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Abstract

In this paper we consider the problem of drawing and displaying a
series of related graphs, i.e., graphs that share all, or parts of the same
node set. We present three algorithms for simultaneous graph drawing
and three visualization schemes. The algorithms are based on a modifi-
cation of the force-directed algorithm that allows us to take into account
node weights and edge weights in order to achieve mental map preser-
vation while obtaining individually readable drawings. The algorithms
and visualization schemes have been implemented and the system can be
downloaded at http://simg.cs.arizona.edu/.
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1 Introduction

Consider the problem of drawing a series of graphs that share all, or parts of
the same node set. The graphs may represent different relations between the
same set of objects. For example, in social networks, graphs are often used
to represent different relations between the same set of entities. Alternatively,
the graphs may be the result of a single relation that changes through time.
For example, in software visualization, the inheritance graph in a Java program
changes as the program is being developed. Consider the graphs in Fig. 1. There
are two simultaneously displayed graphs that represent two snapshots of a file
system structure rooted at the directory graphs/. The drawing conveys well
both underlying structures and it is easy to identify the changes between the
two snapshots.

In this paper, we attempt to address the following problem: Given a series
of graphs that share all, or parts of the same node set, what is a natural way
to layout and display them? The layout and display of the graphs are different
aspects of the problem, but also closely related, as a particular layout algorithm
is likely to be matched best with a specific visualization technique. As stated
above, however, the problem is too general and it is unlikely that one particular
layout algorithm will be best for all possible scenarios. Consider the case where
we only have a pair of graphs in the series, and the case where we have hundreds
of related graphs. The “best” way to layout and display the two series is likely
going to be different. Similarly, if the graphs in the sequence are very closely
related or not related at all, different layout and display techniques may be more
appropriate. With this in mind, we consider several different algorithms and
visualization models.

For the layout of the graphs, there are two important criteria to consider:
the readability of the individual layouts and the mental map preservation in
the series of drawings. The readability of individual drawings depends on aes-
thetic criteria such as display of symmetries, uniform edge lengths, and minimal
number of crossings [18]. Preservation of the mental map can be achieved by
ensuring that common substructures (nodes, edges, subgraphs etc.) that appear
in consecutive graphs in the series, are drawn in a similar fashion [16]. These
two criteria are often contradictory. If we individually layout each graph, with-
out regard to other graphs in the series, we may optimize readability at the
expense of mental map preservation. Conversely, if we fix the node positions in
all graphs and draw common edges the same way, we are optimizing the mental
map preservation but the individual layouts may be far from readable.

1.1 Related Work

Classical force-directed methods [1] for graph drawing typically begin with an
initial random placement of the nodes inside a drawing window frame of pre-
specified size. The graph is then treated as a system of interacting physical
objects, based on attractive and repulsive forces [10] or graph distances [15].
Force-directed layout algorithms employ an energy function that characterizes
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Figure 1: Two snapshots of a file structure rooted at directory graphs/. Red
nodes and edges belong to the earlier snapshot. Dark blue nodes belong to both
snapshots. Light blue nodes and edges belong to the later snapshot. The edges
of the later snapshot are curved.

the state of the system. The minimization of suitably chosen energy functions
tends to produce aesthetically pleasing graph drawings.

In the algorithm of Fruchterman and Reingold [10], the attractive and re-
pulsive forces are respectively defined as, f.(d) = —2?/d and f,(d) = d?/k,
where d is the distance between two nodes. The repulsive forces are calculated
for each pair of nodes whereas the attractive forces are calculated for pairs of
nodes connected by an edge. The ideal distance between nodes, k, is defined as
k = C\/Aframe/N, where Af,ome is the area of the drawing window frame, C' is
a constant determining how the nodes fill the frame, and n is the total number
of nodes.

Several variations of force-directed methods for edge-weighted graphs have
been proposed. In [8, 12] edge-weighted graphs are drawn so that the length
of edges is proportional to their weights. Similarly, layouts for node-weighted
graphs have also been considered in the context of focus-nodes that apply repul-
sive force proportional to their weight, so that the neighborhoods of such nodes
will not be too cluttered [14].

In dynamic graph drawing the goal is to maintain a nice layout of a graph
that is modified via operations such as insert/delete edge and insert/delete node.
Techniques based on static layouts have been used [4, 13, 19]. North [17] studies
the incremental graph drawing problem in the DynaDAG system. Brandes and
Wagner adapt the force-directed model to dynamic graphs using a Bayesian
framework [3]. Diehl and Gérg [6] consider graphs in a sequence to create
smoother transitions.
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Brandes and Corman [2] present a system for visualizing network evolution
in which each modification is shown in a separate layer of 3D representation
with nodes common to two layers represented as columns connecting the layers.
Thus, mental map preservation is achieved by precomputing good locations for
the nodes and fixing the position throughout the layers. Dwyer and Eades [7]
describe a method for visualizing time dependent flow in a network of objects by
representing time as the third dimension, using columns of varying width. Along
these lines, Collberg et al [5] describe a graph-based system for visualization of
software evolution, while preserving the mental map by fixing the locations of
all common nodes in the evolving graph.

1.2 Our Contributions

In this paper we describe three approaches for visualizing a series of graphs that
share all, or parts of, the same node set; see Fig. 2.

In the aggregate view model we show all the graphs in one combined drawing,
using different edge (node) styles, to differentiate between the different graphs.
The corresponding layout algorithm creates an aggregate graph from the given
sequence of graphs. The aggregate graph is node-weighted and edge-weighted
and the node (edge) weight corresponds to the number of times a particular node
(edge) appears in the sequence. A modified force-directed approach is used to
layout the aggregate graph, taking into account the weights of the nodes and
the edges.

In the merged view model we create a 3D drawing, in which each graph
is displayed in its own 2D plane, and the planes are arranged on top of each
other in the order that the graphs appear in the sequence. In the corresponding
layout algorithm, we create a merged graph. The merged graph consists of
all the graphs in the sequence, together with additional edges connecting the
same nodes in all graphs. A modified force-directed layout is used to layout the
merged graph by restricting each graph to its own 2D plane.

In the split view model each graph is displayed in its own drawing window.
The corresponding layout algorithm is designed for a pair of related graphs G4
and G5 but can be generalized to larger series of graphs. We use non-random
placement of the nodes, based on graph distances, to independently obtain initial
drawings D; and D- for the two graphs. Next the placement of the nodes from
D1(D5) is used to “seed” an iteration of the force-directed layout for G2(G1)
and the process is repeated either until the two layouts converge or until the
iteration count reaches a fixed constant.

The three view models closely match their corresponding layout algorithms.
However, our system allows all possible combinations of the presented view
models and the layout algorithms creating nine different visualization schemes.
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Figure 2: Layout and visualization: (a) aggregate; (b) merged; (c) split.

2 Modified Force-Directed Method

The first two algorithms presented in Sections 3 and 4 rely on a modification of
the force-directed method by Fruchterman and Reingold [10]. This modification
can be thought of as an extension of the traditional algorithm, that takes into
account node weights and edge weights in the force calculations. Thus, we
assume that the input graphs in the series are simple unweighted graphs and
we are free to assign appropriately chosen weights.

Given a series of graphs G1, Ga, . . ., G, we create a graph G aig = (Vaig, Eaig)
such that both the nodes and the edges are assigned weights. Depending on the
layout algorithm (either Aggregate or Merged), we provide two different con-
structions for G a;4. The next two sections provide further details on these
constructions. We use the node and edge weights to modify the standard force-
directed algorithm as follows. If a node v € V4, has large weight then it is
placed close to the center in the final layout. If an edge (u,v) € E4;4 has large
weight then the nodes u and v are placed close to each other in the final layout.
This is a simple heuristic, but it ensures that:

e persistent nodes remain close to the center of the layout, while transient
nodes are placed on the periphery;

e nodes that are adjacent in many of the graphs in the series are placed
close together.

In order to handle the node weights, we place a dummy node in the center of
the frame and ensure that it attracts all the other nodes in proportion to their
weights. We formulate this new central attraction force as, feq.(v) = d?xw(v)/k,
where w(v) is the weight of the node, d is its distance from the center and & is
the ideal distance.

To handle edge weights, we scale the attractive forces by their edge weights
and the new formulation of the attractive forces becomes, f,(e) = d? x w(e)/x,
where w(e) is the weight of the edge e. If two nodes are connected by an
edge with weight 0, then the modified algorithm treats them as if they are not
connected at all.
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Figure 3: Left: Individual layout of P; drawn with curved edges. Middle:
Individual layout of K7 drawn with straight-line segments. Right: Simultaneous
embedding of P; and K, obtained from the aggregate layout method.

3 Aggregate Graph Layout and Visualization

This algorithm and its matching visualization scheme combine all the related
graphs into a single drawing. The location of the nodes is fixed for all graphs
thus perfectly preserving the mental map (possibly at the expense of readability
of the individual graphs). The edges of different graphs are distinguished by
employing different edge styles. This algorithm/visualization combination is
most suitable when dealing with a small number of graphs or when the graphs
are very similar to each other.

3.1 Aggregate View Visualization

In the aggregate view we only display a node once, even though it may appear in
multiple graphs and we display all edges from all the graphs in the sequence; see
Fig. 3. The graphs can be displayed in 2D or 3D and we employ different edge
colors and edge styles to differentiate between the different graphs. Displaying
all graphs using a single node set allows the viewer to see multiple graphs at the
same time and view the difference in relationships more easily. Different edge
colors and edge styles are used to distinguish between the relationships from
each graph. For example in Fig. 3 the edges of one graph are drawn with green
straight line segments, whereas the other graph is drawn with thicker curved
edges in a different shade of green.

3.2 Aggregate Layout Algorithm

In the aggregate graph layout method we begin by creating the node-weighted
and edge-weighted graph Ga;g; = (Vaig, Faig) from the sequence of graphs,
G1,Ga,...,Gy, as follows: A node v € Vy;4 has weight w(v), where w(v) is the
number of times it appears in the series. An edge e € E ;4 has weight w(e),
where w(e) is the number of times it appears in the series. We then apply the
modified force-directed layout algorithm to obtain a drawing for G 4;4. From
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this drawing we extract the drawings of each individual graph in the series.
Thus, nodes and edges that are present more than once in the series are in
the same position in all graphs that they appear in. This approach guarantees
mental map preservation, possibly at the expense of good readability. Yet, if a
graph G; has many nodes/edges that exist in most of the graphs in the series,
then G; is an important graph and the resulting layout will be similar to that
of an independent layout of G;.

Fig. 3 shows the simultaneous layout of K7, the complete graph on seven
nodes and Py, the path with seven nodes. The edges that belong to the path are
drawn using curved and thick edges. Note that although an individual layout
of K7 would place one of the nodes in the middle, the simultaneous embedding
with the aggregate layout method pushes that node out because of the presence
of the path. A summary of the aggregate graph layout algorithm is in Fig. 4.

Aggregate Graph Layout
1 Construct Gaig = (Vaig, Eaig):
Vag=ViuWVa U...UVy, Eqg=E UEU...ULE
2 Assign weights to each v € Va4 and (u,v) € Eay:
w(v) = number of appearances of v in V1, V5,..., Vg
w(u,v) = number of appearances of (u,v) in Eq, Ea, ..., Ey
3 Use the modified force-directed layout algorithm on G 44
4  Extract the layout of each G; from the layout of G 414

Figure 4: Aggregate Graph Layout. G1,Ga, ..., G are the input graphs.

4 Merged Graph Layout and Visualization

This algorithm and its matching visualization scheme is the most flexible of
our algorithm/visualization combinations. All the graphs in the series are
drawn, and the drawings are closely related and influence each other via edges
connecting the same nodes on different planes. As the most flexible algo-
rithm/visualization combination it is effective in most cases.

4.1 Merged View Visualization

In the merged view each of the graphs is drawn on its separate 2D plane, and
the planes are layered in 3D in the order of appearance; see Fig. 5. All the
graphs are shown on the same screen such that corresponding nodes in adjacent
drawings have approximately the same positions on their planes. This model
provides a clear mental mapping between the drawings of each graph. Moreover
the balance between mental map preservation and individual graph readability
can be interactively controlled. In our implementation, the user has full 3D
control over the view, can move and rotate the view and zoom in and out.
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Figure 5: Simultaneous embedding of K7 and P; using the merged graph layout
method. The visualization is done in 3D using a separate plane for each graph.

4.2 Merged Layout Algorithm

In contrast to the aggregate method, the merged graph layout method does
not guarantee perfect mental map preservation. The algorithm begins with the
construction of Gag = (Vaig, Eag). It is obtained by taking G1,Gs, ... G} and
inter-connecting all corresponding nodes with a special class of edges, Fpeq-
The edges in E,, connect consecutive instances of the same vertex. Thus, if
a node v appears j times in the sequences, there will be j copies of it in G 44.
Once the merged graph G ;4 has been created and the weights assigned, the
modified force-directed method is applied.

The positions of corresponding nodes in each layout depend on how we assign
weights to the edges in E,¢,,. The larger the weight of edges in E,,,, the closer
the corresponding nodes in each separate layout will be. An important property
of this layout method is the proximity of corresponding nodes in the final layout.
Let ui,ug,...u; be all the nodes in G 454 that correspond to the same node u
and let vy, v2,...v; be all the nodes in G 454 that correspond to the same node
v. If i < 7, then the merged layout algorithm will place the nodes corresponding
to v closer to each other than the nodes corresponding to u.

In addition to this automatic assignment of weights to the edges in E,c.p, in
our implementation we give further interactive control to the user to increase
or decrease the importance of these weights. In particular, the user has control
over a slide bar, the two extremes of which correspond to perfect readability
(each graph is drawn independently, as the weights of the edges in Fje, is
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0) and perfect mental map preservation (corresponding nodes are fixed in the
same position in all graphs in the series). Fig. 5 illustrates the simultaneous
embedding resulting from the merged graph layout of K7 and P;. Note that
although the locations of the corresponding nodes might not be the same, the
mental map is still preserved since the relative locations of the corresponding
nodes remain the same. A summary of the merged graph layout algorithm is in
Fig. 6.

Merged Graph Layout
1 Rename the nodes in Vp, V5, ..., Vi so that each node is unique
2 Construct F,e, by connecting corresponding nodes in Vi, Vo, ..., Vg
3 Construct Gayg = (Vaig, Ealg):
Vag=ViUVaU...UVy, Egig = E1UEU...UELUE,,
4 Assign weights for the edges in E,,¢,,
5 Apply the modified force-directed layout algorithm on G 44

Figure 6: Merged Graph Layout. G1,Go,...,Gj are the input graphs.

5 Independent Iterations Layout and Split-View
Visualization

The independent iterations layout algorithm attempts to balance readability and
mental map preservation using the idea of seeding the layout of one graph with
the layout of another. This approach and its matching split-view visualization
are effective when dealing with a small number of graphs.

5.1 Split View Visualization

The two graphs are drawn separately in their own windows in two dimensions
and both windows are on the same screen; see Fig. 7. The view model can be
generalized to handle many graphs, in which case the screen would be split into
many individual panes. Still, as the number of graphs to be visualized increases,
the user’s ability to read the relations between them will likely decrease.

5.2 Independent Iterations Algorithm

In the preceding two approaches we construct one global graph from the series
(aggregate or combined) and extract the individual layout of each graph from
the layout of the global graph. Our final layout method is quite different and
we describe it here for only two graphs.

The algorithm begins by creating independent layouts for the two graphs
G1 = (V1, Ey) and Gy = (Va, E2). The layouts are obtained using non-random
placement of the nodes, based on the graph distance. For each graph, we first
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Figure 7: Simultaneous embedding of K7 and P; using independent iterations
layout method and split view model for visualization.

place three nodes at the endpoints of a triangle whose sides correspond to the
graph distances (number of edges in the shortest path) between the respective
nodes. Each following node is placed in a similar manner, using three previously
placed nodes. Once all the nodes have been placed, several iterations of the
force-directed method are applied. This approach is described in detail in [11].

At the conclusion of this stage, we have “good” layouts for each graph when
they are drawn independently. As a result we obtain two different point-sets,
P, and P, specifying the locations of the nodes in G; and G4, respectively.

In the next step G; “borrows” the point-set P, of G5 and treats it as an
initial placement for the standard force-directed algorithm. Similarly, G2 uses
the point-set P, of G; and uses it as an initial placement for the standard
force-directed algorithm. After applying force-directed iterations to both graphs
(again independently) we arrive at two new point-sets P; and Pj. We repeat the
process of point-set swapping and force-directed calculations until the resulting
point-sets converge to a given threshold minimum desirable distance between
them or until the number of iterations exceed a fixed constant.

Given a mapping between two point-sets, the distance between them can be
measured as the sum of Euclidean distances between each pair of corresponding
points in the point-sets. This simple metric is not well-suited to our problem as
the following example shows: Assume layout [ is just a 90° rotation of layout
1. Even though the topology of the layouts is the same, calculating the distance
between [; and Iy as the sum of Euclidean distances between points would be
misleadingly high. To overcome this problem, we first align the two layouts as
best as possible using rigid 3D motion. In particular, we apply an affine linear
transformation on /7 so that the layout of [; after the transformation, is as close
as possible to ls. The transformation consists of translation, rotation, scaling,
and shearing.
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Fig. 7 shows the simultaneous embedding of K7 and P; resulting from inde-
pendent iterations layout using the split view, described below. Note that the
resulting layout for each graph is not the same as an individual layout for that
graph. Instead, the independent iterations layout is a compromise between the
two individual layouts. A summary of the layout algorithm is in Fig. 8.

Independent Iterations Layout
1 Using independent non-random placement obtain layouts Iy, Iy for Gy, G2
2 Apply a linear transformation on I; to align it to Io
3 Let mindist = dist(l1,l2) and bestl; = Iy, bestly = lo
4 Repeat until
(mindist < threshold) OR (iterationcount > mazxiterationcount):
4.1 Apply layout algorithm on G to get Iy
(using [5 for initial placement)
4.2 Apply layout algorithm on Gg to get lo/
(using [; for initial placement)
4.3 Apply a linear transformation to align /1 to Iy
4.4 If dist(lys,ly) < mindist
mindist = dist(ly/,lo)
besth = lll, bestlg = lg/
4.5 1y =1y, lo = lor, iterationcount ++

Figure 8: Independent Iterations Layout. G; and G5 are the input graphs

The algorithm is defined for two graphs but can be extended to handle more
graphs. The point-set swapping can be extended to swapping the point-sets of
neighboring graphs in the sequence and the distance measure between a pair of
layouts can be extended to measure distances between multiple point-sets. Our
current implementation is for pairs of graphs.

6 Conclusion and Discussion

In this paper we present three algorithms for simultaneous graph drawing as well
as three visualization schemes for viewing such drawings. An implementation in
Java is available at http://simg.cs.arizona.edu/. In addition to the three
layout methods and three visualization schemes, the system provides various
capabilities such as graph editing and building some common classes of graphs,
such as complete graphs, trees, paths, and random graphs. Graphs in GML
format can be loaded and stored. All algorithms are animated so that the
progress of the layout algorithms can be continuously monitored. In addition,
nodes can be manipulated interactively, allowing the user control over the layout.
Fig. 9 shows a snapshot of the system interface.

The images in Fig. 10 are obtained using the aggregate layout algorithm and
the aggregate view visualization. The left image shows two paths, with 11 and
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Figure 9: A snapshot of our simultaneous graph drawing system.

13 nodes respectively, that have four nodes in common. The right image shows
two stars on 5 nodes, with different centers and common leaves.

The image in Fig. 11 is obtained using the merged layout algorithm and the
merged view visualization. The data consists of a series of four subtrees of a
tree on 13 nodes.

The image in Fig. 12 is obtained using the independent iterations layout and
split-view visualization. The data consists of two graphs obtained from a file
system (also shown using the aggregate layout algorithm and aggregate view in
Fig. 1).

Finally, we show several graphs obtained from the Graph Drawing Proceed-
ings database [9]. In Fig. 13 we show a piece of the Graph Drawing topic
graph. A topic graph for a given time interval has as nodes the dominant key-
words/phrases used in publications during that period. The edges connect the
keywords/phrases that co-occur. We show two pieces of the topic graphs for
the time periods 1996-1998 and 1998-2000. The images from top to bottom are
obtained using the aggregate layout and aggregate view, the merged layout and
merged view, and the independent iterations layout and split-view, respectively.
In the top image, the nodes corresponding to the first time period are gray, the
nodes corresponding to the second time period are white, and common nodes
are black. In the bottom two images, the graph with the red edges represents
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Figure 10: Two paths and two stars using aggregate layout and aggregate view.

the first period and the graph with the green edges represents the second.

In Fig. 14 we show a piece of the collaboration graph from the Graph Drawing
Proceedings database. The nodes in a collaboration graph are authors and the
edges represent collaborations between the authors in the given time period.
We show two pieces of the collaboration graphs for the time periods 1995-1999
and 1999-2003.
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Figure 12: File structure at two different times, using independent iterations
and split view.
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