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Abstract

We give a characterization of DFS cotree-critical graphs which is cen-
tral to the linear time Kuratowski finding algorithm implemented in PI-
GALE (Public Implementation of a Graph Algorithm Library and Editor
[2]) by the authors, and deduce a justification of a very simple algorithm
for finding a Kuratowski subdivision in a DFS cotree-critical graph.
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1 Introduction

The present paper is a part of the theoretical study underlying a linear time
algorithm for finding a Kuratowski subdivision in a non-planar graph ([1]; see
also [7] and [9] for other algorithms). Other linear time planarity algorithms
don’t exhibit a Kuratowski configuration in non planar graphs, but may be used
to extract one in quadratic time.

It relies on the concept of DFS cotree-critical graphs, which is a by-product of
DFS based planarity testing algorithms (such as [5] and [4]). Roughly speaking,
a DFS cotree-critical graph is a simple graph of minimum degree 3 having a
DFS tree, such that any non-tree (i.e. cotree) edge is critical, in the sense that
its deletion would lead to a planar graph. A first study of DFS cotree-critical
graphs appeared in [3], in which it is proved that a DFS cotree-critical graph
either is isomorphic to K5 or includes a subdivision of K3,3 and no subdivision
of K5.
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Figure 1: The DFS cotree-critical graphs are either K5 or Möbius pseudo-ladders
having all their non-critical edges (thickest) included in a single path.

The linear time Kuratowski subdivision extraction algorithm, which has been
both conceived and implemented in [2] by the authors, consists in two steps: the
first one correspond to the extraction of a DFS cotree-critical subgraph by a case
analysis algorithm; the second one extracts a Kuratowski subdivision from the
DFS cotree-critical subgraph by a very simple algorithm (see Algorithm 1), but
which theoretical justification is quite complex and relies on the full characteri-
zation of DFS cotree-critical graphs that we prove in this paper: a simple graph
is DFS cotree-critical if and only if it is either K5 or a Möbius pseudo-ladder
having a simple path including all the non-critical edges (see Figure 1).

The algorithm roughly works as follows: it first computes the set Crit of the
critical edges of G, using the property that a tree edge is critical if and only if
it belongs to a fundamental cycle of length 4 of some cotree edge to which it is
not adjacent. Then, three pairwise non-adjacent non-critical edges are found to
complete a Kuratowski subdivision of G isomorphic to K3,3.

The space and time linearity of the algorithm are obvious.
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Require: G is a DFS cotree-critical graph, with DFS tree Y .
Ensure: K is a Kuratowski subdivision in G.

if G has 5 vertices then
K = G {G is isomorphic to K5}

else if G has less than 9 vertices then
Extract K with any suitable method.

else {G is a Möbius pseudo-ladder and the DFS tree is a path}
Crit ← E(G) \ Y {will be the set of critical edges}
Find a vertex r incident to a single tree edge
Compute a numbering λ of the vertices according to a traversal of the path
Y starting at r, from 1 to n.
Let ei denote the tree edge from vertex numbered i to vertex numbered
i + 1.
for all cotree edge e = (u, v) (with λ(u) < λ(v)) do

if λ(v) − λ(u) = 3 then
Crit ← Crit ∪ {eλ(u)+1}

end if
end for
Find a tree edge f = ei with 2 < i < n − 3 which is not in Crit.
K has vertex set V (G) and edge set Crit ∪ {e1, en−1, f}.

end if
Algorithm 1: extracts a Kuratowski subdivision from a DFS cotree-critical
graph [2].

2 Definitions and Preliminaries

For classical definitions (subgraph, induced subgraph, attachment vertices), we
refer the reader to [8].

2.1 Möbius Pseudo-Ladder

A Möbius pseudo-ladder is a natural extension of Möbius ladders allowing tri-
angles. This may be formalized by the following definition.

Definition 2.1 Let γ be a polygon (v1, . . . , vn) and let {vi, vj} and {vk, vl} be
non adjacent chords of γ. These chords are interlaced with respect to γ if, in
circular order, one finds exactly one of {vk, vl} between vi and vj. They are
non-interlaced, otherwise.

Thus, two chords of a polygon are either adjacent, or interlaced or non-interlaced.

Definition 2.2 A Möbius pseudo-ladder is a non-planar simple graph, which
is the union of a polygon (v1, . . . , vn) and chords of the polygon, such that any
two non-adjacent bars are interlaced.

With respect to such a decomposition, the chords are called bars.
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A Möbius band is obtained from the projective plane by removing an open
disk. Definition 2.2 means that a Möbius pseudo-ladder may be drawn in the
plane as a polygon and internal chords such that any two non adjacent chords
cross: consider a closed disk ∆̄ of the projective plane, which intersects any
projective line at most twice (for instance, the disk bounded by a circle of the
plane obtained by removing the line at infinity). Embed the polygon on the
boundary of ∆̄. Then, any two projective lines determined by pairs of adjacent
points intersect in ∆̄. Removing the interior ∆ of ∆̄, we obtain an embedding of
the Möbius pseudo ladder in a Möbius band having the polygon as its boundary
(see Figure 2).

Notice that K3,3 and K5 are both Möbius pseudo-ladders.
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Figure 2: A Möbius pseudo-ladder on the plane, on the projective plane and on
the Möbius band

2.2 Critical Edges and Cotree-Critical Graphs

Definition 2.3 Let G be a graph. An edge e ∈ E(G) is critical for G if G − e
is planar.

Remark 2.1 Let H be a subgraph of G, then any edge which is critical for G
is critical for H (as G − e planar implies H − e planar).

Thus, proving that an edge is non-critical for a particular subgraph of G is
sufficient to prove that it is non-critical for G.
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Moreover, if H is a non-planar subgraph of G, any edge in E(G) \ E(H) is
obviously non-critical for G.

Definition 2.4 A cotree-critical graph is a non-planar graph G, with minimum
degree 3, such that the set of non-critical edges of G is acyclic.

Definition 2.5 A hut is a graph obtained from a cycle (v1, . . . , vp, . . . , vn) by
adding two adjacent vertices x and y, such that x is incident to vn, v1, . . . , vp,
and y is incident to vp, . . . , vn, v1.
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Figure 3: A hut drawn as a Möbius pseudo-ladder

We shall use the following result on cotree-critical graphs (expressed here
with our terminology) later on:

Theorem 2.2 (Fraysseix, Rosenstiehl [3]) A cotree-critical graph is either
a hut or includes a subdivision of K3,3 but no subdivision of K5.

2.3 Kuratowksi Subdivisions

A Kuratowski subdivision in a graph G is a minimal non-planar subgraph of
G, that is: a non-planar subgraph K of G, such that all the edges of K are
critical for K. Kuratowski proved in [6] that such minimal graphs are either
subdivisions of K5 or subdivisions of K3,3.

If G is non-planar and if K is a Kuratowski subdivision in G, it is clear that
any critical edge for G belongs to E(K). This justifies a special denomination
of the vertices and branches of a Kuratowski subdivision:

Definition 2.6 Let G be a non-planar graph and let K be a Kuratowski sub-
division of G. Then, a vertex is said to be a K-vertex (resp. a K-subvertex,
resp. a K-exterior vertex) if it is a vertex of degree at least 3 in K (resp. a
vertex of degree 2 in K, resp. a vertex not in K). A K-branch is the subdivided
path of K between two K-vertices. Two K-vertices are K-adjacent if they are
the endpoints of a K-branch. A K-branch with endpoints x and y is said to
link x and y, and is denoted [x, y]. We further denote ]x, y[ the subpath of [x, y]
obtained by deleting x and y.

A K-branch is critical for G if it includes at least one edge which is critical
for G.
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2.4 Depth-First Search (DFS) Tree

Definition 2.7 A DFS tree of a connected graph G, rooted at v0 ∈ V (G), may
be recursively defined as follows: If G has no edges, the empty set is a DFS tree
of G. Otherwise, let G1, . . . , Gk the connected components of G − v0. Then,
a DFS tree of G is the union of the DFS trees Y1, . . . , Yk of G1, . . . , Gk rooted
at v1, . . . , vk (where v1, . . . , vk are the neighbors of v0 in G), and the edges
{v0, v1}, . . . , {v0, vk}.

Vertices of degree 1 in the tree are the terminals of the tree.

Definition 2.8 A DFS cotree-critical graph G is a cotree-critical graph, whose
non-critical edge set is a subset of a DFS tree of G.

Lemma 2.3 If G is k-connected (k ≥ 1) and Y is a DFS tree of G rooted at
v0, then there exists a unique path in Y of length k − 1 having v0 as one of its
endpoints.

Proof: The lemma is satisfied for k = 1. Assume that k > 1 and that the
lemma is true for all k′ < k. Let v0 be a vertex of a k-connected graph G. Then
G− v0 has a unique connected component H, which is k− 1-connected. A DFS
tree YG of G will be the union of a DFS tree YH of H rooted at a neighbor v1

of v0 and the edge {v0, v1}. As there exists, by induction, a unique path in YH

of length k − 2 having v1 as one of its endpoints, there will exist a unique path
in YG of length k − 1 having v0 as one of its endpoints. �

Corollary 2.4 If G is 3-connected and Y is a DFS tree of G rooted at v0, then
v0 has a unique son, and this son also has a unique son.

Proof: As G is 3-connected, it is also 2-connected. Hence, there exists a unique
tree path of length 1 and a unique tree path of length 2 having v0 as one of its
endpoints. �

Consider the orientation of a DFS tree Y of a connected graph G from its
root (notice that each vertex has indegree at most 1 in Y ). This orientation
induces a partial order on the vertices of G, having the root of Y as a minimum.
In this partial order, any two vertices which are adjacent in G are comparable
(this is the usual characterization of DFS trees).

This orientation and partial order are the key to the proofs of the following
two easy lemmas:

Lemma 2.5 Let Y be a DFS tree of a graph G. Let x, y, z be three vertices of
G, not belonging to the same monotone tree path. If x is a terminal of Y and x
is adjacent to both y and z, then x is the root of Y .

Proof: Assume x is not the root of Y . As y and z are adjacent to x, they are
comparable with x. As x is a terminal different from the root v0, y and y belong
to the monotone tree path from v0 to x, a contradiction. �



de Fraysseix & Ossona de Mendez, Critical Graphs, JGAA, 7(4) 411–427 (2003) 417

Lemma 2.6 Let Y be a DFS tree of a graph G. Let x, y, z, t be four vertices of
G, no three of which belong to the same tree path, and such that the tree paths
from x to y and z to t intersect. Then, {x, y} and {z, t} cannot both be edges
of G.

Proof: Assume both {x, y} and {z, t} are edges of G. If x and y are adjacent,
they are comparable and thus, the tree path linking them is a monotone path.
Similarly, the same holds for the tree path linking z and t. As these two mono-
tone tree paths intersect and as neither x and z belong to both paths, there
exists a vertex having indegree at least 2 in the tree, a contradiction. �

3 Cotree-Critical Graphs

Lemma 3.1 Let G be a graph and let H be the graph obtained from G by
recursively deleting all the vertices of degree 1 and contracting all paths which
internal vertices have degree 2 in G to single edges. Then, G is non-planar and
has an acyclic set of non-critical edges if and only if H is cotree-critical.

Proof: First notice that H is non-planar if and only if G is non-planar.
The critical edges of G that remain in H are critical edges for H, according

to the commutativity of deletion, contraction of edges and deletion of isolated
vertices (for e ∈ E(H), if G − e is planar so is H − e).

For any induced path P of G, either all the edges of P are critical for G
or they are all non-critical for G. Thus, the edge of P that remains in H is
critical for H if and only if at least one edge of P is critical for G. Hence, if H
had a cycle of non critical edges for H, they would define a cycle of non-critical
edges for G, because each (non-critical) edge for H represents a simple path of
(non-critical) edges for G . Since G does not have a cycle of non-critical edges,
H cannot have such a cycle either. Thus, as H has minimum degree 3, H is
cotree-critical.

Conversely, assume H is cotree-critical. Adding a vertex of degree 1 does
not change the status (critical/non-critical) of the other edges and cannot create
a cycle of non-critical edges. Similarly, subdividing an edge creates two edges
with the same status without changing the status of the other edges and hence
cannot create a cycle of non-critical edges. Thus, the set of the non-critical
edges of G is acyclic. �

Lemma 3.2 Let G be a cotree-critical graph and let K be a Kuratowski sub-
division of G isomorphic to K3,3. Then, there exists in E(G) \ E(K) no path
between:

• two vertices (K-vertices or K-subvertices) of a same K-branch of K,

• two K-subvertices of K-adjacent K-branches of K.

Proof: The two cases are shown Fig 4.
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Figure 4: Forbidden paths in cotree-critical graphs (see Lemma 3.2)

If two vertices x and y (K-vertices or K-subvertices) of a same K-branch of
K are joined by a path in E(G)\E(K), both this path and the one linking x and
y in K are non-critical for G. Hence G is not cotree-critical, a contradiction.

If two K-subvertices x and y of K-adjacent K-branches of K are linked by
a path in E(G) \ E(K), this path is non-critical for G. Moreover, if z is the
K-vertex adjacent to the branches including x and y, both paths from z to x
and x to y are non-critical for G. Hence, G includes a non-critical cycle, a
contradiction. �

We need the following definition in the proof of the next lemma:

Definition 3.1 Let H be an induced subgraph of a graph G. The attachment
vertices of H in G is the subset of vertices of H having a neighbor in V (G) \
V (H).

Lemma 3.3 Every cotree-critical graph is 3-connected.

Proof: Let G be a cotree-critical graph. Assume G has a cut-vertex v. Let
H1,H2 be two induced subgraphs of G having v as their attachment vertex and
such that H1 is non-planar. As G has no degree 1 vertex, H2 includes a cycle.
All the edges of this cycle are non critical for G, a contradiction. Hence, G is
2-connected.

Assume G has an articulation pair {v, w} such that there exists at least two
induced subgraphs H1,H2 of G, different from a path, having v, w as attachment
vertices. As G is non planar, we may choose H1 in such a way that H1 + {v, w}
is a non-planar graph (see [8], for instance). As there exists in H2 two disjoints
paths from v to w, no edge of these paths may be critical for G and H2 hence
include a cycle of non-critical edges for G, a contradiction. �

Lemma 3.4 Let G be a cotree-critical graph and let K be a Kuratowski subdi-
vision of G. Then, G has no K-exterior vertices, that is: V (G) = V (K).

Proof: According to Theorem 2.2, if K is a subdivision of K5, then either
G = K, or G is a hut, having K has a spanning subgraph. Thus, G has no
K-exterior vertex in this case, and we shall assume that K is a subdivision of
K3,3.



de Fraysseix & Ossona de Mendez, Critical Graphs, JGAA, 7(4) 411–427 (2003) 419

� � �

� � �

� ��

�
�

x1

x3

x2
v

�
�

� � �

� � �

� �

�

�

�
�

x1

x3

x2
v
�
�

� � �

� � �

� ��

x1 x2

x3

v
�
� � � �

� � �

� �

�
�

x1

x3

x2
v
�
�

Figure 5: A cotree-critical graphs has no K-exterior vertex (see Lemma 3.4)

Assume V (G) \ V (K) is not empty and let v be a vertex of G not in K.
According to Lemma 3.3, G is 3-connected. Hence, there exists 3 disjoint paths
P1, P2, P3 from v to K. As K + P1 + P2 + P3 is a non-planar subgraph of G
free of vertices of degree 1, it is a subdivision of a 3-connected graph, according
to Lemma 3.1 and Lemma 3.3. Thus, the vertices of attachment x1, x2, x3 of
P1, P2, P3 in K are all different. As K3,3 is bipartite, we may color the K-
vertices of K black and white, in such a way that K-adjacent K-vertices have
different colors. According to Lemma 3.2, no path in E(G) \E(H) may link K-
vertices with different colors. Thus, we may assume no white K-vertex belong
to {x1, x2, x3} and four cases may occur as shown Fig 5. All the four cases show
a cycle of non-critical edges, a contradiction. �

Corollary 3.5 If G is cotree-critical, no non-critical K-branch may be subdi-
vided, that is: every non-critical K-branch is reduced to an edge.

Proof: If a branch of K is non-critical for G, there exists a K3,3 subdivi-
sion avoiding it. Hence, the branch just consists of a single edge, according to
Lemma 3.3. �

� � � �

� � � �

� �

Figure 6: The 4-bars Möbius ladder M4 (all bars are non-critical edges)
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Let G be a cotree-critical graph obtained by adding an edge linking two
subdivision vertices of non-adjacent edges of a subdivision of a K3,3. This
graph is unique up to isomorphism and is the Möbius ladder with 4 non-critical
bars shown Figure 6.

Figure 7 shows a graph having a subdivision of a Möbius ladder with 3 bars
as a subgraph, where two of the bars are not single edges.

� � �
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Figure 7: A graph having a subdivision of a 3-bars Möbius ladder as a subgraph
(some bars are paths of critical edges)

The same way we have introduced K-vertices, K-subvertices and K-branches
relative to a Kuratowski subdivision, we define M -vertices, M -subvertices and
M -branches relative to a Möbius ladder subdivision.

Lemma 3.6 Let K be a K3,3 subdivision in a cotree-critical graph G. Not K-
adjacent K-vertices of K form two classes, {x, y, z} and {x′, y′, z′}, as K3,3 is
bipartite.

If [x, z′] or [x′, z] is a critical K-branch for G, then all the edges from ]x, z[=
]x, y′] ∪ [y′, z[ to ]x′, z′[=]x′, y] ∪ [y, z′[ and the K-branch [y, y′] are pairwise
adjacent or interlaced, with respect to the cycle (x, y′, z, x′, y, z′).

x y′ z

x′ y z′
� � �

� � ��

�

Figure 8: No edges is allowed from ]x, z[ to ]x′, z′[ by the “outside” (see
Lemma 3.6)

Proof: The union of the K3,3 subdivision and all the edges of G incident to a
vertex in ]x, z[ and a vertex in ]x′, z′[ becomes uniquely embeddable in the plane
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after removal of the K-branches [x, z′] or [x′, z]. Figure 8 displays the outline of
a normal drawing of G in the plane which becomes plane when removing any of
the K-branch [x, z′] or [x′, z]. In such a drawing, given that an edge from ]x, z[
to ]x′, z′[, if drawn outside, crosses both [x, z′] and [x′, z], all the edges from ]x, z[
to ]x′, z′[ and the K-branch [y, y′] are drawn inside the cycle (x, y′, z, z′, y, x′)
without crossing and thus are adjacent or interlaced with respect to the cycle
(x, y′, z, x′, y, z′). The result follows. �

Lemma 3.7 If G is a cotree-critical graph having a subdivision of Möbius ladder
M with 4 bars as a subgraph, then it is the union of a polygon γ and chords
which are non-critical for G. Moreover the 4 bars b1, b2, b3, b4 of M are chords
and any other chord is adjacent or interlaced with all of b1, b2, b3, b4 with respect
to γ.

Proof: Let G be a cotree-critical graph having a subdivision of Möbius M
ladder with 4 bars b1, b2, b3, b4 as a subgraph. First notice that all the bars of
the Möbius ladder are non-critical for G and that, according to Corollary 3.5,
they are hence reduced to edges. According to Lemma 3.4, M covers all the
vertices of G as it includes a K3,3 and hence the polygon γ of the ladder is
Hamiltonian. Thus, the remaining edges of G are non-critical chords of γ.

Let e be a chord different from b1, b2, b3, b4.

• Assume e is adjacent to none of b1, b2, b3, b4.

Then it cannot be interlaced with less than 3 bars, according to Lemma 3.2,
considering the K3,3 induced by at least two non-interlaced bars. It can-
not also be interlaced with 3 bars, according to Lemma 3.6, considering
the K3,3 induced by the 2 interlaced bars (as {x, x′}, {z, z′}) and one non-
interlaced bar (as {y, y′}).

• Assume e is adjacent to b1 only.

Then it is interlaced with the 3 other bars, according to Lemma 3.2,
considering the K3,3 induced by b1 and two non-interlaced bars.

• Assume e is adjacent to b1 and another bar bi.

Assume e is not interlaced with some bar bj �∈ {b1, bi} then, considering
the K3,3 induced by b1, bi, bj we are led to a contradiction, according
to Lemma 3.2. Thus, e is interlaced with the 2 bars to which it is not
adjacent.

�

Theorem 3.8 If G is a cotree-critical graph having a subdivision of Möbius
ladder M with 4 bars as a subgraph, then it is a Möbius pseudo-ladder whose
polygon γ is the set of the critical edges of G.

Proof: According to Lemma 3.7, G is the union of a polygon γ and chords
including the 4 bars of M . In order to prove that G is a Möbius pseudo-ladder,
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it is sufficient to prove that any two non-adjacent chords are interlaced with
respect to that cycle. We choose to label the 4 bars b1, b2, b3, b4 of M according
to an arbitrary traversal orientation of γ. According to Lemma 3.7, any chord
e is adjacent or interlaced with all of b1, b2, b3, b4 and hence its endpoints are
traversed between these of two consecutive bars bα(e), bβ(e) (with β(e) ≡ α(e) +
1 (mod 4)), which defines functions α and β from the chords different from
b1, b2, b3, b4 to {1, 2, 3, 4}.

As all the bars are interlaced pairwise and as any chord is adjacent or inter-
laced with all of them, we only have to consider two non-adjacent chords e, f
not in {b1, b2, b3, b4}.

• Assume α(e) is different from α(f).

Then, the edges e and f are interlaced, as the endpoints of e and f appear
alternatively in a traversal of γ.

• Assume α(e) is equal to α(f).

Let bi, bj be the bars such that j ≡ β(e) + 1 ≡ α(e) + 2 ≡ i + 3 (mod 4).
Then, consider the K3,3 induced by γ and the bars bi, e, bj . As bi and bj

are non critical, one of the branches adjacent to both of them is critical,
for otherwise a non critical cycle would exist. Hence; it follows from
Lemma 3.6 that e and f are interlaced.

�

4 DFS Cotree-Critical Graphs

An interesting special case of cotree-critical graphs, the DFS cotree-critical
graphs, arise when the tree may be obtained using a Depth-First Search, as
it happens when computing a cotree-critical subgraph using a planarity testing
algorithm. Then, the structure of the so obtained DFS cotree-critical graphs
appears to be quite simple and efficient to exhibit a Kuratowski subdivision
(leading to a linear time algorithm).

In this section, we first prove that any DFS cotree graph with sufficiently
many vertices includes a Möbius ladder with 4 bars as a subgraph and hence are
Möbius pseudo-ladders, according to Theorem 3.8. We then prove that these
Möbius pseudo-ladders may be fully characterized.

Lemma 4.1 Let G be a cotree-critical graph and let K be a Kuratowski sub-
division of G isomorphic to K3,3. Then, two K-vertices a, b which are not
K-adjacent cannot be adjacent to K-subvertices on a same K-branch.

Proof: The three possible cases are shown Figure 9; in all cases, a cycle of
non-critical edges exists. �

Lemma 4.2 Let G be a cotree-critical graph and let K be a Kuratowski subdivi-
sion of G isomorphic to K3,3. If G has two edges interlaced as shown Figure 10,
then G is not DFS cotree-critical.
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Figure 9: No two non-adjacent K-vertices may be adjacent to K-subvertices on
the same K-branch (see Lemma 4.1)

� � �

� � �

� �

a

� �
b

Figure 10: Case of two adjacent K-vertices adjacent to K-subvertices on the
same K-branch by two interlaced edges (see Lemma 4.2)

Proof: Assume G is cotree-critical. By case analysis, one easily checks that any
edge of G outside E(K) is either incident to a or b. Hence, all the vertices of G
incident to at most one non-critical edge is adjacent to a vertex incident with
at least 3 non-critical edges (a or b). According to Corollary 2.4, the set of non-
critical edges is not a subset of a DFS tree of G, so G is not DFS cotree-critical.

�

Lemma 4.3 Let G be a DFS cotree-critical graph and let K be a K3,3 subdi-
vision in G. Then, no two edges in E(G) \ E(K) may be incident to the same
K-vertex.

Proof: Assume G has a subgraph formed by K and two edges e and f incident to
the same K-vertex a. According to Lemma 3.4 and Lemma 3.2, K is a spanning
subgraph of G and only four cases may occur, depending on the position of the
endpoints of e and f different from a, as none of these may belong to a K-branch
including a:
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Figure 11: Cases of Lemma 4.3

• either they belong to the same K-branch,

• or they belong to two K-branches having in common a K-vertex which is
not K-adjacent to a,

• or they belong to two K-branches having in common a K-vertex which is
K-adjacent to a,

• or they belong to two disjoint K-branches.

By a suitable choice of the Kuratowski subdivision, the last two cases are easily
reduced to the first two ones (see Fig 11).

• Consider the first case.

Assume there exists a K-subvertex v between x and y. Then, v is not
adjacent to a K-vertex different from a, according to Lemma 4.1 and
Lemma 4.2. If v were adjacent to another K-subvertex w, the graph
would include a Möbius ladder with 4 bars as a subgraph and, according
to Theorem 3.8, would be a Möbius pseudo-ladder in which {a, y} and
{v, w} would be non adjacent non interlaced chords, a contradiction. Thus,
v may not be adjacent to a vertex different from a and we shall assume,
without loss of generality, that x and y are adjacent. Similarly, we may
also assume that y and z are adjacent.

Therefore, if G is DFS cotree-critical with tree Y , y is a terminal of Y and,
according to Lemma 2.5, is the root of Y , which leads to a contradiction,
according to Corollary 2.4.
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• Consider the second case.

As previously, we may assume that both x, y and z, t are adjacent. G
cannot be DFS cotree-critical, according to Lemma 2.6.

�

Lemma 4.4 If G is DFS cotree-critical, includes a subdivision of K3,3, and has
at least 10 vertices, then G includes a 4-bars Möbius ladder as a subgraph.

Proof: Let K be a K3,3 subdivision in G.
Assume K has two K-subvertices u and v adjacent in G. According to

Lemma 3.2, u and v neither belong to a same K-branch, nor to adjacent K-
branches. Let [a, a′] (resp. [b, b′]) be the K-branch including u (resp. v), where
a is not K-adjacent to b. Let c (resp. c′) be the K-vertex K-adjacent to a′

and b′ (resp. a and b). Then, the polygon (c′, a, u, a′, c, b′, v, b) and the chords
{c, c′}, {a, b′}, {u, v} and {a′, b} define a 4-bars Möbius ladder.

Thus, to prove the Lemma, it is sufficient to prove that if no two K-
subvertices are adjacent in G, there exists another K3,3 subdivision K ′ in G
having two K ′-subvertices adjacent in G.

As G has at least 10 vertices, there exists at least 4 K-subvertices adjacent
in G to K-vertices. Let S be the set of the pairs (x, y) of K-vertices, such that
there exists a K-subvertex v adjacent to x belonging to a K-branch having y
as one of its endpoints. Notice that K + {x, v} − {x, y} is a subdivision of K3,3

and thus that [x, y] is non-critical for G.
Assume there exists two pairs (x, y) and (y, z) in S. Let u be the vertex

adjacent to x in the K-branch incident to y and let v be the vertex adjacent to
y in the K-branch incident to z. Then, K + {x, u} − {x, y} is a subdivision K ′

of K3,3 for which {v, y} is an edge incident to two K ′-subvertices. Hence, we
are done in this case.

We prove by reductio ad absurdum that the other case (no two pairs (x, y)
and (y, z) belong to S) may not occur: according to Lemma 4.3, no two edges in
E(G)\E(K) may be incident to a same K-vertex. Thus, no two pairs (x, y) and
(x, z) may belong to S. Moreover, assume two pairs (x, y) and (z, y) belong to
S. Then, [x, y] and [z, y] are non critical for G and thus not subdivided. Hence,
x and z have to be adjacent to K-subvertices in the same K-branch incident
to y, which contradicts Lemma 4.1. Thus, no two pairs (x, y) and (z, y) may
belong to S. Then, the set {{x, y} : (x, y) ∈ S or (y, x) ∈ S} is a matching of
K3,3. As S includes at least 4 pairs and as K3,3 has no matching of size greater
than 3, we are led to a contradiction. �

Theorem 4.5 (Fraysseix, Rosenstiehl [3]) A DFS cotree-critical graph is
either isomorphic to K5 or includes a subdivision of K3,3 but no subdivision
of K5.

Theorem 4.6 Any DFS cotree-critical graph is a Möbius pseudo-ladder.
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Proof: If G is isomorphic to K5, the result holds. Otherwise G includes a sub-
division of K3,3, according to Theorem 4.5. Then, the result is easily checked for
graphs having up to 9 vertices, according to the restrictions given by Lemma 4.1
and Lemma 4.3 and, if G as at least 10 vertices, the result is a consequence of
Lemma 4.4 and Theorem 3.8. �

Theorem 4.7 A simple graph G is DFS cotree-critical if and only if it is a
Möbius pseudo-ladder which non-critical edges belong to some Hamiltonian path.

Moreover, if G is DFS cotree-critical according to a DFS tree Y and G has
at least 9 vertices, then Y is a path and G is the union of a cycle of critical
edges and pairwise adjacent or interlaced non critical chords.

Proof: If all the non-critical graphs belong to some simple path, the set of the
non-critical edges is acyclic and the graph is cotree critical. Furthermore, as we
may choose the tree including the non-critical edges as the Hamiltonian path,
the graph is DFS cotree-critical.

Conversely, assume G is DFS cotree-critical. The existence of an Hamilto-
nian including all the non-critical edges is easily checked for graph having up
to 9 vertices. Hence, assume G has at least 10 vertices. According to Theo-
rem 4.7, G is a Möbius pseudo ladder. By a suitable choice of a Kuratowski
subdivision of K3,3, it follows from Lemma 4.3 that no vertex of G may be
adjacent to more than 2 non-critical edges. Let Y be a DFS tree including all
the non-critical edges. Assume Y has a vertex v of degree at least 3. Then, one
of the cases shown Figure 12 occurs (as v is incident to at most 2 non-critical
edges) and hence v is adjacent to a terminal w of T . According to Lemma 2.5
and Corollary 2.4, we are led to a contradiction. �

� v

w

� �

� � �

� �

v

w

� �

� � �

� �

Figure 12: A vertex of degree at least 3 in the tree is adjacent to a terminal of
the tree (see Theorem 4.7)
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