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Abstract

This paper presents the first non-trivial lower bounds for the total
number of bends in 3-D orthogonal graph drawings with vertices repre-
sented by points. In particular, we prove lower bounds for the number of
bends in 3-D orthogonal drawings of complete simple graphs and multi-
graphs, which are tight in most cases. These result are used as the basis
for the construction of infinite classes of c-connected simple graphs, multi-
graphs, and pseudographs (2 ≤ c ≤ 6) of maximum degree ∆ (3 ≤ ∆ ≤ 6),
with lower bounds on the total number of bends for all members of the
class. We also present lower bounds for the number of bends in general
position 3-D orthogonal graph drawings. These results have significant
ramifications for the ‘2-bends problem’, which is one of the most impor-
tant open problems in the field.
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1 Introduction

The 3-D orthogonal grid consists of grid-points in 3-space with integer coor-
dinates, together with the axis-parallel grid-lines determined by these points.
Two grid-points are said to be collinear if they are contained in a single grid-line,
and are coplanar if they are contained in a single grid-plane. A 3-D orthogo-
nal drawing of a graph positions each vertex at a distinct grid-point, and routes
each edge as a polygonal chain composed of contiguous sequences of axis-parallel
segments contained in grid-lines, such that (a) the end-points of an edge route
are the grid-points representing the end-vertices of the edge, and (b) distinct
edge routes only intersect at a common end-vertex.

For brevity we say a 3-D orthogonal graph drawing is a drawing. A drawing
with no more than b bends per edge is called a b-bend drawing. The graph-
theoretic terms ‘vertex’ and ‘edge’ also refer to their representation in a drawing.
The ports at a vertex v are the six directions, denoted by X+

v , X−
v , Y +

v , Y −
v ,

Z+
v and Z−

v , which the edges incident with v can use. For each dimension
I ∈ {X, Y, Z}, the I+

v (respectively, I−v ) port at a vertex v is said to be extremal
if v has maximum (minimum) I-coordinate taken over all vertices.

Clearly, 3-D orthogonal drawings can only exist for graphs with maximum
degree at most six. 3-D orthogonal drawings of maximum degree six graphs
have been studied in [3, 4, 6, 10–13, 17, 19, 21, 22, 33, 35–37]. By representing
a vertex by a grid-box, 3-D orthogonal drawings of arbitrary degree graphs
have also been considered; see for example [5, 8, 21]. 3-D graph drawing has
applications in VLSI circuit design [1, 2, 18, 23, 26] and software engineering
[15, 16, 24, 25] for example. Note that there is some experimental evidence
suggesting that displaying a graph in three dimensions is better than in two
[28, 29].

Drawings with many bends appear cluttered and are difficult to visualise.
In VLSI layouts, bends in the wires increase the cost of production and the
chance of circuit failure. Therefore minimising the number of bends, along with
minimising the bounding box volume, have been the most commonly proposed
aesthetic criteria for measuring the quality of a drawing. Using straightforward
extensions of the corresponding 2-D NP-hardness results, optimising each of
these criteria is NP-hard [12]. Kolmogorov and Barzdin [17] established a lower
bound of Ω(n3/2) on the bounding box volume of drawings of n-vertex graphs.
In this paper we establish the first non-trivial lower bounds for the number of
bends in 3-D orthogonal drawings. Lower bounds for the number of bends in
2-D orthogonal drawings have been established by Tamassia et al. [27] and Biedl
[7].

A graph with no parallel edges and no loops is simple; a multigraph may
have parallel edges but no loops; and a pseudograph may have parallel edges and
loops. We consider n-vertex m-edge graphs G with maximum degree at most
six, whose vertex set and edge set are denoted by V (G) and E(G), respectively.

A j-edge matching is denoted by Mj ; that is, Mj consists of j edges with no
end-vertex in common. Kp \Mj is the graph obtained from the complete graph
Kp by deleting a j-edge matching Mj (where 2j ≤ p). The 2-vertex multigraph
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with j edges is denoted by j · K2, and Lj is the 1-vertex pseudograph with j
loops. An m-path is a path with m edges. By Cm we denote the cycle with m
edges, which is also called an m-cycle. A chord of a cycle C is an edge not in C
whose end-vertices are both in C. We say two cycles are chord-disjoint if they
do not have a chord in common. Note that chord-disjoint cycles may share a
vertex or edge. A chordal path of a cycle C is a path P whose end-vertices are
in C, but the internal vertices of P and the edges of P are not in C.

Lower bounds for the maximum number of bends per edge:

Obviously every drawing of K3 has at least one bend. It follows from results
in multi-dimensional orthogonal graph drawing by Wood [32], Wood [35] that
every drawing of K5 has an edge with at least two bends. It is well known that
every drawing of 6 · K2 has an edge with at least three bends, and it is easily
seen that 2 · K2 and 3 · K2 have at least one edge with at least one and two
bends, respectively.

X

Y

Z

Figure 1: A 2-bend drawing of K7.
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Eades et al. [13] originally conjectured that every drawing of K7 has an
edge with at least three bends. A counterexample to this conjecture, namely a
drawing of K7 with at most two bends per edge, was first exhibited by Wood
[32]. A more symmetric drawing of K7 with at most two bends per edge is
illustrated in Figures 1 and 2. This drawing1 has the interesting feature of
rotational symmetry about the line X = Y = Z.

X

Y

Z

Figure 2: Components of a 2-bend drawing of K7.
1A physical model of this drawing is on display at the School of Computer Science and

Software Engineering, Monash University, Clayton, Melbourne, Australia.
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One may consider the other 6-regular complete multi-partite graphs K6,6,
K3,3,3 and K2,2,2,2 to be potential examples of simple graphs requiring an edge
with at least three bends. However, 2-bend drawings of these graphs were
discovered by Wood [35].

Lower bounds for the total number of bends:

The main result in this paper is the construction of infinite families of graphs
of given connectivity and maximum degree, with a lower bound on the average
number of bends in a drawing of each graph in the class. As a first step to-
ward this goal we establish lower bounds on the minimum number of bends in
drawings of small complete graphs, and the graphs obtained from small com-
plete graphs by deleting a matching; see Table 1. For many of these graphs the
obtained lower bound is tight; that is, there is a drawing with this many bends.
The main exception being K7 and the graphs derived from K7 by deleting a
matching. In particular, we prove a lower bound of 20 − 3j for the number of
bends in drawings of K7 \ Mj, whereas the best known drawings have 24 − 4j
edges; see Figure 19. We conjecture that there is no drawing of K7 \ Mj with
fewer than 24 − 4j edges for each j ∈ {0, 1, 2, 3}. There is also a gap in our
bounds in the case of K6 \ M3. Here we have a lower bound of seven bends,
whereas the best known drawing of K6\M3 has eight bends, which we conjecture
is bend-minimum.

Table 1: Bounds for the minimum number of bends in drawings of complete
graphs minus a matching Kp \ Mj .

p = 3 p = 4 p = 5 p = 6 p = 7

j = 0 1 3 7 12 20 . . . 24
j = 1 0 2 5 10 17 . . . 20
j = 2 - 1 4 8 14 . . . 16
j = 3 - - - 7 . . . 8 11 . . . 12

Furthermore we show that drawings of the multigraphs j · K2 with 2 ≤ j ≤ 6
have at least 2, 4, 6, 8 and 12 bends, respectively. Since a loop has at least
three bends in every drawing, the pseudograph Lj with 1 ≤ j ≤ 3 has at least
3j bends.

We use the above lower bounds as the basis for the construction of infinite
families of c-connected graphs of maximum degree ∆ with lower bounds on the
number of bends for each member of the class, as summarised in Table 2.

Upper bounds:

A number of algorithms have been proposed for 3-D orthogonal graph drawing
[3, 6, 9–13, 17, 21, 22, 33, 35–37]. We now summarise the best known upper
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Table 2: Lower bounds on the average number of bends in drawings of an infinite
family of c-connected graphs with maximum degree at most ∆.

type simple graphs multigraphs pseudographs

∆ 6 5 4 3 2 6 5 4 3 2 6 5 4 3 2

c = 0 20
21

4
5

7
10

1
2

1
3 2 8

5
3
2

4
3 1 3 3 3 3 3

c = 2 17
21

2
3

1
2

1
3 - 4

3
6
5 1 2

3 - 2 3
2

3
2 - -

c = 3 8
11

14
23

8
19

2
9 - 1 4

5
1
2 - - 4

3
6
5 - - -

c = 4 12
17

7
12

2
5 - - 2

3
2
5 - - - 1 - - - -

c = 5 24
35

14
25 - - - 1

3 - - - - - - - - -

c = 6 2
3 - - - - - - - - - - - - - -

bounds for the number of bends in 3-D orthogonal drawings. The 3-Bends

algorithm of Eades et al. [13] and the Incremental algorithm of Papakostas
and Tollis [21] both produce 3-bend drawings2 of multigraphs3 with maximum
degree six. As discussed above there exist simple graphs with at least one edge
having at least two bends in every drawing. The following open problem is
therefore of interest:

2-Bends Problem: Does every (simple) graph with maximum degree at most six
admit a 2-bend drawing? [13]

The Diagonal Layout & Movement algorithm of Wood [37] (also see
[33]) solves the 2-bends problem in the affirmative for simple graphs with max-
imum degree five. For maximum degree six simple graphs, the same algorithm
uses a total of at most 16

7 m bends, which is the best known upper bound for
the total number of bends in 3-D orthogonal drawings.

In this paper we provide a negative result related to the 2-bends problem. A
3-D orthogonal graph drawing is said to be in general position if no two vertices
lie in a common grid-plane. The general position model is used in the 3-Bends

and Diagonal Layout & Movement algorithms. In this paper we show that
the general position model, and the natural variation of this model where pairs
of vertices share a common plane, cannot be used to solve the 2-bends problem,
at least for 2-connected graphs.

The remainder of this paper is organised as follows. In Section 2 we establish
2The 3-Bends algorithm [13] produces drawings with 27n3 volume. By deleting grid-planes

not containing a vertex or a bend the volume is reduced to 8n3. The Incremental algorithm
[21] produces drawings with 4.63n3 volume. A modification of the 3-Bends algorithm by
Wood [36] produces drawings with n3 + o(n3) volume.

3The 3-Bends algorithm [13] explicitly works for multigraphs. The Incremental algo-
rithm, as stated in [21], only works for simple graphs, however with a suitable modification it
also works for multigraphs [A. Papakostas, private communication, 1998].
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a number of introductory results concerning 0-bend drawings of cycles. These
results are used to prove our lower bounds on the total number of bends in
drawings of complete graphs and graphs obtained from complete graphs by
deleting a matching, which are established in Section 3. In Section 4 we use
these lower bounds as the basis for lower bounds on the number of bends in
infinite families of graphs. In Section 5 we present lower bounds for the number
of bends in general position drawings. These results have important implications
for the nature of any solution to the 2-bends problem, which are discussed in
Section 6.

Some technical aspects of our proofs are presented in the appendices. In
particular, in Appendix A we prove a number of results concerning the existence
of cycles and other small subgraphs in graphs of a certain size; in Appendix B
we establish the connectivity of the graphs used in our lower bounds; and in
Appendix C we prove a result, which is not directly used in other parts of the
paper, but may be of independent interest.

2 Drawings of Cycles

In this section we characterise the 0-bend drawings of the cycles Ck (k ≤ 7). We
then show that if a drawing of a complete graph contains such a 0-bend drawing
of a cycle then there are many edges with at least three bends in the drawing
of the complete graph. These results are used in Section 3 in the proofs of our
lower bounds on the total number of bends in drawings of complete graphs.

A straight-line path in a 0-bend drawing of a cycle is called a side. A side
parallel to the I-axis for some I ∈ {X, Y, Z} is called an I-side, and I is called
the dimension of the side. Clearly the dimension of adjacent sides is different.
Thus in a 2-dimensional drawing the dimension of the sides alternate around
the cycle. We therefore have the following observation.

Observation 1. There is no 2-dimensional 0-bend drawing of a cycle with an
odd number of sides.

If there is an I-side in a drawing of a cycle for some I ∈ {X, Y, Z} then
clearly there is at least two I-sides. Therefore a drawing of a cycle with X-,
Y - and Z-sides, which we call truly 3-dimensional, has at least six sides. Hence
there is no truly 3-dimensional 3-, 4- or 5-sided 0-bend drawing of a cycle. By
Observation 1 there is also no two-dimensional 3- or 5-sided 0-bend drawing of
a cycle. We therefore have the following observations.

Observation 2. There is no 3- or 5-sided 0-bend drawing of a cycle.

Observation 3. There is no 0-bend drawing of C3.

Observation 4. All 0-bend drawings of C4 and C5 have four sides.

Lemma 1. If a drawing of a complete graph contains a 0-bend 4-cycle (respec-
tively, 5-cycle) then at least two (four) chords of the cycle each have at least
three bends.
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Proof. By Observation 4 all 0-bend drawings of C4 and of C5 have four sides.
As illustrated in Figure 3(a), the chord connecting diagonally opposite vertices
in a 4-sided drawing of a cycle has at least three bends. Hence, if a drawing
of a complete graph contains a 0-bend C4, then the two chords each have at
least three bends. Also, in the case of C5, the edges from the vertex not at the
intersection of two sides to the diagonally opposite vertices both have at least
three bends, as illustrated in Figure 3(b). Hence, if a drawing of a complete
graph contains a 0-bend C5, then the four chords each have at least three bends.

(b)(a)

Figure 3: 3-bend edge ‘across’ the 4- and 5-cycle.

Observation 5. K2,3 does not have a 0-bend drawing.

Proof. K2,3 contains C4. By Observation 4, all 0-bend drawing of C4 have
four sides. As in Lemma 1, an edge between the diagonally opposite vertices
of a 4-sided cycle has at least three bends. Hence the 2-path in K2,3 between
the non-adjacent vertices of the 4-cycle has at least one bend, as illustrated in
Figure 4(b). Hence K2,3 does not have a 0-bend drawing.

(a) (b)

Figure 4: (a) The graph K2,3. (b) K2,3 does not have a 0-bend drawing.

The proof of the following lemma is almost identical to that of Observation 5
and is omitted.

Observation 6. If a drawing of a graph contains a 0-bend 4-cycle (a, b, c, d)
with a chordal 2-path P ∈ {(a, x, c), (b, x, d)}, then P has at least two bends.



D. Wood, Lower Bounds for 3-D Drawings , JGAA, 7(1) 33–77 (2003) 41

We now classify the 0-bend drawings of C6.

Lemma 2. The only 6-sided 0-bend drawings of C6 are those in Figure 5 (up
to symmetry and the deletion of grid-planes not containing a vertex ).

(a) (b) (c)

Figure 5: 6-sided 0-bend drawings of C6.

Proof. Let S be the cyclic sequence of dimensions of the sides around an arbi-
trary, but fixed, 6-sided 0-bend drawing of C6.

First suppose the drawing is 2-dimensional. Since adjacent sides are perpen-
dicular, without loss of generality three sides are X-sides and three sides are
Y -sides. Therefore S is (X, Y, X, Y, X, Y ). The length of one of the X-sides
equals the sum of the lengths of the other two X-sides, and similarly for the
Y -sides. Label these long sides X∗ and Y ∗. If the long sides are adjacent then S
is (X∗, Y ∗, X, Y, X, Y ), which corresponds to the drawing in Figure 5(c). If the
long sides are not adjacent then S is (X∗, Y, X, Y ∗, X, Y ), which corresponds to
the ‘drawing’ in Figure 6, which contains an edge crossing.

Figure 6: 6-sided 0-bend ‘drawing’ of C6 with an edge crossing.

Now suppose the drawing is truly 3-dimensional. Clearly there are two X-
sides, two Y -sides and two Z-sides. Let x be the number of sides between the
two X-sides in S. Clearly x is one or two. Define y and z similarly for the Y -
and Z-sides. We can assume without loss of generality that x ≤ y ≤ z.

If x = 1 and y = 1 then S is (X, Z, X, Y, Z, Y ), and z = 2. This sequence
corresponds to the drawing in Figure 5(a). If x = 1 and y = 2 then S is
(X, Y, X, Z, Y, Z), and z = 1 which is a contradiction. Otherwise x = y = z = 2
and S is (X, Y, Z, X, Y, Z) without loss of generality, which corresponds to the
drawing in Figure 5(b).
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Lemma 3. If a drawing of a complete graph contains a 0-bend 6-cycle then
there are at least six chords of the cycle each with at least three bends.

Proof. We can assume without loss of generality that the complete graph in
question is K6. By Observation 2, all 0-bend drawings of C6 are 4- or 6-sided.
In a 4-sided 0-bend drawing of C6 the two vertices not at the intersection of
adjacent sides can be (a) on the same side, (b) on opposite sides, or (c) on
adjacent sides, as illustrated in Figure 7. In each case there are at least six
chords each with at least three bends if the 0-bend drawing of C6 is contained
in a drawing of K6.

(a) (b) (c)

Figure 7: Edges with at least three bends in a drawing of K6 containing a
4-sided 0-bend drawing of C6.

By Lemma 2, the only 6-sided 0-bend drawings of C6 (up to symmetry)
are those in Figure 5. For each such drawing of C6, if this is a sub-drawing of
a drawing of K6, then those chords of C6 illustrated in Figure 8 each require
at least three bends (compare with Figure 3). In the case of the drawing in
Figure 8(c) there are at least six chords each requiring at least three bends.

(a) (b) (c)

Figure 8: Edges with at least three bends in a drawing of K6 containing a
6-sided 0-bend C6.

Consider the drawing in Figure 8(a) which forces at least four chords to
have at least three bends if a sub-drawing of a drawing of K6. As illustrated in
Figure 9(a), any drawing of the edges vu and vw with at most two bends per
edge passes through the same point. Hence one of these edges has at least three
bends. We can make the same argument for the edges xw and xu. Hence if K6

contains the sub-drawing of C6 illustrated in Figure 8(a) then there are at least
six chords each with at least three bends.
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Now consider the drawing in Figure 8(b) which forces at least three chords
to have at least three bends if a sub-drawing of a drawing of K6. As illustrated
in Figure 9(b), any drawing of the edges vu, uw and vw with at most two bends
per edge passes through the same point. Hence two of these edges have at least
three bends. We can make the same argument for three edges connecting the
other three vertices. Hence if K6 contains the sub-drawing of C6 illustrated in
Figure 8(b) then there are at least seven chords each with at least three bends.
The result follows.

v

u

w

x

(a)

v

u

w

(b)

Figure 9: Intersecting 1- and 2-bend edges.

Lemma 4. The only 7-sided 0-bend drawings of C7 are those in Figure 10 (up
to symmetry and the deletion of grid-planes not containing a vertex ).

(a) (b) (c)

Figure 10: 7-sided 0-bend drawings of C7.

Proof. Consider an arbitrary, but fixed, 7-sided 0-bend drawing of C7. By
Observation 2, there is no 2-dimensional 0-bend drawing of an odd cycle, and
if there is an I-side in a drawing of a cycle for some I ∈ {X, Y, Z}, then there
are at least two I-sides. Therefore in a 7-sided cycle, without loss of generality
three of the sides are X-sides, two are Y -sides and two are Z-sides. Clearly
the length of one of the X-sides equals the sum of the lengths of the other two
X-sides. Label this long side X∗.
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Let S be the cyclic sequence of the dimensions of the sides around C7,
which without loss of generality begins with the X∗-side. Therefore S is (i)
(X∗, 1, X, 2, X, 3, 4), (ii) (X∗, 1, X, 2, 3, X, 4), or (iii) (X∗, 1, 2, X, 3, X, 4), where
the numbered locations refer to a Y - or Z-side.

In case (i), the dimensions of the ‘3’ and ‘4’ sides are different, hence the
dimensions of the ‘1’ and ‘2’ sides are also different. Without loss of generality
‘1’ is a Y -side and ‘2’ is a Z-side. Therefore S is either (X∗, Y, X, Z, X, Y, Z)
or (X∗, Y, X, Z, X, Z, Y ), which correspond to the drawings in Figure 10(a) and
Figure 10(b), respectively.

In case (ii), the dimensions of the ‘2’ and ‘3’ sides are different, hence the
dimensions of the ‘1’ and ‘4’ sides are also different. Without loss of generality
‘1’ is a Y -side and ‘4’ is a Z-side. Therefore S is either (X∗, Y, X, Z, Y, X, Z),
which corresponds to the drawing in Figure 10(c), or (X∗, Y, X, Y, Z, X, Z) which
corresponds to the ‘drawing’ in Figure 11 with an edge crossing.

Figure 11: 7-sided 0-bend ‘drawing’ of C7 with an edge intersection.

In case (iii), S is simply the reverse sequence of S in case (i). We therefore
have classified all 7-sided 0-bend drawings of C7 up to symmetry and after
removing grid-planes not containing a vertex.

Lemma 5. If a drawing of K7 contains a 0-bend 7-cycle then there are at least
six chords of the cycle each with at least three bends.

Proof. By Observation 2, a 0-bend drawing of C7 has four, six or seven sides.
In a 4-sided 0-bend drawing of C7, as illustrated in Figure 12, the three

vertices not at the intersection of two adjacent sides can be (a) all on the same
side, (b) two on one side and one on an adjacent side, (c) two on one side and
one on the opposite side, or (d) all on different sides. For each drawing, if the
7-cycle is a sub-drawing of a drawing of K7, then eight chords of the cycle have
at least three bends (compare with Figure 3).

(a) (b) (c) (d)

Figure 12: Edges with at least three bends in a 4-sided 0-bend drawing of C7.
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Any 6-sided 0-bend drawing of C7 can be obtained by placing a new vertex
on one side of a 6-sided 0-bend drawing of C6. Thus, by Lemma 3 if a drawing
of K7 contains a 6-sided 0-bend drawing of C7 then at least six of the chords
have at least three bends.

By Lemma 4, the only 7-sided drawings of C7 are those illustrated in Fig-
ure 10. For each such drawing, if the 7-cycle is a sub-drawing of a drawing of K7,
Figure 13 shows chords of the cycle which need at least three bends. The draw-
ings in Figure 13(a), (b) and (c) have four, six, and four chords, respectively,
which need at least three bends.

(a) (b) (c)

Figure 13: Edges with at least three bends in a 7-sided 0-bend drawing of C7.

Consider the drawing in Figure 13(a). As illustrated in Figure 14(a), any
drawing of the edges vu, vw and vx with at most two bends per edge passes
through the same grid-point. Hence two of these edges have at least three bends.
Therefore if K7 contains the sub-drawing of C7 illustrated in Figure 13(a) then
there are at least six edges each with at least three bends.

Now consider the drawing in Figure 13(c). As illustrated in Figure 14(b),
there is one route for the edge vu with at most two bends, one route for the
edge vw with at most two bends, and three routes for the edge vx with at most
two bends. Any two of these edge routes for distinct edges pass through the
same point. Hence two of these edges have at least three bends. Therefore if
K7 contains the sub-drawing of C7 illustrated in Figure 13(c), then there are at
least six edges each with at least three bends.

v

uw

x

(a)

v

u

w

x

(b)

Figure 14: Intersecting 1- and 2-bend edges.

Therefore if a drawing of a complete graph contains a 0-bend 7-cycle, then
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there are at least six chords of the cycle each with at least three bends.

The results in this section are summarised by the following immediate corol-
lary of Lemmata 1, 3 and 5.

Theorem 1. If a drawing of Kp \ Mj contains a 0-bend 4-cycle (respectively,
5-cycle, 6-cycle, or 7-cycle), then there are at least 2 − j (4 − j, 6 − j, 6 − j)
chords of the cycle each with at least three bends.

3 Drawings of Complete Graphs

In this section we establish lower bounds for the total number of bends in draw-
ings of the complete graphs K4, K5, K6 and K7, and the graphs obtained from
these complete graphs by deleting a matching. We complete the section by es-
tablishing lower bounds for the number of bends in drawings of the multigraphs
j · K2 for 2 ≤ j ≤ 6.

The 0-bend subgraph of a given drawing consists of those edges drawn with
no bends. The following proofs typically proceed by case analysis on the size of
the 0-bend subgraph.

Figure 15 shows a drawing of K4 with three bends. Deleting one of the 1-
bend edges produces a drawing of K4 \M1 with two bends. We now prove that
both of these drawings are bend-minimum. This elementary result is indicative
of the method of proof for the corresponding results for larger complete graphs
which follow.

Figure 15: A drawing of K4 with three bends.

Theorem 2. Let j ∈ {0, 1}. Every drawing of K4 \Mj has at least 3− j bends.

Proof. Let k0 be the number of 0-bend edges in a drawing of K4 \Mj. If k0 ≤ 3
then there are at least 3− j edges each with at least one bend, and we are done.
Otherwise k0 ≥ 4. The 0-bend subgraph has no 3-cycle by Observation 3. The
only 4-vertex graph with at least four edges and no 3-cycle is a 4-cycle. Thus the
0-bend subgraph is a 4-cycle. By Theorem 1, if K4 \ Mj (with j ≤ 1) contains
a 0-bend 4-cycle, then there is at least one chord with at least three bends.

We now establish tight lower bounds for the total number of bends in draw-
ings of K5 and the graphs obtained from K5 by deleting a matching. To prove
that the drawing of K5 illustrated in Figure 16 is bend-minimum we use the
following result, which may be of independent interest.
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Figure 16: A 2-bend drawing of K5 with seven bends.

Lemma 6. For every set S of grid-points in the 3-D orthogonal grid, either
(1 ) two points in S are non-coplanar, or
(2 ) at least d2|S|/3e grid-points are in a single grid-plane.

Proof. Suppose (1) does not hold; that is, every pair of points in S share at
least one coordinate. Without loss of generality assume that there is a point
v ∈ S positioned at (0, 0, 0). Thus every point in S has at least one coordinate
equal to 0. If some point w ∈ S has exactly one coordinate equal to 0 then,
supposing this is the X-coordinate, all points in S have an X-coordinate of 0 (to
be coplanar with v and w); that is, all points are in a single grid-plane, and the
result follows. Otherwise every point in S, except v, has exactly two coordinates
equal to 0; that is, every point lies on an axis. Let x, y and z be the number
of points in S, not counting v, on the X , Y and Z axes, respectively. Then
x+y+z = |S|−1. Without loss of generality x ≥ y ≥ z. Clearly x ≥ d(|S|−1)/3e
and y ≥ b(|S| − 1)/3c, which implies there are x + y + 1 ≥ d2|S|/3e points in S
on the X- or Y -axes, and thus in a single grid-plane.

Wood [32] shows that a 1-bend drawing of Kn in a multi-dimensional or-
thogonal grid requires at least n−1 dimensions. We now provide a simple proof
of an equivalent formulation of this result in the case of n = 5.

Theorem 3. Every drawing of K5 has an edge with at least two bends.

Proof. In a layout of the vertices of K5, if two vertices are non-coplanar, then
the edge between them has at least two bends. By Lemma 6 with S = V (K5),
if all the vertices are pairwise coplanar then four of the vertices are coplanar.
Consider the K4 subgraph H induced by these four coplanar vertices. If any
edge of H leaves the plane containing the vertices then it has at least two bends.
Otherwise we have a plane orthogonal drawing of K4, which has an edge with
at least two bends [14].

We now prove that the drawing of K5 in Figure 16 is bend-minimum.

Theorem 4. Every drawing of K5 has at least seven bends.
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Proof. Let k0 be the number of 0-bend edges in a drawing of K5. Since every
subgraph of K5 with at least eight edges contains a 3-cycle, and by Observa-
tion 3, the 0-bend subgraph has no 3-cycle, k0 ≤ 7. If k0 ≤ 4 then there are
at least six edges each with at least one bend, and by Theorem 3, one of these
edges has at least two bends, implying there are at least seven bends in total,
and we are done. Now assume 5 ≤ k0 ≤ 7. Thus the 0-bend subgraph contains
a cycle, which by Observation 3, is a 4-cycle or a 5-cycle C. By Lemma 1, C
has at least two chords each with at least three bends. Since k0 ≤ 7 there is
at least one additional edge with at least one bend, implying a total of at least
seven bends.

By deleting the 2-bend edge in the drawing of K5 illustrated in Figure 16, we
obtain a drawing of K5\M1 with five bends in total. By deleting the appropriate
1-bend edge from this drawing, we obtain a drawing of K5 \M2 with four bends
in total. We now prove that both of these drawings are bend-minimum.

Theorem 5. For each j ∈ {1, 2}, every drawing of K5 \ Mj has at least 6 − j
bends.

Proof. Let k0 be the number of 0-bend edges in a drawing of K5 \Mj for some
j ∈ {1, 2}. If k0 ≤ 4 then there are at least 6 − j edges each with at least one
bend, and we are done. Now assume k0 ≥ 5. By Lemma 13 in Appendix A,
every subgraph of K5 \ Mj with at least six edges contains C3 or K2,3, and by
Observations 3 and 5, the 0-bend subgraph does not contain C3 or K2,3. Thus
k0 = 5. Since every 5-edge subgraph of K5 \ Mj contains a cycle, and the 0-
bend subgraph does not contain a 3-cycle (by Observation 3), there is a 0-bend
4-cycle or 5-cycle C.

Suppose C has a chord, which is guaranteed by Theorem 1 in the case of C
being a 5-cycle. Then by Lemma 1 the chord has at least three bends. There
are a further 4 − j edges each with at least one bend, giving a total of at least
7− j bends. If C is chordless then j = 2 and C is a 4-cycle. Thus C is spanned
by two edge-disjoint chordal 2-paths, each of which has at least two bends by
Observation 6. Thus the drawing has at least four bends, and we are done.

We now establish tight lower bounds for the total number of bends in draw-
ings of K6, and the graphs obtained from K6 by deleting a matching, except in
the case of K6\M3 for which there is a difference of one bend between our lower
bound and the best known drawing. Figure 17 shows the well-known drawing
of K6 with two 2-bend edges and a total of twelve bends.

Theorem 6. Every drawing of K6 has at least two edges each with at least two
bends.

Proof. By Theorem 3 every drawing of K5, and thus K6, has an edge with at
least two bends. Suppose that there is a drawing of K6 with exactly one edge
vw with at least two bends. By removing v and all the edges incident to v
we obtain a 1-bend drawing of K5, which contradicts Theorem 3. Thus every
drawing of K6 has at least two edges each with at least two bends.
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Figure 17: A 2-bend drawing of K6 with 12 bends.

Note that the above result can be strengthened to say that in every drawing
of K6 there are two non-adjacent edges each with at least two bends. We now
prove that the drawing of K6 illustrated in Figure 17 is bend-minimum, as is
the drawing obtained by deleting one or both of the 2-bend edges.

Theorem 7. For each j ∈ {0, 1, 2}, every drawing of K6 \ Mj has at least
12 − 2j bends.

Proof. Let ki (i ≥ 0) be the number of i-bend edges in a drawing of K6 \ Mj

for some j ∈ {0, 1, 2}. Observe that K6 \Mj has 15− j edges. By Lemma 14 in
Appendix A, every subgraph of K6 \ Mj with at least eight edges contains C3

or K2,3. By Observations 3 and 5, the 0-bend subgraph does not contain C3 or
K2,3. Thus k0 ≤ 7, and hence there are at least 8 − j edges each with at least
one bend.

If k0 ≤ 5 then at least 10 − j edges have at least one bend, and since there
are at least 2 − j edges each with at least two bends (by Theorem 6), there
are at least 12 − 2j bends, and we are done. Now assume k0 ≥ 6. Thus the
0-bend subgraph contains a cycle C, which by Observation 3, is not a 3-cycle.
If C has at least two chords then by Theorem 1, each chord has at least three
bends, giving a total of at least 12− j ≥ 12 − 2j bends, and we are done. Also
by Theorem 1, if j = 0 or C is a 5- or 6-cycle, then C has at least two chords.
Thus, we now assume that C = (a, b, c, d) is a 4-cycle and j ∈ {1, 2}.

If j = 1 then by Theorem 1, C has exactly one chord, say ac. Let x and y
be the other two vertices in K6 \M1. The edge ac has at least three bends, and
each of the chordal 2-paths axc, ayc, bxd and byd have at least two bends, by
Observation 6. Thus there is a total of at least 11 > 12 − 2j bends, and we are
done. Now assume j = 2. If C has one chord then this chord has at least three
bends, giving a total of at least 8 = 12− 2j bends, and we are done. Otherwise
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C has no chords. Let x and y be the other two vertices in K6 \M2. Each of the
chordal 2-paths axc, ayc, bxd and byd have at least two bends by Observation 6,
giving a total of at least 8 = 12 − 2j bends. This completes the proof.

We now prove a lower bound of seven on the number of bends in drawings
of K6 \ M3, the octahedron graph. The drawing of K6 \ M3 obtained from the
drawing of K6 illustrated in Figure 17 by deleting the two 2-bend edges and the
0-bend edge has eight bends. We conjecture that every drawing of K6 \M3 has
at least eight bends.

Theorem 8. Every drawing of K6 \ M3 has at least seven bends.

Proof. Let ki (i ≥ 0) be the number of i-bend edges in a drawing of K6 \ M3.
If k0 ≤ 5 then at least seven edges each have at least one bend, and we are
done. Now assume k0 ≥ 6. Thus the 0-bend subgraph contains a cycle C
which is not a 3-cycle by Observation 3. Hence C is a 4-, 5- or 6-cycle. Let
V (K6 \ M3) = {a, b, c, 1, 2, 3} with a1, b2, c3 6∈ E(K6 \ M3).

Case 1. C is a 4-cycle: Since K4 6⊆ K6 \ M3, C has at most one chord.
Initially suppose C has no chords. Without loss of generality C = (a, b, 1, 2).
Then ac1, bc2, a31, and b32 are edge-disjoint chordal 2-paths between diagonally
opposite vertices on C. By Observation 6, each of these chordal 2-paths have at
least two bends, giving a total of eight bends, and we are done. Now suppose
C has one chord. Without loss of generality C = (a, b, 3, 2), with the chord
a3 having at least three bends (by Theorem 1). Thus bc2 and b12 are chordal
2-paths and ac13 is a chordal 3-path between diagonally opposite vertices on
C. By Observation 6, these chordal 2-paths each have at least two bends and,
similarly, the chordal 3-path has at least one bend. Therefore there is a total of
at least eight bends.

Case 2. C is a 5-cycle: Since K6 \M3 is vertex-transitive, the vertices of
C induce the graph illustrated in Figure 18(a).

(a) (b) (c) (d)

Figure 18: 0-bend 5-cycle in drawings of K6 \ M3.

Since there is only one drawing of a 0-bend 5-cycle, by symmetry there are
three different ways to draw C, as illustrated in Figure 18(b), (c) and (d). In
each case there are two chords of C each with at least three bends, and a further
chord with at least two bends, giving a total of at least eight bends.
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Case 3. C is a 6-cycle: By Theorem 1, C has at least three chords each
with at least three bends. Thus the drawing has at least nine bends, and we are
done.

We now establish lower bounds for the number of bends in drawings of
K7 \ Mj for each j ∈ {0, 1, 2, 3}. Figure 19 shows a 4-bend drawing of K7 with
a total of 24 bends. (Compare this with the total of 42 bends in the 2-bend
drawing of K7 in Figure 1.) Deleting j of the three 4-bend edges from this
drawing produces a drawing of K7 \Mj with 24−4j bends. The following lower
bound is thus within 4 − j bends of being tight.

X

Y

Z

Figure 19: A 4-bend drawing of K7 with 24 bends.

Theorem 9. For each j ∈ {0, 1, 2, 3}, every drawing of K7 \ Mj has at least
20 − 3j bends.

Proof. Suppose to the contrary, that for some j ∈ {0, 1, 2, 3}, there is a drawing
of K7 \Mj with at most 19− 3j bends. Let ki (i ≥ 0) be the number of i-bend
edges. Then

∑

i≥1

iki ≤ 19 − 3j ,
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and
∑

i≥1

ki ≤ (19 − 3j) −
∑

i≥2

(i − 1)ki .

Since K7 \ Mj has 21 − j edges,

21 − j =
∑

i≥0

ki ≤ k0 + (19 − 3j) −
∑

i≥2

(i − 1)ki .

Hence,
∑

i≥2

(i − 1)ki ≤ k0 + (19 − 3j) − (21 − j) = k0 − 2j − 2 . (1)

By Lemma 15 in Appendix A, every subgraph of K7 \ Mj with at least ten
edges contains C3 or K2,3. By Observations 3 and 5, the 0-bend subgraph does
not contain C3 or K2,3; thus k0 ≤ 9.

Case 1. k0 = 8 or k0 = 9: By Lemma 16 in Appendix A, every subgraph
of K7 \ Mj with at least eight edges contains a cycle Ck (k 6= 4), two chord-
disjoint cycles, or K2,3. Therefore the 0-bend subgraph contains a cycle Ck

(k ≥ 5) or two chord-disjoint 4-cycles (since C3 and K2,3 do not have 0-bend
drawings by Observations 3 and 5, respectively). In either case, by Theorem 1
there are at least 4 − j chords of these cycles each with at least three bends.
Thus

∑
i≥3 ki ≥ 4 − j, and hence,

k2 + 2(4 − j) ≤ k2 +
∑

i≥3

2ki ≤
∑

i≥2

(i − 1)ki .

By (1) with k0 ≤ 9, k2 + 8 − 2j ≤ 9 − 2j − 2 and thus k2 ≤ −1, which is a
contradiction.

Case 2. k0 ≤ 7: Let A be the set of edges of K7 \ Mj routed using
an extremal port at exactly one end-vertex. Let B be the set of edges routed
using extremal ports in the same direction at its end-vertices. Let C be the set
of edges routed using extremal ports in differing directions at its end-vertices.
Since, all but 2j ports in the drawing of K7 \Mj are used, and there is at least
one extremal port in each of the six directions, |A| + |B| + 2|C| ≥ 6 − 2j. As
illustrated in Figure 20(a) an edge in A or B has at least two bends, and an
edge in C has at least three bends, as illustrated in Figure 20(b). Hence,

k2 + 2
∑

i≥3

ki ≥ 6 − 2j ,

which implies,
∑

i≥2

(i − 1)ki ≥ 6 − 2j . (2)
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(b)

Figure 20: Edges using extremal ports have at least two bends.

However, by (1) with k0 ≤ 7,
∑

i≥2

(i − 1)ki ≤ 5 − 2j ,

which contradicts (2). The result follows.

3.1 Drawings of Multigraphs

We now prove tight bounds for the number of bends in drawings of the complete
multigraphs j · K2 for 2 ≤ j ≤ 6.

(a) (b) (c) (d)

Figure 21: Bend-minimum drawings of (a) 2 · K2, (b) 3 · K2, (c) 4 · K2 and (d)
5 · K2.

We omit the proof of the following elementary result as the method is similar
and simpler than the proofs of Theorems 10 and 11 for 6 · K2 below.

Lemma 7. For each of the graphs j · K2 (2 ≤ j ≤ 5), the drawings in Figure 21
have the minimum maximum number of bends per edge and the minimum total
number of bends.

In Figure 22 we show two drawings of 6 · K2. We now provide a formal prove
of the well-known result that the maximum number of bends per edge in the
drawing in Figure 22(a) is optimal.

Theorem 10. Every drawing of 6 · K2 has an edge with at least three bends.

Proof. Let the vertices of 6 · K2 be v and w. Since 6 · K2 is 6-regular every port
at v and w is used. The two vertices are either (a) collinear, (b) coplanar but
not collinear, or (c) not coplanar, as illustrated in Figure 23.
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(b)(a)

Figure 22: Drawings of 6 · K2 with (a) a maximum of three bends per edge, and
(b) a total of twelve bends.

(a) (b) (c)

Figure 23: 6 · K2 has a 3-bend edge.

In each case there is a port at v pointing away from w such that the edge
using this port requires at least three bends to reach w.

We now prove that the drawing in Figure 22(b) is bend-minimum.

Theorem 11. Every drawing of the multigraph 6 · K2 has at least twelve bends.

Proof. Let the vertices of 6 · K2 be v and w. Suppose that v and w are not
coplanar. The edges using the three ports at v pointing towards w have at least
two bends, and the other edges have at least three bends. Thus the drawing
has at least 15 bends.

Suppose v and w are coplanar but not collinear. The edges using the two
ports at v pointing towards w have at least one bend, the edges using the two
opposite ports have at least two bends, and the remaining two edges have at
least three bends. Thus the drawing has at least 12 bends.

Suppose v and w are collinear, and without loss of generality, that v and w
lie in an X-axis parallel line, such that the X-coordinate of v is less than the
X-coordinate of w. The edge using the port X−

v has at least three bends, and
the four edges using the other four ports at v pointing away from w have at
least two bends. Thus the drawing has at least 11 bends. Suppose there is such
a drawing with exactly 11 bends. Then there are four 2-bend edges, and one
3-bend edge. These four 2-bend edges use the Y ± and Z± ports at each vertex.
Therefore, the edge using the X−

v port and the X+
w port has four bends, and

thus the drawing has 12 bends, which is a contradiction. The result follows.



D. Wood, Lower Bounds for 3-D Drawings , JGAA, 7(1) 33–77 (2003) 55

4 Constructing Large Graphs

In this section we use the lower bounds for the number of bends in drawings
of the complete graphs established in Section 3 as building blocks to construct
infinite families of c-connected graphs (2 ≤ c ≤ 6) with maximum degree ∆
(2 ≤ ∆ ≤ 6), and with lower bounds on the number of bends in drawings of
every graph in the family.

A graph is c-connected (c ≥ 1) if the removal of fewer than c vertices results in
neither a disconnected graph nor the trivial graph. To establish that our graphs
are c-connected we use the following characterisation due to Whitney [31], which
is part of the family of results known as ‘Menger’s Theorem’. A graph G is c-
connected if and only if for each pair u, v of distinct vertices there are at least
c internally disjoint paths from u to v in G. Our proofs of connectivity are
postponed until Appendix B.

We employ two methods for constructing new graphs from two given graphs.
First, given graphs G and H , we define H〈G〉 to be the graph obtained by
replacing each vertex of H by a copy of G, and connecting the edges in H
incident to a particular vertex in H to different vertices in the corresponding
copy of G. In most cases, H is ∆-regular and G is a complete graph Kp for
some p ≥ ∆; thus H〈G〉 is well-defined. In other cases we shall specify which
edges of H are connected to which vertices in each copy of G.

Our second method for constructing large graphs is the cartesian product
G × H of graphs G and H . G × H has vertex set V (H) × V (G) with (v1, w1)
and (v2, w2) adjacent in G × H if either v1 = v2 and w1w2 ∈ E(G), or w1 = w2

and v1v2 ∈ E(H). For example, Cp × Cq is the 4-regular p × q torus graph.
Our lower bounds for simple disconnected graphs are obtained by taking

disjoint copies of Kp for 4 ≤ p ≤ 7. For consistency we denote these graphs
by Ir〈Kp〉, where Ir is the r-vertex graph with no edges. Our lower bounds for
disconnected multigraphs are obtained by Ir〈p · K2〉 for 3 ≤ p ≤ 6, and we use
Ir〈Lp〉 with 1 ≤ p ≤ 3 to obtain lower bounds for disconnected pseudographs.

As illustrated in Figure 24, to obtain lower bounds for simple 2-connected
graphs, we use Cr〈Kp〉 for 3 ≤ p ≤ 6 and r ≥ 3, and Cr〈Kp \ M1〉 for 4 ≤ p ≤ 7
and r ≥ 2, where the non-adjacent vertices in each copy of Kp \M1 are incident
to the edges of Cr. To obtain lower bounds for 2-connected multigraphs, we use
Cr〈p · K2〉 with 2 ≤ p ≤ 5, and we use Cr〈Lp〉 with 1 ≤ p ≤ 2 to obtain lower
bounds for 2-connected pseudographs.

b b b

8 > > > > > > > > > < > > > > > > > > > :
r times(a)

b b b

b

b

b

b

b

b

b

b

b

8 > > > > > > > > > < > > > > > > > > > :
r times(b)

b b b

8 > > > > > > > < > > > > > > > :
r times(c)

Figure 24: 2-connected graphs: (a) Cr〈Kp \ M1〉, (b) Cr〈p · K2〉, and (c) Cr〈L2〉.

As illustrated in Figure 25, to obtain lower bounds for simple 3-connected



D. Wood, Lower Bounds for 3-D Drawings , JGAA, 7(1) 33–77 (2003) 56

graphs, we use (Cr × K2)〈Kp〉 for 3 ≤ p ≤ 6 and r ≥ 3, and (Cr × K2)〈Kp \ M2〉
for 5 ≤ p ≤ 7 and r ≥ 3, where the non-adjacent pairs of vertices in each copy
of Kp \M2 are incident to opposite edges of Cr × K2 where possible. To obtain
lower bounds for 3-connected multigraphs, we use Cr × (p · K2) with r ≥ 3 and
2 ≤ p ≤ 4. We use Cr × ((p · K2)〈L1〉) with 1 ≤ p ≤ 2 to obtain lower bounds
for 3-connected pseudographs.

bb b

bb b

8 > > > > > > > > > < > > > > > > > > > :
r times(a)

bb b

bb b

b b b b b b b b b

8 > > > > > > > > > < > > > > > > > > > :
r times(b)

bb b

bb b

8 > > > > > > > > > < > > > > > > > > > :
r times(c)

Figure 25: 3-connected graphs: (a) (Cr × K2)〈Kp \ M2〉, (b) Cr × (p · K2), and
(c) Cr × ((p · K2)〈L1〉).

To obtain lower bounds for 4-connected simple graphs, we use (Cr × C3)〈Kp〉
for 4 ≤ p ≤ 6 and r ≥ 3, and (Cr × C3)〈Kp \ M2〉 for 5 ≤ p ≤ 7 and r ≥ 3,
where the non-adjacent pairs of vertices in each copy of Kp \M2 are incident to
opposite edges of Cr × C3, as illustrated in Figure 26(a). We use (Cr × C3)〈L1〉
with r ≥ 3 to obtain lower bounds for 4-connected pseudographs, as illustrated
in Figure 26(b).
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b b b

8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > :
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b b b

8 > > > > > > > > > > > > < > > > > > > > > > > > > :
r times

(b)

Figure 26: 4-connected graphs: (a) (Cr × C3)〈Kp \ M2〉, and (b) (Cr × C3)〈L1〉.

Let 2 ·Cm be the m-edge cycle with each edge having multiplicity 2, and let
3
2 · Cm for even m be the m-edge cycle with alternating edges around the cycle
having multiplicity 2. To obtain lower bounds for 4-connected multigraphs,
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we use the 6-regular multigraph Cr × (2 · C3) for some r ≥ 3, as illustrated in
Figure 27(b), and the 5-regular multigraph Cr × (3

2 · C4) for r ≥ 3, as illustrated
in Figure 27(c).
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8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > :
r times(b)

Figure 27: 4-connected graphs: (a) Cr × (2 · C3), (b) Cr × (3
2 · C4).

To obtain lower bounds for 5-connected graphs, we use (Cr × C3 × K2)〈Kp〉
for 5 ≤ p ≤ 6 and r ≥ 3, and (Cr × C3 × K2)〈K7 \ M3〉 for r ≥ 3, where the non-
adjacent pairs of vertices in each copy of K7 \M3 are incident to opposite edges
of Cr × C3 × K2 where possible, as illustrated in Figure 28(a). To obtain lower
bounds for 5-connected multigraphs, we use Cr × C3 × (2 · K2), as illustrated
in Figure 28(b).

b b b

b b b

b b b

b b b

b b b

b b b

8 > > > > > > > > > > > > < > > > > > > > > > > > > :
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Figure 28: 5-connected graphs: (a) (Cr × C3 × K2)〈G〉, (b) Cr × C3 × (2 · K2).
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To obtain lower bounds for 6-connected graphs we use
(Cr × C3 × C3)〈K6〉 and (Cr × C3 × C3)〈K7 \ M3〉 for r ≥ 3, where the non-
adjacent pairs of vertices in each copy of K7 \M3 are incident to opposite edges
in Cr × C3 × C3, as illustrated in Figure 29.

b b b
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b b b
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r times

Figure 29: 6-connected 6-regular graphs (Cr × C3 × C3)〈K6〉 and
(Cr × C3 × C3)〈K7 \ M3〉.

In Table 3 we prove lower bounds on the number of bends in drawings of the
above families of graphs. Each line of the table corresponds to one such family
H〈G〉 (or H × G) parameterised by some value r, all of which have maximum
degree ∆ (shown in the first column). The third column shows the lower bounds
on the number of bends in a drawing of G, as proved earlier in the paper. The
fourth and fifth columns shows the number of edge-disjoint copies of G and the
number of edges in H〈G〉 (or H × G), respectively. The sixth column shows
the lower bound on the average number of bends per edge in H〈G〉 (or H × G)
obtained by

average # bends(H〈G〉 or H × G) ≥ # bends(G) × # copies(G)
# edges(H〈G〉 or H × G)

.

A line marked with a ? indicates the corresponding lower bound is the best
out of those for graphs with a specific connectivity and maximum degree. These
‘best known’ lower bounds are those listed in Table 2 in Section 1.
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Table 3: Lower bounds for the average number of bends per edge.

∆ H〈G〉 or H × G #bends(G) #copies(G) #edges avg. #bends

Disconnected Simple Graphs
6 Ir〈K7〉 20 (Thm. 9) r 21r 20

21 ?

5 Ir〈K6〉 12 (Thm. 7 ) r 15r 12
15 = 4

5 ?

4 Ir〈K5〉 7 (Thm. 4) r 10r 7
10 ?

3 Ir〈K4〉 3 (Thm. 2) r 6r 3
6 = 1

2 ?

2 Ir〈K3〉 1 (Obs. 3) r 3r 1
3 ?

Disconnected Multigraphs
6 Ir〈6 · K2〉 12 (Thm. 11) r 6r 12

6 = 2 ?

5 Ir〈5 · K2〉 8 (Lem. 7) r 5r 8
5 ?

4 Ir〈4 · K2〉 6 (Lem. 7) r 4r 6
4 = 3

2 ?

3 Ir〈3 · K2〉 4 (Lem. 7) r 3r 4
3 ?

2 Ir〈2 · K2〉 2 (Lem. 7) r 2r 2
2 = 1 ?

Disconnected Pseudographs
6 Ir〈L3〉 9 r 3r 3 ?

4 Ir〈L2〉 6 r 2r 3 ?

2 Ir〈L1〉 3 r r 3 ?

2-Connected Simple Graphs
6 Cr〈K6〉 12 (Thm. 7) r 16r 12

16 = 3
4

6 Cr〈K7 \ M1〉 17 (Thm. 9) r 21r 17
21 ?

5 Cr〈K5〉 7 (Thm. 4) r 11r 7
11

5 Cr〈K6 \ M1〉 10 (Thm. 7) r 15r 10
15 = 2

3 ?

4 Cr〈K4〉 3 (Thm. 2) r 7r 3
7

4 Cr〈K5 \ M1〉 5 (Thm. 5) r 10r 5
10 = 1

2 ?

3 Cr〈K3〉 1 (Obs. 3) r 4r 1
4

3 Cr〈K4 \ M1〉 2 (Thm. 2) r 6r 2
6 = 1

3 ?

2-Connected Multigraphs
6 Cr〈5 · K2〉 8 (Lem. 7) r 6r 8

6 = 4
3 ?

5 Cr〈4 · K2〉 6 (Lem. 7) r 5r 6
5 ?

4 Cr〈3 · K2〉 4 (Lem. 7) r 4r 4
4 = 1 ?

3 Cr〈2 · K2〉 2 (Lem. 7) r 3r 2
3 ?

continued on next page
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Table 3: continued

∆ H〈G〉 or H × G #bends(G) #copies(G) #edges avg. #bends

2-Connected Pseudographs
6 Cr〈L2〉 6 r 3r 2 ?

4 Cr〈L1〉 3 r 2r 3
2 ?

3-Connected Simple Graphs
6 (Cr × K2)〈K6〉 12 (Thm. 7) 2r 33r 2·12

33 = 8
11 ?

6 (Cr × K2)〈K7 \ M2〉 14 (Thm. 9) 2r 41r 2·14
41 = 28

41

5 (Cr × K2)〈K5〉 7 (Thm. 4) 2r 23r 2·7
23 = 14

23 ?

5 (Cr × K2)〈K6 \ M2〉 8 (Thm. 7) 2r 29r 2·8
29 = 16

29

4 (Cr × K2)〈K4〉 3 (Thm. 2) 2r 15r 2·3
15 = 2

5

4 (Cr × K2)〈K5 \ M2〉 4 (Thm. 5) 2r 19r 2·4
19 = 8

19 ?

3 (Cr × K2)〈K3〉 1 (Obs. 3) 2r 9r 2
9 ?

3-Connected Multigraphs
6 Cr × (4 · K2) 6 (Lem. 7) r 6r 6

6 = 1 ?

5 Cr × (3 · K2) 4 (Lem. 7) r 5r 4
5 ?

4 Cr × (2 · K2) 2 (Lem. 7) r 4r 2
4 = 1

2 ?

3-Connected Pseudographs
6 Cr × ((2 · K2)〈L1〉) 8 r 6r 4

3 ?

5 (Cr × K2)〈L1〉 3 2r 5r 6
5 ?

4-Connected Simple Graphs
6 (Cr × C3)〈K6〉 12 (Thm. 7) 3r (3 · 15 + 6)r 3·12

51 = 12
17 ?

6 (Cr × C3)〈K7 \ M2〉 14 (Thm. 9) 3r (3 · 19 + 6)r 3·14
63 = 2

3

5 (Cr × C3)〈K5〉 7 (Thm. 4) 3r (3 · 10 + 6)r 3·7
36 = 7

12 ?

5 (Cr × C3)〈K6 \ M2〉 8 (Thm. 7) 3r (3 · 13 + 6)r 3·8
45 = 8

15

4 (Cr × C3)〈K4〉 3 (Thm. 2) 3r (3 · 6 + 6)r 3·3
24 = 3

8

4 (Cr × C3)〈K5 \ M2〉 4 (Thm. 5) 3r (3 · 8 + 6)r 3·4
30 = 2

5 ?

4-Connected Multigraphs
5 Cr × (3

2 · C4) 4 (Lem. 7) r 10r 4
10 = 2

5 ?

6 Cr × (2 · C3) 6 (Lem. 7) r 9r 6
9 = 2

3 ?

4-Connected Pseudographs
6 (Cr × C3)〈L1〉 3 3r (3 · 1 + 6)r 9

9 = 1 ?

continued on next page
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Table 3: continued

∆ H〈G〉 or H × G #bends(G) #copies(G) #edges avg. #bends

5-Connected Simple Graphs
6 (Cr × C3 × K2)〈K6〉 12 (Thm. 7) 6r (6 · 15 + 15)r 6·12

105 = 24
35 ?

6 (Cr × C3 × K2)〈K7 \ M3〉 11 (Thm. 9) 6r (6 · 18 + 15)r 6·11
123 = 22

41

5 (Cr × C3 × K2)〈K5〉 7 (Thm. 4) 6r (6 · 10 + 15)r 6·7
75 = 14

25 ?

5-Connected Multigraphs
6 Cr × C3 × (2 · K2) 2 (Lem. 7) 3r 18r 2·3

18 = 1
3 ?

6-Connected Simple Graphs
6 (Cr × C3 × C3)〈K6〉 12 (Thm. 7) 9r (9 · 15 + 27)r 9·12

162 = 2
3 ?

6 (Cr × C3 × C3)〈K7 \ M3〉 11 (Thm. 9) 9r (9 · 18 + 27)r 9·11
189 = 11

21

5 Lower Bounds for General Position Drawings

Recall that a 3-D orthogonal graph drawing is said to be in general position
if no two vertices lie in a common grid-plane. The general position model has
been used for 3-D orthogonal graph drawing by Eades et al. [13] and Wood
[33], Wood [36], Wood [37], and for 3-D orthogonal box-drawing of arbitrary
degree graphs by Papakostas and Tollis [21], Biedl [8] and Wood [34]. In this
section we establish lower bounds for the number of bends in general position
drawings of 2-connected and 4-connected graphs. The next result will be crucial
for the lower bounds to follow.

Lemma 8. If the graph G has at least k bends in every general position drawing
then for every edge e of G, the graph G \ e has at least k − 4 bends in every
general position drawing.

Proof. Suppose G \ e has a general position drawing with b bends. Wood [37]
proved that the edge e can be inserted into the drawing of G\e with at most four
bends (possibly introducing edge crossings), and that the edges can be rerouted
to eliminate all edge crossings without increasing the total number of bends.
Thus there is a (crossing-free) general position drawing of G with b + 4 bends.
By assumption, every general position drawing of G has at least k bends. Thus
b + 4 ≥ k and b ≥ k − 4.

Clearly every edge in a general position drawing has at least two bends.
Observe that if an edge is routed using an extremal port, then this edge has at
least three bends, as illustrated in Figure 30.

Since all ports are used in a drawing of a 6-regular m-edge graph, a general
position drawing of such a graph requires at least 2m + 6 bends. Hence the
graphs consisting of disjoint copies of K7 provide the following lower bound.
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Figure 30: General position edges using extreme ports have at least three bends.

Lemma 9. There exists an infinite family of n-vertex m-edge simple graphs,
each with at least 2m + 6

7n bends in every general position drawing.

Note that for 6-regular graphs m = 3n; thus the above lower bound matches
the upper bound of 16

7 m for the total number of bends in general position
drawings established by the Diagonal Layout & Movement algorithm [37].

To obtain a lower bound for general position drawings of 2-connected graphs,
we use the 6-regular graph Cr〈K7 \ M1〉, where the non-adjacent vertices of each
K7 \ M1 are incident to the edges of Cr, as illustrated in Figure 24(a).

Lemma 10. There exists an infinite family of n-vertex m-edge simple 2-connected
graphs, each with at least 2m + 4

7n bends in every general position drawing.

Proof. Clearly Cr〈K7 \ M1〉 is 2-connected. K7 has at least 2|E(K7)|+6 bends
in any general position drawing. Thus by Lemma 8, a general position drawing
of K7 \M1 has at least 2|E(K7)|+6−4 = 2|E(K7 \M1)|+4 bends. The edges
of Cr each have at least two bends. Thus Cr〈K7 \ M1〉 has at least 2m + 4

7n
bends.

To obtain a lower bound for general position drawings of 4-connected graphs,
we use the 6-regular graph (Cr × C3)〈K7 \ M2〉 for r ≥ 3, as illustrated in
Figure 26(a).

Lemma 11. There exists an infinite family of n-vertex m-edge simple 4-connected
graphs, each with at least 2m + 2

7n bends in every general position drawing.

Proof. As proved in Appendix B, (Cr × C3)〈K7 \ M2〉 is 4-connected. K7 has
at least 2|E(K7)|+6 bends in any general position drawing. Hence, by Lemma 8
a general position drawing of K7 \M2 has at least 2|E(K7)|+6−8 = 2|E(K7 \
M2)| + 2 bends. Edges not in a K7 \ M2 have at least two bends. Thus
(Cr × C3)〈K7 \ M2〉 has at least 2m + 2

7n bends.

6 On the 2-Bends Problem

We now look at the ramifications of the above general position lower bounds for
the 2-bends problem. Edges with at most two bends can be classified as 0-bend,
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1-bend, 2-bend planar or 2-bend non-planar, as illustrated in Figure 31.

v w

(a) 0-bend

v

w

(b) 1-bend

v

w

(c) 2-bend
planar

v

w

(d) 2-bend
planar

v

w

(e) 2-bend
non-planar

Figure 31: Edges vw with at most two bends.

In a given 2-bend drawing of a graph G, we denote the number of 0-bend
edges by k0, and the number of 2-bend planar edges by k′

2. We now describe
how to transform a given 2-bend drawing into a general position drawing.

Lemma 12. If there is a 2-bend drawing of a graph G then there exists a general
position drawing of G with 2m + k0 + k′

2 bends.

Proof. We show that by inserting planes and adding bends to the edge routes
a given 2-bend drawing can be transformed into a drawing with a general po-
sition vertex layout and the stated number of bends. Consider a grid plane P
containing k vertices (k > 1). As illustrated in Figure 32, replace the plane by
k adjacent planes, and position each of the k vertices in a unique plane.

a

b

d

c
=)

a

b

c

d

Figure 32: Removing a plane containing many vertices.

A 0-bend edge is split in the middle and replaced by the 2-bend planar edge
illustrated in Figure 31(c). If the 0-bend edge has length one then an extra
plane perpendicular to the 0-bend edge is also inserted.
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Edge segments from an edge with at least one bend and incident to a vertex
v are routed in the plane containing v. For a 1-bend edge vw in the original
plane, an extra segment is inserted perpendicular to P , running between the
planes containing v and w. Hence vw is replaced by a 2-bend non-planar edge
(for example, edge bc in Figure 32).

For a 2-bend edge vw in the original plane, the middle segment of vw is
routed arbitrarily in the plane containing v or w, and a third segment is inserted
perpendicular to P , running between the planes containing v and w. Hence
vw is replaced by a 3-bend non-planar edge (for example, edges ad and cd in
Figure 32).

For a 2-bend non-planar edge vw incident to one of the k vertices, the seg-
ment of vw perpendicular to P is extended in the obvious manner. Similarly,
an edge passing through the original plane and not incident to any of the k
vertices, is extended so that it passes through all k planes.

This process is continued until there are no grid planes containing more than
one vertex. Note that a 0-bend edge will initially be replaced by a 2-bend planar
edge, and in a second transformation will be replaced by a 3-bend edge route
(for example, edge ab in Figure 32). The resulting drawing has no crossings, has
a general position vertex layout, and every edge has two bends except for the
0-bend and 2-bend planar edges in the original drawing, which now have three
bends. Hence the new drawing has 2m + k0 + k′

2 bends.

We now prove that for certain graphs any 2-bend drawing has many 0-bend
or 2-bend planar edge routes.

Corollary 1. There exists an infinite family of 6-regular n-vertex graphs, such
that in any 2-bend drawing of any one of the graphs, k0 + k′

2 ≥ 6
7n.

Proof. By Lemma 9, there exists an infinite family of graphs, each with at least
2m + 6

7n bends in any general position drawing. If there is a 2-bend drawing of
such a graph, then by Lemma 12 there exists a general position drawing with
2m + k0 + k′

2 bends. Hence 2m + k0 + k′
2 ≥ 2m + 6

7n and k0 + k′
2 ≥ 6

7n.

The following two results are obtained using the same argument used in the
proof of Corollary 1 applied with Lemma 10 and Lemma 11, respectively.

Corollary 2. There exists an infinite family of 6-regular 2-connected n-vertex
graphs, such that in any 2-bend drawing of any one of the graphs, k0 + k′

2 ≥
4
7n.

Corollary 3. There exists an infinite family of 6-regular 4-connected n-vertex
graphs, such that in any 2-bend drawing of any one of the graphs, k0 + k′

2 ≥
2
7n.

A natural variation of the general position model allows at most two vertices
in any one grid-plane and with each vertex being coplanar with at most one
other vertex. We now show that there exists graphs which do not have 2-bend
drawings in this model.
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Theorem 12. There exists an infinite family of 2-connected graphs each of
which does not have a 2-bend drawing with at most two vertices in any one
grid-plane and with each vertex being coplanar with at most one other vertex.

Proof. By Corollary 2 there exists an infinite family of 6-regular 2-connected
n-vertex graphs, such that in any 2-bend drawing of any one of the graphs,
k0 + k′

2 ≥ 4
7n. Assume, to the contrary, that for such a graph there is a 2-bend

drawing with at most two vertices in any one grid-plane and with each vertex
being coplanar with at most one other vertex. Then the number of pairs of
vertices in a common grid-plane is at most n

2 , and the number of planar edge
routes is at most n

2 ; that is, k0 + k1 + k′
2 ≤ n

2 . Hence 4
7n ≤ k0 + k′

2 ≤ n
2 − k1,

implying k1 < 0, which is a contradiction, as required.

7 Conclusion and Open Problems

In this paper we have initiated the study of lower bounds for the number of
bends in 3-D orthogonal drawings of maximum degree six graphs. As well as
closing the gap between the established lower and upper bounds, the following
are interesting open problems not already discussed in this paper.

• The sequence of lower bounds on the number of bends in general position
drawings in Section 5 suggests the following open problem. Does every
6-connected 6-regular graph have a general position drawing with at most
2m + 6 bends?

• Are there classes of graphs (besides maximum degree five simple graphs)
which admit general position 2-bend drawings? For example, it is conceiv-
able that planar graphs with maximum degree at most six admit general
position 2-bend drawings.

• In the bend-minimum drawings of K4, K5 and K6 the 0-bend subgraph is
a tree. Is this the case for all graphs? It is easily seen that every tree has
a 0-bend drawing.

• Does every graph with maximum degree at most three have a 1-bend
drawing?

Acknowledgements

The author gratefully acknowledges Therese Biedl, Antonios Symvonis, and Ben
Lynn for helpful discussions. In particular, Lemmata 10, 12 and 19 were devel-
oped in conjunction with Therese Biedl, Antonios Symvonis, and Ben Lynn, re-
spectively. Many thanks to Graham Farr for advice and encouragement. Thanks
also to the anonymous referees for numerous helpful comments, in particular a
simplified proof of Theorem 6.



D. Wood, Lower Bounds for 3-D Drawings , JGAA, 7(1) 33–77 (2003) 66

References

[1] M. A. Aboelaze and B. W. Wah, Complexities of layouts in three-
dimensional VLSI circuits. Inform. Sci., 55(1-3):167–188, 1991.

[2] A. Aggarwal, M. Klawe, and P. Shor, Multilayer grid embeddings
for VLSI. Algorithmica, 6(1):129–151, 1991.

[3] T. Biedl and T. Chan, Cross-coloring: improving the technique by Kol-
mogorov and Barzdin. Tech. Rep. CS-2000-13, Department of Computer
Science, University of Waterloo, Canada, 2000.

[4] T. Biedl, J. R. Johansen, T. Shermer, and D. R. Wood, Orthogonal
drawings with few layers. In P. Mutzel, M. Jünger, and S. Leipert,
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A Existence of Small Subgraphs

In this appendix we prove a number of results concerning the existence of cycles
and other small subgraphs in graphs of a certain size.

Lemma 13. Every 5-vertex graph with at least six edges contains C3 or K2,3.

Proof. Suppose to the contrary that there exists a 6-edge 5-vertex graph G not
containing C3 or K2,3. G contains a cycle. Let C be the cycle of maximum
length in G. Then |C| = 5 or |C| = 4.

Case 1. |C| = 5: Since G has six edges, C has a chord, in which case G
contains a 3-cycle, as illustrated in Figure 33(a).

Case 2. |C| = 4: If C has a chord then G contains a 3-cycle, as illustrated
in Figure 33(b). Thus C does not have a chord. Hence the vertex v not in C
is incident to two edges vu and vw, where u and w are in C. If u and w are
adjacent in C then G contains a 3-cycle, as illustrated in Figure 33(c). Thus u
and w are not adjacent in C, which implies that G contains K2,3, as illustrated
in Figure 33(d).

(a) (b) (c) (d)

Figure 33: C3 or K2,3 in a 5-vertex 6-edge graph.

Lemma 14. Every 6-vertex graph with at least eight edges contains C3 or K2,3.

Proof. Suppose to the contrary that there exists an 8-edge 6-vertex graph G not
containing C3 or K2,3. Let C be the longest cycle in G. Clearly 3 ≤ |C| ≤ 6.

Case 1. |C| = 6: If |C| = 6 then C has at least two chords. Any two chords
of C which do not induce a 3-cycle induce K2,3, as illustrated in Figure 34(a).

Case 2. |C| = 5: If |C| = 5 then any chord of C induces a 3-cycle, and
we are done. Otherwise C has no chords. Since G has at least eight edges, the
vertex v not in C is adjacent to three vertices u, w and x in C. Two of u, w
and x are adjacent in C, which implies G contains a 3-cycle, as illustrated in
Figure 34(b).

Case 3. |C| = 4: If |C| = 4 then any chord of C induces a 3-cycle, and
we are done. Otherwise C has no chords. Let v and w be the vertices not in C.
Since G has at least eight edges, there are at least four edges in G incident with
v or w. Even if G contains the edge vw, there are two edges from v to vertices
on C, or two edges from w to vertices on C. In either case, G contains C3 or
K2,3, as illustrated in Figure 33(c) and Figure 33(d), respectively.
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(a) (b)

Figure 34: C3 or K2,3 in an 8-edge 6-vertex graph.

Lemma 15. Every 7-vertex graph with at least ten edges contains C3 or K2,3.

Proof. Suppose to the contrary that there exists a 10-edge 7-vertex graph G not
containing C3 or K2,3. Let C be the longest cycle in G. Clearly 3 ≤ |C| ≤ 7.

Case 1. |C| = 7: If |C| = 7 then there are three chords of C in G. If two
of these chords are incident to one vertex then, as illustrated in Figure 35(a),
G contains a 3-cycle. Thus each vertex is incident to at most one chord. Hence
there exists a vertex not incident to any chords of C. It is easily seen that the
only configuration of three chords of C not inducing a 3-cycle is that illustrated
in Figure 35(b); however in this case, G contains K2,3.

Case 2. |C| = 6: Suppose the vertex not in C is v. A chord of C which
does not induce a 3-cycle is between vertices at distance two in C; that is,
‘opposite’ vertices. As illustrated in Figure 34(a) any two such chords induce
an K2,3 subgraph. Thus the number of chords of C is at most one.

Suppose C has one chord. Then there are three edges vu, vw and vx in G
incident to v. If two of u, w and x are adjacent in C then there is a 3-cycle in
G, as illustrated in Figure 35(c). Otherwise, one of u, w or x is incident to the
chord of C, and hence G contains K2,3, as illustrated in Figure 35(d).

If C has no chords then v is adjacent to four vertices u, w, x and y in C.
Two of u, w, x and y are adjacent in C; thus G contains a 3-cycle, as illustrated
in Figure 35(c).

Case 3. |C| = 5: Suppose the vertices not in C are v and w. Any chord of
C induces a 3-cycle, as illustrated in Figure 33(a). Thus C has no chords, and
there are five edges incident to v and w. If vw is an edge of G and each of v
and w are incident to two edges then G contains a 3-cycle or K2,3, as illustrated
in Figure 35(e). Otherwise at least one of v and w, say v, is adjacent to three
vertices u, x and y in C. Two of u, x and y are adjacent in C. Thus G contains
a 3-cycle, as illustrated in Figure 34(b).

Case 4. |C| = 4: Suppose the vertices not on C are u, v and w. Any chord
of C induces a 3-cycle, as illustrated in Figure 33(b). Thus C has no chords,
and there are at least six edges incident to u, v and w. Since u, v and w do not
form a 3-cycle, there are at least four edges between u, v or w and vertices in
C. Hence at least one of u, v and w, say v, is adjacent to two vertices x and y
in C. So that v, x and y do not form a 3-cycle, x and y are not adjacent. In
this case, G contains K2,3, as illustrated in Figure 33(d).
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(a) (b) (c) (d) (e)

Figure 35: C3 or K2,3 in a 10-edge 7-vertex graph.

Lemma 16. Every 7-vertex graph with at least eight edges contains a cycle Ck

(k 6= 4), two chord-disjoint cycles, or K2,3.

Proof. Let G be a 7-vertex graph with at least eight edges. Let C be the longest
cycle in G; thus 3 ≤ |C| ≤ 7. If |C| 6= 4 then we are done, otherwise |C| = 4.
If C has a chordal path then G either contains K2,3 or a cycle Ck (k 6= 4), as
illustrated in Figure 36(a) and Figure 36(b). Thus we now assume that C has
no chordal path.

There are at least four edges not in C. Let X be the subgraph of G induced
by the vertices not in C. Then X has at least three vertices, and the number
of edges in X is at most three. We proceed by considering the number of edges
in X .

Case 1. |E(X)| = 3: Then X is a 3-cycle, as illustrated in Figure 36(c),
and we are done.

Case 2. |E(X)| = 2: If there are two edges in X then X is connected and
there are at least two edges e1 and e2 between X and C. Since X is connected,
e1 and e2 have the same end-vertex in C for C not to have a chordal path. In
this case, e1 and e2 along with one or two of the edges in X form a cycle which
is chord-disjoint from C, as illustrated in Figure 36(d).

Case 3. |E(X)| = 1: If there is one edge in X then there are at least three
edges between X and C. If one of the vertices in X is incident to at least two
edges between X and C then C has a chordal-path. Thus every vertex in X is
incident to at most one edge between X and C. Since X has three vertices and
there are at least three edges between X and C, each vertex in X is incident
to exactly one edge between X and C. Let vw be the edge in X . For C not
to have a chordal path, v and w are incident to the same vertex in C, in which
case G contains a 3-cycle, as illustrated in Figure 36(d).

Case 4. |E(X)| = 0: If there are no edges in X then there are at least
four edges between X and C. Thus one of the vertices in X is incident to at
least two edges between X and C, in which case C has a chordal-path.
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Figure 36: Ck (k 6= 4), K2,3 or two chord-disjoint cycles in a 7-vertex 8-edge
graph.

B Proofs of Connectivity

In this section we prove the connectivity of the graphs used to establish our main
lower bounds. We first prove that the ‘grid-graphs’ have the desired connectivity.
Of course Cr with r ≥ 3 is 2-connected.

Observation 7. Cr × K2 with r ≥ 3 is 3-connected.

Proof. Let v and w be distinct vertices of Cr × K2. As illustrated in Figure 37,
if v and w are (a) in the same ‘row’, (b) in the same ‘column’, or (c) ‘non-
collinear’, there are three internally disjoint paths between v and w in Cr × K2.
Since r ≥ 3, in case (c) we can assume that v and w are at least two columns
apart. By Menger’s Theorem, Cr × K2 is 3-connected.

(a) (b) (c)

Figure 37: Three disjoint paths in Cr × K2.

Observation 8. Cr × C3 with r ≥ 3 is 4-connected.

Proof. Let v and w be distinct vertices of Cr × C3. As illustrated in Figure 38,
if v and w are (a) in the same ‘row’, (b) in the same ‘column’, or (c) ‘non-
collinear’, there are four internally disjoint paths between v and w in Cr × C3.
Since r ≥ 3, in case (c) we can assume that v and w are one row apart and at
least two columns apart. By Menger’s Theorem, Cr × C3 is 4-connected.

Observation 9. Cr × C3 × K2 with r ≥ 3 is 5-connected.

Proof. Let v and w be distinct vertices of Cr × C3 × K2. As illustrated in
Figure 39, if v and w (a) are in the same ‘row’, (b) are in the same ‘column’, or
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(a) (b) (c)

Figure 38: Four internally disjoint paths in Cr × C3.

(c) have the same ‘depth’, (d) have the same ‘height’, or (e) are ‘non-coplanar’,
there are five internally disjoint paths between v and w in Cr × C3 × K2. Since
r ≥ 3, in cases (c), (d) and (e) we can assume that v and w are at least two
columns apart. By Menger’s Theorem, Cr × C3 × K2 is 5-connected.

(a) (b) (c) (d) (e)

Figure 39: Five internally disjoint paths in Cr × C3 × K2.

Observation 10. Cr × C3 × C3 with r ≥ 3 is 6-connected.

Proof. Let v and w be distinct vertices of Cr × C3 × C3. As illustrated in Fig-
ure 40, if v and w are (a) ‘collinear’, (b) ‘coplanar’ or (c) ‘non-coplanar’, there
are six internally disjoint paths between v and w in Cr × C3 × C3. Since r ≥ 3,
in cases (b) and (c) we can assume that v and w are at least two columns apart.
By symmetry these three cases suffice. By Menger’s Theorem, Cr × C3 × C3 is
6-connected.

(a) (b) (c)

Figure 40: Six internally disjoint paths in Cr × C3 × C3.
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The next lemma combined with the above observations proves that Cr〈Kp〉
for p ≥ 2 is 2-connected, that (Cr × K2)〈Kp〉 for p ≥ 3 is 3-connected, that
(Cr × C3)〈Kp〉 for p ≥ 4 is 4-connected, that (Cr × C3 × K2)〈Kp〉 for p ≥ 5 is
5-connected, and that (Cr × C3 × C3)〈Kp〉 for p ≥ 6 is 6-connected.

Lemma 17. If a graph G is c-connected for some c ≥ 2, then G〈Kp〉 is c-
connected for all p ≥ c.

Proof. In each Kp subgraph H , those vertices of H adjacent to vertices not in
H are called exit vertices. Every vertex v of H is adjacent to every exit vertex
of H (except for itself). Hence there are c internally disjoint paths between
any two vertices of G〈Kp〉 that are in distinct Kp subgraphs, since G itself is
c-connected. Consider vertices v and w in the same Kp subgraph H whose
original vertex in G is u.

Suppose v and w are both exit vertices. Then there are c − 2 internally
disjoint vw-paths via the other exit vertices of H . Let x and y be the original
vertices of G such that there are edges incident to v and w whose other end-
vertices are in the subgraphs corresponding to x and y, respectively. Since G is
2-connected, there is an xy-path in G which avoids u. This path and the edge
vw gives a total of c internally disjoint vw-paths.

Now suppose one of v and w, say v, is not an exit vertex. Then there are at
least c − 1 internally disjoint vw-paths via the other exit vertices. Along with
the edge vw, there are at least c disjoint vw-paths.

By Menger’s Theorem, G〈Kp〉 is c-connected.

Lemma 18. [(a)]

Cr〈Kp \ M1〉 is 2-connected for all p ≥ 4,

1.2. (Cr × K2)〈Kp \ M2〉 is 3-connected for all p ≥ 5,

3. (Cr × C3)〈Kp \ M2〉 is 4-connected for all p ≥ 5,

4. (Cr × C3 × K2)〈Kp \ M3〉 is 5-connected for all p ≥ 7, and

5. (Cr × C3 × C3)〈Kp \ M3〉 is 6-connected for all p ≥ 7.

Proof. Each part of the lemma states that a graph of the form G〈Kp \ Mj〉 is
c-connected, where by the preceding observations, G is a c-connected graph,
j = d c

2e, and p ≥ 2j + 1. Observe that p ≥ c + 1. Moreover, in each Kp \ Mj

subgraph H , if c is even then it is precisely the exit vertices in H that are
matched in Mj , and for odd c, all but one of the exit vertices are matched to
each other in Mj , and the one remaining exit vertex is matched with one of the
(at least two) non-exit vertices. By the same argument used in Lemma 17, for
any two exit vertices v and w of a Kp \ Mj subgraph H , there is a vw-path in
G〈Kp \ Mj〉 not using any edges in H .

Let v be a vertex of G〈Kp \ Mj〉 contained in a Kp \ Mj subgraph H . We
claim that there are c internally disjoint (possibly empty) paths from v to the
exit vertices of H . If v is an exit vertex then there are at least c − 1 other exit
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vertices in H , none of which are matched with v. Hence v is adjacent to each
such exit vertex, and counting the empty path from v to v, the claim holds.
Now suppose v is not an exit vertex. If v is adjacent to each exit vertex, which
is guaranteed in the case of even c, then the claim holds. Otherwise c is odd,
and v is matched with one of the exit vertices x. In this case v is adjacent to
the c−1 remaining exit vertices, and there is a 2-path from v to x via the other
non-exit vertex in H , giving a total of c internally disjoint paths from v to the
exit vertices of H . This proves our claim. It follows since G is c-connected that
between any two vertices in distinct Kp \ Mj subgraphs, there are c internally
disjoint paths.

Now consider two vertices v and w contained in the same Kp \Mj subgraph
H . First suppose v and w are both exit vertices. If v and w are matched then
there are c − 2 internally disjoint vw-paths via the other exit vertices, there is
at least one path between v and w via the non-exit vertices of H , and there is
a path between v and w not using the edges of H . Thus there are c internally
disjoint vw-paths in G〈Kp \ Mj〉. Now suppose v and w are non-matched exit
vertices of H . Thus c ≥ 4. Suppose c ∈ {4, 6}. Let vx and wy be in Mj . By
construction, v is opposite to x, and w is opposite to y (with respect to the
grid-structure of G). Thus there exists a vx-path P disjoint from some wy-path
Q in G〈Kp \ Mj〉, not using any edges in H . Hence P ∪ {xw} and Q∪ {vy} are
internally disjoint vw-paths. There are c − 4 internally disjoint vw-paths via
the other exit vertices of H . There is one vw-path via the non-exit vertex of
H , and there is the edge vw, giving a total of c internally disjoint vw-paths in
G〈Kp \ Mj〉. Now suppose c = 5. Either both of v and w are matched to other
exit vertices, or one of v and w is matched with an exit vertex and the other
is matched with a non-exit vertex. First suppose that v is matched with an
exit-vertex x and w is matched with an exit vertex y. There are c− 4 internally
disjoint vw-paths via the other exit vertices, there is the edge vw, there are two
vw-paths via the two non-exit vertices, and there is the path v–y–x–w, giving a
total of c internally disjoint vw-paths. Now suppose v is matched with an exit
vertex x, but w is matched with a non-exit vertex y. There is a vx-path P not
using any edges in H . There are c−3 vw-paths via the other exit vertices, there
is the edge vw, there is one vw-path via the one remaining non-exit vertex, and
P ∪ {xw} forms a vw-path, giving a total of c internally disjoint vw-paths.

Now consider two vertices v and w contained in the same Kp \Mj subgraph
H , where v is an exit vertex and w is not an exit vertex. First suppose v and
w are matched, in which case c is odd. There are c − 1 vw-paths via the other
exit vertices, and there is a vw-path via the other non-exit vertex of H , giving a
total of c internally disjoint vw-paths. Now suppose v and w are not matched.
Let x be the vertex matched with v. Suppose x is an exit vertex. There is a
vx-path P not using any edge in H , and thus P ∪{wx} forms a vw-path. There
are c − 2 vw-paths via the other exit vertices of H , and there is the edge vw,
giving a total of c internally disjoint vw-paths. If x is not an exit vertex, then
there are c − 1 vw-paths via the other exit vertices, and the edge vw gives a
total of c internally disjoint vw-paths.

The final case is when v and w are both not exit vertices contained in the
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same Kp \ Mj subgraph H . At most one of v and w is matched with an exit
vertex. Thus there are at least c − 1 vw-paths via the remaining exit vertices,
which along with the edge vw, give c internally disjoint vw-paths.

Thus for every pair of vertices v and w of G〈Kp \ Mj〉, there are c internally
disjoint vw-paths. By Menger’s Theorem, G〈Kp \ Mj〉 is c-connected.

The multigraphs and pseudo graphs constructed in Section 4 have the claimed
connectivity, since each contains a simple subgraph that is proved in Lemmata 17
and 18 to have the same connectivity.

C Final Observation

Lemma 8 states that if a graph G has at least k bends in every general position
drawing then for any edge e of G the graph G\e has at least k−4 bends in every
drawing. We now prove the analogue of this result for arbitrary (non general
position) drawings.

Lemma 19. If a graph G has at least k bends in every drawing then for any
edge e of G the graph G \ e has at least k − 6 bends in every drawing.

Proof. Suppose there is a drawing of G \ e with b bends. Let e = vw. At
each of v and w there is an unused port. Regardless of the relative directions
of the unused ports at v and w, by inserting at most two planes at each of v
and w, we can route e with at most six bends and entirely within the inserted
planes. Hence the edge route for e does not intersect any existing edge routes
in the drawing of G \ e. In Figure 41 we illustrate such an edge routing in the
worst case scenario with v and w non-coplanar and the unused ports at v and
w pointing away from each other. Note that in many other cases less than six
bends are needed. Hence G has a drawing with b + 6 bends. By assumption,
every drawing of G has at least k bends. Thus b + 6 ≥ k and b ≥ k − 6.

Figure 41: Inserting a 6-bend edge.

Note that this technique can also be used to provide an upper bound on the
maximum number of bends per edge route in a given drawing. For example, the
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Reduce Forks algorithm of Di Battista et al. [11] does not provide a bound
on the maximum number of bends per edge, and in many instances, edges are
routed with more than six bends [11, 33]. By replacing each edge route with
more than six bends by an edge route with at most six bends, as described in
the proof of Lemma 19, the algorithm can be modified to produce drawings with
an upper bound on the maximum number of bends per edge. Of course, doing
so may increase the volume of the drawing.


