Journal of Graph Algorithms and Applications

http://jgaa.info/

vol. 7, no. 4, pp. 335-362 (2003)

Orthogonal Drawings of Plane Graphs Without Bends

Md. Saidur Rahman Takao Nishizeki
Graduate School of Information Sciences
Tohoku University
Aoba-yama 05, Sendai 980-8579, Japan
http://www.nishizeki.ecei.tohoku.ac.jp/
saidur@nishizeki.ecei.tohoku.ac.jp, nishi@ecei.tohoku.ac.jp
Mahmuda Naznin
Department of Computer Science
North Dakota State University
Fargo, ND 58105-5164, USA
Mahmuda. Naznin@ndsu.nodak.edu

Abstract

In an orthogonal drawing of a plane graph each vertex is drawn as a point and each edge is drawn as a sequence of vertical and horizontal line segments. A bend is a point at which the drawing of an edge changes its direction. Every plane graph of the maximum degree at most four has an orthogonal drawing, but may need bends. A simple necessary and sufficient condition has not been known for a plane graph to have an orthogonal drawing without bends. In this paper we obtain a necessary and sufficient condition for a plane graph G of the maximum degree three to have an orthogonal drawing without bends. We also give a linear-time algorithm to find such a drawing of G if it exists.

Communicated by: P. Mutzel and M. Jünger;
submitted May 2002; revised November 2002.

Part of this work was done while the first and the third authors were in Bangladesh University of Engineering and Technology (BUET). This work is supported by the grants of Japan Society for the Promotion of Science (JSPS).

1 Introduction

Automatic graph drawings have numerous applications in VLSI circuit layout, networks, computer architecture, circuit schematics etc. For the last few years many researchers have concentrated their attention on graph drawings and introduced a number of drawing styles. Among the styles, "orthogonal drawings" have attracted much attention due to their various applications, specially in circuit schematics, entity relationship diagrams, data flow diagrams etc. [1]. An orthogonal drawing of a plane graph G is a drawing of G with the given embedding in which each vertex is mapped to a point, each edge is drawn as a sequence of alternate horizontal and vertical line segments, and any two edges do not cross except at their common end. A bend is a point where an edge changes its direction in a drawing. Every plane graph of the maximum degree four has an orthogonal drawing, but may need bends. For the cubic plane graph in Fig. 1(a) each vertex of which has degree 3, two orthogonal drawings are shown in Figs. 1(b) and (c) with 6 and 5 bends respectively. Minimization of the number of bends in an orthogonal drawing is a challenging problem. Several works have been done on this issue [2, 3, 8, 13]. In particular, Garg and Tamassia [3] presented an algorithm to find an orthogonal drawing of a given plane graph G with the minimum number of bends in time $O\left(n^{7 / 4} \sqrt{\log n}\right)$, where n is the number of vertices in G. Rahman et al. gave an algorithm to find an orthogonal drawing of a given triconnected cubic plane graph with the minimum number of bends in linear time [8].

Figure 1: (a) A plane graph G, (b) an orthogonal drawing of G with 6 bends, and (c) an orthogonal drawing of G with 5 bends.

In a VLSI floorplanning problem, an input is often a plane graph of the maximum degree $3[4,9,10]$. Such a plane graph G may have an orthogonal drawing without bends. The graph in Fig. 2(a) has an orthogonal drawing without bends as shown in Fig. 2(b). However, not every plane graph of the maximum degree 3 has an orthogonal drawing without bends. For example, the cubic plane graph in Fig. 1(a) has no orthogonal drawing without bends, since any orthogonal drawing of an outer cycle have at least four convex corners which must be bends in a cubic graph. One may thus assume that there are
four or more vertices of degree two on the outer cycle of G. It is interesting to know which classes of such plane graphs have orthogonal drawings without bends. However, no simple necessary and sufficient condition has been known for a plane graph to have an orthogonal drawing without bends, although one can know in time $O\left(n^{7 / 4} \sqrt{\log n}\right)$ by the algorithm [3] whether a given plane graph has an orthogonal drawing without bends.

Figure 2: (a) A plane graph G and (b) an orthogonal drawing of G without bends.

In this paper we obtain a simple necessary and sufficient condition for a plane graph G of the maximum degree 3 to have an orthogonal drawing without bends. The condition is a generalization of Thomassen's condition for the existence of "rectangular drawings" [12]. Our condition leads to a linear-time algorithm to find an orthogonal drawing of G without bends if it exists.

The rest of paper is organized as follows. Section 2 describes some definitions and presents known results. Section 3 presents our results on orthogonal drawings of biconnected plane graphs without bends. Section 4 deals with orthogonal drawings of arbitrary (not always biconnected) plane graphs without bends. Finally Section 5 gives the conclusion. A preliminary version of this paper is presented in [11].

2 Preliminaries

In this section we give some definitions and preliminary known results.
Let G be a connected simple graph with n vertices and m edges. The degree of a vertex v is the number of neighbors of v in G. A vertex of degree 2 in G is called a 2-vertex of G. We denote the maximum degree of graph G by $\Delta(G)$ or simply by Δ. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or a single vertex graph. We say that G is k-connected if $\kappa(G) \geq k$. We call a vertex of G a cut vertex if its removal results in a disconnected graph.

A graph is planar if it can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which they are both incident. A
plane graph G is a planar graph with a fixed planar embedding. A plane graph G divides the plane into connected regions called faces. We refer the contour of a face as a cycle formed by the edges on the boundary of the face. We denote the contour of the outer face of G by $C_{o}(G)$.

An edge of a plane graph G is called a leg of a cycle C if it is incident to exactly one vertex of C and located outside C. The vertex of C to which a leg is incident is called a leg-vertex of C. A cycle in G is called a k-legged cycle of G if C has exactly k legs in G and there is no edge which joins two vertices on C and is located outside C.

An orthogonal drawing of a plane graph G is a drawing of G with the given embedding in which each vertex is mapped to a point, each edge is drawn as a sequence of alternate horizontal and vertical line segments, and any two edges do not cross except at their common end. A bend is a point where an edge changes its direction in a drawing. Any cycle C in G is drawn as a rectilinear polygon in an orthogonal drawing $D(G)$ of G. The polygon is denoted by $D(C)$. A (polygonal) vertex of the rectilinear polygon is called a corner of the drawing $D(C)$. A corner has an interior angle 90° or 270°. A corner of an interior angle 90° is called a convex corner of $D(C)$, while a corner of an interior angle 270° is called a concave corner. A vertex v on C is called a non-corner of $D(C)$ if v is not a corner of $D(C)$. Thus any vertex on C is a convex corner, a concave corner, or a non-corner of $D(C)$.

A rectangular drawing of a plane biconnected graph G is a drawing of G such that each edge is drawn as a horizontal or a vertical line segment, and each face is drawn as a rectangle. (See Fig. 9.) Thus a rectangular drawing is an orthogonal drawing in which there is no bends and each face is drawn as a rectangle. The rectangular drawing of $C_{o}(G)$ is called the outer rectangle. The following result is known on rectangular drawings.

Lemma 1 Assume that G is a plane biconnected graph with $\Delta \leq 3$, and that four 2-vertices on $C_{o}(G)$ are designated as the four (convex) corners of the outer rectangle. Then G has a rectangular drawing if and only if G satisfies the following two conditions [12]:
(r1) every 2-legged cycle contains at least two designated vertices, and
(r2) every 3-legged cycle contains at least one designated vertex.
Furthermore one can examine in linear time whether G satisfies the condition above, and if G does then one can find a rectangular drawing in linear time [7].

Consider two examples in Fig. 3, where the four designated corner vertices are drawn by white circles in each graph. Cycles C_{1}, C_{2} and C_{3} are 2-legged, and C_{4}, C_{5} and C_{6} are 3-legged. C_{3}, C_{5} and C_{6} do not violate the conditions in Lemma 1. On the other hand, cycles C_{1}, C_{2} and C_{4} violate the conditions.

A cycle in G violating (r 1) or (r2) is called a bad cycle: a 2-legged cycle is bad if it contains at most one designated vertex; a 3-legged cycle is bad if it contains no designated vertex.

Figure 3: (a) 2-legged cycles C_{1}, C_{2} and C_{3}, and (b) 3-legged cycles C_{4}, C_{5} and C_{6}.

Rahman et al. [7] have obtained a linear-time algorithm to find a rectangular drawing of a plane graph G if G satisfies the conditions in Lemma 1 for four designated corner vertices on $C_{o}(G)$. We call it Algorithm Rectangular-Draw and use it in our orthogonal drawing algorithm of this paper.

For a cycle C in a plane graph G, we denote by $G(C)$ the plane subgraph of G inside C (including C). A bad cycle C in G is called a maximal bad cycle if $G(C)$ is not contained in $G\left(C^{\prime}\right)$ for any other bad cycle C^{\prime} of G. In Fig. 4 $C_{1}, C_{3}, C_{4}, C_{5}$ and C_{6} are bad cycles, but C_{2} is not a bad cycle, where C_{2} and C_{4} are drawn by thick lines. C_{1}, C_{4}, C_{5} and C_{6} are the maximal bad cycles. C_{3} is not a maximal bad cycle because $G\left(C_{3}\right)$ is contained in $G\left(C_{4}\right)$ for a bad cycle C_{4}. We say that cycles C and C^{\prime} in a plane graph G are independent of each other if $G(C)$ and $G\left(C^{\prime}\right)$ have no common vertex. We now have the following lemma.

Lemma 2 If G is a biconnected plane graph of $\Delta \leq 3$ and four 2-vertices on $C_{o}(G)$ are designated as corners, then the maximal bad cycles in G are independent of each other.

Proof: Assume for a contradiction that a pair of maximal bad cycles C_{1} and C_{2} in G are not independent. Then the subgraphs $G\left(C_{1}\right)$ and $G\left(C_{2}\right)$ have a common vertex. In particular, the cycles C_{1} and C_{2} have a common vertex, because C_{1} and C_{2} are maximal bad cycles. Since $\Delta \leq 3, C_{1}$ and C_{2} share a common edge; C_{1} contains two legs of C_{2}, and C_{2} contains two legs of C_{1}. There are two cases to consider.
Case 1: C_{1} and C_{2} have a common vertex not on $C_{o}(G)$.
There are three cases; (i) both C_{1} and C_{2} are 2-legged cycles, (ii) one of C_{1} and C_{2} is a 2-legged cycle and the other is a 3-legged cycle, and (iii) both

Figure 4: Maximal bad cycles C_{1}, C_{4}, C_{5} and C_{6}.
C_{1} and C_{2} are 3-legged cycles. If both C_{1} and C_{2} are 2-legged cycles, then G would be a disconnected graph as illustrated in Fig. 5(a), a contradiction to the assumption that G is biconnected. If one of C_{1} and C_{2} is a 2-legged cycle and the other is a 3 -legged cycle, then G would have a cut-vertex v as illustrated in Fig. 5(b), a contradiction to the assumption that G is biconnected. If both C_{1} and C_{2} are 3-legged cycles, then there would exist a 2-legged bad cycle C^{*} in G such that $G\left(C^{*}\right)$ contains both C_{1} and C_{2}, a contradiction to the assumption that C_{1} and C_{2} are maximal bad cycles. In Fig. $5(\mathrm{c}) C^{*}$ is drawn by thick lines. Case 2: C_{1} and C_{2} have a common vertex on $C_{o}(G)$.

If both C_{1} and C_{2} are 2-legged cycles, then one of $G\left(C_{1}\right)$ and $G\left(C_{2}\right)$ would be contained in the other as illustrated in Fig. 5(d), a contradiction to the assumption that both C_{1} and C_{2} are maximal bad cycles. If one of C_{1} and C_{2} is a 2-legged cycle and the other is a 3-legged cycle, then one of $G\left(C_{1}\right)$ and $G\left(C_{2}\right)$ would be contained in the other, as illustrated in Fig. 5(e) and Fig. 5(f), contrary to the assumption. If both C_{1} and C_{2} are 3-legged cycles, then they have no designated vertex and there would exist a bad 2-legged cycle C^{*} such that $G\left(C^{*}\right)$ contains both of C_{1} and C_{2}, a contradiction to the assumption. In Fig. $5(\mathrm{~g}) C^{*}$ is drawn by thick lines.

3 Orthogonal Drawings of Biconnected Plane Graphs

In this section we present our results on biconnected plane graphs. From now on we assume that G is a biconnected plane graph with $\Delta \leq 3$ and there are four or more 2-vertices on $C_{o}(G)$. The following theorem is the main result of this section.

Theorem 1 Assume that G is a plane biconnected graph with $\Delta \leq 3$ and there are four or more 2-vertices of G on $C_{o}(G)$. Then G has an orthogonal drawing

Figure 5: Illustration for the proof of Lemma 2.
without bends if and only if every 2-legged cycle contains at least two 2-vertices of G and every 3-legged cycle contains at least one 2-vertex of G.

Note that Theorem 1 is a generalization of Thomassen's condition for rectangular drawings in Lemma 1; applying Theorem 1 to a plane biconnected graph G in which all vertices have degree 3 except the four 2 -vertices on $C_{o}(G)$, one can derive the condition.

It is easy to prove the necessity of Theorem 1, as follows.
Necessity of Theorem 1 Assume that a plane biconnected graph G has an orthogonal drawing D without bends.

Let C be any 2-legged cycle. Then the rectilinear polygon $D(C)$ in D has at least four convex corners. These convex corners must be vertices since D has no bends. The two leg-vertices of C may serve as two of the convex corners. However, each of the other convex corners must be a 2 -vertex of G. Thus C must contain at least two 2 -vertices of G.

One can similarly show that any 3-legged cycle C in G contains at least one 2-vertex of G.

In the rest of this section we give a constructive proof for the sufficiency of Theorem 1 and show that the proof leads to a linear-time algorithm to find an orthogonal drawing without bends if it exists.

Assume that G satisfies the condition in Theorem 1. We now need some definitions. Let C be a 2-legged cycle in G, and let x and y be the two legvertices of C. We say that an orthogonal drawing $D(G(C))$ of the subgraph $G(C)$ is feasible if $D(G(C))$ has no bend and satisfies the following condition (f1) or (f2).
(f1) The drawing $D(G(C))$ intersects neither the first quadrant with the origin at x nor the third quadrant with the origin at y after rotating the drawing and renaming the leg-vertices if necessary, as illustrated in Fig. 6. Note that C is not always drawn by a rectangle.

Figure 6: Illustration of (f1) for a 2-legged cycle.
(f2) The drawing $D(G(C))$ intersects neither the first quadrant with the origin at x nor the fourth quadrant with the origin at y after rotating the drawing and renaming the leg-vertices if necessary, as illustrated in Fig. 7.

Figure 7: Illustration of (f2) for a 2-legged cycle.
Let C be a 3-legged cycle in G, and let x, y and z be the three leg-vertices. One may assume that x, y and z appear clockwise on C in this order. We say that an orthogonal drawing $D(G(C))$ is feasible if $D(G(C))$ has no bend and $D(G(C))$ satisfies the following condition (f3).
(f3) The drawing $D(G(C))$ intersects none of the following three quadrants: the first quadrant with origin at x, the fourth quadrant with origin at y, and the third quadrant with origin at z after rotating the drawing and renaming the leg-vertices if necessary, as illustrated in Fig. 8.

Figure 8: Illustration of (f3) for a 3-legged cycle.
Each of Conditions (f1), (f2) and (f3) implies that, in the drawing of $G(C)$, any vertex of $G(C)$ except the leg-vertices is located in none of the shaded quadrants in Figs. 6, 7 and 8, and hence a leg incident to x, y or z can be drawn by a horizontal or vertical line segment without edge-crossing as indicated by dotted lines in Figs. 6, 7 and 8.

We now have the following lemma.

Lemma 3 If G satisfies the condition in Theorem 1, that is, every 2-legged cycle in G contains at least two 2-vertices of G and every 3-legged cycle in G contains at least one 2-vertex of G, then $G(C)$ has a feasible orthogonal drawing for any 2- or 3-legged cycle C in G.

Proof: We give a recursive algorithm to find a feasible orthogonal drawing of $G(C)$. There are two cases to be considered.
Case 1: C is a 2-legged cycle.
Let x and y be the two leg-vertices of C, and let e_{x} and e_{y} be the legs incident to x and y, respectively. Since C satisfies the condition in Theorem 1, C has at least two 2 -vertices of G. Let a and b be any two 2 -vertices of G on C. We now regard the four vertices x, y, a and b as the four designated corner vertices of C.

We first consider the case where $G(C)$ has no bad cycle with respect to the four designated vertices. In this case, by Lemma $1 G(C)$ has a rectangular drawing D with the four designated corner vertices, as illustrated in Fig. 9. Such a rectangular drawing D of $G(C)$ can be found by the algorithm RectangularDraw in [7]. The outer cycle C of $G(C)$ is drawn as a rectangle in D, and x, y, a and b are the convex corners of the rectangle. Hence D satisfies Condition (f1) or (f2). Since D is a rectangular drawing, D has no bend. Thus D is a feasible orthogonal drawing of $G(C)$.

Figure 9: Subgraph $G(C)$ and its rectangular drawing $D(G(C))$.
We then consider the case where $G(C)$ has a bad cycle. Let $C_{1}, C_{2}, \cdots, C_{l}$ be the maximal bad cycles of $G(C)$. By Lemma $2 C_{1}, C_{2}, \cdots, C_{l}$ are independent of each other. Construct a plane graph H from $G(C)$ by contracting each subgraph $G\left(C_{i}\right), 1 \leq i \leq l$, to a single vertex v_{i}, as illustrated in Figs. 10(a) and (b). Clearly H is a plane biconnected graph with $\Delta \leq 3$. Every bad cycle C_{i} in $G(C)$ contains at most one designated vertex. If C_{i} contains a designated vertex, then we newly designate v_{i} as a corner vertex of H in place of the designated vertex. Thus H has exactly four designated vertices. (In Fig. $10 H$ has four designated vertices a, b, x, and v_{2} since the bad cycle C_{2} contains y.) Since all maximal bad cycles are contracted to single vertices in H, H has no bad cycle with respect to the four designated vertices, and hence by Lemma $1 H$ has a
rectangular drawing $D(H)$, as illustrated in Fig. 10(c). Such a drawing $D(H)$ can be found by Algorithm Rectangular-Draw. Clearly there is no bend on $D(H)$. The shrunken outer cycle of $G(C)$ is drawn as a rectangle in $D(H)$, and hence $D(H)$ satisfies Conditions (f1) or (f2). If C_{i} is a 2-legged cycle, then the two legs $e_{x_{i}}, e_{y_{i}}$ and vertex v_{i} are embedded in $D(H)$ as illustrated in Figs. 11(b) and $12(\mathrm{~b})$ or as in their rotated ones, and the two legs $e_{x_{i}}, e_{y_{i}}$ and C_{i} can be drawn as illustrated in Figs. 11(c) and 12(c) or as in their rotated ones for a feasible orthogonal drawing $D\left(G\left(C_{i}\right)\right)$ of $G\left(C_{i}\right)$. If C_{i} is a 3-legged cycle, then v_{i} and the three legs $e_{x_{i}}, e_{y_{i}}$ and $e_{z_{i}}$ are embedded in $D(H)$ as illustrated in Fig. $13(\mathrm{~b})$ or as in their rotated ones, and C_{i} and three legs $e_{x_{i}}, e_{y_{i}}$ and $e_{z_{i}}$ can be drawn as illustrated in Fig. 13(c) or as in their rotated ones for a feasible orthogonal drawing $D\left(G\left(C_{i}\right)\right)$ of $G\left(C_{i}\right)$. One can obtain a drawing $D(G(C))$ of $G(C)$ from $D(H)$ and $D\left(G\left(C_{i}\right)\right) 1 \leq i \leq l$, as follows. Replace each $v_{i}, 1 \leq i \leq l$, in $D(H)$ with one of the feasible drawings of $G\left(C_{i}\right)$ in Fig. 11(c), Fig. 12(c) and Fig. 13(c) and their rotated ones that corresponds to the embedding of v_{i} and the legs of C_{i} in $D(H)$, and draw each leg of C_{i} in $D(G(C))$ by a straight line segment having the same direction as the leg in $D(H)$, as illustrated in Fig. 10(d). We call this operation a patching operation.

Figure 10: Illustration for Case 1 where C has the maximal bad cycles C_{1}, C_{2} and C_{3}.

Figure 11: (a) A 2-legged cycle C_{i} having a feasible orthogonal drawing satisfying (f1), (b) embeddings of a vertex v_{i} and two legs $e_{x_{i}}$ and $e_{y_{i}}$ incident to v_{i}, and (c) feasible orthogonal drawings of $G\left(C_{i}\right)$ with two legs.

Figure 12: (a) A 2-legged cycle C_{i} having a feasible orthogonal drawing satisfying (f2), (b) embeddings of a vertex v_{i} and two legs $e_{x_{i}}$ and $e_{y_{i}}$ incident to v_{i}, and (c) feasible orthogonal drawings of $G\left(C_{i}\right)$ with two legs.

Figure 13: (a) A 3-legged cycle C_{i} having feasible orthogonal drawings satisfying (f3), (b) embeddings of a vertex v_{i} and three legs $e_{x_{i}}, e_{y_{i}}$ and $e_{z_{i}}$ incident to v_{i}, and (c) feasible orthogonal drawings of $G\left(C_{i}\right)$ with three legs.

We find a feasible orthogonal drawing $D\left(G\left(C_{i}\right)\right)$ of $G\left(C_{i}\right), 1 \leq i \leq l$, in a recursive manner. We then patch the drawings $D\left(G\left(C_{1}\right)\right), D\left(G\left(C_{2}\right)\right), \cdots, D\left(G\left(C_{l}\right)\right)$ into $D(H)$ by patching operation. Since there is no bend in any of $D\left(G\left(C_{1}\right)\right)$, $D\left(G\left(C_{2}\right)\right), \cdots, D\left(G\left(C_{l}\right)\right)$, there is no bend in the resulting drawing $D(G(C))$. Since the outer cycle of $D(H)$ is a rectangle and the resulting drawing $D(G(C))$ always expands outwards, $D(C)$ is not always a rectangle but $D(G(C))$ satisfies (f1) or (f2). Hence $D(G(C))$ is a feasible orthogonal drawing.
Case 2: C is a 3-legged cycle.
Let x, y and z be the three leg-vertices of C, and let e_{x}, e_{y} and e_{z} be the legs incident to x, y and z, respectively. Since C satisfies the condition in Theorem 1, C has at least one 2 -vertex of G. Let a be any 2 -vertex of G on C. We now regard the four vertices x, y, z and a as designated corner vertices.

We first consider the case where $G(C)$ has no bad cycle with respect to the four designated vertices. In this case by Lemma $1 G(C)$ has a rectangular drawing D with the four designated vertices as illustrated in Fig. 14. Since the outer cycle C of $G(C)$ is drawn as a rectangle in D, D satisfies Condition (f3). Since D is a rectangular drawing, D has no bend. Thus D is a feasible orthogonal drawing of $G(C)$.

Figure 14: Illustration for Case 2 where C has no bad cycle.
We then consider the case where $G(C)$ has a bad cycle. Let $C_{1}, C_{2}, \cdots, C_{l}$ be the maximal bad cycles of $G(C)$. By Lemma $2 C_{1}, C_{2}, \cdots, C_{l}$ are independent of each other. Construct a plane graph H from $G(C)$ by contracting each subgraph $G\left(C_{i}\right), 1 \leq i \leq l$, to a single vertex v_{i}, as illustrated in Figs. 15(a) and (b). Clearly H is a plane biconnected graph with $\Delta \leq 3, H$ has no bad cycle with respect to the four designated vertices, and hence H has a rectangular drawing $D(H)$ as illustrated in Fig. 15(c). Clearly there is no bend on $D(H)$. Since the outer cycle of H is drawn as a rectangle in $D(H), D(H)$ satisfies Condition (f3).

We then find a feasible orthogonal drawing $D\left(G\left(C_{i}\right)\right)$ of $G\left(C_{i}\right), 1 \leq i \leq l$, in a recursive manner, and patch the drawings $D\left(G\left(C_{1}\right)\right), D\left(G\left(C_{2}\right)\right), \cdots, D\left(G\left(C_{l}\right)\right)$

Figure 15: Illustration for Case 2 where C has bad cycles C_{1}, C_{2} and C_{3}.
into $D(H)$ as illustrated in Fig. 15(d). Since there is no bend in any of $D\left(G\left(C_{1}\right)\right)$, $D\left(G\left(C_{2}\right)\right), \cdots, D\left(G\left(C_{l}\right)\right)$, there is no bend in the resulting drawing $D(G(C))$. Since the outer boundary of $D(H)$ is a rectangle and $D(G(C))$ expands outwards, $D(G(C))$ satisfies (f3). Thus $D(G(C))$ is a feasible orthogonal drawing of $G(C)$.

We call the algorithm for obtaining a feasible orthogonal drawing of $G(C)$ as described in the proof of Lemma 3 Algorithm Feasible-Draw. We now have the following lemma.

Lemma 4 Algorithm Feasible-Draw finds a feasible orthogonal drawing of $G(C)$ in time $O(n(G(C))$, where $n(G(C))$ is the number of vertices in $G(C)$.

Proof: Let $T_{R}(G)$ be the computation time of Rectangular-Draw for graph G. Then $T_{R}(G)=O(n)$ by Lemma 1 , and hence there is a positive constant c such that

$$
\begin{equation*}
T_{R}(G) \leq c \cdot m(G) \tag{1}
\end{equation*}
$$

for any plane graph G, where $m(G)$ is the number of edges in G.
We first consider the computation time needed for contraction and patching operations in Algorithm Feasible-Draw. During the traversal of all inner faces of $G(C)$ we can find the leg-vertices for each bad cycle [8]. Given the leg-vertices of a bad cycle, we can contract the bad cycle to a single vertex in constant time. Therefore the contraction operations in Feasible-Draw take $O(n(G(C)))$ time in total. Similarly the patching operations in Feasible-Draw take $O(n(G(C)))$ time in total.

We then consider the time needed for operations in Feasible-Draw other than the contractions and patchings. Let $T(G(C))$ be the computation time of Feasible-Draw for finding a feasible orthogonal drawing of $G(C)$ excluding the time for the contractions and patchings. We claim that $T(G(C))=O(n(G(C)))$. Since G is a plane graph, $m(G(C)) \leq 3 n(G(C))$, where $m(G(C))$ denotes the number of edges in $G(C)$. Therefore it is sufficient to show that

$$
\begin{equation*}
T(G(C)) \leq c \cdot m(G(C)) \tag{2}
\end{equation*}
$$

We prove Eq. (2) by induction.
We first consider the case where $G(C)$ has no bad cycle. In this case Algorithm Feasible-Draw finds a rectangular drawing of $G(C)$ by RectangularDraw. Hence, by Eq. (1) we have

$$
T(G(C))=T_{R}(G(C)) \leq c \cdot m(G(C))
$$

We next consider the case where $G(C)$ has the maximal bad cycles C_{1}, C_{2}, \cdots, C_{l} where $l \geq 1$. Suppose inductively that Eq. (2) holds for each $C_{i}, 1 \leq i \leq l$, that is,

$$
\begin{equation*}
T\left(G\left(C_{i}\right)\right) \leq c \cdot m\left(G\left(C_{i}\right)\right) \tag{3}
\end{equation*}
$$

for $1 \leq i \leq l$. Algorithm Feasible-Draw constructs a plane graph H from $G(C)$ by contracting $G\left(C_{i}\right), 1 \leq i \leq l$, to a single vertex. H has no bad cycles, and the rectangular drawing $D(H)$ can be found by Rectangular-Draw. Therefore, by Eq. (1)

$$
\begin{equation*}
T_{R}(H) \leq c \cdot m(H) \tag{4}
\end{equation*}
$$

Algorithm Feasible-Draw recursively finds drawings of $G\left(C_{i}\right), 1 \leq i \leq l$, and patches them into the rectangular drawing $D(H)$. Therefore,

$$
\begin{equation*}
T(G(C))=T_{R}(H)+\sum_{i=1}^{l} T\left(G\left(C_{i}\right)\right) \tag{5}
\end{equation*}
$$

One can observe that

$$
\begin{equation*}
m(H)+\sum_{i=1}^{l} m\left(G\left(C_{i}\right)\right)=m(G(C)) . \tag{6}
\end{equation*}
$$

Using Eqs. (3), (4), (5), and (6), we have

$$
\begin{aligned}
T(G(C)) & \leq c \cdot m(H)+\sum_{i=1}^{l} c \cdot m\left(G\left(C_{i}\right)\right) \\
& =c \cdot m(G(C)) .
\end{aligned}
$$

We are now ready to prove the sufficiency of Theorem 1 ; we actually prove the following lemma.

Lemma 5 If G satisfies the condition in Theorem 1, then G has an orthogonal drawing without bends.

Proof: Since there are four or more 2-vertices on $C_{o}(G)$, we designate any four of them as (convex) corners.

Consider first the case where G does not have any bad cycle with respect to the four designated (convex) corners. Then by Lemma 1 there is a rectangular drawing of G. Since the rectangular drawing of G has no bends, it is an orthogonal drawing $D(G)$ of G without bends.

Consider next the case where G has bad cycles. Let $C_{1}, C_{2}, \cdots, C_{l}$ be the maximal bad cycles in G. By Lemma $2 C_{1}, C_{2}, \cdots, C_{l}$ are independent of each other. We contract each $G\left(C_{i}\right), 1 \leq i \leq l$, to a single vertex v_{i}. Let G^{*} be the resulting graph. Clearly, G^{*} has no bad cycle with respect to the four designated vertices, some of which may be vertices resulted from the contraction of bad cycles. By Lemma $1 G^{*}$ has a rectangular drawing $D\left(G^{*}\right)$, which can be found by the algorithm Rectangular-Draw. We recursively find a feasible orthogonal drawing of each $G\left(C_{i}\right), 1 \leq i \leq l$, by Feasible-Draw. Patch the feasible orthogonal drawings of $G\left(C_{1}\right), G\left(C_{2}\right), \cdots, G\left(C_{l}\right)$ into $D\left(G^{*}\right)$ by patching operations. The resulting drawing is an orthogonal drawing D of G. Note that $D\left(G^{*}\right)$ and $D\left(G\left(C_{i}\right)\right), 1 \leq i \leq l$, have no bend. Furthermore, patching operation introduces no new bend. Thus D has no bend.

We now formally describe our algorithm as follows.

Algorithm Bi-Orthogonal-Draw (G) begin

Select any four 2-vertices on $C_{o}(G)$ as designated corners;
2 Find the maximal bad cycles $C_{1}, C_{2}, \cdots, C_{l}$ in G;
3 For each $i, 1 \leq i \leq l$, contract cycle C_{i} to a single vertex v_{i};
4 Let G^{*} be the resulting graph;
5 Find a rectangular drawing of G^{*} by Rectangular-Draw;
6 Find a feasible orthogonal drawing of each $C_{1}, C_{2}, \cdots, C_{l}$ by Feasible-Draw;
7 Patch the drawings $D\left(G\left(C_{1}\right)\right), D\left(G\left(C_{2}\right)\right), \cdots, D\left(G\left(C_{l}\right)\right)$ into $D\left(G^{*}\right)$;
8 The resulting drawing $D(G)$ is an orthogonal drawing of G without bends.
end.
We then have the following theorem.
Theorem 2 If G satisfies the condition in Theorem 1, then Algorithm Bi-Orthogonal-Draw finds an orthogonal drawing of G without bends in linear time.

Proof: Using a method similar to one in [7, 8, 9], one can find all the maximal bad cycles in G in linear-time. Algorithms Rectangular-Draw and FeasibleDraw take linear-time. Patching operations take linear time. Therefore the overall time complexity of the algorithm Bi-Orthogonal-Draw is linear.

Using an algorithm similar to Algorithm Bi-Orthogonal-Draw, one can find a particular orthogonal drawing without bends, which we call a "four-corner
drawing" and define as follows. Let $C_{o}(G)$ contain four or more 2 -vertices of G, and let x, y, z and w be any four of them. Then an orthogonal drawing $D(G)$ of G is called a four-corner orthogonal drawing for x, y, z and w if the drawing intersects none of the four quadrants, the first quadrant with the origin at x, the fourth quadrant with the origin at y, the third quadrant with the origin at z, and the second quadrant with the origin at w, after rotating the drawing and renaming vertices x, y, z and w if necessary. In Fig. 16 the four quadrants are shaded. Vertices x, y, z, and w must be convex corners of the drawing $D\left(C_{o}(G)\right)$ of the outer cycle $C_{o}(G)$, and $D(G)$ should intersect neither the horizontal open halfline with left end at x nor the vertical halfline with the lower end at x, and so on for y, z, and w. Clearly, a rectangular drawing with four designated corners is a four-corner drawing for the designated corners. A four-corner drawing has applications in finding an orthogonal drawing with the minimum number of bends [5].

Figure 16: Illustration for a four-corner orthogonal drawing.
We now have the following corollary.
Corollary 6 Assume that G is a plane biconnected graph with $\Delta \leq 3$ and there are four or more 2-vertices on $C_{o}(G)$. If every 2-legged cycle in G contains at least two 2-vertices of G and every 3-legged cycle in G contains at least one 2-vertex of G, then one can find a four-corner orthogonal drawing $D(G)$ without bends for any four 2-vertices x, y, z and w on $C_{o}(G)$ in linear time.

Proof: One can find a four-corner orthogonal drawing $D(G)$ without bends for any four 2 -vertices x, y, z and w on $C_{o}(G)$ by using an algorithm similar to Algorithm Bi-Orthogonal-Draw. The algorithm selects x, y, z and w as designated corners in Step 1 and expands the drawing outwards, if necessary, after each patching operation in Step 7. Other steps of Algorithm Bi-OrthogonalDraw remain unchanged in the algorithm. Clearly the algorithm takes linear time, since Algorithm Bi-Orthogonal-Draw takes linear time.

4 Orthogonal Drawings of Arbitrary Plane Graphs

In this section we extend our result on biconnected plane graphs in Theorem 1 to arbitrary (not always biconnected) plane graphs with $\Delta \leq 3$ as in the following theorem.

Theorem 3 Let G be a plane graph with $\Delta \leq 3$. Then G has an orthogonal drawing without bends if and only if every k-legged cycle C in G contains at least $4-k$ 2-vertices of G for any $k, 0 \leq k \leq 3$.

Theorem 3 is a generalization of both Theorem 1 and Thomassen's condition [12].

The proof for the necessity of Theorem 3 is similar to the proof for the necessity of Theorem 1. In the rest of this section we give a constructive proof for the sufficiency of Theorem 3. We need some definitions.

We may assume that G is connected. We call a subgraph B of G a biconnected component of G if B is a maximal biconnected subgraph of G. We call an edge (u, v) a bridge of G if the deletion of (u, v) results in a disconnected graph. Any graph can be decomposed to biconnected components and bridges. The graph G in Fig. 17(a) has three biconnected components B_{1}, B_{2} and B_{3} depicted in Fig. 17(b) and six bridges $\left(v_{3}, v_{24}\right),\left(v_{24}, v_{25}\right),\left(v_{24}, v_{26}\right),\left(v_{4}, v_{16}\right),\left(v_{10}, v_{11}\right)$ and $\left(v_{7}, v_{27}\right)$.

(c)

Figure 17: (a) A connected plane graph G, (b) three biconnected components B_{1}, B_{2} and B_{3} of G, and (c) a feasible orthogonal drawing of B_{1}.

Let C be a cycle in G, and let v be a cut vertex of G on C. We call v an outcut vertex for C if v is a leg-vertex of C in G, otherwise we call v an incut
vertex for C. (See Fig. 18.) Any outcut vertex for C is either a convex corner or a non-corner of $D(C)$ in any orthogonal drawing $D(G)$ of G, because if it were a concave corner then the leg of C could not be drawn as a horizontal or vertical line segment without edge-crossing. Similarly, any incut vertex for C is either a concave corner or a non-corner of $D(C)$. Thus any orthogonal drawing of G must satisfy the following condition (f4).
(f4) If v is an outcut vertex for a cycle C in G then v is either a convex corner or a non-corner of $D(C)$, and if v is an incut vertex for a cycle C then v is either a concave corner or a non-corner of $D(C)$.

Figure 18: (a) Outcut vertices v at a convex corner and v^{\prime} at a non-corner, and (b) incut vertices v at a concave corner and v^{\prime} at a non-corner.

Of course, for any subgraph B of G, the drawing $D(B)$ in an orthogonal drawing $D(G)$ of G satisfies Condition (f4). In the plane graph G in Fig. 17(a), vertices v_{4} and v_{7} are outcut vertices for the cycle $C_{o}\left(B_{1}\right)$, and v_{3} is an incut vertex for the cycle $C_{o}\left(B_{1}\right)$. Vertex v_{10} is an outcut vertex for the cycle $C_{1}=$ $v_{1}, v_{9}, v_{10}, v_{8}$, but is an incut vertex for the cycle $C_{2}=v_{5}, v_{6}, v_{7}, v_{8}, v_{10}, v_{9}$. The orthogonal drawing $D\left(B_{1}\right)$ of the biconnected component B_{1} in Fig. 17(c) satisfies (f4), because the outcut vertices v_{4}, v_{7} for $C_{o}\left(B_{1}\right)$ and v_{10} for C_{1} are convex corners while the incut vertices v_{3} for $C_{o}\left(B_{1}\right)$ is a non-corner and v_{10} for C_{2} is a concave corner. We call an orthogonal drawing $D(B)$ of a subgraph B of G a mergeable orthogonal drawing if $D(B)$ satisfies (f4) and has no bends.

Let B be a biconnected subgraph of G, let C be a cycle in B, and let v be a 2-vertex of B on C. We say that vertex v is good for C if v is not an incut vertex for C in G. For B_{1} in Fig. $17(\mathrm{~b}), v_{2}, v_{4}, v_{6}$ and v_{7} are the good vertices for $C_{o}\left(B_{1}\right)$ while v_{3} is not a good vertex. Only a good vertex for C can be drawn as a convex corner of the rectilinear polygon $D(C)$ in a mergeable orthogonal drawing $D(B)$.

We now have the following lemmas.
Lemma 7 If G satisfies the condition in Theorem 3 and B is a biconnected component of G, then
(a) there are at least four good vertices for $C_{o}(B)$,
(b) there are at least two good vertices for every 2-legged cycle C in B, and
(c) there are at least one good vertex for every 3-legged cycle C in B.

Proof: (a) Assume that $C_{o}(B)$ is a k-legged cycle in G for some $k \geq 0$. The k leg-vertices are outcut vertices, are not incut vertices, have degree 2 in B, and hence are good vertices for $C_{o}(B)$. Thus, if $k \geq 4$, then there are at least four good vertices for $C_{o}(B)$.

If $k=1$, then the condition in Theorem 3 implies that $C_{o}(B)$ contains at least three 2 -vertices of G. Since these vertices have degree 2 in the biconnected component B, they are not incut vertices for $C_{o}(B)$ and hence are good vertices for $C_{o}(B)$. The leg-vertex of $C_{o}(B)$ is a good vertex, too. Thus there are at least four good vertices for $C_{o}(B)$.

Similarly we can prove the claim when $k=0,2$ or 3 .
(b) Let C be a 2-legged cycle in B. The two leg-vertices have degree 3 in B, and hence they are not good for C. Let C be a k-legged cycle in G for some $k \geq 2$. If $k=2$, then the condition in Theorem 3 implies that C contains at least two 2 -vertices of G, which are good for C. If $k \geq 4$, then C contains at least two outcut vertices which are 2 -vertices of B and hence are good for C. Thus one may assume that $k=3$. Then C contains an outcut vertex which is a 2-vertex of B and hence is good for C. Furthermore, the condition in Theorem 3 implies that C contains at least one 2 -vertex of G, which is good for C. Thus C contains at least two good vertices.
(c) Similar to (b).

We now have the following lemmas.
Lemma 8 Let G be a connected plane graph of $\Delta \leq 3$ satisfying the condition in Theorem 3, let B be a biconnected component of G, and let C be a 2- or 3legged cycle in B. Then the plane subgraph $B(C)$ of B inside C has a mergeable feasible orthogonal drawing $D(B(C))$.

Proof: We can recursively find a mergeable feasible orthogonal drawing $D(B(C))$ by an algorithm similar to Algorithm Feasible-Draw for finding a feasible orthogonal drawing. However, in each recursive step, we have to choose the four designated corner vertices carefully in a way that none of the incut vertices for an outer cycle is chosen as a designated (convex) corner. This can be done, because by Lemma 7(b) every 2-legged cycle in B contains at least two good vertices, by Lemma 7(c) every 3-legged cycle in B contains at least one good vertex, and hence one can choose leg-vertices and good vertices as the four designated corner vertices. These vertices are convex corners in the drawing of the cycle, while any cut vertex which is not chosen as a designated corner is drawn as a non-corner. Hence $D(B(C)$) satisfies (f4), and $D(B(C))$ is a mergeable feasible orthogonal drawing.

Lemma 9 If G is a connected plane graph of $\Delta \leq 3$ and satisfies the condition in Theorem 3, then every biconnected component B of G has a mergeable orthogonal drawing.

Proof: One can find a mergeable orthogonal drawing of B as follows.
By Lemma 7(a) one can select four good vertices on $C_{o}(B)$ as designated corners.

Consider first the case where B has no bad cycle with respect to the four designated corners. Then by Lemma 1 there is a rectangular drawing $D(B)$ of B. Of course, $D(B)$ has no bend. Any vertex of B which is an outcut or incut vertex of G has degree 2 in B. In $D(B)$, the four designated vertices on $C_{o}(B)$ are convex corners, and every 2 -vertex of B except the four designated vertices is a non-corner. Hence the rectangular drawing $D(B)$ satisfies Condition (f4). Therefore $D(B)$ is a mergeable orthogonal drawing.

Consider next the case where B has bad cycles. Let $C_{1}, C_{2}, \cdots, C_{l}$ be the maximal bad cycles in B. Then by Lemma $2 C_{1}, C_{2}, \cdots, C_{l}$ are independent of each other. We contract each $B\left(C_{i}\right), 1 \leq i \leq l$, to a single vertex v_{i}. Let B^{*} be the resulting graph. Clearly, B^{*} has no bad cycle with respect to the four designated vertices, some of which may be vertices resulted from the contraction of bad cycles. By Lemma $1 B^{*}$ has a rectangular drawing $D\left(B^{*}\right)$. We recursively find a mergeable feasible orthogonal drawing $D\left(B\left(C_{i}\right)\right)$ of each $B\left(C_{i}\right), 1 \leq i \leq l$, by the method described in the proof of Lemma 8. Patch the mergeable feasible orthogonal drawings of $D\left(B\left(C_{i}\right)\right), 1 \leq i \leq l$, into $D\left(B^{*}\right)$ by patching operations. Clearly the resulting drawing is an orthogonal drawing $D(B)$ of $B . D\left(B^{*}\right)$ is a mergeable drawing and and $D\left(B\left(C_{i}\right)\right), 1 \leq i \leq l$, are mergeable feasible drawings. Furthermore, the patching operation introduces neither a convex corner at any incut vertex nor a concave corner at any outcut vertex in the drawing of a cycle in B. Hence $D(B)$ is a mergeable orthogonal drawing.

The algorithm described in the proof of Lemma 9 takes linear time similarly as Algorithm Bi-Orthogonal-Draw in Section 3.

Based on the algorithm described in the proof of Lemma 9, we now present a result on four-corner orthogonal drawing in Lemma 10. The result described in Lemma 10 is used to obtain a bend-minimum orthogonal drawing of a plane graph with $\Delta \leq 3$ in [5].

Lemma 10 Let G be a connected plane graph with $\Delta \leq 3$, let B be a biconnected subgraph of G, and let x, y, z and w be any four 2-vertices of B on $C_{o}(B)$. Then B has a mergeable four-corner orthogonal drawing $D(B)$ for x, y, z and w if and only if the following (a), (b) and (c) hold:
(a) all the vertices x, y, z and w are good for the cycle $C_{o}(B)$ in G;
(b) there are at least two good vertices for every 2-legged cycle C in B; and
(c) there are at least one good vertex for every 3-legged cycle C in B.

Furthermore the drawing above can be found in linear time.
Proof: Necessity: Suppose that B has a mergeable four-corner orthogonal drawing $D(B)$. Then $D(B)$ has no bends and satisfies Condition (f4).
(a) All the vertices x, y, z and w are convex corners of $D\left(C_{o}(B)\right)$, and hence by Condition (f4) none of x, y, z and w is an incut vertex for $C_{o}(B)$. Therefore x, y, z and w are good vertices for $C_{o}(B)$.
(b) The rectilinear polygonal drawing $D(C)$ of a 2-legged cycle C in $D(B)$ has at least four convex corners. Since $D(B)$ has no bend, every convex corner of $D(C)$ is either a 2-vertex of B or a leg-vertex of C in B. The two leg-vertices of C may serve as two convex corners. Any other convex corner of $D(C)$ is a 2-vertex of B and is not an incut vertex for C in G by Condition (f4). Hence there are at least two good vertices for C.
(c) Similar to (b).

Sufficiency: Assume that B satisfies Conditions (a)-(c) in Lemma 10. Then we can obtain a mergeable orthogonal drawing $D(B)$ of B in linear time by the algorithm described in the proof of Lemma 9. To ensure that $D(B)$ is a fourcorner orthogonal drawing for x, y, z and w, the algorithm must select x, y, z and w as the four designated corners, and the drawing may be needed to expand outwards after each patching operation.

A block of a connected graph G is either a biconnected component or a bridge of G. The graph in Fig. 19(a) has the blocks $B_{1}, B_{2}, \cdots, B_{9}$ depicted in Fig. 19(b). The blocks and cut vertices in G can be represented by a tree T,

Figure 19: (a) G, (b) blocks, and (c) $B C$-tree T.
called the $B C$-tree of G. In T each block is represented by a B-node and each
cut vertex of G is represented by a C-node. The $B C$-tree T of the plane graph G in Fig. 19(a) is depicted in Fig. 19(c), where each B-node is represented by a rectangle and each C-node is represented by a circle.

We call a cycle C in a plane graph G a maximal cycle of G if $G(C)$ is not contained in $G\left(C^{\prime}\right)$ for any other cycle C^{\prime} in G. Thus a maximal cycle is an outer cycle of a biconnected component of G. The graph G in Fig. 20(a) has two maximal cycles C_{1} and C_{2} drawn by thick lines. $G(C)$ is called a maximal closed subgraph of G if C is a maximal cycle of G. We now have the following lemma.

Figure 20: (a) A plane graph G with two maximal cycles C_{1} and C_{2}, (b) $G\left(C_{1}\right)$, (c) BC-tree of $G\left(C_{1}\right)$, (d) drawings of the two biconnected components B_{1} and B_{6} of $G\left(C_{1}\right)$, and (e) the final drawing of $G\left(C_{1}\right)$.

Lemma 11 If G is a connected plane graph of $\Delta \leq 3$ and satisfies the condition in Theorem 3, then $G(C)$ has a mergeable orthogonal drawing for any maximal cycle C in G.

Proof: We give an algorithm for finding a mergeable orthogonal drawing of $G(C)$, that is, an orthogonal drawing of $G(C)$ which has no bends and satisfies (f4).

If $G(C)$ is a biconnected component of G, then by Lemma $9 G(C)$ has a mergeable orthogonal drawing. One may thus assume that $G(C)$ is not a
biconnected component of G. Then $G(C)$ has some biconnected components and bridges. Clearly the biconnected components of $G(C)$ are vertex-disjoint with each other. For each biconnected component we can find a mergeable orthogonal drawing by the algorithm described in the proof of Lemma 9, while we draw each bridge by a horizontal or vertical line segment. We then merge the drawings of biconnected components and bridges without introducing new bends and edge crossings as follows.

We construct a $B C$-tree T of $G(C)$. Let B_{1} be the node in the BC-tree corresponding to the biconnected component of $G(C)$ whose outer cycle is C. We consider T as a rooted tree with root B_{1}. Starting from the root B_{1} we visit the tree by depth-first search and merge the orthogonal drawings of the blocks in the depth first-search order.

Let $B_{1}, B_{2}, \cdots, B_{b}$ be the ordering of the blocks following a depth-first search order starting from $B_{1} . G\left(C_{1}\right)$ for the graph G in Fig. 20(a) is depicted in Fig. 20(b) and the BC-tree of $G\left(C_{1}\right)$ is depicted in Fig. 20(c), where B_{1} is the root of the tree and the other B-nodes are numbered according to a depth-first search order starting from B_{1}.

We assume that we have obtained a mergeable orthogonal drawing D_{i} by merging the orthogonal drawings of the blocks $B_{1}, B_{2}, \cdots, B_{i}$, and that we are now going to obtain a mergeable orthogonal drawing D_{i+1} by merging D_{i} with an orthogonal drawing of the block B_{i+1}. Let v_{t} be the cut vertex corresponding to the C-node which is the parent of B_{i+1} in T. Let B_{x} be the parent of v_{t} in T. Then both B_{x} and B_{i+1} contain v_{t}, and D_{i} contains the drawing of B_{x}. We have the following three cases to consider.
Case 1: B_{x} is a biconnected component and B_{i+1} is a bridge.
In this case B_{i+1} is an edge and will be drawn inside an inner face of the drawing D_{i}. Let C_{f} be the facial cycle of B_{x} corresponding to the inner face. Then v_{t} is an incut vertex for C_{f}. Since we have obtained a mergeable orthogonal drawing $D\left(B_{x}\right)$ of B_{x}, v_{t} is a concave corner or a non-corner of the drawing of C_{f} in $D\left(B_{x}\right)$, and hence the two edges incident to v_{t} are drawn in D_{i} as in Fig. 21 or as a rotated one. We can draw the bridge B_{i+1} as a horizontal or a vertical line segment started from v_{t} as illustrated by dotted lines in Fig. 21. We thus obtain a drawing D_{i+1}. Clearly no new bend is introduced in D_{i+1} and D_{i} may be expanded outwards to avoid edge crossings. In Fig. 20(e) the bridge $B_{2}=\left(v_{3}, v_{24}\right)$ is merged with a biconnected component B_{1} at vertex v_{3}. Case 2: Both B_{x} and B_{i+1} are bridges.

In this case v_{t} is drawn in an inner face of D_{i} and has degree 1 or 2 in D_{i}. (See Fig. 22.)

We first consider the case where v_{t} has degree 1 . We then draw B_{i+1} as indicated by the dotted line in Fig. 22(a).

We next consider the case where v_{t} has degree 2 in D_{i}. Then v_{t} has degree 3 in $G(C)$, and let x, y, and z be the three neighbors of v_{t} in G. We may assume without loss of generality that edges $\left(v_{t}, x\right)$ and $\left(v_{t}, y\right)$ are bridges and are already drawn in D_{i} and that B_{x} is either $\left(v_{t}, x\right)$ or $\left(v_{t}, y\right)$. We now merge the drawing of bridge $B_{i+1}=\left(v_{t}, z\right)$ to D_{i}. It is evident from the drawing described above that bridges $\left(v_{t}, x\right)$ and $\left(v_{t}, y\right)$ are drawn on a (horizontal or

Figure 21: Drawing of edges incident to v_{t} in D_{i} when B_{x} is a biconnected component and B_{i+1} is a bridge.
vertical) straight line segment. We draw B_{i+1} as indicated by a dotted line in Fig. 22(b).

Figure 22: Drawings of B_{i} when both B_{x} and B_{i+1} are bridges

Case 3: B_{x} is a bridge and B_{i+1} is a biconnected component.
In this case v_{t} is drawn in D_{i} as an end of a horizontal or vertical line segment inside an inner face of D_{i}. Vertex v_{t} has degree 2 in B_{i+1} and is an outcut vertex for $C_{o}\left(B_{i+1}\right)$. By Lemma $9 D\left(B_{i+1}\right)$ is a mergeable orthogonal drawing, and hence v_{t} is a convex corner or a non-corner of the drawing of $C_{o}\left(B_{i+1}\right)$ in $D\left(B_{i+1}\right)$. Therefore $D\left(B_{i+1}\right)$ can be easily merged with D_{i} by rotating $D\left(G\left(B_{i+1}\right)\right)$ by 90° or 180° or 270° and expanding the drawing D_{i} if necessary. In Fig. 20(e) the orthogonal drawing of B_{6} is merged to D_{5} at vertex v_{11} where $D\left(B_{6}\right)$ in Fig. 20(d) has been rotated by 90° and the drawing D_{5} is expanded outwards.

We call the algorithm described in the proof of Lemma 11 Algorithm
Maximal-Orthogonal-Draw. Clearly Algorithm Maximal-OrthogonalDraw takes linear time.

We are now ready to give a proof for sufficiency of Theorem 3 . Proof for sufficiency of Theorem 3

We decompose G into maximal closed subgraphs and bridges. We find an orthogonal drawing of each maximal closed subgraph by Algorithm Maximal-

Orthogonal-Draw. Each of the bridges can be drawn by a horizontal or a vertical line segment. Using a technique similar to one in the proof of Lemma 11, we merge the drawings of the maximal closed subgraphs and bridges. The resulting drawing is an orthogonal drawing of G without bends.

We call the algorithm described in the proof for sufficiency of Theorem 3 Algorithm No-bend-Orthogonal-Draw. An execution of the algorithm No-bend-Orthogonal-Draw is illustrated in Fig. 23. We now have the following theorem.

Figure 23: (a) A plane graph G, (b) two maximal closed subgraphs $G\left(C_{1}\right)$ and $G\left(C_{2}\right)$ of G, (c) orthogonal drawings of $G\left(C_{1}\right)$ and $G\left(C_{2}\right)$ without bends, and (d) orthogonal drawings of G without bends.

Theorem 4 If G is a plane connected graph of $\Delta \leq 3$ and satisfies the condition in Theorem 3, then Algorithm No-bend-Orthogonal-Draw finds an orthogonal drawing of G without bends in linear time.

5 Conclusions

In this paper we established a necessary and sufficient condition for a plane graph G of $\Delta \leq 3$ to have an orthogonal drawing without bends, and gave a linear-
time algorithm to examine whether G has an orthogonal drawing without bends and find such a drawing of G if it exists. The condition is a generalization of Thomassen's condition for rectangular drawings [12]. The algorithm presented in this paper has applications in finding an orthogonal drawing of a plane graph of $\Delta \leq 3$ with the minimum number of bends in linear time [5]. It is remained as a future work to establish a necessary and sufficient condition for a plane graph of $\Delta \leq 4$ to have an orthogonal drawing without bends.

An orthogonal drawing of a plane graph G without bends is called a rectangular drawing of G if each face of G including the outer face is drawn as a rectangle. A planar graph is said to have a rectangular drawing if at least one of its plane embeddings has a rectangular drawing. Recently Rahman et al. [6] gave a necessary and sufficient condition for a planar graph of $\Delta \leq 3$ to have a rectangular drawing which leads to a linear time algorithm to find a rectangular drawing of a planar graph, if it exists. It is thus an interesting future work to generalize the condition of Rahman et al. [6] for orthogonal drawings of planar graphs of $\Delta \leq 3$ without bends.

References

[1] G. Di Battista, P. Eades, R. Tamassia, I. G. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs, Prentice-Hall Inc., Upper Saddle River, New Jersey, 1999.
[2] A. Garg and R. Tamassia, On the computaional complexity of upward and rectilinear planarity testing, SIAM J. Comput., 31(2), pp. 601-625, 2001.
[3] A. Garg and R. Tamassia, A new minimum cost flow algorithm with applications to graph drawing, Proc. of Graph Drawing'96, Lect. Notes in Computer Science, 1190, pp. 201-206, 1997.
[4] T. Lengauer, Combinatorial Algorihms for Integrated Circuit Layout, Wiley, Chichester, 1990.
[5] M. S. Rahman and T. Nishizeki, Bend-minimum orthogonal drawings of plane 3-graphs, Proc. of WG'02, Lect. Notes in Computer Science, 2573, pp. 365-376, 2002.
[6] M. S. Rahman, T. Nishizeki and S. Ghosh, Rectangular drawings of planar graphs, Journal of Algorithms, 50, pp. 62-78, 2004.
[7] M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular grid drawings of plane graphs, Comp. Geom. Theo. Appl., 10(3), pp. 203-220, 1998.
[8] M. S. Rahman, S. Nakano and T. Nishizeki, A linear algorithm for bendoptimal orthogonal drawings of triconnected cubic plane graphs, Journal of Graph Alg. and Appl., http://jgaa.info, 3(4), pp. 31-62, 1999.
[9] M. S. Rahman, S. Nakano and T. Nishizeki, Box-rectangular drawings of plane graphs, Journal of Algorithms, 37, pp. 363-398, 2000.
[10] M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular drawings of plane graphs without designated corners, Comp. Geom. Theo. Appl., 21(3), pp. 121-138, 2002.
[11] M. S. Rahman, M. Naznin and T. Nishizeki, Orthogonal drawings of plane graphs without bends, Proc. of Graph Drawing'01, Lect. Notes in Computer Science, 2265, pp. 392-406, 2002.
[12] C. Thomassen, Plane representations of graphs, (Eds.) J.A. Bondy and U.S.R. Murty, Progress in Graph Theory, Academic Press Canada, pp. 43-69, 1984.
[13] R. Tamassia, On embedding a graph in the grid with the minimum number of bends, SIAM J. Comput., 16, pp. 421-444, 1987.

