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Abstract

We investigate the single link failure recovery problem and its ap-
plication to the alternate path routing problem for ATM networks, and
the k-replacement edges for each edge of a minimum cost spanning tree.
Specifically, given a 2-connected graph G, a specified node s, and a short-
est paths tree Ts = {e1, e2, . . . , en−1} of s, where ei = (xi, yi) and
xi = parentTs

(yi), find a shortest path from yi to s in the graph G\ei

for 1 ≤ i ≤ n − 1. We present an O(m + n log n) time algorithm for
this problem and a linear time algorithm for the case when all weights
are equal. When the edge weights are integers, we present an algorithm
that takes O(m + Tsort(n)) time, where Tsort(n) is the time required to
sort n integers. We establish a lower bound of Ω(min(m

√
n, n2)) for the

directed version of our problem under the path comparison model, where
Ts is the shortest paths destination tree of s. We show that any solution
to the single link recovery problem can be adapted to solve the alternate
path routing problem in ATM networks. Our technique for the single link
failure recovery problem is adapted to find the k-replacement edges for
the tree edges of a minimum cost spanning tree in O(m + n log n) time.
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1 Introduction

The graph G represents a set of nodes in a network and the weight of the
link represent the cost (say time) for transmitting a message through the link.
The shortest path tree Ts specifies the best way of transmitting to node s a
message originating at any given node in the graph. When the links in the
network may be susceptible to transient faults, we need to find a way to recover
from such faults. In this paper we consider the case when there is only one
link failure, the failure is transient, and information about the failure is not
propagated throughout the network. That is, a message originating at node x
with destination s will be sent along the path specified by Ts until it reaches
node s or a link that failed. In the latter case, we need to use a shortest
recovery path to s from that point. Since we assume single link faults and the
graph is 2-connected, such a path always exists. We call this problem the Single
Link Failure Recovery (SLFR) problem. As we show later on, this problem has
applications to the Alternate Path Routing (APR) problem for ATM networks.
The SLFR problem has applications when there is no global knowledge of a link
failure, in which case the failure is discovered only when one is about to use the
failed link. In such cases the best option is to take a shortest path from the
point one discovers the failure to the destination avoiding the failed link.

A naive algorithm for the SLFR problem is based on re-computation. For
every edge ei = (xi, yi) in the shortest path tree Ts, compute the shortest path
from yi to s in the graph G\ei. This algorithm requires n − 1 invocations
of the single source shortest path algorithm. An implementation of Dijkstra’s
algorithm that uses Fredman and Tarjan’s Fibonacci Heaps takes O(m+n log n)
time, which currently it is the fastest single source shortest paths algorithm. The
overall time complexity of the naive algorithm is thus O(mn + n2 log n). This
naive algorithm also works for the directed version of the SLFR problem. In
this paper we present an O(m + n log n) time algorithm for the SLFR problem.

One of the main applications of our work is the alternate path routing (APR)
problem for ATM networks. This problem arises when using the Interim Inter-
switch Signaling Protocol (IISP) [1]. This protocol has been implemented by
ATM equipment vendors as a simple interim routing solution for the dynamic
routing mechanism given by the Private Network-Network Interface (PNNI) [2].
IISP is sometimes referred to as PNNI(0) and provides the network basic func-
tionality for path selection at setup time. Assuming correct primary routing
tables, the protocol implements a depth-first search mechanism using the alter-
nate paths when the primary path leads to dead-ends due to link failure. Routes
disconnected by a link failure can be re-established along the alternate path.

IISP does not propagate link failure information. Newer protocols, like
PNNI, can find new paths and adapt automatically when links fail. However
that process is CPU intensive and is not desirable when only transient failures
occur, which is the scenario that we consider in this paper. Additional IISP
details are given in [24].

A solution to the SLFR problem is not a solution to the APR problem.
However, we show how to obtain a solution to the APR problem from any
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solution to the SLFR problem. Configuring the primary and alternate path
tables should be in such a way that reachability under single link failures is
ensured while maintaining, to a limited extent, shortest recovery paths. This is
a non-trivial task and the normal practice is to perform them manually. Slosiar
and Latin [24] studied this problem and presented an O(n3) time algorithm. In
this paper we present an O(m + n log n) time algorithm for APR problem.

A problem related to the SLFR problem is the (single-edge) replacement
paths problem. In this problem we are given an s-t shortest path and the
objective is to see how the path changes when an edge of the path fails. Formally,
the problem is defined as follows: Given a graph G(V,E), two nodes s, t ∈ V ,
and a shortest path PG(s, t) = {e1, e2, . . . , ep} from s to t in G, compute the
shortest path from s to t in each of the p graphs G\ei for 1 ≤ i ≤ p, where
G\ei represents the graph G with the edge ei removed. The difference between
the SLFR and the replacement paths problem is that in the SLFR you a given
a tree of shortest paths to a vertex s rather than one shortest path between
two vertices. Also, in the SLFR one takes the path until one encounters the
failed edge and you recover from that point, whereas in the replacement paths
problem you find a shortest path from s to t that does not include the failed
edge. However, our results showcase that these two problems have the same
computational complexity as the problems have matching upper bounds for the
undirected version, and a matching lower bound for the directed version. Our
problem has applications when failures are transient and information about the
failure is not propagated throughout the network. This type of situation is
applicable to the alternate path routing (APR) problem for ATM networks.

Near optimal algorithms for the replacement paths problem have been around
for a while. Malik, Mittal and Gupta[19] presented an O(m + n log n) time al-
gorithm for finding the most-vital-arc with respect to an s-t shortest path1.
Bar-Noy, Khuller, and Schieber [3] showed that, for arbitrary k, finding k most
vital edges with total weight at most c in a graph for a shortest path from s
to t is an NP-complete problem, even when the weight of all the edges have
weight 1. The replacement paths problem was also proposed later by Nisan
and Ronen[21] in their work on Algorithmic Mechanism Design. Hershberger
and Suri[15] rediscovered the algorithm of [19] in their work in the domain of
algorithmic mechanism design related to computing the Vickrey payments for
the edges lying on an s-t shortest path.

A closely related problem is that of finding the replacement edges for the
tree edges of the minimum cost spanning tree Tmst of a given graph. Formally,
given a weighted undirected graph G(V,E), and the minimum weight (cost)
spanning tree, Tmst, of G, find for each edge ei ∈ Tmst the minimum cost edge
of E \ ei which connects the two disconnected components of Tmst \ ei. Efficient
algorithms for this problem have been presented in [27, 8]. A straight forward
generalization of this problem, termed k-RE-MST, is defined as follows:

1The proof of correctness in [19] had a minor flaw which was pointed out and corrected
in [3]
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k-RE-MST: Given an undirected weighted graph G(V,E), the minimum weight
(cost) spanning tree Tmst of G, and an integer k, for each edge e ∈ Tmst, find
the k least cost edges (in order of increasing weight) across the cut induced by
deleting e from Tmst.

We assume that the graph is k edge connected and that k is a constant.
The k-RE-MST problem was introduced by Shen [23] as a subproblem in a ran-
domized algorithm for the k most vital edges (k-MVE) with respect to a given
minimum cost spanning tree problem. Shen’s randomized algorithm has a time
complexity bound of O(mn), where his O(mn)-time algorithm for the k-RE-MST
subproblem is the bottleneck. Liang [18] improved the complexity of solving
the k-RE-MST problem to O(n2), thus achieving the corresponding improve-
ment in Shen’s randomized algorithm [23]. We show that our techniques to
solve the SLFR problem can be adapted to the k-RE-MST problem and solve
it in O(m + n log n) time, thus improving the time complexity of Shen’s ran-
domized algorithm [23] for the k-MVE problem from O(n2) to (near) optimal
O(m + n log n). The decision version of the k-MVE problem is polynomially
solvable when k is fixed [23], but for arbitrary k the problem has been shown to
be NP-complete by Frederickson and Solis-Oba [9], even when the edge weights
are 0 or 1.

1.1 Main Results

Our main results are (near) optimal algorithms for the single link failure recovery
(SLFR) problem, a lower bound for the directed SLFR problem and (near)
optimal algorithms for the alternate path routing (APR) problem. Specifically,
we present an O(m+n log n) time algorithm for the SLFR problem. We present
an O(m + n) time algorithm for the case when all the edge weights are the
same. When the edge weights are integers, we present an algorithm that takes
O(m + Tsort(n)) time, where Tsort(n) is the time required to sort n integers.
Currently, Tsort(n) is O(n log log n) (Han [13]). The computation of the shortest
paths tree can also be included in all the above bounds, but for simplicity we
say that the shortest path tree is part of the input to the problem.

To exhibit the difference in the difficulty levels of the directed and undirected
versions we borrow the lower bound construction of [4, 16] to establish a lower
bound of Ω(min(n2,m

√
n)) for the arbitrarily weighted directed version of the

problem. The construction has been used to establish the same bound for the
directed version of the replacement paths problem [19, 15, 16, 4]. This lower
bound holds in the path comparison model for shortest path algorithms.

We show in Section 7 that all of the above algorithms can be adapted to
the alternate path routing (APR) problem within the same time complexity
bounds by showing that in linear time one may transform any solution to the
SLFR problem to the APR problem.

In Section 8 we show that our techniques to solve the SLFR problem can
be adapted to the k-RE-MST problem and solve it in O(m + n log n) time, thus
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improving the time complexity of Shen’s randomized algorithm [23] for the k-
MVE problem from O(n2) to (near) optimal O(m + n log n).

1.2 Preliminaries

Our communication network is modeled by a weighted undirected 2-connected
graph G(V,E), with n = |V | and m = |E|. Each edge e ∈ E has an associated
cost, cost(e), which is a non-negative real number. We use pathG(s, t) to denote
the shortest path between s and t in graph G and dG(s, t) to denote its cost
(weight). A cut in a graph is the partitioning of the set of vertices V into V1

and V2, and it is denoted by (V1, V2). The set E(V1, V2) represents the set of
edges across the cut (V1, V2).

A shortest path tree Ts for a node s is a collection of n − 1 edges of G,
{e1, e2, . . . , en−1}, where ei = (xi, yi), xi, yi ∈ V , xi = parentTs

(yi) and the
path from node v to s in Ts is a shortest path from v to s in G. We remove the
index Ts from parentTs

when it is clear the tree Ts we mean. Note that under our
notation a node v ∈ G is the xi component of as many tuples as the number of its
children in Ts and it is the yi component in one tuple (if v 6= s). Nevertheless,
this notation facilitates an easier formulation of the problem. Moreover, our
algorithm does not depend on this labeling.

Finally, Tmst denotes the minimum (cost) spanning tree of the graph, and is
a collection of n−1 edges forming a spanning tree with least total weight among
all spanning trees of the graph.

2 A Simple O(m log n) Algorithm

In this section we describe a simple algorithm for the SLFR problem that takes
O(m log n) time and in Section 3 we use it to derive an algorithm that takes
O(m + n log n) time.

When the edge ei = (xi, yi) of the shortest path tree Ts is deleted, Ts is split
into two components. Let us denote the component containing s by Vs|i and
the other by Vi. Consider the cut (Vs|i, Vi) in G. Among the edges crossing this
cut, only one belongs to Ts, namely ei = (xi, yi). Since G is 2-connected, we
know that there is at least one non-tree edge in G that crosses the cut. Our
algorithm is based on the following lemma that establishes the existence of a
shortest path from yi to s in the graph G\ei that uses exactly one edge of the
cut (Vi, Vs|i).

Lemma 1 There exists a shortest path from yi to s in the graph G\{ei =
(xi, yi)} that uses exactly one edge of the cut (Vi, Vs|i) and its weight is equal to

dG\ei
(yi, s) = MIN(u,v)∈E(Vi,Vs|i){weight(u, v)} (1)

where (u, v) ∈ E(Vi, Vs|i) signifies that u ∈ Vi and v ∈ Vs|i and the weight
associated with the edge (u, v) is given by

weight(u, v) = dG(yi, u) + cost(u, v) + dG(v, s) (2)
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Proof: Since G is 2-connected there is at least one path from yi to s in the
graph G\{ei} and all such paths have at least one edge in the cut E(Vi, Vs|i).
We now prove by contradiction that at least one such path has exactly one edge
of the cut (Vi, Vs|i). Suppose that no such path exists. Consider any path π
from yi to s with more than one edge across the cut E(Vi, Vs|i) (see Figure 1).
Let q be the last vertex in the set Vs|i visited by π. We define the path π2 as
the path π except that the portion of the path pπ(q, s) is replaced by the path
from q to s in Ts which is completely contained within Vs|i. Since the path in Ts

from q to s is a shortest path in G and does not include edge ei, it then follows
that the weight of path π2 is less than or equal to that of path π. Clearly, π2

uses exactly one edge in E(Vi, Vs|i). A contradiction. This proves the first part
of the lemma.

s
yq

Vi

i

s|iV

s−q shortest  path

candidate path

Figure 1: The recovery path to yi uses exactly one edge across the induced cut.

Next, notice that the weight of the candidate path to yi using the edge
(u, v) ∈ E(Vi, Vs|i) is exactly equal to dG(yi, u) + cost(u, v) + dG(v, s). This is
because the shortest path from yi to u is completely contained inside Vi and
is not affected by the deletion of the edge ei. Also, since we are dealing with
undirected graphs, the shortest path from v to s is of the same weight as the
shortest path from s to v which is completely contained inside Vs|i and remains
unaffected by the deletion of the edge ei. The minimum among all the candidate
paths is the shortest path whose weight is given precisely by the equation (1).

2

The above lemma immediately suggests an algorithm for the SLFR problem.
From each possible cut, select an edge satisfying equation (1). An arbitrary way
of doing this may not yield any improvement over the naive algorithm since there
may be as many as Ω(m) edges across each of the n − 1 cuts to be considered,
leading to Ω(mn) time complexity. However, an ordered way of computing the
recovery paths enables us to avoid this Ω(mn) bottleneck.

Our problem is reduced to mapping each edge ei ∈ Ts to an edge ai ∈ G\Ts

such that ai is the edge with minimum weight in E(Vi, Vs|i). We call ai the
escape edge for ei and use A to denote this mapping function. Note that there
may be more than one edge that could be an escape edge for each edge ei. We
replace equation (1) with the following equation to compute A(ei).

A(ei) = ai ⇐⇒ weight(ai) = MIN(u,v)∈E(Vi,Vs|i){weight(u, v)} (3)
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Once we have figured out the escape edge ai for each ei, we have enough infor-
mation to construct the required shortest recovery path.

The weight as specified in equation (2) for the edges involved in the equation
(3) depends on the deleted edge ei. This implies additional work for updating
these values as we move from one cut to another, even if the edges across the
two cuts are the same. Interestingly, when investigating the edges across the
cut (Vi, Vs|i) for computing the escape edge for the edge ei = (xi, yi), if we add
the quantity d(s, yi) to all the terms involved in the minimization expression,
the minimum weight edge retrieved remains unchanged. However, we get an
improved weight function. The weight associated with an edge (u, v) across the
cut is denoted by weight(u,v) and defined as:

dG(s, yi)+dG(yi, u)+cost(u, v)+dG(v, s) = dG(s, u)+cost(u, v)+dG(v, s) (4)

Now the weight associated with an edge is independent of the cut being con-
sidered and we just need to design an efficient method to construct the set
E(Vi, Vs|i) for all i.

It is interesting to note that the above weight function turns out to be similar
to the weight function used by Malik, et al. [19] for finding the single most vital
arc in the shortest path problem2, and a similar result by Hershberger and Suri
[15] on finding the marginal contribution of each edge on a shortest s-t path.
However, while such a weight function was intuitive for those problems, it is not
so for our problem.

2.1 Description of the Algorithm

We employ a bottom-up strategy for computing the recovery paths. None of
the edges of Ts would appear as an escape edge for any other tree edge because
no edge of Ts crosses the cut induced by the deletion of any other edge of Ts.
In the first step, we construct n − 1 heaps, one for each node (except s) in G.
The heaps contain elements of the form < e,weight(e) >, where e is a non-tree
edge with weight(e) as specified by equation (4). The heaps are maintained as
min heaps according to the weight(·) values of the edges in it. Initially the heap
Hv corresponding to the node v contains an entry for each non-tree edge in G
incident upon v. When v is a leaf in Ts, Hv contains all the edges crossing the
cut induced by deleting the edge (u, v), where u = parentTs

(v) is the parent of
v in Ts. Thus, the recovery path for the leaf nodes can be easily computed at
this time by performing a findMin operation on the corresponding heap.

Let us now consider an internal node v whose children in Ts have had their
recovery paths computed. Let the children of v be the nodes v1, v2, . . . , vk. The
heap for node v is updated as follows:

Hv ← meld(Hv,Hv1
,Hv2

, . . . ,Hvk
)

2A flaw in the proof of correctness of this algorithm was pointed out and corrected by
BarNoy, et al. in [3]
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Now Hv contains all the edges crossing the cut induced by deleting the edge
(parentTs

(v), v). But it may also contain other edges which are completely
contained inside Vv, which is the set of nodes in the subtree of Ts rooted at
v. However, if e is the edge retrieved by the findMin(Hv) operation, after an
initial linear time preprocessing, we can determine in constant time whether
or not e is an edge across the cut. The preprocessing begins with a DFS
(depth first search) labeling of the tree Ts in the order in which the DFS call
to the nodes end. Each node v needs an additional integer field, which we
call min, to record the smallest DFS label for any node in Vv. It follows from
the property of DFS-labeling that an edge e = (a, b) is not an edge crossing
the cut if and only if v.min ≤ dfs(a) < dfs(v) and v.min ≤ dfs(b) < dfs(v).
In case e is an invalid edge (i.e. an edge not crossing the cut), we perform a
deleteMin(Hv) operation. We continue performing the findMin(Hv) followed
by deleteMin(Hv) operations until findMin(Hv) returns a valid edge.

The analysis of the above algorithm is straightforward and its time com-
plexity is dominated by the heap operations involved. Using F-Heaps, we can
perform the operations findMin, insert and meld in amortized constant time,
while deleteMin requires O(log n) amortized time. The overall time complexity
of the algorithm can be shown to be O(m log n). We have thus established the
following theorem whose proof is omitted for brevity.

Theorem 1 Given an undirected weighted graph G(V,E) and a specified node
s, the shortest recovery path from each node to s is computed by our procedure
in O(m log n) time.

We formally present our algorithm Compute Recovery Paths (CRP) in Fig-
ure 2. Initially one invokes DFS traversal of Ts where the nodes are labeled in
DFS order. At the same time we compute and store in the min field of every
node, the smallest DFS label among all nodes in the subtree of Ts rooted at v.
We refer to this value as v.min. Then one invokes CRP(v) for every child v of s.

3 A Near Optimal Algorithm

We now present a near optimal algorithm for the SLFR problem which takes
O(m + n log n) time to compute the recovery paths to s from all the nodes of
G. The key idea of the algorithm is based on the following observation: If we
can compute a set EA of O(n) edges which includes at least one edge which can
possibly figure as an escape edge ai for any edge ei ∈ Ts and then invoke the
algorithm presented in the previous section on G(V,EA), we can solve the entire
problem in O(Tp(m,n)+n log n) time, where Tp(m,n) is the preprocessing time
required to compute the set EA. We now show that a set EA can be computed
in O(m + n log n) time, thus solving the problem in O(m + n log n) time.

Recall that to find the escape edge for ei ∈ Ts we need to find the minimum
weighted edge across the induced cut (Vi, Vs|i), where the weight of an edge is
as defined in equation (4). This objective reminds us of minimum cost spanning
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Procedure CRP (v)
Construct the heap Hv which initially contains an entry for each non-tree

edge incident on it.
// When v is a leaf in the tree Ts the body of the //
// loop will not be executed //
for all nodes u such that u is a child of v in Ts do

CRP(u);
Hv ← meld(Hv,Hu);

endfor

// Now Hv contains all the edges across the induced cut, and when v //
// is not a leaf in Ts the heap may also contain some invalid ones. //
// Checking for validity of an edge is a constant time operation //
// as described above. //
while ( (findMin(Hv)).edge is invalid ) do

deleteMin(Hv)
endwhile

A(parent(v), v) = (findMin(Hv)).edge
return;

End Procedure CRP

Figure 2: Algorithm Compute Recovery Paths (CRP).

trees since they contain the lightest edge across any cut. The following cycle
property about MSTs is folklore and we state it without proof:

Property 1 [MST]: If the heaviest edge in any cycle in a graph G is unique,
it cannot be part of the minimum cost spanning tree of G.

Computation of a set EA is now intuitive. We construct a weighted graph
GA(V,EA) from the input graph G(V,E) as follows: EA = E\E(Ts), where
E(Ts) are the edges of Ts, and the weight of edge (u, v) ∈ EA is defined as in
Equation (4), i.e, weight(u, v) = dG(s, u) + cost(u, v) + dG(v, s).

Note that the graph GA(V,EA) may be disconnected because we have deleted
n − 1 edges from G. Next, we construct a minimum cost spanning forest of
GA(V,EA). A minimum cost spanning forest for a disconnected graph can be
constructed by finding a minimum cost spanning tree for each component of the
graph. The minimum cost spanning tree problem has been extensively studied
and there are well known efficient algorithms for it. Using F-Heaps, Prim’s
algorithm can be implemented in O(m + n log n) time for arbitrarily weighted
graphs [10]. The problem also admits linear time algorithms when edge weights
are integers [11]. Improved algorithms are given in [22, 7, 10]. A set EA contains
precisely the edges present in the minimum cost spanning forest (MSF ) of GA.
The following lemma will establish that EA contains all the candidate escape
edges ai.
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Lemma 2 For any edge ei ∈ Ts, if A(ei) is unique, it has to be an edge of the
minimum cost spanning forest of GA. If A(ei) is not unique, a minimum cost
spanning forest edge offers a recovery path of the same weight.

u
v

ei

a

f

s

Vi
s|i

SPT edges
MSF edges

Other edges 

V

Figure 3: A unique escape edge for ei has to be an edge in the minimum cost
spanning forest of GA.

Proof: Let us assume that for an edge ei ∈ Ts, A(ei) = a = (u, v) ∈ E(Vi, Vs|i)
is a unique edge not present in the minimum cost spanning forest of GA. Let
us investigate the cut (Vi, Vs|i) in G(V,E). There can be several MSF edges
crossing this cut. Since a = (u, v) is in GA, it must be that u and v are in the
same connected component in GA. Furthermore, adding a to the MSF forms
a cycle in the component of the MSF containing u and v as shown in Figure
3. At least one other edge, say f , of this cycle crosses the cut (Vi, Vs|i). From
Property 1 mentioned earlier, weight(a) ≥ weight(f) and the recovery path
using f in G is at least as good as the one using a. 2

It follows from Lemma 2 that we need to investigate only the edges present
in the set EA as constructed above. Also, since EA is the set of edges of the
MSF, (1) |EA| ≤ n − 1 and (2) for every cut (V, V ′) in G, there is at least
one edge in EA crossing this cut. We now invoke the algorithm presented in
Section 2 which requires only O((|EA|+ n) log n) which is O(n log n) additional
time to compute all the required recovery paths. The overall time complexity
of our algorithm is thus O(m + n log n) which includes the constructions of the
shortest paths tree of s in G and the minimum spanning forest of GA required
to compute EA. We have thus established Theorem 2.

Theorem 2 Given an undirected weighted graph G(V,E) and a specified node
s, the shortest and the recovery paths from all nodes to s is computed by our
procedure in O(m + n log n) time.
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4 Unweighted Graphs

In this section we present a linear time algorithm for the unweighted SLFR,
thus improving the O(m + n log n) algorithm of Section 3 for this special case.
One may view an unweighted graph as a weighted one with all edges having
unit cost. As in the arbitrarily weighted version, we assign each non-tree edge a
new weight as specified by equation (4). The recovery paths are determined by
considering the non-tree edges from smallest to largest (according to their new
weight) and finding the nodes for which each of them can be an escape edge.
The algorithm, S-L, is given in Figure 4.

Procedure S-L

Sort the non-tree edges by their weight;
for each non-tree edge e = (u, v) in ascending order do

Let w be the nearest common ancestor of u and v in Ts

The recovery path for all the nodes lying on pathTs
(u,w) and pathTs

(v, w)
including u and v, but excluding w that have their recovery paths
undefined are set to use the escape edge e;

endfor

End Procedure S-L

Figure 4: Algorithm S-L.

The basis of the entire algorithm can be stated in the following lemma. Here
L denotes a priority queue containing the list of edges sorted by increasing order
of their weights, and supports deleteMin(·) operation in O(1) time.

Lemma 3 If e = (u, v) = deleteMin(L).edge, and w = nca(u, v) is the nearest
common ancestor of u and v in Ts, the recovery paths for all the nodes lying on
pathTs

(u,w) and pathTs
(v, w) including u and v but excluding w, whose recovery

paths have not yet been discovered, use the escape edge e.

Proof: See Figure 7. Let us investigate the alternate path for a node yi lying on
pathTs

(v, w). In the graph G\(xi, yi) where xi = parentTs
(yi) is the parent of

yi in Ts, we need to find a smallest weighted edge across the cut (Vi, Vs|i). Note
that the path from yi using e is a valid candidate for the alternate path from
yi since e is an edge across the induced cut. If the alternate path from yi uses
an edge f 6= e, then f would have been retrieved by an earlier deleteMin(L)
operation and the alternate path from yi would have already been discovered.
Furthermore, if the alternate path from yi has not been discovered yet, e offers
a path at least as cheap as what any other edge across the cut can offer. A
similar argument establishes the lemma for the nodes lying on pathTs

(u,w). 2

4.1 Implementation Issues

Since any simple path in the graph can have at most n − 1 edges, the newly
assigned weights of the non-tree edges are integers in the range [1, 2n]. As the
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first step, we sort these non-tree edges according to their weights in linear time.
Any standard algorithm for sorting integers in a small range can be used for
this purpose. E.g. Radix sort of n integers in the range [1, k] takes O(n + k)
time. The sorting procedure takes O(m+n) time in this case. This set of sorted
edges is maintained as a linked list, L, supporting deleteMin in O(1) time, where
deleteMin(L) returns and deletes the smallest element present in L.

The nearest common ancestor problem has been extensively studied. The
first linear time algorithm by Harel and Tarjan [14] has been significantly sim-
plified and several linear time algorithms [6] are known for the problem. Using
these algorithms, after a linear time preprocessing, in constant time one can
find the nearest common ancestor of any two specified nodes in a given tree.

Our algorithm uses efficient Union-Find structures. Several fast algorithms
for the general union-find problem are known, the fastest among which runs in
O(n+mα(m+n, n)) time and O(n) space for executing an intermixed sequence
of m union-find operations on an n-element universe [25], where α is the func-
tional inverse of Ackermann’s function. Although the general problem has a
super-linear lower bound [26], a special case of the problem admits linear time
algorithm [12]. The requirements for this special case are that the “union-tree”
has to be known in advance and the only union operations, which are referred as
“unite” operations, allowed are of the type unite(parent(v), v), where parent(v)
is the parent of v in the “union-tree”. The reader is referred to [12] for the de-
tails of the algorithm and its analysis. As we shall see, the union-find operations
required by our algorithm fall into the set of operations allowed in [12] and we
use this linear time union-find algorithm. With regard to the running time, our
algorithm involves O(m) find(·) and Θ(n) union(·) operations on an n-element
universe, which take O(m + n) total time.

Our algorithm, All-S-L, is formally described in Figure 5. Correctness
follows from the fact the that procedure All-S-L just implements procedure
S-L and Lemma 3 shows that the strategy followed by procedure S-L generates
recovery paths for all the nodes in the graph. The time taken by the sorting,
creation of the sorted list and deletion of the smallest element in the list one by
one, and the computation of the nearest common ancestor can be shown all to
take linear time in the paragraph just before procedure All-S-L. It is clear that
all the union operations are between a child and a parent in Ts, and the tree Ts

is known ahead of time. Therefore, all the union-find operations take O(n+m)
time. All the other operations can be shown to take constant time except for
the innermost while loop which overall takes O(n) time since it is repeated at
most once for each edge in the tree Ts. We have thus established Theorem 3.

Theorem 3 Given an undirected unweighted graph G(V,E) and a specified node
s, the shortest and the recovery paths from all nodes to s is computed by our
procedure in O(m + n) time.
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Procedure All-S-L

Preprocess Ts using a linear time algorithm [6, 14] to efficiently answer the
nearest common ancestor queries.

Initialize the union-find data-structure of [12].
Assign weights to the non-tree edges as specified by equation (4) and sort

them by these weights. Store the sorted edges in a priority queue structure
L, supporting deleteMin(L) in O(1) time.

Mark node s and unmark all the remaining nodes.
while there is an unmarked vertex do

{e = (u, v)} = deleteMin(L).edge;
w = nca(u, v);
for x = u, v do

if x is marked then x = find(x); endif
while (find(x) 6= find(w)) do
A(parent(x), x) = e;
union(find(parent(x)), find(x));
Mark x;
x = parent(x);

endwhile

endfor

endwhile

End Procedure All-S-L

Figure 5: Algorithm, All-S-L.

5 Integer Edge Weights SLFR

If the edge weights are integers, linear time algorithms are known for the shortest
paths tree [28] and the minimum cost spanning tree [11]. We reduce the number
of candidates for the escape edges from O(m) to O(n) using the technique of
investigating only the MST edges. After sorting these O(n) edges in Tsort(n)
time, we use the algorithm for unweighted graphs to solve the problem in O(n)
additional time. Currently Tsort(n) = O(n log log n) due to Han [13]. We have
thus established the following theorem.

Theorem 4 Given an undirected graph G(V,E) with integer edge weights, and
a specified node s, the shortest and the recovery paths from all nodes to s can be
computed by our procedure in O(m + Tsort(n)) time.

6 Directed Graphs

In this section we sketch a super linear (unless m = Θ(n2)) lower bound of
Ω(min(n2,m

√
n)) for the directed weighted version of the SLFR problem.

The lower bound construction presented in [4, 16] can be used with a minor
modification to establish the claimed result for the SLFR problem. It was used
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in [4, 16] to prove the same bound for the directed version of the replacement
paths problem: Given a directed weighted graph G, two specified nodes s and t,
and a shortest path P = {e1, e2, . . . , ek} from s to t, compute the shortest path
from s to t in each of the k graphs G\ei for 1 ≤ i ≤ k. The bound holds in
the path comparison model for shortest path algorithms which was introduced
in [17] and further explored in [4, 16].

The construction basically reduces an instance of the n-pairs shortest paths
(NPSP )problem to an instance of the SLFR problem in linear time. An NPSP
instance has a directed weighted graph H and n specified source-destination
pairs (sj , tj) in H. One is required to compute the shortest path between each
pair, i.e. from sj to tj for 1 ≤ j ≤ n. For consistency with our problem
definition, we need to reverse the directions of all the edges in the construction
of [4, 16]. We simply state the main result in this paper. The reader is referred
to [4, 16, 17] for the details of the proofs and the model of computation.

Lemma 4 A given instance of an n-pairs shortest paths problem can be reduced
to an instance of the SLFR problem in linear time without changing the asymp-
totic size of the input graph. Thus, a robust lower bound for the former implies
the same bound for the SLFR problem.

As shown in [4, 16], the NPSP problem has a lower bound of Ω(min(n2,m
√

n))
which applies to a subset of path comparison based algorithms. Our lower bound
applies to the same class of algorithms to which the lower bound of [4, 16] for
the replacement paths problem applies.

7 Alternate Paths Routing for ATM Networks

In this section we describe a linear time post-processing to generate, from a
solution to the SLFR problem, a set of alternate paths which ensure loop-free
connectivity under single link failures in ATM networks.

Let us begin by discussing the inner-working of the IISP protocol for ATMs.
Whenever a node receives a message it receives the tuple [(s)(m)(l)], where s
is the final destination for the message, m is the message being sent and l is
the last link traversed. Each node has two tables: primary and alternate. The
primary table gives for every destination node s the next link to be taken. When
a link x fails, then the primary table entries that contain x as the next link are
automatically deleted and when the link x becomes available all the original
entries in the table that contained that link are restored. The alternate path
table contains a link to be taken when either there is no entry for the destination
s, or when the last link is the same as the link for s in the primary table. The
alternate table provides a mechanism to recover from link failures.
For the purpose of this paper, the ATM routing mechanism is shown in Figure 6.

The primary routing table for each destination node s is established by
constructing a shortest path tree rooted at s. For every node x in the tree the
path from x to s is a shortest path in the graph (or network). So the primary
routing table for node x has parentTs

(x) in the entry for s.
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Routing Protocol(p)

Protocol is executed when node p receives the tuple [(s: destination)
(m: message) (l: last link)]

if p = s then node s has received the message; exit;
endif

let q be the next link in the primary path for s (info taken from the primary
table)

case

: q is void or q = last link:
send (destination s) (message) through the link in the alternate table for

entry s;
: q 6= l: send (destination s) (message) through q

endcase

End Routing Protocol

Figure 6: ATM routing mechanism.

The alternate path routing problem for ATM networks consists of generating
the primary and alternate routing tables for each destination s. The primary
routing table is defined in the previous paragraph. The entries in the alternate
tables are defined for the alternate path routes. These paths are defined as
follows. Consider the edge ei = (xi, yi) and xi = parentTs

(yi). The alternate
path route for edge ei is the escape edge e = (u, v) with u a descendent of yi in
the tree Ts if an ancestor of yi in tree Ts has e as its escape edge. Otherwise, it
is computed as in Equation (4). This definition of the problem is given in [24].

While the set of alternate paths generated by the algorithm in Section 3
ensure connectivity, they may introduce loops since the IISP [1] mechanism
does not have the information about the failed edge, it cannot make decisions
based on the failed edge. Thus, we need to ensure that each router has a unique
alternate path entry in its table. For example in Figure 7, it is possible that
A(w, xi) = (yi, a) and A(s, z) = (yi, c).

Thus, yi needs to store two entries for alternate paths depending on the
failed edge. In this particular case, yi should preferably store the entry (yi, c)
since it provides loop-free connectivity even when (w, xi) fails (though possibly
sub-optimal). Contrary to what was stated in [24], storing at most one alternate
entry per node does not ensure loop-free routing. E.g. If A(w, xi) = (xi, a) and
A(s, z) = (yi, c), and (s, z) fails, xi routes the traffic via a, instead of forwarding
it to yi, thus creating a loop. We need to ensure that for all e ∈ pathTs

(yi, s),
A(e) = (yi, c). This is the key to the required post-processing which retains
the desirable set of alternate paths from the set of paths generated so far. We
formally describe our post-processing algorithm below.

Algorithm Generate Loop-free Alternate Paths (GLAP), shown in Figure 8,
takes as global parameters a shortest path tree Ts and the escape edge for each
edge, e, A(e) and it generates alternate path routes as defined above. The
procedure has as input a node r ∈ Ts. Initially every node is unmarked and
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Figure 7: Recovery paths in undirected unweighted graphs.

procedure GLAP is invoked with GLAP(s).

Procedure GLAP( r )

for every node z ∈ Ts such that z = childTs
(r), and z is not marked do

(b, c) = A(r, z) such that b ∈ Vz (where Vz is the set of vertices in the
subtree of Ts rooted at z)

while (b 6= z) do
A(parentTs

(b), b) = (b, c)
Mark b
GLAP(b)
b = parentTs

(b)
endwhile

endfor

End Procedure GLAP

Figure 8: Algorithm Generate Loop-free Alternate Paths (GLAP).

The O(n) time complexity comes from the fact that any edge of Ts is investi-
gated at most twice. The while loop takes care that all edges on pathTs

(z, b) are
assigned (b, c) as their alternate edge. The recursive calls update the alternate
edges of the edges that branch off from pathTs

(z, b) while the main for loop
makes sure that all paths branching off from the source node s are investigated.

Theorem 5 Given a solution to the SLFR problem for s tree of shortest paths
Ts, our procedure constructs a solution to the alternate path routing problem for
ATM networks in O(n) time.
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8 k-Minimum Replacement Edges in Minimum

Cost Spanning Trees

In this section we develop an algorithm for the k-RE-MST problem that takes
O(m + n log n) time. We assume that the graph is k edge connected and that
k is a constant. The problem was studied by Shen [23] who used it to design
a randomized algorithm for the k-MVE problem. Shen’s randomized algorithm
has a time complexity bound of O(mn), where his O(mn)-time algorithm for the
k-RE-MST subproblem is the bottleneck. Liang improved the complexity of the
k-RE-MST algorithm to O(n2), thus achieving the corresponding improvement
in Shen’s randomized algorithm [23]. The Procedure CRP presented in Section 2
can be easily generalized to solve the k-RE-MST problem in O(m+n log n) time,
thus improving the time complexity of Shen’s randomized algorithm [23] for the
k-most vital arcs in MSTs problem from O(n2) to (near) optimal O(m+n log n).

The idea is to use the algorithm in Section 2 to extract k minimum weight
valid edges from each heap Hv. Clearly, these k edges are precisely the replace-
ment edges for the edge (parent(v), v). Also, the output of the algorithm is
now a set of n − 1 lists, REei

for 1 ≤ i ≤ n − 1. At the end of the procedure,
each list REei

contains the k minimum weight replacement edges for the edge
ei. Furthermore, we root Tmst at an arbitrary node r ∈ V , and the weights of
the edges are their original weights as defined in the input graph G.

The modification in the Procedure CRP is in the while loop, which needs to
be replaced by the following block:

for i = 1 to k, do:

while ( (findMin(Hv)).edge is invalid ) do
deleteMin(Hv)

endwhile

RE(parent(v),v).add((deleteMin(Hv)).edge)
endfor

for i = 1 to k, do:

insert(Hv, RE(parent(v),v).get(i)).
endfor

Note that the second for loop is required since an edge in REe may appear as
one of the edges in REf for f 6= e. Now we analyze the complexity of this modi-
fied Procedure CRP. The while loop performs at most O(m) deleteMin(·) opera-
tions over the entire execution of the algorithm, thus contributing an O(m log n)
term. The first and second for loops in the block above, perform additional
k deleteMin(·) and insert(·) operations respectively, per heap Hv. The add(·)
and get(·) list operations are constant-time operations. The remaining steps
of the algorithm are same as for the SLFR problem. Thus, the total time
complexity of this procedure is O(m log n + kn log n) = O(m log n) (since k is
fixed).

In a preprocessing step, we reduce the number of edges of G(V,E) from
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O(m) to (k + 1)(n− 1) which is O(n) using the following lemma established by
Liang [18].

Lemma 5 [18] If T1 is the MST/MSF of G(V,E), and Ti is the MST/MSF
of Gi = G(V,E \ ∪i−1

j=1Tj), for i > 1, then Uk+1 = ∪k+1
j=1Tj contains the k-

minimum weight replacement edges for every edge e ∈ T1.

The set Uk+1 can be easily constructed in O((k + 1)(m + n log n)) = O(m +
n log n) time by invoking a standard MST algorithm k + 1 times. Now, the
above modified CRP procedure takes only O(m + n log n) time.

Theorem 6 Given a k-edge connected graph, where k is a constant, our pro-
cedure defined above takes O(m + n log n) time to solve the k-minimum weight
replacement edges for every edge e ∈ Ts,

9 Concluding Remarks

In this paper we have presented near optimal algorithms for the undirected ver-
sion of the SLFR problem and a lower bound for the directed version. In Section
8, we modified the basic algorithm of Section 2 to derive a (near) optimal algo-
rithm for the k-RE-MST problem, which finds application in Shen’s randomized
algorithm for the k-MVE problem on MSTs.

One obvious open question is to bridge the gap between the lower bound and
the naive upper bound for the directed version. The directed version is especially
interesting since an O(f(m,n)) time algorithm for it implies an O(f(m+ k, n+
k)) time algorithm for the k-pairs shortest paths problem for 1 ≤ k ≤ n2. When
there is more than one possible destination in the network, one needs to apply
the algorithms in this paper for each of the destinations.

Recently Bhosle [5] has achieved improved time bounds for the undirected
version of the SLFR problem for planar graphs and certain restricted input
graphs. Also, the recent paper by Nardelli, Proietti and Widmayer [20] reported
improved algorithms for sparse graphs.

For directed acyclic graphs, the problem admits a linear time algorithm.
This is because in a DAG, a node v cannot have any edges directed towards any
node in the subtree of Ts rooted at v (since this would create a cycle). Thus,
we only need to minimize over {cost(v, u) + dG(u, s)} for all (v, u) ∈ E and
u 6= parentTs

(v), to compute the recovery path from v to s since pathG(u, s)
cannot contain the failed edge (parentTs

(v), v) and remains intact on its dele-
tion. We thus need only

∑
v∈V (out degree(v)) = O(m) additions/comparisons

to compute the recovery paths.

Acknowledgements

The authors wish to thank the referees for several useful suggestions.



Bhosle, Gonzalez, Single Link Failure Recovery , JGAA, 8(3) 275–294 (2004)293

References

[1] ATM Forum. Interim inter-switch signaling protocol (IISP) v1.0. Specifi-
cation af-pnni-0026.000, 1996.

[2] ATM Forum. PNNI routing. Specification 94-0471R16, 1996.

[3] A. BarNoy, S. Khuller, and B. Schieber. The complexity of finding most vi-
tal arcs and nodes. Technical Report CS-TR-3539, University of Maryland,
Institute for Advanced Computer Studies, MD, 1995.

[4] A. M. Bhosle. On the difficulty of some shortest paths prob-
lems. Master’s thesis, University of California, Santa Barbara, 2002.
http://www.cs.ucsb.edu/∼bhosle/publications/msthesis.ps.

[5] A. M. Bhosle. A note on replacement paths in restricted graphs. Operations
Research Letters, (to appear).

[6] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. Linear-time
pointer-machine algorithms for least common ancestors, mst verification,
and dominators. In 30th ACM STOC, pages 279-288. ACM Press, 1998.

[7] B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann
type complexity. JACM, 47:1028-1047, 2000.

[8] B. Dixon, M. Rauch, and R. E. Tarjan. Verification and sensitivity analysis
of minimum spanning trees in linear time. SIAM J. Comput., 21(6):1184–
1192, 1992.

[9] G. N. Frederickson and R. Solis-Oba. Increasing the weight of minimum
spanning trees. In Proceedings of the 7th ACM/SIAM Symposium on Dis-
crete Algorithms, pages 539–546, 1993.

[10] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in im-
proved network optimization algorithms. JACM, 34:596-615, 1987.

[11] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for min-
imum spanning trees and shortest paths. JCSS, 48:533-551, 1994.

[12] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case
of disjoint set union. JCSS, 30(2):209-221, 1985.

[13] Y. Han. Deterministic sorting in O(n log log n) time and linear space. In
34th ACM STOC, pages 602–608. ACM Press, 2002.

[14] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM J. Comput. 13(2), pages 338-355, 1984.

[15] J. Hershberger and S. Suri. Vickrey prices and shortest paths: What is an
edge worth? In 42nd IEEE FOCS, pages 252-259, 2001.



Bhosle, Gonzalez, Single Link Failure Recovery , JGAA, 8(3) 275–294 (2004)294

[16] J. Hershberger, S. Suri, and A. M. Bhosle. On the difficulty of some shortest
path problems. In 20th STACS, pages 343–354. Springer-Verlag, 2003.

[17] D. R. Karger, D. Koller, and S. J. Phillips. Finding the hidden path: Time
bounds for all-pairs shortest paths. In 32ndIEEE FOCS, pages 560-568,
1991.

[18] W. Liang. Finding the k most vital edges with respect to minimum spanning
trees for fixed k. Discrete Applied Mathematics, 113:319–327, 2001.

[19] K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the
shortest path problem. In Oper. Res. Letters, pages 8:223-227, 1989.

[20] E. Nardelli, G. Proietti, and P. Widmayer. Swapping a failing edge of a
single source shortest paths tree is good and fast. Algorithmica, 35:56–74,
2003.

[21] N. Nisan and A. Ronen. Algorithmic mechanism design. In 31st Annu.
ACM STOC, pages 129-140, 1999.

[22] S. Pettie and V. Ramachandran. An optimal minimum spanning tree al-
gorithm. In Automata, Languages and Programming, pages 49-60, 2000.

[23] H. Shen. Finding the k most vital edges with respect to minimum spanning
tree. Acta Informatica, 36(5):405–424, 1999.

[24] R. Slosiar and D. Latin. A polynomial-time algorithm for the establishment
of primary and alternate paths in atm networks. In IEEE INFOCOM, pages
509-518, 2000.

[25] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
JACM, 22(2):215-225, 1975.

[26] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain
disjoint sets. JCSS, 18(2):110-127, 1979.

[27] R. E. Tarjan. Sensitivity analysis of minimum spanning trees and shortest
path problems. Inform. Proc. Lett., 14:30–33, 1982.

[28] M. Thorup. Undirected single source shortest path in linear time. In 38th

IEEE FOCS, pages 12–21, 1997.


