2 b4

g0 g1 g7 g8g6

g5

(c)

(e)

g2

w0 w1 w2 w3 w4

g0 g1 g2 g3 g4 g5 g6 g7 g8

(g)

b3

g4

b2

Figure 24: (a) Graph G for Lemma 11. (b)–(e) The subgraphs of G induced by
vertices on two different spines are strip-drawable.
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v

Figure 25: A planar graph that is not box-drawable.

that certain classes of planar graphs are not prism-drawable nor box-drawable
were also provided. Although the problem of finding a universal integer 3D grid
of linear volume that supports crossing-free straight line drawings of all planar
graphs is still far from being solved, the drawing techniques and characterization
results of this paper may provide a critical starting point for attacking such an
ambitious research programme. We believe that the results on the restricted 2D
grid are not only useful preliminary results for the study in three dimensions, but
they may also shed some new light on the problem of drawing trees in linear
area on the plane. There remain several interesting problems and directions
for further research. We conclude the paper by describing some of the more
intriguing open problems.

1. Can all outerplanar graphs be drawn in linear area on a 2D integer grid?
Does there exist a 2D universal grid set of linear area that supports all
outerplanar graphs?

2. Characterize the graphs drawable on an n × k grid.

3. Can the strong algorithms for recognizing graphs of bounded pathwidth be
applied to devise polynomial dynamic programming algorithms to decide
k-track drawability for fixed k? Such an approach has been applied in
[18] for the recognition of proper k-track drawability for fixed k. Also,
Schank [36] gave a direct linear time algorithm for the task of recognizing
2-track drawable graphs.

4. Can all planar graphs be drawn in linear volume on a three-dimensional
integer grid? Does there exist a 3D universal grid set of linear volume
that supports all planar graphs?

5. The k-lines drawability problem: A related problem posed by H. de Frays-
seix [13] asks if all planar graphs can be drawn on k parallel lines that
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lie on the surface of a cylinder, for a fixed value of k. Our results on
box-drawability imply that k would have to be strictly greater than 4.

6. The aspect ratio problem: Our results about linear volume come at the
expense of aspect ratio. Is it possible to achieve both linear volume and
o(n) aspect ratio for outerplanar graphs? We conjecture that it is in fact
not possible in 2D to simultaneously attain linear area and O(1) aspect
ratio for some classes of planar graphs.

Figure 26: A graph Sn with poor aspect ratio

Conjecture 1 There is no fixed constant k for which the family of graphs
Sn (in Figure 26) can be drawn in a 2D integer grid of size k

√
n ×√

n.

Note that the graph Sn can be drawn on an n×3 grid (and hence in linear
area but with linear aspect ratio). Recently this conjecture was verified
and the result is reported in [1].
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