Journal of Graph Algorithms and Applications
http://jgaa.info/
vol. 7, no. 4, pp. 335-362 (2003)

Orthogonal Drawings of Plane Graphs
Without Bends

Md. Saidur Rahman Takao Nishizeki

Graduate School of Information Sciences
Tohoku University
Aoba-yama 05, Sendai 980-8579, Japan
http://www.nishizeki.ecei.tohoku.ac.jp/
saidur@nishizeki.ecei.tohoku.ac. jp, nishi@ecei.tohoku.ac. jp

Mahmuda Naznin

Department of Computer Science
North Dakota State University
Fargo, ND 58105-5164, USA
Mahmuda.Naznin@ndsu.nodak.edu

Abstract

In an orthogonal drawing of a plane graph each vertex is drawn as a
point and each edge is drawn as a sequence of vertical and horizontal line
segments. A bend is a point at which the drawing of an edge changes
its direction. Every plane graph of the maximum degree at most four
has an orthogonal drawing, but may need bends. A simple necessary
and sufficient condition has not been known for a plane graph to have an
orthogonal drawing without bends. In this paper we obtain a necessary
and sufficient condition for a plane graph G of the maximum degree three
to have an orthogonal drawing without bends. We also give a linear-time
algorithm to find such a drawing of G if it exists.

Communicated by: P. Mutzel and M. Jiinger;
submitted May 2002; revised November 2002.

Part of this work was done while the first and the third authors were in Bangladesh
University of Engineering and Technology (BUET). This work is supported by the
grants of Japan Society for the Promotion of Science (JSPS).

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 336

1 Introduction

Automatic graph drawings have numerous applications in VLSI circuit layout,
networks, computer architecture, circuit schematics etc. For the last few years
many researchers have concentrated their attention on graph drawings and in-
troduced a number of drawing styles. Among the styles, “orthogonal drawings”
have attracted much attention due to their various applications, specially in
circuit schematics, entity relationship diagrams, data flow diagrams etc. [1].
An orthogonal drawing of a plane graph G is a drawing of G with the given
embedding in which each vertex is mapped to a point, each edge is drawn as a
sequence of alternate horizontal and vertical line segments, and any two edges do
not cross except at their common end. A bend is a point where an edge changes
its direction in a drawing. Every plane graph of the maximum degree four has
an orthogonal drawing, but may need bends. For the cubic plane graph in
Fig. 1(a) each vertex of which has degree 3, two orthogonal drawings are shown
in Figs. 1(b) and (c) with 6 and 5 bends respectively. Minimization of the num-
ber of bends in an orthogonal drawing is a challenging problem. Several works
have been done on this issue [2, 3, 8, 13]. In particular, Garg and Tamassia [3]
presented an algorithm to find an orthogonal drawing of a given plane graph
G with the minimum number of bends in time O(n"/*\/logn), where n is the
number of vertices in G. Rahman et al. gave an algorithm to find an orthogonal
drawing of a given triconnected cubic plane graph with the minimum number
of bends in linear time [8].

(@) (b) (©)

Figure 1: (a) A plane graph G, (b) an orthogonal drawing of G with 6 bends,
and (c) an orthogonal drawing of G with 5 bends.

In a VLSI floorplanning problem, an input is often a plane graph of the
maximum degree 3 [4, 9, 10]. Such a plane graph G may have an orthogonal
drawing without bends. The graph in Fig. 2(a) has an orthogonal drawing
without bends as shown in Fig. 2(b). However, not every plane graph of the
maximum degree 3 has an orthogonal drawing without bends. For example,
the cubic plane graph in Fig. 1(a) has no orthogonal drawing without bends,
since any orthogonal drawing of an outer cycle have at least four convex corners
which must be bends in a cubic graph. One may thus assume that there are

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 337

four or more vertices of degree two on the outer cycle of G. It is interesting
to know which classes of such plane graphs have orthogonal drawings without
bends. However, no simple necessary and sufficient condition has been known
for a plane graph to have an orthogonal drawing without bends, although one
can know in time O(n"/*\/logn) by the algorithm [3] whether a given plane
graph has an orthogonal drawing without bends.

(@) (b)

Figure 2: (a) A plane graph G and (b) an orthogonal drawing of G without
bends.

In this paper we obtain a simple necessary and sufficient condition for a plane
graph G of the maximum degree 3 to have an orthogonal drawing without bends.
The condition is a generalization of Thomassen’s condition for the existence of
“rectangular drawings” [12]. Our condition leads to a linear-time algorithm to
find an orthogonal drawing of G without bends if it exists.

The rest of paper is organized as follows. Section 2 describes some defini-
tions and presents known results. Section 3 presents our results on orthogonal
drawings of biconnected plane graphs without bends. Section 4 deals with or-
thogonal drawings of arbitrary (not always biconnected) plane graphs without
bends. Finally Section 5 gives the conclusion. A preliminary version of this
paper is presented in [11].

2 Preliminaries

In this section we give some definitions and preliminary known results.

Let G be a connected simple graph with n vertices and m edges. The degree
of a vertex v is the number of neighbors of v in G. A vertex of degree 2 in G
is called a 2-vertex of G. We denote the maximum degree of graph G by A(G)
or simply by A. The connectivity k(G) of a graph G is the minimum number of
vertices whose removal results in a disconnected graph or a single vertex graph.
We say that G is k-connected if K(G) > k. We call a vertex of G a cut vertex if
its removal results in a disconnected graph.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 338

plane graph G is a planar graph with a fixed planar embedding. A plane graph
G divides the plane into connected regions called faces. We refer the contour of
a face as a cycle formed by the edges on the boundary of the face. We denote
the contour of the outer face of G by C,(G).

An edge of a plane graph G is called a leg of a cycle C if it is incident to
exactly one vertex of C' and located outside C'. The vertex of C' to which a leg
is incident is called a leg-vertex of C. A cycle in G is called a k-legged cycle of
G if C has exactly k legs in G and there is no edge which joins two vertices on
C and is located outside C.

An orthogonal drawing of a plane graph G is a drawing of G with the given
embedding in which each vertex is mapped to a point, each edge is drawn as a
sequence of alternate horizontal and vertical line segments, and any two edges
do not cross except at their common end. A bend is a point where an edge
changes its direction in a drawing. Any cycle C in G is drawn as a rectilinear
polygon in an orthogonal drawing D(G) of G. The polygon is denoted by D(C).
A (polygonal) vertex of the rectilinear polygon is called a corner of the drawing
D(C). A corner has an interior angle 90° or 270°. A corner of an interior angle
90° is called a convex corner of D(C'), while a corner of an interior angle 270°
is called a concave corner. A vertex v on C' is called a non-corner of D(C) if v
is not a corner of D(C'). Thus any vertex on C is a convex corner, a concave
corner, or a non-corner of D(C).

A rectangular drawing of a plane biconnected graph G is a drawing of G
such that each edge is drawn as a horizontal or a vertical line segment, and
each face is drawn as a rectangle. (See Fig. 9.) Thus a rectangular drawing is
an orthogonal drawing in which there is no bends and each face is drawn as a
rectangle. The rectangular drawing of C,(G) is called the outer rectangle. The
following result is known on rectangular drawings.

Lemma 1 Assume that G is a plane biconnected graph with A < 3, and that
four 2-vertices on Co(G) are designated as the four (convex) corners of the
outer rectangle. Then G has a rectangular drawing if and only if G satisfies the
following two conditions [12]:

(r1) every 2-legged cycle contains at least two designated vertices, and
(r2) every 3-legged cycle contains at least one designated vertex.

Furthermore one can examine in linear time whether G satisfies the condition
above, and if G does then one can find a rectangular drawing in linear time [7].

Consider two examples in Fig. 3, where the four designated corner vertices
are drawn by white circles in each graph. Cycles C7, Co and Cj are 2-legged,
and Cy, C5 and Cg are 3-legged. C3, C5 and Cg do not violate the conditions
in Lemma 1. On the other hand, cycles C;, Cs and C4 violate the conditions.

A cycle in G violating (rl) or (12) is called a bad cycle: a 2-legged cycle
is bad if it contains at most one designated vertex; a 3-legged cycle is bad if it
contains no designated vertex.

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 339

O designated 2-vertex

(a) 2-legged cycles (b) 3-legged cycles

Figure 3: (a) 2-legged cycles C1, Cy and Cs, and (b) 3-legged cycles Cy, C5 and
Cs.

Rahman et al. [7] have obtained a linear-time algorithm to find a rectangular
drawing of a plane graph G if G satisfies the conditions in Lemma 1 for four
designated corner vertices on C,(G). We call it Algorithm Rectangular-Draw
and use it in our orthogonal drawing algorithm of this paper.

For a cycle C in a plane graph G, we denote by G(C') the plane subgraph
of G inside C (including C). A bad cycle C in G is called a mazimal bad cycle
if G(C) is not contained in G(C”) for any other bad cycle C’ of G. In Fig. 4
C4,C3,Cy4,C5 and Cg are bad cycles, but Cs is not a bad cycle, where Cy and
Cy are drawn by thick lines. C,Cy,Cs and Cg are the maximal bad cycles. Cj
is not a maximal bad cycle because G(C3) is contained in G(Cy) for a bad cycle
Cy. We say that cycles C' and C’ in a plane graph G are independent of each
other if G(C) and G(C’) have no common vertex. We now have the following
lemma.

Lemma 2 If G is a biconnected plane graph of A < 3 and four 2-vertices
on Co(G) are designated as corners, then the mazimal bad cycles in G are
independent of each other.

Proof: Assume for a contradiction that a pair of maximal bad cycles C; and
Cy in G are not independent. Then the subgraphs G(C;) and G(C2) have a
common vertex. In particular, the cycles C; and C5 have a common vertex,
because C; and Cs are maximal bad cycles. Since A < 3, C; and Cy share
a common edge; C; contains two legs of C3, and Cy contains two legs of Cj.
There are two cases to consider.
Case 1: C; and C5 have a common vertex not on C,(G).

There are three cases; (i) both C; and Cy are 2-legged cycles, (ii) one of
Cy and Cy is a 2-legged cycle and the other is a 3-legged cycle, and (iii) both

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 340

O designated vertex

Figure 4: Maximal bad cycles C,Cy, Cs and Cg.

C1 and Cy are 3-legged cycles. If both Cy and Cs are 2-legged cycles, then G
would be a disconnected graph as illustrated in Fig. 5(a), a contradiction to the
assumption that G is biconnected. If one of C; and C5 is a 2-legged cycle and
the other is a 3-legged cycle, then G would have a cut-vertex v as illustrated in
Fig. 5(b), a contradiction to the assumption that G is biconnected. If both Cy
and Cy are 3-legged cycles, then there would exist a 2-legged bad cycle C* in G
such that G(C*) contains both C; and Cs, a contradiction to the assumption
that Cy and Cs are maximal bad cycles. In Fig. 5(c) C* is drawn by thick lines.
Case 2: C; and C5 have a common vertex on C,(G).

If both C; and Cy are 2-legged cycles, then one of G(C1) and G(C3) would
be contained in the other as illustrated in Fig. 5(d), a contradiction to the
assumption that both C; and C5 are maximal bad cycles. If one of C; and
Cy is a 2-legged cycle and the other is a 3-legged cycle, then one of G(Cy) and
G(C3) would be contained in the other, as illustrated in Fig. 5(e) and Fig. 5(f),
contrary to the assumption. If both C; and Cy are 3-legged cycles, then they
have no designated vertex and there would exist a bad 2-legged cycle C* such
that G(C*) contains both of C; and Cy, a contradiction to the assumption. In
Fig. 5(g) C* is drawn by thick lines. O

3 Orthogonal Drawings of Biconnected Plane
Graphs

In this section we present our results on biconnected plane graphs. From now
on we assume that G is a biconnected plane graph with A < 3 and there are
four or more 2-vertices on C,(G). The following theorem is the main result of
this section.

Theorem 1 Assume that G is a plane biconnected graph with A < 3 and there
are four or more 2-vertices of G on Co(G). Then G has an orthogonal drawing

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 341

(@)

Figure 5: Illustration for the proof of Lemma 2.

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 342

without bends if and only if every 2-legged cycle contains at least two 2-vertices
of G and every 3-legged cycle contains at least one 2-vertex of G.

Note that Theorem 1 is a generalization of Thomassen’s condition for rectan-
gular drawings in Lemma 1; applying Theorem 1 to a plane biconnected graph
G in which all vertices have degree 3 except the four 2-vertices on C,(G), one
can derive the condition.

It is easy to prove the necessity of Theorem 1, as follows.

Necessity of Theorem 1 Assume that a plane biconnected graph G has an
orthogonal drawing D without bends.

Let C be any 2-legged cycle. Then the rectilinear polygon D(C) in D has
at least four convex corners. These convex corners must be vertices since D has
no bends. The two leg-vertices of C' may serve as two of the convex corners.
However, each of the other convex corners must be a 2-vertex of G. Thus C
must contain at least two 2-vertices of G.

One can similarly show that any 3-legged cycle C' in G contains at least one
2-vertex of G.]

In the rest of this section we give a constructive proof for the sufficiency of
Theorem 1 and show that the proof leads to a linear-time algorithm to find an
orthogonal drawing without bends if it exists.

Assume that G satisfies the condition in Theorem 1. We now need some
definitions. Let C be a 2-legged cycle in G, and let z and y be the two leg-
vertices of C. We say that an orthogonal drawing D(G(C')) of the subgraph
G(C) is feasible if D(G(C)) has no bend and satisfies the following condition
(f1) or (f2).

(f1) The drawing D(G(C)) intersects neither the first quadrant with the origin
at z nor the third quadrant with the origin at y after rotating the drawing
and renaming the leg-vertices if necessary, as illustrated in Fig. 6. Note
that C' is not always drawn by a rectangle.

Figure 6: Tllustration of (f1) for a 2-legged cycle.

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 343

(f2) The drawing D(G(C')) intersects neither the first quadrant with the origin
at x nor the fourth quadrant with the origin at y after rotating the drawing
and renaming the leg-vertices if necessary, as illustrated in Fig. 7.

Figure 7: Illustration of (f2) for a 2-legged cycle.

Let C be a 3-legged cycle in G, and let x, y and z be the three leg-vertices.
One may assume that x, y and z appear clockwise on C in this order. We say
that an orthogonal drawing D(G(C)) is feasible if D(G(C')) has no bend and
D(G(C)) satisfies the following condition (f3).

(f3) The drawing D(G(C)) intersects none of the following three quadrants:
the first quadrant with origin at z, the fourth quadrant with origin at y,
and the third quadrant with origin at z after rotating the drawing and
renaming the leg-vertices if necessary, as illustrated in Fig. 8.

Figure 8: Tllustration of (f3) for a 3-legged cycle.

Each of Conditions (f1), (f2) and (f3) implies that, in the drawing of G(C),
any vertex of G(C) except the leg-vertices is located in none of the shaded
quadrants in Figs. 6, 7 and 8, and hence a leg incident to z, y or z can be
drawn by a horizontal or vertical line segment without edge-crossing as indicated
by dotted lines in Figs. 6, 7 and 8.

We now have the following lemma.

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 344

Lemma 3 If G satisfies the condition in Theorem 1, that is, every 2-legged
cycle in G contains at least two 2-vertices of G and every 3-legged cycle in G
contains at least one 2-vertex of G, then G(C) has a feasible orthogonal drawing
for any 2- or 3-legged cycle C' in G.

Proof: We give a recursive algorithm to find a feasible orthogonal drawing of
G(C). There are two cases to be considered.
Case 1: C is a 2-legged cycle.

Let and y be the two leg-vertices of C, and let e, and e, be the legs
incident to = and y, respectively. Since C' satisfies the condition in Theorem 1,
C has at least two 2-vertices of G. Let a and b be any two 2-vertices of G on
C. We now regard the four vertices x, y, a and b as the four designated corner
vertices of C.

We first consider the case where G(C) has no bad cycle with respect to
the four designated vertices. In this case, by Lemma 1 G(C) has a rectangular
drawing D with the four designated corner vertices, as illustrated in Fig. 9. Such
a rectangular drawing D of G(C) can be found by the algorithm Rectangular-
Draw in [7]. The outer cycle C of G(C) is drawn as a rectangle in D, and «z,
y, a and b are the convex corners of the rectangle. Hence D satisfies Condition
(f1) or (f2). Since D is a rectangular drawing, D has no bend. Thus D is a
feasible orthogonal drawing of G(C).

<& &

.‘X

b bI—¢—IX

‘e, G(C) D(G(C))
Figure 9: Subgraph G(C) and its rectangular drawing D(G(C)).

We then consider the case where G(C) has a bad cycle. Let C1,Cy, -+, C) be
the maximal bad cycles of G(C). By Lemma 2 Cy,Cs,---,C) are independent
of each other. Construct a plane graph H from G(C) by contracting each
subgraph G(C;),1 < i <, to a single vertex v;, as illustrated in Figs. 10(a) and
(b). Clearly H is a plane biconnected graph with A < 3. Every bad cycle C; in
G(C) contains at most one designated vertex. If C; contains a designated vertex,
then we newly designate v; as a corner vertex of H in place of the designated
vertex. Thus H has exactly four designated vertices. (In Fig. 10 H has four
designated vertices a, b, x, and vy since the bad cycle Cs contains y.) Since all
maximal bad cycles are contracted to single vertices in H, H has no bad cycle
with respect to the four designated vertices, and hence by Lemma 1 H has a

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 345

rectangular drawing D(H), as illustrated in Fig. 10(c). Such a drawing D(H)
can be found by Algorithm Rectangular-Draw. Clearly there is no bend on
D(H). The shrunken outer cycle of G(C) is drawn as a rectangle in D(H), and
hence D(H) satisfies Conditions (f1) or (2). If C; is a 2-legged cycle, then the
two legs ey, , ey, and vertex v; are embedded in D(H) as illustrated in Figs. 11(b)
and 12(b) or as in their rotated ones, and the two legs e,,, e,, and C; can be
drawn as illustrated in Figs. 11(c) and 12(c) or as in their rotated ones for a
feasible orthogonal drawing D(G(C;)) of G(C;). If C; is a 3-legged cycle, then
v; and the three legs e,,, e, and e,, are embedded in D(H) as illustrated in
Fig. 13(b) or as in their rotated ones, and C; and three legs e, , e,, and e, can
be drawn as illustrated in Fig. 13(c) or as in their rotated ones for a feasible
orthogonal drawing D(G(C;)) of G(C;). One can obtain a drawing D(G(C)) of
G(C) from D(H) and D(G(C;)) 1 < i <, as follows. Replace each v;, 1 <i <1,
in D(H) with one of the feasible drawings of G(C;) in Fig. 11(c), Fig. 12(c) and
Fig. 13(c) and their rotated ones that corresponds to the embedding of v; and
the legs of C; in D(H), and draw each leg of C; in D(G(C)) by a straight
line segment having the same direction as the leg in D(H), as illustrated in
Fig. 10(d). We call this operation a patching operation.

. fef

bh.. i X gﬁ """ 1]
% ;ex @ v *a Y y‘Ei- ! a

(8 G(C) (b) H (©) D(H) (d) D(G(©)

X

Figure 10: Illustration for Case 1 where C' has the maximal bad cycles C, Cy
and Cg.

(b) (©)

Figure 11: (a) A 2-legged cycle C; having a feasible orthogonal drawing satisfy-
ing (f1), (b) embeddings of a vertex v; and two legs e, and e, incident to v;,
and (c) feasible orthogonal drawings of G(C;) with two legs.

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 346

() () ¥

Figure 12: (a) A 2-legged cycle C; having a feasible orthogonal drawing satisfy-
ing (f2), (b) embeddings of a vertex v; and two legs e,, and e,, incident to v;,
and (c) feasible orthogonal drawings of G(C;) with two legs.

Figure 13: (a) A 3-legged cycle C; having feasible orthogonal drawings satisfying
(£3), (b) embeddings of a vertex v; and three legs e,,, e,, and e, incident to v;,
and (c) feasible orthogonal drawings of G(C;) with three legs.

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 347

We find a feasible orthogonal drawing D(G(C;)) of G(C;),1 < i <[, in a re-
cursive manner. We then patch the drawings D(G(C1)), D(G(Cs)),---, D(G(C}))
into D(H) by patching operation. Since there is no bend in any of D(G(Ch)),
D(G(Cy)),- -+, D(G(C})), there is no bend in the resulting drawing D(G(C)).
Since the outer cycle of D(H) is a rectangle and the resulting drawing D(G(C))
always expands outwards, D(C') is not always a rectangle but D(G(C)) satisfies
(f1) or (f2). Hence D(G(C)) is a feasible orthogonal drawing.

Case 2: Cis a 3-legged cycle.

Let z, y and z be the three leg-vertices of C', and let e;, e, and e, be the legs
incident to z, y and z, respectively. Since C satisfies the condition in Theorem 1,
C has at least one 2-vertex of G. Let a be any 2-vertex of G on C. We now
regard the four vertices x, y, z and a as designated corner vertices.

We first consider the case where G(C) has no bad cycle with respect to
the four designated vertices. In this case by Lemma 1 G(C) has a rectangular
drawing D with the four designated vertices as illustrated in Fig. 14. Since
the outer cycle C' of G(C) is drawn as a rectangle in D, D satisfies Condition
(f3). Since D is a rectangular drawing, D has no bend. Thus D is a feasible
orthogonal drawing of G(C).

D
.
.
.

a X ex
a y ey éz Y
2 S
L& D(G(C))
G(C)

Figure 14: Illustration for Case 2 where C' has no bad cycle.

We then consider the case where G(C') has a bad cycle. Let Cy,Cy, - -+, C) be
the maximal bad cycles of G(C). By Lemma 2 Cy,Cs, -+, C) are independent
of each other. Construct a plane graph H from G(C) by contracting each
subgraph G(C;),1 < i <, to a single vertex v;, as illustrated in Figs. 15(a) and
(b). Clearly H is a plane biconnected graph with A < 3, H has no bad cycle
with respect to the four designated vertices, and hence H has a rectangular
drawing D(H) as illustrated in Fig. 15(c). Clearly there is no bend on D(H).
Since the outer cycle of H is drawn as a rectangle in D(H), D(H) satisfies
Condition (f3).

We then find a feasible orthogonal drawing D(G(C;)) of G(C;),1 <i <1, in
a recursive manner, and patch the drawings D(G(C4)), D(G(C2)),-- -, D(G(C)))

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 348

5 [

! ‘Cg 1@

RN > B o
""""" y

“bry’ bG(O)

© (d)

Figure 15: Illustration for Case 2 where C has bad cycles C7, Co and Cj.

into D(H) as illustrated in Fig. 15(d). Since there is no bend in any of D(G(C})),
D(G(Cy)),---,D(G(C))), there is no bend in the resulting drawing D(G(C)).
Since the outer boundary of D(H) is a rectangle and D(G(C)) expands out-
wards, D(G(C)) satisfies (f3). Thus D(G(C)) is a feasible orthogonal drawing
of G(C). O

We call the algorithm for obtaining a feasible orthogonal drawing of G(C)
as described in the proof of Lemma 3 Algorithm Feasible-Draw. We now have
the following lemma.

Lemma 4 Algorithm Feasible-Draw finds a feasible orthogonal drawing of
G(C) in time O(n(G(C)), where n(G(C)) is the number of vertices in G(C).

Proof: Let Tr(G) be the computation time of Rectangular-Draw for graph
G. Then Tg(G) = O(n) by Lemma 1, and hence there is a positive constant ¢
such that

Tr(G) < c¢-m(G) (1)

for any plane graph G, where m(G) is the number of edges in G.

We first consider the computation time needed for contraction and patching
operations in Algorithm Feasible-Draw. During the traversal of all inner faces
of G(C) we can find the leg-vertices for each bad cycle [8]. Given the leg-vertices
of a bad cycle, we can contract the bad cycle to a single vertex in constant time.
Therefore the contraction operations in Feasible-Draw take O(n(G(C))) time
in total. Similarly the patching operations in Feasible-Draw take O(n(G(C)))
time in total.

We then consider the time needed for operations in Feasible-Draw other
than the contractions and patchings. Let T(G(C)) be the computation time of
Feasible-Draw for finding a feasible orthogonal drawing of G(C') excluding the
time for the contractions and patchings. We claim that T(G(C)) = O(n(G(C))).
Since G is a plane graph, m(G(C)) < 3n(G(C)), where m(G(C)) denotes the
number of edges in G(C). Therefore it is sufficient to show that

T(G(C) < c-m(G(0)). (2)

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 349

We prove Eq. (2) by induction.

We first consider the case where G(C) has no bad cycle. In this case Algo-
rithm Feasible-Draw finds a rectangular drawing of G(C') by Rectangular-
Draw. Hence, by Eq. (1) we have

T(G(C)) = Tr(G(C)) < ¢-m(G(C)).

We next consider the case where G(C') has the maximal bad cycles Cy,Cy, - - -
C; where [> 1. Suppose inductively that Eq. (2) holds for each C;,1 < i <,
that is,

T(G(Cy)) < c-m(G(CY)) (3)

for 1 <4 <. Algorithm Feasible-Draw constructs a plane graph H from G(C')
by contracting G(C;),1 < i <, to a single vertex. H has no bad cycles, and the
rectangular drawing D(H) can be found by Rectangular-Draw. Therefore,

by Eq. (1)

Tr(H) <c-m(H). (4)

Algorithm Feasible-Draw recursively finds drawings of G(C;),1 < ¢ <[, and
patches them into the rectangular drawing D(H). Therefore,

l
T(G(C)) = Ta(H) + 3 T(G(C:)- (5)

One can observe that

Using Egs. (3), (4), (5), and (6), we have

T(G(C))

IN

l
c-m(H) +Zc-m(G(C’i))
= c¢-m(G(Q0)).
O

We are now ready to prove the sufficiency of Theorem 1; we actually prove
the following lemma.

Lemma 5 If G satisfies the condition in Theorem 1, then G has an orthogonal
drawing without bends.

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 350

Proof: Since there are four or more 2-vertices on C,(G), we designate any four
of them as (convex) corners.

Consider first the case where G does not have any bad cycle with respect
to the four designated (convex) corners. Then by Lemma 1 there is a rectan-
gular drawing of GG. Since the rectangular drawing of G has no bends, it is an
orthogonal drawing D(G) of G without bends.

Consider next the case where GG has bad cycles. Let Cy,Cs,---,C; be the
maximal bad cycles in G. By Lemma 2 C1,Cj, -+, C; are independent of each
other. We contract each G(C;), 1 < i < I, to a single vertex v;. Let G*
be the resulting graph. Clearly, G* has no bad cycle with respect to the four
designated vertices, some of which may be vertices resulted from the contraction
of bad cycles. By Lemma 1 G* has a rectangular drawing D(G*), which can
be found by the algorithm Rectangular-Draw. We recursively find a feasible
orthogonal drawing of each G(C;), 1 < i < I, by Feasible-Draw. Patch the
feasible orthogonal drawings of G(C4), G(C2), - - -, G(C}) into D(G*) by patching
operations. The resulting drawing is an orthogonal drawing D of GG. Note that
D(G*) and D(G(C;)), 1 <i <[, have no bend. Furthermore, patching operation
introduces no new bend. Thus D has no bend. O

We now formally describe our algorithm as follows.

Algorithm Bi-Orthogonal-Draw(G)
begin
Select any four 2-vertices on C,(G) as designated corners;
Find the maximal bad cycles C1,Cs,---,C; in G,
For each i, 1 <i <, contract cycle C; to a single vertex v;;
Let G* be the resulting graph;
Find a rectangular drawing of G* by Rectangular-Draw;
Find a feasible orthogonal drawing of each Cy,Cs,---,C; by
Feasible-Draw:;
Patch the drawings D(G(C1)), D(G(Cs)), -, D(G(C})) into D(G*);
8 The resulting drawing D(G) is an orthogonal drawing of G
without bends.
end.

D T AW N

N

We then have the following theorem.

Theorem 2 If G satisfies the condition in Theorem 1, then Algorithm Bi-
Orthogonal-Draw finds an orthogonal drawing of G without bends in linear
time.

Proof: Using a method similar to one in [7, 8, 9], one can find all the maximal
bad cycles in G in linear-time. Algorithms Rectangular-Draw and Feasible-
Draw take linear-time. Patching operations take linear time. Therefore the
overall time complexity of the algorithm Bi-Orthogonal-Draw is linear. O

Using an algorithm similar to Algorithm Bi-Orthogonal-Draw, one can
find a particular orthogonal drawing without bends, which we call a “four-corner

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 351

drawing” and define as follows. Let C,(G) contain four or more 2-vertices of
G, and let x,y,z and w be any four of them. Then an orthogonal drawing
D(QG) of G is called a four-corner orthogonal drawing for z, y, z and w if the
drawing intersects none of the four quadrants, the first quadrant with the origin
at x, the fourth quadrant with the origin at y, the third quadrant with the
origin at z, and the second quadrant with the origin at w, after rotating the
drawing and renaming vertices x,¥, z and w if necessary. In Fig. 16 the four
quadrants are shaded. Vertices z, y, z, and w must be convex corners of the
drawing D(C,(Q@)) of the outer cycle C,(G), and D(G) should intersect neither
the horizontal open halfline with left end at x nor the vertical halfline with the
lower end at x, and so on for y, z, and w. Clearly, a rectangular drawing with
four designated corners is a four-corner drawing for the designated corners. A
four-corner drawing has applications in finding an orthogonal drawing with the
minimum number of bends [5].

2nd quad. 1st quad.

w

z
3rd quad. I 4th quad.

Figure 16: Illustration for a four-corner orthogonal drawing.

We now have the following corollary.

Corollary 6 Assume that G is a plane biconnected graph with A < 3 and there
are four or more 2-vertices on Co(G). If every 2-legged cycle in G contains
at least two 2-vertices of G and every 3-legged cycle in G contains at least one
2-vertex of G, then one can find a four-corner orthogonal drawing D(G) without
bends for any four 2-vertices x, y, z and w on C,(G) in linear time.

Proof: One can find a four-corner orthogonal drawing D(G) without bends for
any four 2-vertices z, y, z and w on C,(G) by using an algorithm similar to
Algorithm Bi-Orthogonal-Draw. The algorithm selects x, y, z and w as des-
ignated corners in Step 1 and expands the drawing outwards, if necessary, after
each patching operation in Step 7. Other steps of Algorithm Bi-Orthogonal-
Draw remain unchanged in the algorithm. Clearly the algorithm takes linear
time, since Algorithm Bi-Orthogonal-Draw takes linear time. O

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 352

4 Orthogonal Drawings of Arbitrary Plane
Graphs

In this section we extend our result on biconnected plane graphs in Theorem 1 to
arbitrary (not always biconnected) plane graphs with A < 3 as in the following
theorem.

Theorem 3 Let G be a plane graph with A < 3. Then G has an orthogonal
drawing without bends if and only if every k-legged cycle C' in G contains at
least 4 — k 2-vertices of G for any k, 0 < k < 3.

Theorem 3 is a generalization of both Theorem 1 and Thomassen’s condition
[12].

The proof for the necessity of Theorem 3 is similar to the proof for the
necessity of Theorem 1. In the rest of this section we give a constructive proof
for the sufficiency of Theorem 3. We need some definitions.

We may assume that G is connected. We call a subgraph B of G a biconnected
component of G if B is a maximal biconnected subgraph of G. We call an edge
(u,v) a bridge of G if the deletion of (u,v) results in a disconnected graph. Any
graph can be decomposed to biconnected components and bridges. The graph
G in Fig. 17(a) has three biconnected components B, By and Bj depicted in
Fig. 17(b) and six bridges (’Ug,’U24), (U24, 1125), (U24, 1126), (1)4,’()16)7 (1}10,’011) and
(1)7, ’027).

Vi7 v,

o<

D(BY
(©

Figure 17: (a) A connected plane graph G, (b) three biconnected components
B, By and Bj of G, and (c) a feasible orthogonal drawing of Bj.

Let C be a cycle in G, and let v be a cut vertex of G on C. We call v an
outcut vertex for C if v is a leg-vertex of C in G, otherwise we call v an incut

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 353

vertex for C. (See Fig. 18.) Any outcut vertex for C is either a convex corner
or a non-corner of D(C) in any orthogonal drawing D(G) of G, because if it
were a concave corner then the leg of C' could not be drawn as a horizontal or
vertical line segment without edge-crossing. Similarly, any incut vertex for C' is
either a concave corner or a non-corner of D(C'). Thus any orthogonal drawing
of G must satisfy the following condition (f4).

(f4) If v is an outcut vertex for a cycle C' in G then v is either a convex corner
or a non-corner of D(C'), and if v is an incut vertex for a cycle C then v
is either a concave corner or a non-corner of D(C).

(@ (b)

Figure 18: (a) Outcut vertices v at a convex corner and v’ at a non-corner, and
(b) incut vertices v at a concave corner and v’ at a non-corner.

Of course, for any subgraph B of G, the drawing D(B) in an orthogonal
drawing D(G) of G satisfies Condition (f4). In the plane graph G in Fig. 17(a),
vertices vy and v7 are outcut vertices for the cycle C,(B1), and vz is an incut
vertex for the cycle C,(B7). Vertex vyg is an outcut vertex for the cycle Ch =
v1, Vg, V10, Vg, but is an incut vertex for the cycle Cy = vs,vg,v7, Vs, V10, Vg-
The orthogonal drawing D(B;) of the biconnected component By in Fig. 17(c)
satisfies (f4), because the outcut vertices vy, vy for C,(By) and vy for Cy are
convex corners while the incut vertices vg for C,(B1) is a non-corner and g
for C5 is a concave corner. We call an orthogonal drawing D(B) of a subgraph
B of G a mergeable orthogonal drawing if D(B) satisfies (f4) and has no bends.

Let B be a biconnected subgraph of G, let C be a cycle in B, and let v be a
2-vertex of B on C'. We say that vertex v is good for C' if v is not an incut vertex
for C in G. For B; in Fig. 17(b), v, v4, vg and vy are the good vertices for
C,(B1) while v is not a good vertex. Only a good vertex for C' can be drawn
as a convex corner of the rectilinear polygon D(C) in a mergeable orthogonal
drawing D(B).

We now have the following lemmas.

Lemma 7 If G satisfies the condition in Theorem 8 and B is a biconnected
component of G, then

(a) there are at least four good vertices for Co(B),

(b) there are at least two good vertices for every 2-legged cycle C in B, and

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 354

(c) there are at least one good vertex for every 3-legged cycle C in B.

Proof: (a) Assume that C,(B) is a k-legged cycle in G for some k > 0. The k
leg-vertices are outcut vertices, are not incut vertices, have degree 2 in B, and
hence are good vertices for C,(B). Thus, if k¥ > 4, then there are at least four
good vertices for C,(B).

If £ = 1, then the condition in Theorem 3 implies that C,(B) contains at
least three 2-vertices of G. Since these vertices have degree 2 in the biconnected
component B, they are not incut vertices for C,(B) and hence are good vertices
for Cyo(B). The leg-vertex of C,(B) is a good vertex, too. Thus there are at
least four good vertices for C,(B).

Similarly we can prove the claim when k =0, 2 or 3.

(b) Let C be a 2-legged cycle in B. The two leg-vertices have degree 3 in
B, and hence they are not good for C. Let C' be a k-legged cycle in G for some
k > 2. If k = 2, then the condition in Theorem 3 implies that C' contains at
least two 2-vertices of (G, which are good for C. If k > 4, then C' contains at
least two outcut vertices which are 2-vertices of B and hence are good for C.
Thus one may assume that £ = 3. Then C' contains an outcut vertex which is a
2-vertex of B and hence is good for C. Furthermore, the condition in Theorem 3
implies that C' contains at least one 2-vertex of GG, which is good for C'. Thus
C contains at least two good vertices.

(¢) Similar to (b). O

We now have the following lemmas.

Lemma 8 Let G be a connected plane graph of A < 3 satisfying the condition
in Theorem 3, let B be a biconnected component of G, and let C' be a 2- or 3-
legged cycle in B. Then the plane subgraph B(C) of B inside C has a mergeable
feasible orthogonal drawing D(B(C)).

Proof: We can recursively find a mergeable feasible orthogonal drawing D(B(C))
by an algorithm similar to Algorithm Feasible-Draw for finding a feasible or-
thogonal drawing. However, in each recursive step, we have to choose the four
designated corner vertices carefully in a way that none of the incut vertices for
an outer cycle is chosen as a designated (convex) corner. This can be done,
because by Lemma 7(b) every 2-legged cycle in B contains at least two good
vertices, by Lemma 7(c) every 3-legged cycle in B contains at least one good
vertex, and hence one can choose leg-vertices and good vertices as the four des-
ignated corner vertices. These vertices are convex corners in the drawing of the
cycle, while any cut vertex which is not chosen as a designated corner is drawn
as a non-corner. Hence D(B(C)) satisfies (f4), and D(B(C)) is a mergeable
feasible orthogonal drawing. O

Lemma 9 If G is a connected plane graph of A < 3 and satisfies the condi-
tion in Theorem 3, then every biconnected component B of G has a mergeable
orthogonal drawing.

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 355

Proof: One can find a mergeable orthogonal drawing of B as follows.

By Lemma 7(a) one can select four good vertices on C,(B) as designated
corners.

Consider first the case where B has no bad cycle with respect to the four
designated corners. Then by Lemma 1 there is a rectangular drawing D(B) of
B. Of course, D(B) has no bend. Any vertex of B which is an outcut or incut
vertex of G has degree 2 in B. In D(B), the four designated vertices on C,(B)
are convex corners, and every 2-vertex of B except the four designated vertices
is a non-corner. Hence the rectangular drawing D(B) satisfies Condition (f4).
Therefore D(B) is a mergeable orthogonal drawing.

Consider next the case where B has bad cycles. Let C1,Cs,---,C; be the
maximal bad cycles in B. Then by Lemma 2 C1,Cs, -, C; are independent of
each other. We contract each B(C;), 1 < i <, to a single vertex v;. Let B*
be the resulting graph. Clearly, B* has no bad cycle with respect to the four
designated vertices, some of which may be vertices resulted from the contraction
of bad cycles. By Lemma 1 B* has a rectangular drawing D(B*). We recursively
find a mergeable feasible orthogonal drawing D(B(C;)) of each B(C;), 1 < i <[,
by the method described in the proof of Lemma 8. Patch the mergeable feasible
orthogonal drawings of D(B(C;)), 1 < i <, into D(B*) by patching operations.
Clearly the resulting drawing is an orthogonal drawing D(B) of B. D(B*) is
a mergeable drawing and and D(B(C;)), 1 < i < [, are mergeable feasible
drawings. Furthermore, the patching operation introduces neither a convex
corner at any incut vertex nor a concave corner at any outcut vertex in the
drawing of a cycle in B. Hence D(B) is a mergeable orthogonal drawing. O

The algorithm described in the proof of Lemma 9 takes linear time similarly
as Algorithm Bi-Orthogonal-Draw in Section 3.

Based on the algorithm described in the proof of Lemma 9, we now present
a result on four-corner orthogonal drawing in Lemma 10. The result described
in Lemma 10 is used to obtain a bend-minimum orthogonal drawing of a plane
graph with A < 3 in [5].

Lemma 10 Let G be a connected plane graph with A < 3, let B be a biconnected
subgraph of G, and let x,y, z and w be any four 2-vertices of B on C,(B). Then
B has a mergeable four-corner orthogonal drawing D(B) for x, y, z and w if
and only if the following (a), (b) and (c) hold:

(a) all the vertices x, y, z and w are good for the cycle Co(B) in G;
(b) there are at least two good vertices for every 2-legged cycle C' in B; and
(c) there are at least one good vertex for every 3-legged cycle C in B.

Furthermore the drawing above can be found in linear time.

Proof: Necessity: Suppose that B has a mergeable four-corner orthogonal
drawing D(B). Then D(B) has no bends and satisfies Condition (f4).

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 356

(a) All the vertices , y, z and w are convex corners of D(C,(B)), and hence
by Condition (f4) none of z, y, z and w is an incut vertex for C,(B). Therefore
x, y, z and w are good vertices for C,(B).

(b) The rectilinear polygonal drawing D(C) of a 2-legged cycle C in D(B)
has at least four convex corners. Since D(B) has no bend, every convex corner
of D(C) is either a 2-vertex of B or a leg-vertex of C'in B. The two leg-vertices
of C' may serve as two convex corners. Any other convex corner of D(C) is a
2-vertex of B and is not an incut vertex for C' in G by Condition (f4). Hence
there are at least two good vertices for C.

(¢) Similar to (b).

Sufficiency: Assume that B satisfies Conditions (a)—(c) in Lemma 10. Then
we can obtain a mergeable orthogonal drawing D(B) of B in linear time by the
algorithm described in the proof of Lemma 9. To ensure that D(B) is a four-
corner orthogonal drawing for x, y, z and w, the algorithm must select =, y, z
and w as the four designated corners, and the drawing may be needed to expand
outwards after each patching operation. O

A block of a connected graph G is either a biconnected component or a
bridge of G. The graph in Fig. 19(a) has the blocks Bi, B, - - -, By depicted in
Fig. 19(b). The blocks and cut vertices in G can be represented by a tree T,

v, V

s Vg oo
Vi B %o

(©

Figure 19: (a) G, (b) blocks, and (¢) BC-tree T

called the BC'-tree of G. In T each block is represented by a B-node and each

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 357

cut vertex of G is represented by a C-node. The BC-tree T of the plane graph
G in Fig. 19(a) is depicted in Fig. 19(c), where each B-node is represented by a
rectangle and each C-node is represented by a circle.

We call a cycle C in a plane graph G a mazimal cycle of G if G(C') is not
contained in G(C’) for any other cycle C’ in G. Thus a maximal cycle is an
outer cycle of a biconnected component of G. The graph G in Fig. 20(a) has
two maximal cycles C; and Cy drawn by thick lines. G(C) is called a mazimal
closed subgraph of G if C' is a maximal cycle of G. We now have the following
lemma.

D(Bl) V15 \i4
V7 Vs
D(G(C))
@ ®)

Figure 20: (a) A plane graph G with two maximal cycles C; and Cs, (b) G(C}),
(¢) BC-tree of G(C1), (d) drawings of the two biconnected components B; and
Bg of G(C1), and (e) the final drawing of G(CY).

Lemma 11 If G is a connected plane graph of A < 3 and satisfies the condition
in Theorem 3, then G(C') has a mergeable orthogonal drawing for any mazimal
cycle C' in G.

Proof: We give an algorithm for finding a mergeable orthogonal drawing of
G(C), that is, an orthogonal drawing of G(C') which has no bends and satisfies
(f4).

If G(C) is a biconnected component of G, then by Lemma 9 G(C) has
a mergeable orthogonal drawing. One may thus assume that G(C) is not a

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 358

biconnected component of G. Then G(C) has some biconnected components
and bridges. Clearly the biconnected components of G(C) are vertex-disjoint
with each other. For each biconnected component we can find a mergeable
orthogonal drawing by the algorithm described in the proof of Lemma 9, while
we draw each bridge by a horizontal or vertical line segment. We then merge
the drawings of biconnected components and bridges without introducing new
bends and edge crossings as follows.

We construct a BC-tree T of G(C). Let B; be the node in the BC-tree
corresponding to the biconnected component of G(C') whose outer cycle is C.
We consider T as a rooted tree with root B;. Starting from the root By we visit
the tree by depth-first search and merge the orthogonal drawings of the blocks
in the depth first-search order.

Let By, Bs, - -+, By be the ordering of the blocks following a depth-first search
order starting from B;. G(Cy) for the graph G in Fig. 20(a) is depicted in
Fig. 20(b) and the BC-tree of G(C4) is depicted in Fig. 20(c), where Bj is the
root of the tree and the other B-nodes are numbered according to a depth-first
search order starting from Bj.

We assume that we have obtained a mergeable orthogonal drawing D; by
merging the orthogonal drawings of the blocks By, Bo, - - -, B;, and that we are
now going to obtain a mergeable orthogonal drawing D;; by merging D, with
an orthogonal drawing of the block B; ;. Let v; be the cut vertex corresponding
to the C-node which is the parent of B;1; in T. Let B, be the parent of v; in
T. Then both B, and B;;1 contain v, and D; contains the drawing of B,. We
have the following three cases to consider.

Case 1: B, is a biconnected component and B;11 is a bridge.

In this case B;4+1 is an edge and will be drawn inside an inner face of the
drawing D;. Let C; be the facial cycle of B, corresponding to the inner face.
Then v, is an incut vertex for C'y. Since we have obtained a mergeable orthogonal
drawing D(B,) of By, v; is a concave corner or a non-corner of the drawing of
Cy in D(B,), and hence the two edges incident to v, are drawn in D; as in
Fig. 21 or as a rotated one. We can draw the bridge B;;1 as a horizontal or a
vertical line segment started from v; as illustrated by dotted lines in Fig. 21.
We thus obtain a drawing D;;1. Clearly no new bend is introduced in D;1
and D; may be expanded outwards to avoid edge crossings. In Fig. 20(e) the
bridge By = (v3, v24) is merged with a biconnected component By at vertex vs.
Case 2: Both B, and B;;; are bridges.

In this case v; is drawn in an inner face of D; and has degree 1 or 2 in D;.
(See Fig. 22.)

We first consider the case where v; has degree 1. We then draw B;;; as
indicated by the dotted line in Fig. 22(a).

We next consider the case where v; has degree 2 in D;. Then v; has degree
3 in G(C), and let x, y, and z be the three neighbors of v; in G. We may
assume without loss of generality that edges (v, z) and (v, y) are bridges and
are already drawn in D; and that B, is either (v, x) or (vs,y). We now merge
the drawing of bridge B;y1 = (v, 2) to D;. It is evident from the drawing
described above that bridges (v¢, x) and (vt,y) are drawn on a (horizontal or

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 359

Figure 21: Drawing of edges incident to v; in D; when B, is a biconnected
component and B;; is a bridge.

vertical) straight line segment. We draw B;;1 as indicated by a dotted line in
Fig. 22(b).

,Z
BX B|+1 E BI+1
AT
X Y/
\ B "t Y

() (b)

Figure 22: Drawings of B; when both B, and B;;; are bridges

Case 3: B, is a bridge and B, is a biconnected component.

In this case v; is drawn in D; as an end of a horizontal or vertical line
segment inside an inner face of D;. Vertex vy has degree 2 in B;y; and is an
outcut vertex for C,(B;11). By Lemma 9 D(B;;1) is a mergeable orthogonal
drawing, and hence v; is a convex corner or a non-corner of the drawing of
Co(Bit1) in D(B;y1). Therefore D(B;41) can be easily merged with D; by
rotating D(G(B;+1)) by 90° or 180° or 270° and expanding the drawing D; if
necessary. In Fig. 20(e) the orthogonal drawing of Bg is merged to Dy at vertex
v11 where D(Bg) in Fig. 20(d) has been rotated by 90° and the drawing Ds is
expanded outwards. O

We call the algorithm described in the proof of Lemma 11 Algorithm
Maximal-Orthogonal-Draw. Clearly Algorithm Maximal-Orthogonal-
Draw takes linear time.

We are now ready to give a proof for sufficiency of Theorem 3.

Proof for sufficiency of Theorem 3

We decompose G into maximal closed subgraphs and bridges. We find an

orthogonal drawing of each maximal closed subgraph by Algorithm Maximal-

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 360

Orthogonal-Draw. Each of the bridges can be drawn by a horizontal or a
vertical line segment. Using a technique similar to one in the proof of Lemma 11,
we merge the drawings of the maximal closed subgraphs and bridges. The
resulting drawing is an orthogonal drawing of G without bends. o

We call the algorithm described in the proof for sufficiency of Theorem 3
Algorithm No-bend-Orthogonal-Draw. An execution of the algorithm No-
bend-Orthogonal-Draw is illustrated in Fig. 23. We now have the following
theorem.

Vi7 v

Vq Vz‘g Viy
V1 \{b
V}z V13 V5 \é V23 %8 V12 V13 V5
L' ‘ilj o, e %
Mo Y::
V‘ls V4 v D(G() Vis s
v 6 v %
7
D(G
(G(©Y) ")
d

Figure 23: (a) A plane graph G, (b) two maximal closed subgraphs G(C7) and
G(C2) of G, (c) orthogonal drawings of G(C;) and G(C2) without bends, and
(d) orthogonal drawings of G without bends.

Theorem 4 If G is a plane connected graph of A < 3 and satisfies the con-
dition in Theorem 8, then Algorithm No-bend-Orthogonal-Draw finds an
orthogonal drawing of G without bends in linear time. O

5 Conclusions

In this paper we established a necessary and sufficient condition for a plane graph
G of A < 3 to have an orthogonal drawing without bends, and gave a linear-

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 361

time algorithm to examine whether G has an orthogonal drawing without bends
and find such a drawing of G if it exists. The condition is a generalization of
Thomassen’s condition for rectangular drawings [12]. The algorithm presented
in this paper has applications in finding an orthogonal drawing of a plane graph
of A < 3 with the minimum number of bends in linear time [5]. It is remained
as a future work to establish a necessary and sufficient condition for a plane
graph of A < 4 to have an orthogonal drawing without bends.

An orthogonal drawing of a plane graph G without bends is called a rect-
angular drawing of G if each face of G including the outer face is drawn as a
rectangle. A planar graph is said to have a rectangular drawing if at least one
of its plane embeddings has a rectangular drawing. Recently Rahman et al. [6]
gave a necessary and sufficient condition for a planar graph of A < 3 to have a
rectangular drawing which leads to a linear time algorithm to find a rectangular
drawing of a planar graph, if it exists. It is thus an interesting future work to
generalize the condition of Rahman et al. [6] for orthogonal drawings of planar
graphs of A < 3 without bends.

M. S. Rahman et al., Orthogonal Drawings, JGAA, 7(4) 335-362 (2003) 362

References

1]

[12]

[13]

G. Di Battista, P. Eades, R. Tamassia, I. G. Tollis, Graph Drawing: Al-
gorithms for the Visualization of Graphs, Prentice-Hall Inc., Upper Saddle
River, New Jersey, 1999.

A. Garg and R. Tamassia, On the computaional complezity of upward and
rectilinear planarity testing, STAM J. Comput., 31(2), pp. 601-625, 2001.

A. Garg and R. Tamassia, A new minimum cost flow algorithm with ap-
plications to graph drawing, Proc. of Graph Drawing’96, Lect. Notes in
Computer Science, 1190, pp. 201-206, 1997.

T. Lengauer, Combinatorial Algorihms for Integrated Circuit Layout, Wi-
ley, Chichester, 1990.

M. S. Rahman and T. Nishizeki, Bend-minimum orthogonal drawings of
plane 3-graphs, Proc. of WG’02, Lect. Notes in Computer Science, 2573,
pp- 365-376, 2002.

M. S. Rahman, T. Nishizeki and S. Ghosh, Rectangular drawings of planar
graphs, Journal of Algorithms, 50, pp. 62-78, 2004.

M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular grid drawings of
plane graphs, Comp. Geom. Theo. Appl., 10(3), pp. 203-220, 1998.

M. S. Rahman, S. Nakano and T. Nishizeki, A linear algorithm for bend-
optimal orthogonal drawings of triconnected cubic plane graphs, Journal of
Graph Alg. and Appl., http://jgaa.info, 3(4), pp. 31-62, 1999.

M. S. Rahman, S. Nakano and T. Nishizeki, Boz-rectangular drawings of
plane graphs, Journal of Algorithms, 37, pp. 363-398, 2000.

M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular drawings of plane
graphs without designated corners, Comp. Geom. Theo. Appl., 21(3), pp
121-138, 2002.

M. S. Rahman, M. Naznin and T. Nishizeki, Orthogonal drawings of plane
graphs without bends, Proc. of Graph Drawing’01, Lect. Notes in Computer
Science, 2265, pp. 392-406, 2002.

C. Thomassen, Plane representations of graphs, (Eds.) J.A. Bondy and
U.S.R. Murty, Progress in Graph Theory, Academic Press Canada, pp.
43-69, 1984.

R. Tamassia, On embedding a graph in the grid with the minimum number
of bends, SIAM J. Comput., 16, pp. 421-444, 1987.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

