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Abstract

Sugiyama’s algorithm for layered graph drawing is very popular and
commonly used in practical software. The extensive use of dummy vertices
to break long edges between non-adjacent layers often leads to unsatis-
fying performance. The worst-case running-time of Sugiyama’s approach
is O(|V ||E| log |E|) requiring O(|V ||E|) memory, which makes it unusable
for the visualization of large graphs. By a conceptually simple new tech-
nique we are able to keep the number of dummy vertices and edges linear
in the size of the graph without increasing the number of crossings. We
reduce the worst-case time complexity of Sugiyama’s approach by an order
of magnitude to O((|V | + |E|) log |E|) requiring O(|V | + |E|) space.
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1 Introduction

Most approaches for drawing directed graphs used in practice follow the frame-
work developed by Sugiyama et al. [17], which produces layered layouts [3]. This
framework consists of four phases: In the first phase, called Cycle Removal, the
directed input graph G = (V,E) is made acyclic by reversing appropriate edges.
During the second phase, called Layer Assignment, the vertices are assigned to
horizontal layers. Before the third phase starts, long edges between vertices of
non-adjacent layers are replaced by chains of dummy vertices and edges between
the corresponding adjacent layers. Hence, in the third phase, called Crossing
Reduction, an ordering of the vertices within a layer is computed such that the
number of edge crossings is reduced. This is commonly done by a layer-by-
layer sweep where in each step the number of edge crossings is minimized for a
pair of adjacent layers. The fourth phase, called Horizontal Coordinate Assign-
ment, calculates an x-coordinate for each vertex. Finally the dummy vertices
introduced after the layer assignment are removed and replaced by bends.

Unfortunately, almost all problems occurring during the phases of this ap-
proach are NP-hard: Feedback-arc Set [14], Precedence Constrained Multi-
processor Scheduling [5], 2-layer Crossing Minimization [8], Optimal Linear
Arrangement [11], etc. Nevertheless, for all these problems appropriate heuris-
tics have been developed and nearly all practical graph drawing software use this
approach, mostly enriched by modifications required in practice like large ver-
tices, same-layer-edges, clustering, etc. Two examples for layered graph draw-
ings are given in Figure 1.

In the following, we review Sugiyama’s framework for drawing directed
graphs in more detail and give the necessary definitions and results. Then
we use this as basis for our new approach. In the rest of this work we assume
that the input graph is already acyclic. In our description we can therefore skip
the first step in which the given graph G is made acyclic.

1.1 Layer Assignment and Normalization

We assume that G = (V,E) is a directed acyclic graph. Let L1,..,Lh be a

partition of V with Li ⊂ V , 1 ≤ i ≤ h and
⋃h

i=1 Li = V (h denotes the number
of layers). Such a partition is called a layering of G if for all edges e = (v, w)
with v ∈ Li and w ∈ Lj holds i < j. The span of an edge e is j − i. The
number of vertices in a layer Li is denoted with ni. In a layered drawing, all
vertices v ∈ Li are drawn on a horizontal line (same y-coordinate). So the layer
assignment step assigns each vertex v ∈ V a y-coordinate. We call the layering
proper if span(e) = 1 for all edges e ∈ E. In most applications the layers of the
vertices can be assigned arbitrarily and, in some cases, the layer assignment is
even part of the input.

For edges e = (u, v) with span(e) > 1 and for which the endpoints u and
v lie on layers Li and Lj , we replace edge e by a chain of dummy vertices
u = di, di+1, . . . , dj−1, dj = v where any two consecutive dummy vertices are
connected by a dummy edge. Vertex dk for i ≤ k ≤ j is placed on layer



Eiglsperger et al., Implementing Sugiyama’s Alg., JGAA, 9(3) 305–325 (2005)307

functions

objects

axes

compiler

operations patterns

(a)

(b)

Figure 1: A small and a large example for a layered drawing of a
directed graph. The small example 1(a) shows a UML package dia-
gram. The large example 1(b) is taken from the Atlas of Cyberspaces
(http://www.cybergeography.org/atlas/topology.html), and shows social relation-
ships within a textual virtual space. It stems from the cobot project
(http://www.cc.gatech.edu/fac/Charles.Isbell/projects/cobot/).
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Lk. This process is called normalization and the result is the normalized graph
GN = (VN , EN ). With this construction, the next phase starts with a proper
layering.

Gansner et al. [10] presented an algorithm, which calculates a layer assign-
ment of the vertices such that the total edge length is minimized. Thus the
number of dummy vertices is minimized, too. An estimation of this number has
been given by Frick [9]. The algorithm for minimizing the number of dummy
vertices is a network simplex method and no polynomial time bound has been
proven for it, but several linear time heuristics for this problem work well in
practice [13, 15]. In the worst case |VN | = O(|V ||E|) and |EN | = O(|V ||E|).

After the final layout of the modified graph, we replace the chains of dummy
edges by polygonal chains in which the former dummy vertices become bends.

1.2 Crossing Reduction

The vertices within each layer Li are stored in an ordered list, which gives the
left-to-right order of the vertices on the corresponding horizontal line. Such an
ordering is called a layer ordering. We will often identify the layer with the
corresponding list Li. The ordering of the vertices within adjacent layers Li−1

and Li determines the number of edge crossings with endpoints on both layers.
Crossing reduction is usually done by a layer-by-layer sweep where each step

minimizes the number of edge crossings for a pair of adjacent layers. This layer-
by-layer sweep is performed as follows: We start by choosing an arbitrary vertex
order for the first layer L1 (we number the layers from top to bottom). Then
iteratively, while the vertex ordering of layer Li−1 is kept fixed, the vertices
of Li are put in an order that minimizes crossings. This step is called one-
sided two-layer crossing minimization and is repeated for i = 2, .., h. After we
have processed the bottommost layer, we reverse the sweep direction and go
from bottom to top. These steps are repeated until no further crossings can be
eliminated for a certain number of iterations.

Different heuristics have been proposed to attack the one-sided two-layer
crossing minimization problem [3, 6]:

• Barycenter Heuristic [17]
The position of a vertex v in list Li depends on the position of its adjacent
vertices in list Li−1. First a measure is calculated for each vertex v in Li.
The measure of a vertex v is the barycenter (average) of the positions of
its neighbors in the above layer. We get the positions of the vertices in Li

by sorting them according to their measure.

• Median Heuristic [8]
This heuristic is similar to the barycenter heuristic, except that the mea-
sure of a vertex v of layer Li is the median of the positions of its neighbors
in layer Li−1.

• Greedy Switch Heuristic [7]
Starting with a certain order of the vertices in Li, consecutive vertices are
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exchanged if the exchange reduces the number of crossings. In contrast to
the near-linear time complexity of the above heuristics the time complexity
of this heuristic is quadratic in the number of vertices. It is mainly used as
a local optimization of the median or barycenter heuristic within a layer
sweep iteration [10].

Only a few provable results on the quality of the above heuristics are known:

• The barycenter as well as the median heuristic give a solution without
crossings if one exists [6].

• The median heuristic produces at most three times more crossings than
necessary [8].

To decide whether we improved the number of crossings by a sweep, we
have to count this number. This important subproblem, called the bilayer cross
counting problem, has to be solved in each of the steps. The naive sweep-line
algorithm needs time O(|E′| + |C ′|) where |E′| is the number of edges between
the two layers and |C ′| the number of crossings between these edges [15]. It
has recently been improved to O(|E′| log |V ′|) by Waddle and Malhotra [19].
Barth et al. [2] gave a much simpler description of the algorithm with the same
running time.

It works as follows: Let Li and Li+1 be two adjacent layers with layer
ordering v1, .., vp and w1, .., wq respectively. The edges between both layers are
sorted lexicographically such that (vi, wj) < (vk, wl) if and only if i < k or i = k
and j < l. Let e1, .., er be the lexicographically sorted edge sequence, and jm

the index of the target vertex of em. An inversion in the sequence j1, .., jr is
a pair jk, jl with k < l and jk > jl. Each inversion corresponds to an edge
crossing between both layers. The number of inversions is counted by means of
an efficient data structure, called the accumulator tree T . The data structure
can easily be extended to support cross counting with weighted edges, which
will be relevant later.

1.3 Horizontal Coordinate Assignment

The horizontal coordinate assignment computes the x-coordinate for each vertex
with respect to the layer ordering computed during the crossing reduction phase.
There are two objectives to consider to get nice drawings. First the drawings
should be compact and second the edges should be “as vertical as possible.”
The failure of the second objective can produce many unnecessary bends which
results in a “spaghetti” effect and reduces the readability.

Gansner et al. [10] model the horizontal coordinate assignment problem as
a linear program:

min
∑

(v,w)∈E

Ω(v, w) · |x(v) − x(w)|

subject to

x(b) − x(a) ≥ δ(a, b) a, b consecutive in Li, 1 ≤ i ≤ h
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where Ω(v, w) denotes the priority to draw edge (v, w) vertical and δ(a, b) de-
notes the minimum distance of consecutive vertices a and b. If Ω is chosen
carefully the spaghetti effect could be limited. The linear program can be inter-
preted as a rank assignment problem on a compaction graph Ga = (VN , {(a, b) :
a, b consecutive in Li, 1 ≤ i ≤ h}) with length function δ. Each valid rank
assignment corresponds to a valid drawing. The above objective function can
be modeled by adding vertices and edges to Ga [10].

Another approach is to use the linear segments model, where each edge is
drawn as polyline with at most three segments. The middle segment is always
drawn vertical. In general, linear segment drawings have less bends but need
more area than drawings in other models. There have been a number of algo-
rithms proposed for this model [4, 15].

The approach of Brandes and Köpf [4] is a longest path based heuristic for
the horizontal coordinate assignment of directed acyclic graphs. It produces
vertical inner segments and nice balanced drawings in linear time. First it tries
to align a vertex with either its median upper or its median lower neighbor.
Aligned vertices share the same vertex in the compaction graph and thus get
the same x-coordinate. There are three kinds of alignment conflicts, type 0
conflicts arise between two non-inner segments (a non-inner segment has at
least one non-dummy vertex endpoint), type 1 conflicts arise between a non-
inner segment and an inner segment and type 2 conflicts between two inner
segments. Type 1 conflicts are always solved in favor of the inner segment.

Regardless if the vertices are aligned with their median upper or median
lower neighbor, alignment conflicts can be solved either in a leftmost or a right-
most fashion. So there are four possible combinations for aligning the vertices.
For each combination the horizontal coordinates are calculated by a longest-path
algorithm. Finally, the four resulting coordinate assignments are combined to
get a balanced drawing.

1.4 Drawbacks

The complexity of algorithms in the Sugiyama framework heavily depends on
the number of dummy vertices inserted. Although this number can be mini-
mized efficiently, it may still be in the order of O(|V ||E|) [9]. Assume we use an
algorithm based on the Sugiyama framework which uses the fastest available al-
gorithms for each phase. Then this algorithm has running time O(|V ||E| log |E|)
and uses O(|V ||E|) memory.

To improve the running time and space complexity we avoid introducing
dummy vertices for each layer that an edge spans. We rather split edges only in
a limited number of segments. As a result, there may be edges which traverse
layers without having a dummy vertex in it. We will extend the existing crossing
reduction and coordinate assignment algorithms to handle this case.

A similar idea is used in the Tulip system described in [1]. Unfortunately, no
details about the theoretical or practical performance, or the implementation
are given, and a comparison with the quality of the approaches commonly used
has not been described. However, in this approach, only the proper edges are
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Figure 2: Sparse normalization: In the left figure edge e = (v, w) (span(e) > 2)
is split into three segments (v, pe), se = (pe, qe) and (qe, w). The first and the
last edge are proper, se is drawn vertical. In the right figure edge e (span(e) = 2)
is split into two segments (v, re) and (re, w).

considered in the crossing reduction phase and the long edges are ignored. This
leads to drawings which have many more crossings than drawings using the
traditional Sugiyama approach. In contrast, we will show that our approach
yields the same results as the methods traditionally used in practice.

2 The New Approach

The basic idea of our new approach is the following: Since in the linear segments
model each edge consists of at most two bends, all corresponding dummy vertices
in the middle layers have the same x-coordinate. We combine them into one
segment and therefore reduce the size of the normalized graph dramatically.
More precisely, if edge e = (v, w) spans between layers Li and Lj with |j−i| > 2,
we introduce only two dummy vertices: pe at layer Li+1 (called p-vertex) and
qe at layer Lj−1 (called q-vertex), as well as three edges: (v, pe), se = (pe, qe),
and (qe, w). The first and the last edge are proper while the vertical edge se,
called the segment of e, is not necessarily proper (see Figure 2(a)). If |j − i| = 2
we insert a single dummy vertex re at layer Li+1 as well as two edges (v, re)
and (re, w) (see Figure 2(b)). Single dummy vertices are treated like common
vertices later on. We call this transformation sparse normalization and the
result the sparse normalized graph GS = (VS , ES) (see Figure 3(a)). The size
of the sparse normalized graph is linear with respect to the size of the input
graph. A similar transformation is used in the horizontal coordinate assignment
approach of [4], where vertically aligned vertices are combined into blocks.
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(a) sparse normalized graph (b) sparse compaction graph

Figure 3: The left figure shows a sparse normalized graph. Thick lines denote the
segments. The right figure shows the corresponding sparse compaction graph.

A layer L of a sparse normalized graph contains vertices and segments. A
layer ordering of a sparse normalized graph is a linear ordering of the vertices
and segments in a layer and is called a sparse layer ordering. When we draw
a graph G in the linear segments model, there is a correlation between layer
orderings of the normalized graph GN and sparse layer orderings of the sparse
normalized graph GS .

Let us look at the layer orderings of normalized graphs: instead of stor-
ing the layer ordering in lists, we can store it in a directed graph D. This
graph has an edge between vertices v and w if and only if these two ver-
tices are in the same layer Li and are consecutive. The ordering < defined
as v < w if and only if there is a directed path from v to w in D, is a complete
ordering for the vertices of a layer, i.e., either v < w or w < v for v, w ∈ Li. In
fact D is the compaction graph Ga mentioned in Section 1.3. The graph D has
|VN | vertices and O(|VN |) edges, which results in a worst case size of O(|V ||E|).

We want to reduce the size of D to O(|V |+ |E|) without losing the property
that < defines a total layer ordering. The key observation therefore is that the
edges between two segments in Li can be omitted if no two segments cross.

Given a layer Li of a sparse normalized graph, we partition the layer in the
following way:

Si0 , vi0 , Si1 , vi1 , Si2 , vi2 , . . . , Sini−1
, vini−1

, Sini
.

The list Sik
contains the segments which are between vertices vik−1

and vik
for
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1 ≤ k ≤ ni −1, Si0 contains the segments before vi0 and Sini
the segments after

vini−1
. We denote the first element of a non-empty list Sik

as head(Sik
) and the

last element as tail(Sik
). Furthermore we denote by s(v) the segment to which

v ∈ VS is incident if v is a p- or q-vertex, otherwise s(v) = v.

Definition 1 Given a directed acyclic graph G = (V,E) and a sparse layer
ordering in which no two segments cross, the sparse compaction graph (N,A)
of the sparse normalized graph GS = (VS , ES) of G is defined as:

N = V ∪ {re : re single dummy vertex of e ∈ E} ∪ {se : se segment of e ∈ E}

A = {(s(vij−1), s(vij
)) : 1 ≤ i ≤ h, 1 ≤ j ≤ ni − 1, Sij

= ∅} ∪

{(tail(Sij
), s(vij

)) : 1 ≤ i ≤ h, 0 ≤ j ≤ ni − 1, Sij
6= ∅} ∪

{(s(vij−1
), head(Sij

)) : 1 ≤ i ≤ h, 1 ≤ j ≤ ni, Sij
6= ∅}

An example of a sparse compaction graph is given in Figure 3(b).
If we look at two consecutive layers Li and Li+1 of a sparse normalized graph

we have the following properties:

P1: A segment se in Li is either also in Li+1 or the corresponding q-vertex qe

is in Li+1.

P2: A segment se in Li+1 is either also in Li or the corresponding p-vertex pe

is in Li.

Theorem 1 The ordering < induced by the sparse compaction graph (N,A) of
a sparse normalized graph GS = (VS , ES) defines a sparse layer ordering. The
compaction graph (N,A) has linear size with respect to G.

Proof: In the sparse compaction graph, each edge is induced by a vertex in VS .
Each vertex in VS induces at most 2 edges. Therefore the number of edges is at
most 2|VS |. Since there are at most 2|VS | lists S the number of vertices in the
compaction graph is linear with respect to G. We prove that the compaction
graph yields a total layer ordering by induction on the layers. In the first layer
there are no segments and the compaction graph of the sparse normalized graph
is identical to the compaction graph of the normalized graph for this layer, which
defines a total layering. Assume that the compaction graph defines a total layer
ordering for all layers above Li. We show that for two consecutive segments s1

and s2 in a list Sij
there is a path from s1 to s2 using vertices and segments

defined in the layers above Li. From this fact it follows that the compaction
graph defines a total ordering for layer Li. Let j < i be the layer with the
largest number such that s1 and s2 are no longer consecutive in a list Sjk

. We
show that there are only vertices of VS between s1 and s2 in Lj . If there was
a segment se between them, then this segment would end in a layer k with
j < k < i, otherwise se would cross either s1 or s2, which is a contradiction to
the fact that no pair of segments cross. But then, using property P1 in layer
k + 1, there is a vertex qe between s1 and s2, otherwise there would be again a
pair of crossing segments. But this is a contradiction to the definition of j which
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is the greatest layer in which s1 and s2 are not consecutive. Because there are
only vertices of V between s1 and s2 in layer Lj , there is a path between s1 and
s2 according to the definition of the compaction graph. 2

Our new approach is now as follows: In the first phase we create a sparse
normalization of the input graph. In the second phase we perform crossing min-
imization on the sparse normalization. In the third phase we take the resulting
sparse compaction graph and perform a coordinate assignment in linear time
using an approach similar to the one described in [4]. It remains to show how we
can perform crossing minimization on a sparse normalization efficiently, which
is the topic of the next section.

3 Efficient Crossing Reduction

In this section we present an algorithm which performs crossing minimization
using the barycenter or median heuristic on a sparse normalization. The output
is a sparse compaction graph which induces a sparse layer ordering with the
same number of crossings as these heuristics would produce for a normalization.
For our algorithm it is not important which strategy we choose as long as it
conforms to some rules.

Definition 2 A measure m defines for each vertex v in a layer Li+1 a non-
negative value m(v). If v has only one neighbor w in Li, then m(v) = pos(w),
where pos(w) is the position of w in layer Li.

Clearly the barycenter and median heuristic define such a measure.

Lemma 1 Using such a measure m there are no segments crossing each other.

Proof: A segment represents a chain of dummy vertices. Each dummy vertex
v on a layer Li has exactly one neighbor w in layer Li−1. Hence when we use a
measure m then m(v) = pos(w). Thus two segments never change their relative
ordering and thus never produce a crossing with each other. 2

3.1 2-Layer Crossing Minimization

The input of our two-layer crossing minimization algorithm is an alternating
layer Li and the sparse compaction graph for the layers L1, . . . , Li. An al-
ternating layer consists of an alternating sequence of vertices and containers,
where each container represents a maximal sequence of segments. The output
is an alternating layer Li+1 and the sparse compaction graph for L1, . . . , Li+1,
in which the vertices and segments are ordered by some measure. Note that the
representation of layer Li will be lost, since the containers are reused for layer
Li+1.

The containers correspond to the lists S of the previous section. The seg-
ments in the container are ordered. The data structure implementing the con-
tainer must support the following operations:
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• S = create() : Creates an empty container S.

• append(S, s) : Appends segment s to the end of container S.

• join(S1,S2) : Appends all elements of container S2 to container S1.

• (S1,S2) = split(S, s) : Split container S at segment s into two containers
S1 and S2. All elements less than s are stored in container S1 and those
who are greater than s in S2. Element s is neither in S1 nor S2.

• (S1,S2) = split(S,k) : Split container S at position k. The first k ele-
ments of S are stored in S1 and the remainder in S2.

• size(S) : Returns the number of elements in container S.

Our algorithm Crossing Minimization(Li, Li+1) is divided into six steps (see
Figure 4):

• In the first step we append the segment s(v) for each p-vertex v in layer
Li to the container preceding v. Then we join this container with the
succeeding container. The result is again an alternating layer (p-vertices
are omitted).

• In the second step we compute the measure values for the elements in
Li+1. First we assign a position value pos(vij

) to all vertices vij
in Li.

pos(vi0) = size(Si0) and pos(vij
) = pos(vij−1

) + size(Sij
) + 1. Note that

the pos values are the same as they would be in the median or barycenter
heuristic if each segment was represented as dummy vertex. Each non-
empty container Sij

has pos value pos(vij−1) + 1. If container Si0 is non-
empty it has pos value 0. Now we assign the measure to all non-q-vertices
and containers in Li+1. The initial containers in Li+1 are the resulting
containers of the first step. Recall that the measure of a container in Li+1

is its position in Li.

• In the third step we calculate an initial ordering of Li+1. We sort all
non-q-vertices in Li+1 according to their measure in a list LV . We do the
same for the containers and store them in a list LS . We use the following
operations on these sorted lists:

◦ l = pop(L) : Removes the first element l from list L and returns it.

◦ push(L, l) : Inserts element l at the head of list L.

We merge both lists in the following way:

if m(head(LV )) ≤ pos(head(LS))
then v = pop(LV ), append(Li+1, v)

if m(head(LV )) ≥ (pos(head(LS)) + size(head(LS)) − 1)
then S = pop(LS), append(Li+1, S)

else S = pop(LS), v = pop(LV ), k = ⌈m(v) − pos(S)⌉,
(S1,S2) = split(S, k), append(Li+1,S1), append(Li+1, v),
pos(S2) = pos(S) + k, push(LS ,S2).
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Figure 4: The six steps applied to layers 6 and 7 from Figure 3(a).
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Figure 5: Example for our modified cross counting. Container S1 is split into
containers S′

1 and S′

2, container S2 into a q-vertex and container S′

3. Dashed
edges represent virtual edges. Besides the common edges (v1, w1), (v2, w1) and
(v2, w2) with weight = 1 we have the virtual edges (S1, S

′

1) and (S1, S
′

2) both
with weight = 2 as well as (S2, q) and (S2, S

′

3) both with weight = 1. So the
crossing between (v1, w1) and (S1, S

′

1) as well as the crossing between (v2, w1)
and (S1, S

′

2) counts as 2 crossings.

• In the fourth step we place each q-vertex v of Li+1 according to the position
of its corresponding segment s(v). We do this by calling split(S, s(v)) for
each q-vertex v in layer Li+1 and placing v between the resulting containers
(S denotes the container that includes s(v)).

• In the fifth step we perform cross counting according to the scheme pro-
posed by Barth et al (see Section 1.2). During the cross counting step
between layer Li and Li+1 we therefore consider all layer elements as ver-
tices. Beside the common edges between both layers, we also have to
handle virtual edges, which are imaginary edges between a container ele-
ment in Li and the resulting container elements or q-vertices in Li+1 (see
Figure 5). In terms of the common approach each virtual edge represents
at least one edge between two dummy vertices. The number of represented
edges is equal to the size of the container element in Li+1. We have to
consider this fact to get the right number of edge crossings. We therefore
introduce edge weights. The weight of a virtual edge ending with a con-
tainer element S is equal to size(S). The weight of the other edges is one.
So a crossing between two edges e1 and e2 counts as weight(e1)·weight(e2)
crossings.

• In the sixth step we perform a scan on Li+1 and insert empty containers
between two consecutive vertices, and call join(S1, S2) on two consecutive
containers in the list. This ensures that Li+1 is an alternating layer.

Finally we create the edges in the sparse compaction graph for layer Li+1.
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3.2 The Overall Algorithm

In the crossing reduction phase we perform a layer-by-layer sweep on the sparse
normalization and apply the 2-layer crossing minimization described in this
section. During a reverse sweep we simply have to take the former p-vertices as
q-vertices and vice versa. The first and the last layer never contain segments
because of property P1 and P2. Therefore when we perform a sweep or reverse
sweep it is easy to create the initial alternating layer.

There are no other changes to the original Sugiyama approach except for
the different calculation of the measure m for all vertices in a layer, the nor-
malization of the layer lists such that the lists are alternating, and the modified
counting scheme for crossings.

For the horizontal coordinate assignment we need just minor modifications
to the approach of Brandes and Köpf (see Section 1.3). In our model there are
no type 2 conflicts because we do not have crossing inner segments. We mark
type 1 conflicts during the cross counting step. Since the conflicts are resolved
in favor of the inner segments, we simply have to mark edges that cross a virtual
edge. Type 0 conflicts can be resolved as described in [4]. There are no further
changes.

We summarize this section in the following theorem:

Theorem 2 Using a measure m, the approach described above gives the same
result as the traditional crossing reduction.

4 An Efficient Data Structure

When we use doubly linked lists to represent the containers, we are able to
perform the append, size and join operation in time O(1). Although we store a
pointer to the split element, we can not perform the split operation in time O(1),
since we have to update the size of the resulting containers. So we need O(n) for
splitting, where n denotes the maximal number of elements in a container. To
be competitive, we need a data structure that supports append, split, join and
size operations in O(log n). A standard binary search tree (not balanced) also
requires O(n). Thus we use splay trees, a data structure developed by Sleator
and Tarjan [16]. Splay trees are self-adjusting binary search trees, which are
easy to implement because the tree is allowed to become unbalanced and we
need not keep balance information. Nevertheless we can perform all required
operations in O(log n) amortized time. A single operation might cost O(n) but
k consecutive operations starting from an empty tree take O(k log n) time. The
basic operation on a splay tree is called a splay. Splaying node x makes x the
root of the tree by a series of special rotations.

We use splay trees to represent containers. So we have to implement the
container operations.

• append(S, s) : We search the rightmost element in the tree (last element
in the container) by going from the root down taking always the right
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child. Now, we insert s as the right child of the rightmost element and
then splay s. The append operation is performed once for each p-vertex.

• join(S1,S2) : To join two containers, we search the rightmost element of
S1, splay it and then make S2 the right child of it. This operation can
only be invoked by an append operation or during the normalization of a
layer list. Thus, it is invoked O(|V | + |E|) times.

• split(S, s) : First we have to search s in the container. We can not perform
a conventional tree search because the elements have only an implicit
ordering (their container position) which is not stored by the element. To
avoid a search operation, we store a pointer to s in the corresponding
p-vertex (this split operation is only used when we are processing the q-
vertex layer and the q-vertex knows its corresponding p-vertex). So we
just have to splay s and then take its left and its right child as root for
the resulting containers. The split operation is performed once for each
q-vertex.

• size(S) : When we perform a split operation we want to update the size
of the resulting containers in O(1). Therefore each node knows the size of
the subtree rooted by it. While performing the rotations we can update
the size information at no extra cost.

• split(S,k) : First we have to search the element at position k. We use
a conventional binary tree search. Let p(x) denote the parent of x and
l(x) (r(x)) the left (right) child of x. The positions are computed by the
following formula: pos(x) = pos(p(x))+ size(l(x))+ 1, if x is a right child
and pos(x) = pos(p(x)) − size(r(x)) − 1 if x is a left child. If x is the
root then pos(x) = size(l(x)) + 1. After we have found the element at
position k, we just splay it and then take its right child as root for the
second container. This split operation is performed at most once for each
common vertex.

All the above operations except of the size operation are based on splaying.
In [16] the following theorem is proved:

Theorem 3 A sequence of k arbitrary update operations on a collection of ini-
tially empty splay trees takes O(k +

∑k
j=1 log nj) time, where nj is the number

of items in the tree or trees involved in operation j.

The update operations include insert, join and split operations. The append
operation is a special case of the insert operation and the size operation does
not change the data structure. Each new iteration starts with empty containers
and there are at most O(|E|) elements. Thus we have an overall cost of O((|V |+
|E|) log |E|).
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5 Complexity and Practical Behavior

We have given a new technique that leads to a noticeable reduction of the com-
plexity of the important algorithm of Sugiyama for layered graph drawing. We
close with some remarks on the complexity of the algorithm. We first normal-
ize the graph by introducing at most O(|E|) new vertices and edges. Then we
perform the layer-by-layer sweep with the modified two-layer crossing minimiza-
tion procedure. Using the splay-tree data structure as well as the cross-counting
scheme by Barth et al. [2], we can ensure that each crossing minimization step
can be executed in time O(n log n) where n denotes the number of vertices
and edges involved in this step. Summed up over all layers, the complexity
remains O((|V |+ |E|) log |E|). The coordinate assignment is performed in time
O(|V |+ |E|) using the algorithm of Brandes and Köpf [4]. The memory bound
remains linear in the size of the input graph. Our approach favorably compares
to the previous implementations of Sugiyama’s algorithm where the complexity
might be quadratic in the size of the input graph.

We implemented our approach in Java using the yFiles library [20]. We
made some preliminary tests and compared our approach to the results achieved
with other layout tools using Sugiyama’s algorithm. All experiments have been
performed on a Pentium IV System with 1.5 GHz and 512 MB main memory
running Redhat Linux 9. For our measurement we used the following types of
graphs:

• long edge graphs: These graphs have many long edges. They have n/2
vertical vertices v1, . . . , vn/2 and n/2 horizontal vertices h1, . . . , hn/2. The
vertical vertices are connected by edges (vi, vi+1) for 1 ≤ i ≤ n/2 − 1.
Furthermore there are edges (vi, hj) for 1 ≤ i, j ≤ n/2.

• random graphs: These graphs are connected and have n vertices and
2.5n random edges.

We ran the experiments for VCG [18], Dot [12] and our new approach.
We also added an algorithm called Traditional, which uses the same code as
our new approach but inserts the traditional dummy vertices. Tables 1 and
2 show the time taken by the crossing minimization step, which is given in
milliseconds/iteration as well as the number of dummy vertices in the normalized
graph, when applying the network simplex for layer assignment. The network
simplex gives a solution which minimize the edge length. So the results for other
methods are even worse. The shown results are averaged over 10 passes.

Our approach achieved significant improvements in running time for both
graph types. This is due to the enormous increase of the number of dummy
vertices in the common approach. The results show that our improvements are
also relevant in practice, even if the number of dummy vertices is usually far less
than |V |·|E| there. Only the new approach was able to layout the random graphs
with 3000 vertices while the other algorithms ran out of memory. The number
of crossings in our new approach is comparable with the number computed
by the other tools (see Tables 3 and 4). The slight differences are based on
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Size (n) Time (ms/iter) #Dummy vertices
(long edges) VCG Dot Traditional New Common New

40 30 59 29 7 3800 740
60 146 499 116 19 13050 1710
80 455 2852 306 42 31200 3080
100 1040 13346 658 69 61250 4850
120 2060 42414 1219 98 106200 7020
140 3702 103327 2020 158 169050 9590
160 6341 228387 3194 249 252800 12560

Table 1: Experimental results for the long edge graphs.

Size (n) Time (ms/iter) #Dummy vertices
(random) VCG Dot Traditional New Common New

100 11 33 16 4 2725 295
200 40 275 60 9 9486 596
500 311 4404 416 29 49203 1485
750 1265 22338 1228 44 123074 2259
1000 2978 60783 2643 72 233486 3001
2000 14419 n/a∗ n/a∗ 190 796653 6019
3000 n/a∗ n/a∗ n/a∗ 230 1995096 9017

∗ not enough memory

Table 2: Experimental results for the random graphs.

the fact that each implementation has its own refinements (e.g., how to handle
vertices having the same median weight) or uses randomized steps. Only Dot
has noticeably fewer crossings, but is therefore very slow. This is possibly due
to an additional optimization method. The results of VCG suggests that its
implementation is similar to algorithm Traditional.

Our improvements made it possible to layout graphs for which this was
formerly not possible because of the high memory consumption of Sugiyama’s
algorithm. Our approach has instead linear memory consumption.
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Size (n) #Crossings
(long edges) VCG Dot Traditional New

40 18887 17100 18809 18801
60 97506 91350 97578 97552
80 311969 296400 311242 311319
100 764819 735000 764801 764502
120 1591922 1539900 1590856 1591042
140 2956819 2873850 2956013 2956007
160 5054767 4929600 5053631 5052549

Table 3: Number of crossings for the long edge graphs.

Size (n) #Crossings
(random) VCG Dot Traditional New

100 2264 1296 2002 1998
200 8314 6390 7504 7457
500 49945 39207 46523 47001
750 118485 103340 110045 109537
1000 202371 185680 189517 190455
2000 800221 n/a∗ n/a∗ 735429
3000 n/a∗ n/a∗ n/a∗ 1716657

∗ not enough memory

Table 4: Number of crossings for the random graphs.
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Figure 6: Layout example: The left figure was drawn with algorithm Traditional
using the simplex method for the horizontal coordinate assignment. The right
figure was drawn with the new approach which uses the linear segments model.
Both layout algorithms used the same layering as well as the median heuristic
for crossing minimization.
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[2] W. Barth, M. Jünger, and P. Mutzel. Simple and efficient bilayer cross
counting. In GD ’02: Revised Papers from the 10th International Sympo-
sium on Graph Drawing, volume 2528 of LNCS, pages 130–141. Springer-
Verlag, 2002.

[3] O. Bastert and C. Matuszewski. Layered drawings of digraphs. In M. Kauf-
mann and D. Wagner, editors, Drawing Graphs: Methods and Models, vol-
ume 2025 of LNCS, pages 87–120. Springer-Verlag, 2001.
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