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Abstract

Edge contraction is shown to be a useful mechanism to improve lower
bound heuristics for treewidth. A successful lower bound for treewidth
is the degeneracy: the maximum over all subgraphs of the minimum de-
gree. The degeneracy is polynomial time computable. We introduce the
notion of contraction degeneracy: the maximum over all minors of the
minimum degree. We show that the contraction degeneracy problem is
NP-complete, even for bipartite graphs, but for fixed k, it is polynomial
time decidable if a given graph G has contraction degeneracy at least
k. Heuristics for computing the contraction degeneracy are proposed and
evaluated. It is shown that these can lead in practice to considerable
improvements of the lower bound for treewidth, but can perform arbi-
trarily bad on some examples. A study is also made for the combination
of contraction with Lucena’s lower bound based on Maximum Cardinality
Search [27]. Finally, heuristics for the treewidth are proposed and eval-
uated that combine contraction with a treewidth lower bound technique
by Clautiaux et al. [12].
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1 Introduction

It is about two decades ago that the notion of treewidth and the equivalent
notion of partial k-tree were introduced. Nowadays, these play an important
role in many theoretic studies in graph theory and algorithms, but also their use
for practical applications is growing, see e.g. [23, 25]. A first step when solving
problems on graphs of bounded treewidth is to compute a tree decomposition
of (close to) optimal width, on which often a dynamic programming approach is
applied. Such a dynamic programming algorithm typically has a running time
that is exponential in the treewidth of the graph. Since the treewidth problem is
NP-complete [1], it is rather unlikely to find efficient algorithms for computing
the treewidth. Therefore, we are interested in lower and upper bounds for the
treewidth of a graph.

This paper focuses on lower bounds on the treewidth of a graph. Good
lower bounds can serve to speed up branch and bound methods, inform us
about the quality of upper bound heuristics, and in some cases, tell us that we
should not use tree decompositions to solve a problem on a certain instance.
A large lower bound on the treewidth of a graph implies that we should not
hope for computationally efficient dynamic programming algorithms that use
tree decompositions for this particular instance.

More work has been done recently on practical algorithms for determining
the treewidth of graphs, for instance on preprocessing methods (see [8, 9, 18]),
upper bound heuristics (e.g. [12, 13, 20, 22]), lower bound heuristics (e.g. [7, 12,
27, 29]), and some exact methods (e.g. [20, 33]). In many cases, exact methods
are still too slow, and for many instances, there are large gaps between the
bounds given by upper bound and lower bound heuristics. Thus, the study of
algorithms and heuristics for treewidth remains interesting also from a practical
point of view.

In this paper, we propose and study algorithms that find lower bounds for
treewidth using contraction of edges. In each of the algorithms, we have a
combination of contraction with existing lower bound methods. In particular, we
study how contraction can be used to improve the degeneracy (or MMD) lower
bound [22], the lower bound based on maximum cardinality search MCSLB,
introduced by Lucena [27], and the technique introduced by Clautiaux et al. [12].
Descriptions of these existing lower bound methods can be found in Section 2.

Contraction of an edge is the operation that replaces its two endpoints by a
single vertex, which is adjacent to all vertices at least one of the two endpoints
was adjacent to. Combining the notion of contraction with degeneracy gives
the new notion of contraction degeneracy of a graph G: the maximum of the
minimum degree over all graphs that can be obtained by contracting edges and
taking subgraphs of G. It provides us with a new lower bound on the treewidth
of graphs. While unfortunately, computing the contraction degeneracy of a
graph is NP-complete (as is shown in Section 3.2), the fixed parameter cases
are polynomial time solvable (see Section 3.3), and there are simple heuristics
that provide us with good bounds on several instances taken from real life
applications (see Section 5).
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In a very recent paper, Gogate and Dechter [20] propose a branch and bound
algorithm for treewidth with a good anytime performance. Independently of
our work, Gogate and Dechter also propose the lower bound heuristic which
we call the MMD+(min-d) heuristic in this paper. We compare this heuristic
with other heuristics in Section 6, and see that the strategy where we contract
to a neighbour with minimum number of common neighbours almost always
outperforms the MMD+(min-d) heuristic where we contract to a neighbour of
minimum degree. For more details, see [20], Section 3 and Section 6.

The lower bound provided by MCSLB is never smaller than the degeneracy,
but can be larger [7]. This motivates the study of contraction in combination
with the MCSLB algorithm. Combining MCSLB with contraction was first used
by Lucena in [26]. Unfortunately, the problem to determine if some bound can
be obtained with MCSLB for a graph obtained from G by contracting edges is
also NP-complete (Section 4.2). Its fixed parameter case is linear time solvable
(Section 4.3). We also studied some heuristics for this bound.

In our experiments, we have seen that, typically, the bound by MCSLB is
equal to the degeneracy or slightly larger. In both cases, often a large increase
in the lower bound is obtained when we combine the method with contraction.
See Section 6 for results of our computational experiments. They show that
contraction is a very viable idea for obtaining or improving treewidth lower
bounds.

A further improvement to the lower bounds can be obtained by using a
method found by Clautiaux et al. [12]. This method uses another treewidth
lower bound algorithm as a subroutine. In [12], the authors use the degeneracy
(or MMD) as a subroutine, but one can also use other algorithms. Our exper-
iments showed that the contraction degeneracy heuristics generally outperform
the method of [12] with degeneracy, but when we combine the method of [12]
with the heuristics of this paper, we get in several cases an additional small
improvement to the lower bound. We finally propose a heuristic that combines
the method of [12] and contraction in another way, by doing a contraction be-
tween every round of ‘graph improvement’. See Section 5 for more details. This
latter heuristic often costs considerably more time, but can give also significant
increases to the lower bound.

2 Preliminaries

Throughout the paper G = (V,E) denotes a simple undirected graph. Most
of our terminology is standard graph theory/algorithm terminology. n denotes
the number of vertices of the input graph G = (V,E). As usual, the degree
in G of vertex v is dG(v) or simply d(v). N(S) for S ⊆ V denotes the open
neighbourhood of S, i.e. N(S) =

⋃
s∈S N(s) \ S. A vertex v ∈ V is universal in

a graph G = (V,E), if v is adjacent to all other vertices. We define:

δ(G) := min
v∈V

d(v)
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Subgraphs and Minors. After deleting vertices of a graph and their incident
edges, we get an induced subgraph. For a graph G = (V,E) and set of vertices
W ⊆ V , the subgraph of G induced by W is denoted G[W ] = (W, {{v, w} ∈
E | v, w ∈ W}). A subgraph is obtained, if we additionally allow deletion of
edges. If we furthermore allow edge-contractions, we get a minor. It is known
that the treewidth of a minor of G is at most the treewidth of G (see e.g. [4]).
We explicitly exclude the null graph (the graph without vertices and without
edges) as a minor or subgraph.

Edge-Contraction. Contracting edge e = {u, v} in the graph G = (V,E),
denoted as G/e, is the operation that introduces a new vertex ae and new
edges, such that ae is adjacent to all the neighbours of v and u, and deletes
vertices u and v and all edges incident to u or v:

G/e := (V ′, E′), where

V ′ = {ae} ∪ V \ {u, v}
E′ = { {ae, x} | x ∈ N({u, v})} ∪ E \ {e′ ∈ E | e′ ∩ e 6= ∅}

A contraction-set is a cycle free set E′ ⊆ E(G) of edges. Note that after each sin-
gle edge-contraction the names of the vertices are updated in the graph. Hence,
for two adjacent edges e = {u, v} and f = {v, w}, edge f will be different
after contracting edge e, namely in G/e we have f = {ae, w}. Still, for conve-
nience, we let f represent the same edge in G and in G/e. For a contraction-set
E′ = {e1, e2, . . . , ep}, we define G/E′ := G/e1/e2/ . . . /ep. Furthermore, note
that the order of edge-contractions to obtain G/E′ is not relevant. A contraction
H of G is a graph such that there exists a contraction-set E′ with: H = G/E′.

A graph H = (VH , EH) is a subdivision of a graph G = (V,E), if H can be
obtained from G by zero or more subdivision operations; a subdivision operation
replaces an edge {v, w} by a new vertex x and two edges {v, x} and {x,w}.

Treewidth. A tree decomposition of G = (V,E) is a pair ({Xi | i ∈ I}, T =
(I, F )), with {Xi | i ∈ I} a family of subsets of V , and T a tree, such that

• ⋃
i∈I Xi = V .

• For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

• For all i0, i1, i2 ∈ I: if i1 is on the path from i0 to i2 in T , then Xi0 ∩Xi2 ⊆
Xi1 .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1.
The treewidth tw(G) of G is the minimum width among all tree decompositions
of G.

One can alternatively define the treewidth in terms of chordal graphs. A
graph is chordal, if and only if it does not contain an induced cycle with length
at least four. The treewidth of a graph is exactly the minimum over all chordal
graphs H that contain G as a subgraph of the size of the maximum clique in H
minus 1, see [4].
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Degeneracy/MMD. We also use the term MMD (Maximum Minimum De-
gree) for the degeneracy. The degeneracy δD of a graph G is defined to be:

δD(G) := max
G′

{δ(G′) | G′ is a subgraph of G}

The minimum degree of a graph is a lower bound on its treewidth, and the
treewidth of G cannot increase by taking subgraphs. Hence, the treewidth of G
is at least its degeneracy. (See also [22].)

Maximum Cardinality Search. MCS is a method to number the vertices of
a graph. It was first introduced by Tarjan and Yannakakis for the recognition
of chordal graphs [34]. We start by giving some vertex number 1. In step
i = 2, . . . , n, we choose an unnumbered vertex v that has the largest number
of already numbered neighbours, breaking ties as we wish. Then we associate
number i to vertex v. An MCS ordering ψ can be defined by mapping each
vertex to its number: ψ(v) := number of v. For a fixed MCS ordering, let
vi := ψ−1(i).

Definition 1 Let be given a graph G and an MCS ordering ψ of G, and let
vi := ψ−1(i). The visited degree vdψ(vi) of vi is defined as follows:

vdψ(vi) := dG[v1,...,vi](vi)

The visited degree MCSLBψ of an MCS ordering ψ is defined as follows:

MCSLBψ := max
i=1,...,n

vdψ(vi)

In [27], Lucena shows that for every graph G and MCS ordering ψ of G,

MCSLBψ ≤ tw(G)

Thus, an MCS numbering gives a lower bound on the treewidth of a graph.
In [7], it was shown that it is NP-hard to compute the maximum over all

MCS orderings ψ of MCSLBψ; more precisely, deciding if max{MCSLBψ | ψ
is an MCS ordering of G} ≥ 7 is NP-complete.

Improved Graphs. In [5], two notions of improved graphs were introduced.
Let k be an integer. The (k + 1)-neighbours improved graph G′ = (V,E′) of
G = (V,E) is obtained as follows: we take G, and then, as long as there are
non-adjacent vertices u, v, that have at least k + 1 common neighbours in the
graph, we add the edge {u, v}. This improvement step is motivated by the
following lemma.

Lemma 1 (See [3, 5, 12].) Any tree decomposition of G with width at most
k is also a tree decomposition of the (k+ 1)-neighbours improved graph G′ of G
with width at most k, and vice versa.
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Clautiaux et al. use improved graphs to provide iterative methods to improve
existing lower bounds for treewidth [12]. They use the MMD for computing
lower bounds, but their approach works with every lower bound heuristic. Their
algorithm LB N works as follows:

• Suppose we have a lower bound LB ≤ tw(G) on the treewidth of G (e.g.
LB was computed with the MMD heuristic).

• Use as hypothesis that LB = tw(G). Build the (LB + 1)-neighbours
improved graph G′ of G. (Note that if the hypothesis holds, then tw(G) =
tw(G′))

• Compute a lower bound LB′ of G′ (e.g. with the MMD heuristic).

• If LB′ > LB, we have a contradiction, showing the hypothesis LB =
tw(G) to be wrong.

• Therefore, LB < tw(G) and LB + 1 is also a lower bound.

• Set LB to LB + 1, and repeat the process until there is no contradiction.

We see that the LB N algorithm uses another treewidth lower bound algo-
rithm as a subroutine, and thus, for every choice of such an algorithm, we obtain
a different version of the LB N algorithm. If algorithm Y is used as subroutine,
then we call the resulting algorithm LBN(Y), e.g. the algorithm discussed by
Clautiaux et al. in [12] is the LBN(MMD) algorithm.

In [12], Clautiaux et al. also propose a related method, that sometimes gives
better lower bounds, but also uses more time. Here, we have a different notion
of improved graph. Let k be an integer. The (k + 1)-paths improved graph
G′′ = (V,E′′) of G = (V,E) is obtained by adding an edge {u, v} to E for all
vertex pairs u and v such that there are at least k + 1 vertex disjoint paths
between u and v in G. Similar to Lemma 1, we have here the following.

Lemma 2 (See [3, 5, 12].) Any tree decomposition of G with width at most
k is also a tree decomposition of the (k+ 1)-paths improved graph G′′ of G with
width at most k, and vice versa.

We can build the (k + 1)-paths improved graph in polynomial time, as we can
decide in polynomial time whether there are at least k+ 1 vertex disjoint paths
between a pair of vertices with help of network flow techniques. However, the
running time to compute the paths improved graph is much larger than for the
neighbour version. If we use (k + 1)-paths improved graphs instead of (k + 1)-
neighbours improved graphs, then we obtain a new lower bound heuristic for
treewidth, called LB P in [12]. If we use as subroutine a lower bound algorithm
Y in this algorithm, we call the resulting algorithm LBP(Y).
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3 Contraction Degeneracy

We first look at the treewidth lower bound heuristic, obtained by combining
the degeneracy with contraction. The algorithm to compute the degeneracy
of a graph repeatedly removes the vertex of minimum degree, and outputs the
largest of these minimum degrees seen in the process. However, we can also get
a lower bound for treewidth if we contract the vertex of minimum degree with
a neighbour instead of deleting it. In this case, we can get different values if we
make different choices which minimum degree vertex to select, and with which
neighbour to contract it. The best way of doing these contractions is captured
by the notion of contraction degeneracy.

In this section, we define the new parameter of contraction degeneracy and
the related computational problem. We show the NP-completeness of the prob-
lem just defined, and consider the complexity of the fixed parameter cases.

3.1 Definition of the Problem

Definition 2 The contraction degeneracy δC of a graph G is defined as follows:

δC(G) := max
G′

{δ(G′) | G′ is a minor of G}

When G is connected, δC(G) can also be defined as the maximum over all
contractions of G of the minimum degree of the contraction. This does not
necessarily hold for disconnected graphs: when G has connected components
whose contraction degeneracy is smaller than the contraction degeneracy of G,
we must delete this component entirely to obtain the minor with maximum
minimum degree. The corresponding decision problem is formulated as usual:

Problem: Contraction Degeneracy

Instance: Graph G = (V,E) and integer k ≥ 0.
Question: Is the contraction degeneracy of G at least k?

Lemma 3 For any graph G, we have that δC(G) ≤ tw(G).

Proof: Note that for any minor G′ of G, we have that tw(G′) ≤ tw(G) (see
e.g. [4]). Furthermore, for any graph G′: δ(G′) ≤ tw(G′). The lemma follows
now directly. 2

3.2 NP-completeness

Theorem 1 The Contraction Degeneracy problem is NP-complete.

Proof: Clearly, the problem is in NP as we only have to guess an edge set E′,
and then compute in polynomial time δ(G/E′).

The hardness proof is a transformation from the Vertex Cover problem,
which is known to be NP-complete, see [19]. In the Vertex Cover problem,
we are given a graph G = (V,E) and an integer k, and look for a vertex cover of
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Figure 1: Graph G′ constructed for the transformation.

size at most k, i.e. a set W ⊆ V with |W | ≤ k, such that each edge in E has at
least one endpoint in W . Let be given a Vertex Cover instance (G, k), with
G = (V,E). Suppose k ≤ |V |.

Construction: We construct a graph G′ by taking the complement Ḡ of G,
adding two adjacent vertices and k pairwise non-adjacent vertices, and making
the new vertices adjacent to each vertex in G. G′ is formally defined as follows,
see Figure 1:

G′ := (V ′, E′) where

V ′ = V ∪ {w1, w2} ∪ {u1, . . . , uk}
E′ = ({{v, w} 6∈ E | v, w ∈ V, v 6= w}) ∪ { {w1, w2} }

∪{ {wi, v} | i ∈ {1, 2} ∧ v ∈ V }
∪{ {ui, v} | i ∈ {1, . . . , k} ∧ v ∈ V }

Let be n := |V |. The constructed instance of the Contraction Degener-

acy problem is (G′, n+ 1).
Now, we have to show that there is a vertex cover for G of size at most k if,

and only if δC(G′) ≥ n+ 1.

Claim 1 If there is a vertex cover of G of size at most k, then there is a
E1 ⊆ E′, such that δ(G′/E1) ≥ n+ 1.

Proof: Suppose there is a vertex cover of size at most k. Now take a vertex
cover V1 = {v1, . . . , vk} of G of size exactly k. (If we add vertices to a vertex
cover, we obtain again a vertex cover.) Let E1 = { {ui, vi} | i = 1, . . . , k}. I.e.,
each vertex in the vertex cover has a vertex of the type ui contracted to it; we
can do this because each vertex ui is adjacent to every vertex of Ḡ in the graph
G′. We claim that the graph obtained from G′ by contracting E1, G

′/E1 is an
(n+ 2)-clique. Assume there are two vertices x and y with {x, y} 6∈ E(G′/E1).
Since the vertices w1 and w2 are universal in G′/E1, we have {x, y} ⊆ V .
Therefore, {x, y} is not an edge in Ḡ, hence {x, y} ∈ E, and thus x or y is
in V1. We assume w.l.o.g. x ∈ V1, i.e. ∃i ∈ {1, . . . , k}, such that vi = x.
Since we contracted {ui, vi} and {ui, y} ∈ E(G′), we have vi = x is adjacent
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to y in G′/E1, which is a contradiction. Hence, G′/E1 is an (n+ 2)-clique and
δ(G′/E1) = n+ 1. ⋄

Claim 2 If there is a E1 ⊆ E′, such that δ(G′/E1) ≥ n + 1, then there is a
vertex cover V1 for G of size at most k.

Proof: For all i ∈ {1, . . . , k}, vertex ui has degree exactly n in G′. Thus,
for each ui, i ∈ {1, . . . , k}, we have to contract an edge incident to ui. As
there are no edges {ui, uj} in G′, contracting the edges incident to vertices
ui, i ∈ {1, . . . , k} removes k vertices from the graph. Thus, after contracting
these edges, there are n + 2 vertices left in the graph. Therefore we cannot
contract another edge, since then we could not obtain the minimum degree of
n+ 1. Furthermore, we see that G′/E1 is an (n+ 2)-clique. Hence, E1 contains
exactly k edges, one for every ui, i ∈ {1, . . . , k}, with the other endpoint in V .
Let be V1 :=

⋃
e∈E1

e \ ⋃
i=1,...k{ui}. Clearly, |V1| = k, and we claim that V1 is

a vertex cover of G. Assume, there is an edge f = {x, y} in G with V1 ∩ f = ∅.
Hence, f is not an edge in G′. Since G′/E1 is an (n+2)-clique, edge f exists in
G′/E1, which means: f was created by contracting another edge {ui, vj} ∈ E1.
This can only be the case if vj = x or vj = y. According to the definition of V1,
we have: vj ∈ V1, which contradicts V1 ∩ f = ∅. Hence, V1 is a vertex cover of
size k. ⋄
As G∗ can be constructed in polynomial time, NP-completeness of the Con-

traction Degeneracy problem now follows. 2

Lemma 4 If H is a subdivision of G, then δC(G) = δC(H).

Proof: We can use induction to the number of subdivision operations applied
to G in order to obtain H, and thus it is sufficient to show that δC(G) =
δC(H) if H is obtained from G by one subdivision operation. Say edge {v, w}
is subdivided, and replaced by vertex x and edges {v, x} and {x,w}.

δC(G) ≤ δC(H), as we obtain any contraction of G as contraction of H by
starting with contracting the edge {v, x}.

If δC(G) = 1, then G is a forest, hence H is a forest, and δC(H) = 1. If
δC(G) ≥ 2, then a contraction of H with minimum degree larger than δC(G) ≥
2 cannot contain the degree-2 vertex x, so must include a contraction of a
vertex with x. By commutativity of contraction, we can assume that we start
by contracting x with a neighbour, so any contraction of H with minimum
degree larger than δC(G) must be a contraction of a graph isomorphic to G.
We conclude that no such contraction exists, and δC(G) = δC(H). 2

Corollary 1 The Contraction Degeneracy problem is NP-complete, even
for bipartite graphs.

Proof: We transform from the Contraction Degeneracy problem on arbi-
trary graphs. Given an instance (G, k) of Contraction Degeneracy, take
the instance (H, k) where H is obtained by subdividing each edge of G. H is
bipartite, and by Lemma 4, the two instances are equivalent. 2
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3.3 Fixed Parameter Cases of Contraction Degeneracy

Now, we consider the fixed parameter case of the Contraction Degeneracy

problem. I.e. for a fixed integer k, we consider the problem to decide for a
given graph G if G has a minor with minimum degree k. Graph minor theory
gives a fast answer to this problem. For a good introduction to the algorithmic
consequences of this theory, see [17].

Theorem 2 The Contraction Degeneracy problem can be solved in linear
time when k is a fixed integer with k ≤ 5, and can be solved in O(n3) time when
k is a fixed integer with k ≥ 6.

Proof: Let k be a fixed integer. Consider the class of graphs Gk = {G | G
has contraction degeneracy at most k − 1}. Gk is closed under taking minors:
if H is a minor of G and H has contraction degeneracy at least k, then G
has also contraction degeneracy at least k. As every class of graphs that is
closed under minors has an O(n3) algorithm to test membership by Robertson-
Seymour graph minor theory (see [17]), the theorem for the case that k ≥ 6
follows.

Suppose now that k ≤ 5. There exists a planar graph Gk with minimum
degree k (for example for k = 5 the icosahedron, see [11]). Hence, Gk 6∈ Gk.
A class of graphs that is closed under taking minors and does not contain all
planar graphs has a linear time membership test (see [17]), which shows the
result for the case that k ≤ 5. 2

It can be noted that the cases that k = 1, 2 and 3 are very simple: a graph
has contraction degeneracy at least 1, if and only if it has at least one edge,
and it has contraction degeneracy at least 2, if and only if it is not a forest. For
a graph to have contraction degeneracy at least 3, all vertices of degree 2 or
less have to be contracted recursively. If the result is a non-empty graph, the
contraction degeneracy is at least 3. Vertices of degree 2 can be contracted to
either of the neighbours without loss of generality. In the same way graphs that
have treewidth at least 3 are identified [2, 9], and hence graphs with δC(G) ≥ 3
are exactly those with tw(G) ≥ 3.

The result is non-constructive when k ≥ 6; when k ≤ 5, the result can
be made constructive by observing that the property that G has contraction
degeneracy k can be formulated in monadic second order logic (MSOL) for fixed
k. Thus, we can solve the problem as follows: the result of [32] applied to Gk, a
planar graph with minimum degree k, gives an explicit upper bound ck on the
treewidth of graphs in Gk = {G | G has contraction degeneracy at most k− 1}.
Test if G has treewidth at most ck, and if so, find a tree decomposition with
width at most ck with the algorithm of [3]. If G has treewidth at most ck, use
the tree decomposition to test if the MSOL formula holds for G [15]; if not, we
directly know that G has contraction degeneracy at least k. It should also be
noted that the constant factors hidden in the O-notation of these algorithms
are very large; it would be nice to have practical algorithms that do not rely on
graph minor theory. We summarise the different cases in the following table.
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k Time Reference
1 O(n) Trivial
2 O(n) G is not a forest
3 O(n) tw(G) ≥ 3

4, 5 O(n) [3, 15, 32], MSOL
fixed k ≥ 6 O(n3) [30, 31]
variable k NP-complete Theorem 1

Table 1: Complexity of contraction degeneracy

4 Maximum Cardinality Search with Contrac-

tion

As discussed in Section 2, we obtain a lower bound on the treewidth of a graph
from a maximum cardinality search ordering. We now study the combination of
this MCSLB heuristic with contraction, and we analyse the complexity of finding
an optimal way of contracting and building an MCS ordering to obtain the best
lower bound possible with this method. We define four computation problems,
and show that each of these is either NP-complete or NP-hard, respectively. For
some of these, we also can show that the fixed parameter cases are tractable.

4.1 Definition of the Problems

We consider the following problem and variants.

Problem: MCSLB With Contraction

Instance: Graph G = (V,E), integer k.
Question: Does G have a contraction H, and H an MCS ordering

ψ with the visited degree of ψ at least k?

Problem: MCSLB With Minors

Instance: Graph G = (V,E), integer k.
Question: Does G have a minor H, and H an MCS ordering ψ

with the visited degree of ψ at least k?

Problem: MinMCSLB With Contraction

Instance: Graph G = (V,E), integer k.
Question: Does G have a contraction H, such that every MCS

ordering ψ has visited degree at least k?

Problem: MinMCSLB With Minors

Instance: Graph G = (V,E), integer k.
Question: Does G have a minor H, such that every MCS ordering

ψ has visited degree at least k?
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Figure 2: The graph G′ constructed for the transformation.

4.2 NP-completeness

Theorem 3 MCSLB With Contraction is NP-complete.

Proof: Clearly MCSLB With Contraction belongs to NP. We just have to
guess a contraction H and an MCS ordering ψ and check in polynomial time,
whether the visited degree of ψ in H is at least k.

To prove NP-hardness, we use a transformation from Vertex Cover. Let
be given a Vertex Cover instance (G, k), where G = (V,E) with n = |V |,
and k is an integer. We construct a graph G′ in the following way:

Construction. First, we take n + 2 copies of the complement Ḡ of G. We
call the vertices in these copies graph vertices. We add k · (n+ 2) extra vertices.
Each extra vertex has degree n: it is adjacent to all graph vertices in one copy
of Ḡ and no other vertex; each copy has exactly k such extra vertices. Hence, in
total, we have k(n+2) extra vertices. Finally, we add an edge between each pair
of graph vertices that belong to different copies. Let G′ be the resulting graph,
see Figure 2. The MCSLB With Contraction instance is (G′, n(n+2)− 1).

Now, we will show that G′ has a contraction H that has an MCS ordering ψ
with the visited degree of ψ at least n(n+ 2) − 1, if and only if G has a vertex
cover of size at most k.

Claim 3 If G has a vertex cover of size at most k, then G′ has a contraction
H that has an MCS ordering ψ with the visited degree of ψ at least n(n+2)−1.

Proof: Let V ′ be a vertex cover of G of size at most k. Now, we perform
the following in each copy of Ḡ. Contract all the extra vertices to vertices in
the vertex cover V ′, such that each vertex in V ′ has at least one extra vertex
contracted to it. This turns the set of graph vertices of G′ into a clique of size
n(n+ 2), because for each pair of nonadjacent graph vertices v, w in G′, {v, w}
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is an edge in G, so an extra vertex, adjacent to v and w is contracted to v or
w, after which the edge {v, w} is formed in H. (Compare with the proof of
Claim 1.) As H is a clique of n(n + 2) vertices, any MCS ordering of H has
visited degree exactly n(n+ 2) − 1. ⋄

Now, we will show the other direction. For this, we need a series of claims.
Suppose that G′ has a contraction H that has an MCS ordering ψ with the
visited degree of ψ at least n(n + 2) − 1. Let y be the first vertex in ψ that
is visited with visited degree n(n + 2) − 1, and let Y be the vertices that are
visited up to y (including y). Note that y must be a graph vertex. By Lucena’s
theorem [27], H[Y ] has treewidth at least n(n+ 2)− 1. Let X be the set of the
vertices in H that are extra vertices that are not contracted.

Claim 4 There are at most n+1 copies of Ḡ that have at least one extra vertex
that belongs to X ∩ Y .

Proof: Consider the MCS ordering ψ up to the point that there are n+1 copies
of Ḡ with at least one extra vertex in X ∩ Y . As the set of visited vertices is
connected, each copy must have a (possibly contracted) graph vertex that is
visited. Before we can visit a vertex in X of the last copy, we must first visit
a (possibly contracted) graph vertex of that copy. After that visit, each graph
vertex has visited degree at least n+1, while vertices in X have degree at most
n, so yet unvisited vertices in X will not be visited before all graph vertices are
visited, in particular, only after y is visited. ⋄

So, there is at least one copy of Ḡ that has no uncontracted extra vertices
in Y . Let Vi be the set of vertices of that copy in Y .

Claim 5 Vi is a clique.

Proof: Assume the opposite. Let v and w be non-adjacent vertices in Vi. We
can triangulate H[Y ] as follows: Add an edge between each pair of non-adjacent
(possibly contracted) graph vertices, except that we do not add the edge {v, w}.
Since Vi does not have extra vertices that are not contracted, this gives a chordal
graph. For each vertex x ∈ X, the set of neighbours of x forms a clique, i.e.,
the vertices in X are simplicial. It is well known that if H is obtained from G
by removing a simplicial vertex of degree d, then the treewidth of H equals the
maximum of d and the treewidth of G, see e.g., [9]. The degrees of the vertices
in X are at most n. After we remove these, we get a graph that is obtained
by removing an edge from a clique with at most n(n + 2) vertices, yielding a
graph with clique-size at most n(n + 2) − 1. Hence the treewidth is at most
n(n+ 2) − 2, which is a contradiction. ⋄

Claim 6 There are at least n(n+ 2) graph vertices in Y .

Proof: If the opposite holds, then the treewidth of H[Y ] would be less than
n(n+ 2) − 1. Consider e.g. the following triangulation of H[Y ]: turn the set of
(possibly contracted) graph vertices into a clique. The maximum clique size will
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be less than n(n+2) and the treewidth less than n(n+2)− 1. This contradicts
the fact that the treewidth of H[Y ] is at least n(n+ 2) − 1. ⋄

Because there are n(n+ 2) graph vertices in Y , we know that |Vi| = n, and
we cannot have contracted other graph vertices to vertices in Vi, since then we
would have less then n(n + 2) graph vertices in Y . So, Vi was formed into a
clique by the contraction of the k extra vertices of the copy to the graph vertices
in Vi. Let Z be the set of vertices in Vi that have an extra vertex contracted to
it. We have |Z| ≤ k.

Claim 7 Z is a vertex cover.

Proof: For each edge {v, w} ∈ E, v and w are non-adjacent in H. Thus, we
must have an extra vertex contracted to v or an extra vertex contracted to w.
Therefore, we have v ∈ Z or w ∈ Z for each edge {v, w} ∈ E. ⋄

Hence, we can conclude that if G′ has a contraction H that has an MCS
ordering ψ with the visited degree of ψ at least n(n + 2) − 1, then G has a
vertex cover of size at most k, which proves the other direction. The proof of
the NP-completeness of MCSLB with contraction is now complete. 2

The same proof can be used for the related problems given in Section 4.1,
except that membership in NP is trivial only for MCSLB With Minors, and
we have no proof for membership in NP for the other two problems. Therefore,
we conclude the following statement.

Corollary 2 MCSLB With Minors is NP-complete, and MinMCSLB

With Contraction and MinMCSLB With Minors are NP-hard.

4.3 Fixed Parameter Cases

The fixed parameter case of MCSLB With Minors can be solved in linear
time with help of graph minor theory. Observing that the set of graphs {G | G
does not have a minor H, such that H has an MCS ordering ψ with the visited
degree of ψ at least k} is closed under taking of minors, and does not include
all planar graphs (see [7]), gives us by the Graph Minor theorem of Robertson
and Seymour and the results in [3, 32] the following result. See again [17] for
more background information.

Theorem 4 (i) MCSLB With Minors is linear time solvable for fixed k.
(ii) The MinMCSLB With Minors problem can be solved in linear time when
k is a fixed integer with k ≤ 5, and can be solved in O(n3) time when k is a
fixed integer with k ≥ 6.

Note that these results are non-constructive, and that the constant factors in
the O-notation of these algorithms can be expected to be too large for practical
purposes.
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5 Heuristics

In this section, we discuss a number of heuristics, each giving a lower bound for
treewidth. In Section 6, we discuss experimental evaluations of the heuristics.
Here, we describe the heuristics, and in some cases, give some analysis of them.
In Section 5.1, we propose and analyse some heuristics for the contraction de-
generacy. In Section 5.2, we discuss heuristics for MCSLB with contraction. In
Section 5.3, we look at the LBN and LBP heuristics, introduced in [12]. These
can be combined with any of the other heuristics, but we also propose a new
heuristic where contractions alternate with constructions of neighbours or paths
improved graphs.

5.1 Heuristics for the Contraction Degeneracy

An almost trivial heuristic for the contraction degeneracy is the degeneracy,
δD(G). We denote it in our overviews with the shorter abbreviation MMD
(‘Maximum Minimum Degree’). It can be computed in linear time, by iteratively
selecting a vertex of minimum degree, and deleting it and its incident edges. The
largest seen minimum degree in these steps is the degeneracy.

From this algorithm, we derive the MMD+ algorithm (with three variants.)
In this algorithm, we select a vertex v of minimum degree, and contract it with
one of its neighbours u. In each case, the algorithm outputs the maximum over
all vertices of its degree when it was selected as minimum degree vertex. Clearly,
this is a lower bound on the contraction degeneracy of a graph. We consider
three strategies how to select a neighbour:

• min-d selects a neighbour with minimum degree. This heuristic is moti-
vated by the idea that the smallest degree is increased as fast as possible
in this way.

• max-d selects a neighbour with maximum degree. This heuristic is moti-
vated by the idea that we end up with some vertices of very high degree.

• least-c selects a neighbour u of v, such that u and v have the least number
of common neighbours. Note that for each common neighbour w of u and
v, the two edges {u,w} and {v, w} become the same edge in the graph,
meaning that for each common neighbour, effectively one edge is removed
from the graph. Thus, the least-c heuristic is motivated by the idea to
delete as few as possible edges in each iteration to get a high minimum
degree.

We call the resulting heuristics MMD+(min-d), MMD+(max-d) and
MMD+(least-c). In Section 6, we experimentally evaluate these heuristics.
While the heuristics (and especially the least-c heuristic) do often well in prac-
tice, unfortunately, each of the three heuristics can do arbitrarily bad. In Sec-
tions 5.1.1 – 5.1.4, we give examples of graphs where there is a large difference
between the contraction degeneracy and a possible lower bound for it obtained
by the considered heuristic.
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We observe that each of the MMD+ heuristics gives a value that is at least
the degeneracy: consider a subgraph H of G with minimum degree the degen-
eracy of G. Consider the graph G′ that we currently have just before the first
vertex v from H is to be contracted by the heuristic. All neighbours of v in H
are also neighbours of v in G′, hence the algorithm gives as bound at least the
degree of v in H, hence at least the degeneracy of G.

The minimum degree of a vertex is also a trivial lower bound for both the
treewidth and the contraction degeneracy. We call this heuristic MD; it plays
a role in combination with a technique based on work by Clautiaux et al. [12],
see Section 5.3.

5.1.1 Degeneracy versus contraction degeneracy

The MMD algorithm can perform arbitrarily bad. Consider a clique with r
vertices, and then subdivide every edge. Let G be the resulting graph. Clearly,
δ(G) = 2. We also have δD(G) = 2 since all subdivisions have degree 2 and must
be deleted, which also deletes all edges in G. However, δC(G) = r−1 = Ω(

√
n),

because undoing the subdivisions results in an r-clique with minimum degree
r − 1.

5.1.2 A bad example for the MMD+(max-d) heuristic

An example where the MMD+(max-d) heuristic can perform arbitrarily bad
is not hard to find. One simple example is the following. Take a clique with
r vertices, subdivide every edge, and then add one universal vertex x, i.e., a
vertex x with an edge to each other vertex. Let G be the resulting graph. The
MMD+(max-d) heuristic will contract each vertex to x, and hence will give 3
as a result. However, δC(G) = r = Ω(

√
n), since if we contract the subdivision

vertices to the clique vertices, we obtain a clique with r + 1 vertices.

5.1.3 A bad example for the MMD+(min-d) heuristic

The example where the MMD(min-d) performs bad is somewhat more involved.
For each r, we build a graph where the min-d heuristic can possibly give a lower
bound of three, while the contraction degeneracy of the graph is r. We assume,
as ‘adversary’, that we can decide in which way tie-breaking is done (i.e. the
adversary can select a vertex among those who have minimum degree.)

Let r ≥ 3 be some integer. Build a graph Gr as follows. We take for each
i, j, 1 ≤ i < j ≤ r a vertex vij . We take for each i, 1 ≤ i ≤ r a vertex wi. We
take a vertex x. Now, we add edges {vij , wi}, {vij , wj} and {vij , x}, for each
i, j, 1 ≤ i < j ≤ r.

To the graph thus obtained, we add a number of cliques. Each clique consists
of three new vertices and one vertex of the type wi, 1 ≤ i ≤ r or x. We have
one such clique that contains x. For each i, we take r2 such cliques that contain
wi, 1 ≤ i ≤ r. (It is possible to make a more compact construction, using about
r2/6 cliques.) We call the new vertices in these cliques the additional clique
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vertices. In this way, each wi has a degree that is larger than 3r2. Let Gr be
the resulting graph. See Figure 3.

vij
wi

wj

x

v12

v(r−1)r

w1

wr

r2 triangles

Figure 3: The structure of Gr

Proposition 1 Let r ≥ 3. The contraction degeneracy and treewidth of Gr
equal r.

Proof: If we contract v1r to wr and each other vertex of the form vij to wi, and
each additional clique vertex to its neighbour of type wi or x, then the resulting
graph is a clique on {wi | 1 ≤ i ≤ r}∪{x}. Each vertex in this clique has degree
r, so the contraction degeneracy of Gr is at least r, and hence the treewidth of
Gr is at least r.

If we add to Gr an edge between each distinct pair of vertices in {wi | 1 ≤
i ≤ r} ∪ {x}, then we obtain a chordal graph with maximum clique size r + 1.
So, the treewidth of Gr is at most r, and hence also its contraction degeneracy
is at most r. 2

Proposition 2 The MMD+(min-d) heuristic can give a lower bound of three
when applied to Gr.

Proof: Consider the following start of a sequence of contractions: first, contract
the vertices of the form vij one by one to x, for all i, j, 1 ≤ i < j ≤ r. Note
that the min-d heuristic can start with this sequence: at each point during this
phase, the vertices of the form vij have degree three, which is the minimum
degree in the graph, and the degree of x is at most r(r − 1)/2 + 3 + r, which
is less than the degree of vertices of the form wi, which have degree at least
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3r2. So, during this first part of the running of the algorithm, the bound for
the contraction degeneracy is not larger than three.

After all vertices vij have been contracted to x, the graph has the following
form: x is adjacent to all wi; there are no edges between vertices wi, wi′ , i 6= i′;
and then there are a number of four-cliques that have one vertex in common
with the rest of the graph. This is a chordal graph with maximum clique size
four. So, this graph has treewidth three, and hence contraction degeneracy at
most three. Hence, the min-d heuristic cannot give a bound larger than three
in the remainder of the run of the algorithm. Thus, the maximum bound it
obtains can be three. 2

Corollary 3 The MMD+(min-d) heuristic can give a solution that is a factor
of Ω(

√
n) away from optimal.

We can use cliques with four instead of three additional clique vertices. In
that case, it holds that every possible run of the MMD+(min-d) heuristic gives
a lower bound of four on the graph.

5.1.4 A bad example for the MMD+(least-c) heuristic

The example for the MMD+(least-c) heuristic is a modification of the one for
the min-d heuristic.

Let r ≥ 3 be again an integer. We take Gr and modify it as follows. Each
edge of the form {vij , wi} or {vij , wj} is replaced by the structure given in
Figure 4. In words: the edge is subdivided, and we add a clique with three new
vertices and the subdivision vertex to the graph. Let G′

r be the resulting graph.

vij wi or wj

Figure 4: The structure that replaces edges of the form {vij , wi} or {vij , wj} in
graph Gr

Proposition 3 Let r ≥ 3. The contraction degeneracy and treewidth of G′
r

equal r.

Proof: We can contract G′
r to Gr: contract each structure as in Figure 4 to

the vertex of the form vij . So, the contraction degeneracy of G′
r is at least the

contraction degeneracy of Gr, hence at least r. So the treewidth of G′
r is at

least r.
The treewidth of G′

r is at most r: Add to G′
r edges between each pair of

distinct vertices in {wi | 1 ≤ i ≤ r} ∪ {x}. Then, for each i, j, 1 ≤ i < j ≤ r,
add edges {vij , wi} and {vij , wj}. This gives a chordal graph with maximum
clique size r + 1. So, the treewidth of G′

r is at most r. Hence, its contraction
degeneracy is also at most r. 2
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Proposition 4 The MMD+(least-c) heuristic can give a bound of three when
applied to G′

r.

Proof: Like for the min-d heuristic, the algorithm can start with contracting
each vertex of the form vij to x. During this phase, vertices vij have the mini-
mum degree in the graph, namely three, and have no common neighbours with
x. So, during this phase, the lower bound is set to three.

After all vertices of the form vij are contracted to x, the graph G′′ has
treewidth three. This can be seen as follows. The treewidth of a graph is the
maximum treewidth of its biconnected components. The biconnected compo-
nents of G′′ are either cliques with four vertices, single edges, or consist of x,
a vertex wi, and a number of paths of length two between x and wi (for some
i, 1 ≤ i ≤ r). In the first case, the treewidth of the component is three; in the
last case, the component has treewidth three. So, after the contractions of the
vij-vertices to x, the bound of three cannot be increased. 2

Corollary 4 The MMD+(least-c) heuristic can give a solution that is a factor
of Ω(

√
n) away from optimal.

It is possible to modify the construction such that any run of the
MMD+(least-c) heuristic gives a result far from optimal. Instead of cliques
with three new vertices and one ‘old’ vertex, we use cliques with five new ver-
tices and one old vertex. The structure of Figure 4 is replaced by the structure
of Figure 5. In this way, we obtain a graph that has contraction degeneracy r,
but for which any run of the MMD+(least-c) heuristic gives a lower bound that
is at most five.

vij wi or wj

Figure 5: An alternative structure that replaces edges of the form {vij , wi} or
{vij , wj} in graph Gr

5.2 Heuristics for MCSLB With Contractions

Based on the result by Lucena [27] that the visited degree of an MCS ordering
of G is a lower bound for the treewidth, we will look at heuristics based upon
maximum cardinality search and contraction.

For comparison, we have the MCSLB heuristic. This heuristic computes |V |
MCS orderings ψ – one for each vertex as start vertex. It returns the maximum
over these orderings of MCSLBψ, cf. [7].

The MCSLB+ heuristic starts by using MCSLB to find a start vertex w
with largest MCSLBψ. Then, we iteratively select a vertex and a neighbour to
contract, compute an MCS ordering, and repeat until the graph has no edges.
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To reduce the CPU time consumption, an MCS is carried out only with start
vertex w (or vertices resulting from contractions that involve w) instead of
with all possible start vertices. Three strategies for selecting a vertex v to be
contracted are examined:

• min-deg selects a vertex of minimum degree.

• last-mcs selects the last vertex in the just computed MCS ordering.

• max-mcs selects a vertex with maximum visited degree in the just com-
puted MCS ordering.

Once a vertex v is selected, we select a neighbour u of v using the two strate-
gies min-d and least-c that are already explained for MMD+. We thus have
six versions of the MCSLB+ heuristic. These are experimentally evaluated in
Section 6. We did not evaluate the MCSLB+(max-d) heuristic, because of the
negative experimental results for the MMD+(max-d) strategy.

5.3 Contraction and the LBN and LBP Heuristics

For each treewidth lower bound algorithm Y, we have two lower bound heuristics
LBN(Y) and LBP(Y), based on the technique by Clautiaux et al. [12], see
Section 2. So, we can have, e.g. the LBN(MMD+) algorithm.

A different method to combine the LBN or LBP methods with contraction
is to alternate improvement steps with contractions. We describe the LBN+(Y)
algorithm for some treewidth lower bound heuristic Y below. If we instead of
making a neighbours improved graph, take a paths improved graph, we obtain
the LBP+(Y) algorithm; the latter one is slower but often gives better bounds.

Algorithm LBN+(Y)
1 Initialise L to some lower bound on the treewidth of G, e.g. L = 0.
2 H := G.
3 repeat
4 H = the (L+ 1)-neighbours improved graph of H.
5 b :=Y(H)
6 if b > L
7 then L := L+ 1
8 goto step 2
9 else select a vertex v of minimum degree in H.
10 select neighbour u of v according to the least-c strategy.
11 contract the edge {u, v} in H.
12 endif
13 until H is empty
14 output L.

In the description above, we used the least-c strategy, as this one performed
best for the other heuristics; of course, variants with other contraction strategies
can also be considered.
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Proposition 5 If algorithm Y is an algorithm that outputs a lower bound on
the treewidth of its input graph, then LBN+(Y) and LBP+(Y) output lower
bounds on the treewidth of its input graph.

Proof: Let G be the input graph of algorithm LBN+(Y) or LBP+(Y). An
invariant of the algorithm is that the treewidth of G is at least L. A second
invariant of the algorithm is that when the treewidth of G equals L, then the
treewidth of H is at most L. Clearly, these invariants hold initially. Lemmas 1
and 2 show that the second invariant holds also after making an improved graph
in step 4. The fact that contraction cannot increase treewidth shows that the
second invariant holds after a contraction in step 11. Similar as in [12], when
Y outputs a value larger than L on H, then the treewidth of H and hence the
treewidth of G (by the second invariant) is larger than L, so increasing L by
one in step 7 maintains the first invariant. 2

In our experiments, we started the algorithm by setting the lower bound L
to the value computed by the MMD+ heuristic.

5.3.1 Faster Implementation of LBP+

A straightforward implementation of an LBP+(Y) heuristic can be very slow.
However, we can observe that some steps are not necessary. Contracting an edge
can increase the number of vertex disjoint paths between two vertices, but not
for all pairs. Lemma 5 tells us that contracting an edge {x, y} cannot increase
the number of vertex disjoint paths between u and v, if {x, y} ∩ {u, v} = ∅.

Lemma 5 Let be given vertices u and v and edge e = {x, y} in G = (V,E).
Furthermore, let N be the maximum number of vertex disjoint paths between u
and v in G, and let N ′ be the maximum number of vertex disjoint paths between
u and v in G/{x, y}. Then we have:

{x, y} ∩ {u, v} = ∅ =⇒ N ′ ≤ N

Proof: Let ae be the new vertex created by contracting edge e. We consider a
set P ′ of vertex disjoint paths p1, ..., pN ′ between u and v in G/e. Since these
paths are vertex disjoint and {x, y} ∩ {u, v} = ∅, there can be at most one path
p′ in P ′ going through the new vertex ae, i.e. ae is contained in at most one
path p′ of P ′.

One easily sees that there is a path p in G between u and v that uses all
vertices of p′ except ae and x and/or y. Therefore, we have a set P of N ′ vertex
disjoint paths between u and v in G. Hence, N ′ ≤ N . 2

In other words, the number of vertex disjoint paths between u and v can be
increased by an edge contraction, only if an edge incident to u or v is contracted.
A consequence of this is that after contracting edge e which results in a new
vertex ae, we only have to look for the number of vertex disjoint paths of pairs
of vertices that contain ae. This results in a drastic speed up compared to
the case when checking all pairs of vertices for L + 1 vertex disjoint paths, as
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we check O(n) pairs instead of Θ(n2) pairs. However, once we have found an
improvement edge in the graph, we then must check all other pairs, as possibly,
after an improvement edge is added, pairs of vertices that do not contain ae can
have L+ 1 vertex disjoint paths.

5.3.2 LBN+(MD) versus LBN+(MMD)

We now compare the LBN+(MD) heuristic with the LBN+(MMD) heuristic,
and similarly, the LBP+(MD) heuristic with the LBP+(MMD) heuristic. We
show that these output the same lower bound result. I.e. in the LBN+(MD)
heuristic, we just use the minimum degree of a vertex in H as lower bound,
while in the LBN+(MMD) heuristic, we compute the degeneracy.

The intuitive idea is that LBN+(MD) and LBN+(MMD) compute the same
result because, due to the additional contraction step, the subgraphs considered
by the MMD lower bound, will also be considered in the algorithm LBN+(MD);
similarly for the version with paths improvement. Below, we show that this
intuition is correct. However, before that, we give one lemma.

Lemma 6 (See [36].) Let be given a graph G = (V,E), vertex v ∈ V and edge
e ∈ E. Furthermore, let ae be the resulting new vertex after contracting edge e.
If v 6∈ e, then dG/e(v) ≥ dG(v) − 1. If v ∈ e, then dG/e(ae) ≥ dG(v) − 1.

Lemma 7 Let G = (V,E) be a graph. Let the result of running the
LBN+(MD), LBN+(MMD), LBP+(MD) and LBP+(MMD) algorithms on G
be respectively αn, βn, αp and βp. Then αn = βn and αp = βp.

Proof: The proof is the same for the versions with neighbours and paths im-
provement. Thus, in the proof below, we write LBX+(MD) and LBX+(MMD),
where the X can stand for N or P, and we drop the subscripts n and p from α
and β.

First note that when the LBX+(MD) and LBX+(MMD) enter the loop at
step three with the same value of L, then they will work with the same graph
H. Thus, we have that α ≤ β: when LBX+(MD) increases L by one, we have
that L is smaller than the minimum degree of H, hence also smaller than the
degeneracy of H, and hence the LBX+(MMD) algorithm will also increase L
by one at the corresponding point during the execution of the algorithms. To
show equality, we assume the following, and we will derive a contradiction:

α < β (1)

Consider the moments step 2 is done by algorithm LBX+(MMD) and by
algorithm LBX+(MD) when L = α. As LBX+(MD) outputs α, this is the
last time step 2 is done by the LBX+(MD) algorithm, while the LBX+(MMD)
algorithm will increase L further (as α < β), and hence will execute later the
‘goto step 2’ command at least once.

Let H∗ be the the graph H at the moment the LBX+(MMD) algorithm is
at step 7 and 8 when the algorithm increases L from α to α + 1. This graph



H. L. Bodlaender et al., Contraction and Treewidth, JGAA, 10(1) 5–49 (2006)27

H∗ is formed from G by a sequence of contractions and (α + 1)-neighbours or
(α+1)-paths improvement steps. As the test in step 6 was true, the degeneracy
of H∗ is at least α+ 1.

The LBX+(MD) algorithm has started a run of the main iteration with
L = α. As the algorithm outputs α, this is its last iteration. During this
iteration, it does the same improvement steps as the LBX+(MMD) algorithm,
and hence, at some point, creates the graph H∗. However, it cannot execute
steps 7 and 8 now, so the test in step 6 was false for the LBX+(MD) algorithms.
Thus, we have:

δ(H∗) ≤ α < δD(H∗)

Write d = δD(H∗). Therefore, there exists an induced subgraph H ′ ⊂ H∗ with

δ(H∗) < δ(H ′) = d

Note that all vertices in V (H ′) have degree at least d := δD(H∗) in H∗. We
now consider the execution of LBX+(MD), starting when H is the graph H∗,
up to just before the point that the first vertex from H ′ is selected as minimum
degree vertex v in step 9. During this part of the execution, we have that H ′ is
a subgraph of the graph H used by the algorithm: improvement steps only add
edges, and no edges between vertices in H ′ are contracted.

Now, consider the first vertex v∗ from H ′ that is selected as minimum degree
vertex v in step 9 by LBX+(MD). As H ′ is a subgraph of the graph H, we have
that the degree of v∗ at the moment it is selected is at least its degree in H ′,
which is at least d. But, as v∗ is the minimum degree of a vertex in H, all
vertices in H have at this point degree at least d. This gives a contradiction:
consider the test at step 6 just before v∗ was selected: the minimum degree of
H is at least d, which is larger than the current value of L, i.e. α. So, this test
is true, and the algorithm will increase L, contradiction.

So, we can conclude that the assumption α < β is false, hence α = β. 2

Whether in practice LBX+(MD) would be more time-efficient than
LBX+(MMD) is unclear from the above. The lower bound MMD is more time
consuming than MD, but can result in a b > L earlier during the contraction
process, by this avoiding a number of graph improvement steps. By Lemma 7,
the number of graph improvement steps in the last iteration will be equal, slow-
ing down the algorithm on this point.

Similarly LBX+(MMD+) can be more time-efficient than LBX+(MD):
MMD+ is more time consuming but can reduce the number of improvement
steps. Moreover, LBX+(MMD+) can return a better bound than LBX+(MD),
although this rarely happens. Experimental results with LBX+(MD),
LBX+(MMD), and LBX+(MMD+) have shown that the computation times
of LBX+(MD) are significantly smaller than those for LBX+(MMD) which on
their turn are significantly smaller than those for LBX+(MMD+).
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6 Experimental Results

In this section, we report on the results of computational experiments we have
carried out. We tested our algorithms on a number of graphs. The first set
of instances are probabilistic networks from existing decision support systems
from fields like medicine and agriculture. Central to the use of these networks is
to solve the probabilistic inference problem. One of the most used methods for
probabilistic inference is the following: one constructs the so-called moralised
graph from the probabilistic network. After this (simple) step, one builds a
tree decomposition of the moralised graph, and then uses this tree decomposi-
tion to solve the probabilistic inference problem. The time for the last step is
exponential in the width of the tree decomposition, but linear in the number
of nodes. Thus, computing the treewidth of these moralised graphs is of great
practical use. The second set of instances are from frequency assignment prob-
lems from the EUCLID CALMA project. In [21, 23], tree decompositions were
used to solve the frequency assignment problem on many of the networks from
this collection of instances. In addition, we use versions of the network, ob-
tained by preprocessing [9]. The preprocessing algorithm changed the instances
to equivalent instances of smaller size. We have also used these sets of instances
in earlier experiments. A third set of instances are taken from the work of
Cook and Seymour [14]. Here, they present a heuristic for the travelling sales-
man problem where they use branch decompositions (a notion strongly related
to tree decompositions) of graphs formed by merging a number of TSP-tours.
Finally, we computed the lower bounds for many of the DIMACS colouring in-
stances [16]. Among all these, we excluded those networks for which the MMD
heuristic already gives the exact treewidth. Some of the graphs can be obtained
from [35]. All algorithms have been written in C++, and the computations
have been carried out on a Linux operated PC with a 3.0 GHz Intel Pentium 4
processor. The CPU time is measured in seconds.

Tables 2, 3 and 4 give the results for some selected instances, whose behav-
iour is typical for the entire set of instances. In the appendix, we give longer
tables for the entire collection of graphs we tested our algorithms on. In Ta-
ble 2, we included the best known upper bound (UB) for comparison [22, 13].
For the six variants of the MCSLB+ algorithm we give for space reasons only
the average time. There were no large differences in the running times between
the different MCSLB+ heuristics. Lucena [26] also has made an experimental
evaluation of the MCSLB+ algorithm.

We can see from these results that contraction is a very useful method for
obtaining lower bounds for treewidth. The improvements obtained by using
MMD+ instead of MMD, or MCSLB+ instead of MCSLB are in many cases
quite significant.

Concerning the different strategies for MMD+, we can observe that the least-
c strategy is best. In many cases, it performs much better than the other two
strategies, and in all our experiments, there is only one case where its bound is
one smaller than that obtained with the min-d strategy. The max-d strategy
appears to do badly, giving in general much smaller lower bounds than the other
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two. Thus, we did not use this strategy for the other heuristics.
For the MCSLB+, again the least-c strategy seems to be better than the min-

d strategy. We observe that min-deg and last-mcs for selecting the contraction
vertex, combined with least-c outperform the other strategies. The differences
between MMD+(least-c) and MCSLB+(least-c) are usually small, but in a few
cases, the MCSLB+(least-c) gives a significant larger bound. The time of these
heuristic is often much larger than that of the MMD+ heuristics.

In Table 4 a number of LBN and LBP strategies are compared. Here,
MMD+(least-c) and MCSLB+(min-deg,least-c) are used as subroutines. For
LBX(MMD) and LBX(MCSLB), the LBP variants provide significantly better
bounds than the LBN variants. Time consumption however is also significantly
higher. For LBX(MMD+) and LBX(MCSLB+), there is only marginal differ-
ences between LBN and LBP. Moreover, LBN(MMD+) and LBN(MCSLB+)
are typically as good as or even better than LBP(MMD) and LBP(MCSLB),
whereas there computation times are lower. Although, MCSLB and MCSLB+
provide slightly better bounds than MMD and MMD+ respectively, the results
show that it is not worth to include them in LBX strategies instead of MMD
and MMD+: the additional computational effort is huge in comparison to the
gain in the lower bound.

For the instances from probabilistic networks and frequency assignment, the
LBN+(MD) and LBP+(MD) algorithm give often rather significant increases to
the lower bounds, but often at the cost of more time use. The situation for the
TSP-instances is interesting. The LBN(MMD+) and LBP+(MD) algorithms
seem to give the best tradeoff between lower bound and running time. The
LBP+(MD) algorithm appears to use very much time on these instances. A few
cases could not be run to completion due to the large time used; others give a
result only after several hours of computation time.

We can also observe that in a several cases (e.g. link, munin3) the
LBP+(MD) algorithm performs faster than the LBP(MMD). This can be ex-
plained by the fact that the LBP+(MD) algorithm starts with the lower bound
value given by the MMD+ algorithm, while the LBP(MMD) algorithm starts
with the value provided by the MMD algorithm. Thus, these latter algorithms
have more rounds, and as often many improvements are possible for small values
of k, the earlier rounds are often more time consuming. Hence, for speeding up
LBN, LBP, LBN+ or LBP+ based heuristics, one should start with a good start
value of the lower bound. For instance, one might want to start an LBP+(MD)
heuristic with a lower bound obtained by an LBN+(MD) heuristic.

For the class of instances derived from the work of Cook and Seymour [14],
our heuristics seem not well suited. This can be explained as follows. For planar
graphs, the contraction degeneracy is at most five (as planar graphs and hence
minors of planar graphs have always a vertex of degree at most five). The TSP-
instances can be expected to be close to planar; thus one can expect the MMD+
based heuristics not to do well on such instances in general.

Overall, for 45 out of 151 graphs, the best lower bound computed equals the
best known upper bound, for many other instances the remaining gap is very
small. From these results, we can conclude that combining existing methods
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with contraction can give considerable improvements of treewidth lower bounds.
As illustrated by Figure 6, the MMD+(least-c) appears to be a good algorithm
with often (almost) negligible running times and good bounds; better bounds
can be obtained by slower algorithms, like LBN+(MD) or LBP+(MD).

instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU

link 724 1738 13 4 0.00 8 0.02 5 0.01 11 0.03
munin1 189 366 11 4 0.00 8 0.01 5 0.00 10 0.00
munin3 1044 1745 7 3 0.01 7 0.01 4 0.02 7 0.02
pignet2 3032 7264 135 4 0.01 29 0.11 10 0.07 38 0.20
celar06 100 350 11 10 0.00 11 0.00 10 0.00 11 0.01
celar07pp 162 764 16 11 0.00 13 0.00 12 0.00 15 0.01
graph04 200 734 55 6 0.00 12 0.01 7 0.00 19 0.02
rl5934-pp 904 1800 21 3 0.01 5 0.02 4 0.02 5 0.03
queen15-15 225 5180 171 42 0.00 52 0.07 42 0.02 58 0.19

Table 2: Upper bounds and results of MMD and MMD+ for selected instances

instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU

link 5 3.09 8 10 8 11 8 6 43.08
munin1 4 0.17 8 10 9 10 9 7 0.95
munin3 4 5.87 6 7 7 7 6 7 33.80
pignet2 5 59.60 28 39 30 39 16 18 509.60
celar06 11 0.06 11 11 11 11 11 11 0.33
celar07pp 12 0.16 14 15 13 15 13 15 1.22
graph04 8 0.25 12 20 13 20 14 16 1.95
rl5934-pp 4 8.27 5 6 5 6 5 6 35.98
queen15-15 42 1.80 52 59 52 62 52 58 27.79

Table 3: Results of MCSLB+ for selected instances

7 Discussion and Concluding Remarks

In this article, we examined the notion of contraction degeneracy, and several
heuristics for treewidth lower bounds which are based on the combination of
contraction with existing treewidth lower bound methods. We showed some
corresponding decision problems to be NP-complete, but also introduced several
heuristics.

The practical experiments show that contracting edges is a very good ap-
proach for obtaining lower bounds for treewidth as it considerably improves
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instance LBN LBN LBN LBN LBN+ LBP LBP LBP LBP LBP+
(MMD) (MCSLB) (MMD+) (MCSLB+) (MD) (MMD) (MCSLB) (MMD+) (MCSLB+) (MD)
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

link 4 0.04 5 8.03 11 0.05 10 127.37 11 0.40 10 2525.67 10 623.78 11 10.93 11 223.65 12 40.70
munin1 4 0.00 4 0.45 10 0.01 10 2.00 10 0.03 7 3.70 7 4.88 10 0.10 10 2.12 10 0.16
munin3 3 0.09 4 15.11 7 0.04 7 69.88 7 0.53 6 3747.90 6 265.25 7 15.88 7 88.35 7 31.31
pignet2 6 2.86 6 240.24 38 0.28 39 1051.52 41 21.58 - - - - 40 144.83 39 1091.67 48 1280.96
celar06 10 0.00 11 0.15 11 0.01 11 0.81 11 0.02 11 0.29 11 0.23 11 0.09 11 0.89 11 0.12
celar07pp 13 0.02 13 0.68 15 0.01 15 3.16 15 0.06 15 7.64 15 6.48 15 0.80 15 3.96 16 2.11
graph04 6 0.01 8 0.68 20 0.03 20 4.30 21 0.34 10 194.32 10 10.81 20 0.03 20 4.27 24 4.34
rl5934-pp 3 0.14 4 11.93 5 0.05 6 61.69 3 0.55 - - - - 6 5.86 6 56.51 9 38137.20
queen15-15 42 0.08 42 2.37 58 0.24 59 32.85 60 7.36 48 1045.63 50 1221.13 58 0.24 59 32.01 73 7579.01

Table 4: Results of LBN+/LBP+ for selected instances
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Figure 6: CPU time (logarithmic scale) vs. lower bounds for instance queen15-
15 (for MMD+ and MCSLB+ only MMD+(least-c) and MCSLB+(min-
deg,least-c) are shown)

known lower bounds. The MMD+ heuristics appear to be attractive, due to
the fact that the running time of these heuristics is almost always negligible,
and the bound is reasonably good. The MCSLB+ heuristics have much larger
running time, and often give only a small improvement on the MMD+ based
lower bound. Several LBN, LBP, and LBN+ heuristics often use more time than
the MMD+, but less than the MCSLB+, and can give further lower bound im-
provements, cf. Figure 6. The LBP+(MD) heuristic usually is slowest but gives
often the best results. Furthermore, we see that the strategy for selecting a
neighbour u of v with the least number of common neighbours of u and v often
performs best and appears to be the clear choice for such a strategy.

Notice that although the gap between lower and upper bound could be sig-
nificantly closed by contracting edges within the algorithms, the absolute gap
is still large for many graphs (pignet2, graph*). While it is known that the
treewidth has polynomial time approximation algorithm with logarithmic per-
formance ratios, the existence of polynomial time approximation algorithms for
treewidth with constant bounded ratios remains a long standing open problem.
Thus, obtaining good lower bounds for treewidth is both from a theoretical as
from a practical viewpoint a highly interesting topic for further research.

A different lower bound for treewidth was provided by Ramachandramurthi
[28, 29]. While this lower bound appears to generally give small lower bound
values, it can also be combined with contraction, see [24] for a recently published
study. Moreover, in [6], a new lower bound heuristic has been recently developed
for (close-to) planar graphs, where contraction-based lower bounds seems to be
less lucrative.

Apart from its function as a treewidth lower bound, the contraction degen-
eracy appears to be an attractive and elementary graph measure, worth further
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study. For instance, interesting topics are its computational complexity on spe-
cial graph classes or the complexity of approximation algorithms with a guar-
anteed performance ratio. We recently found a polynomial time algorithm for
cographs [10], and we observed that the problem is easy for chordal graphs [36],
but many other cases remain open.
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A All Computational Results

Below, we present the results of our experiments. Earlier, we presented a number
of selected results. See Section 6 for details on the backgrounds of the graphs
and the experimental setting.

instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU

barley 48 126 7 5 0.00 6 0.00 5 0.00 6 0.00
diabetes 413 819 4 3 0.00 4 0.01 4 0.00 4 0.00
link 724 1738 13 4 0.00 8 0.02 5 0.01 11 0.03
mildew 35 80 4 3 0.00 4 0.00 3 0.00 4 0.00
munin1 189 366 11 4 0.00 8 0.01 5 0.00 10 0.00
munin2 1003 1662 7 3 0.01 6 0.01 4 0.01 6 0.02
munin3 1044 1745 7 3 0.01 7 0.01 4 0.02 7 0.02
munin4 1041 1843 8 4 0.01 7 0.01 5 0.01 7 0.02
oesoca+ 67 208 11 9 0.00 9 0.00 9 0.00 9 0.00
oow-trad 33 72 6 3 0.00 4 0.00 4 0.00 5 0.00
oow-bas 27 54 4 3 0.00 4 0.00 3 0.00 4 0.00
oow-solo 40 87 6 3 0.00 4 0.00 4 0.00 5 0.00
pathfinder 109 211 6 5 0.00 6 0.00 5 0.00 6 0.01
pignet2 3032 7264 135 4 0.01 29 0.11 10 0.07 38 0.20
pigs 441 806 10 3 0.00 6 0.01 4 0.00 7 0.01
ship-ship 50 114 8 4 0.00 6 0.00 4 0.00 6 0.00
water 32 123 9 6 0.00 7 0.00 7 0.00 8 0.00
wilson 21 27 3 2 0.00 3 0.00 3 0.00 3 0.00

barley-pp 26 78 7 5 0.00 6 0.00 5 0.00 6 0.00
link-pp 308 1158 13 6 0.00 8 0.01 6 0.00 11 0.02
munin1-pp 66 188 11 4 0.00 8 0.00 5 0.00 10 0.01
munin2-pp 167 455 7 4 0.00 6 0.01 5 0.00 6 0.01
munin3-pp 96 313 7 4 0.00 7 0.00 5 0.00 7 0.01
munin4-pp 217 646 8 5 0.00 7 0.00 5 0.01 8 0.01
munin-kgo-pp 16 41 5 4 0.00 4 0.00 5 0.00 4 0.00
oesoca+-pp 14 75 11 9 0.00 10 0.00 9 0.00 9 0.00
oow-trad-pp 23 54 6 4 0.00 5 0.00 4 0.00 5 0.00
oow-solo-pp 27 63 6 4 0.00 5 0.00 4 0.00 5 0.00
pathfinder-pp 12 43 6 5 0.00 6 0.00 5 0.00 6 0.00
pignet2-pp 1024 3774 132 5 0.01 29 0.09 10 0.03 38 0.13
pigs-pp 48 137 10 4 0.00 7 0.00 4 0.00 7 0.00
ship-ship-pp 30 77 8 4 0.00 6 0.00 4 0.00 6 0.00
water-pp 22 96 9 6 0.00 8 0.00 7 0.00 8 0.00

Table 5: Upper bounds and results of MMD and MMD+ for (preprocessed
versions of) probabilistic networks
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instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU

celar01 458 1449 15 8 0.00 12 0.01 9 0.00 14 0.02
celar02 100 311 10 9 0.00 9 0.00 9 0.00 10 0.00
celar03 200 721 15 8 0.00 11 0.00 9 0.00 13 0.01
celar04 340 1009 16 9 0.00 12 0.01 9 0.00 13 0.01
celar05 200 681 15 9 0.01 11 0.00 9 0.00 13 0.01
celar06 100 350 11 10 0.00 11 0.00 10 0.00 11 0.01
celar06pp 82 327 11 10 0.00 11 0.00 10 0.00 11 0.01
celar07 200 817 16 11 0.00 13 0.00 12 0.01 15 0.00
celar07pp 162 764 16 11 0.00 13 0.00 12 0.00 15 0.01
celar08 458 1655 16 11 0.00 13 0.01 12 0.01 15 0.01
celar08pp 365 1539 16 11 0.00 13 0.00 12 0.01 15 0.01
celar09 340 1130 16 11 0.01 13 0.01 12 0.00 15 0.01
celar10 340 1130 16 11 0.00 13 0.01 12 0.01 15 0.01
celar11 340 975 15 8 0.00 11 0.00 9 0.00 13 0.01
graph01 100 358 24 8 0.00 9 0.01 9 0.00 14 0.00
graph02 200 709 50 6 0.00 11 0.00 7 0.01 20 0.02
graph03 100 340 22 5 0.00 8 0.00 6 0.01 14 0.00
graph04 200 734 55 6 0.00 12 0.01 7 0.00 19 0.02
graph05 100 416 25 8 0.00 9 0.00 9 0.00 15 0.00
graph06 200 843 53 8 0.00 12 0.01 9 0.00 21 0.02
graph06pp 119 348 17 5 0.00 7 0.00 6 0.00 11 0.01
graph07 200 843 53 8 0.00 12 0.01 9 0.00 21 0.02
graph08 340 1234 91 7 0.00 16 0.02 8 0.01 26 0.04
graph09 458 1667 116 8 0.01 17 0.03 9 0.01 29 0.06
graph10 340 1275 93 6 0.00 15 0.01 7 0.01 27 0.04
graph11 340 1425 98 7 0.00 17 0.01 8 0.01 27 0.05
graph11pp 340 1424 98 7 0.00 16 0.02 8 0.01 28 0.05
graph12 340 1256 90 5 0.00 16 0.01 6 0.01 25 0.04
graph13 458 1877 126 6 0.00 18 0.02 7 0.01 31 0.07
graph13pp 456 1874 130 6 0.01 18 0.03 7 0.01 31 0.07
graph14 458 1398 121 4 0.00 20 0.02 8 0.02 27 0.05

Table 6: Upper bounds and results of MMD and MMD+ for frequency assign-
ment instances
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instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU

celar01-pp 157 804 15 8 0.00 12 0.00 9 0.00 14 0.01
celar02-pp 19 115 10 9 0.00 9 0.00 9 0.00 10 0.00
celar03-pp 81 413 15 9 0.00 11 0.01 10 0.00 13 0.00
celar04-pp 114 524 16 9 0.00 12 0.00 10 0.00 13 0.01
celar05-pp 80 426 15 9 0.00 12 0.00 9 0.01 13 0.00
celar07-pp 92 521 16 11 0.00 13 0.01 11 0.00 15 0.00
celar08-pp 189 1016 16 11 0.00 13 0.01 12 0.00 15 0.01
celar09-pp 133 646 16 11 0.00 13 0.00 11 0.00 15 0.01
celar10-pp 133 646 16 11 0.01 13 0.01 11 0.00 15 0.01
celar11-pp 96 470 15 9 0.00 11 0.00 9 0.01 13 0.00
graph01-pp 89 332 24 8 0.00 10 0.00 9 0.01 15 0.00
graph02-pp 179 659 48 6 0.00 12 0.01 7 0.01 20 0.01
graph03-pp 79 293 22 6 0.00 8 0.00 6 0.01 13 0.00
graph04-pp 179 678 53 6 0.01 12 0.00 7 0.01 19 0.01
graph05-pp 91 394 25 8 0.00 9 0.01 9 0.00 15 0.01
graph06-pp 180 790 52 8 0.00 13 0.01 9 0.00 21 0.02
graph07-pp 180 790 52 8 0.00 13 0.01 9 0.00 21 0.02
graph08-pp 314 1173 90 7 0.01 16 0.02 8 0.01 26 0.04
graph09-pp 405 1525 116 8 0.00 18 0.04 9 0.02 29 0.08
graph10-pp 328 1253 97 6 0.00 16 0.03 7 0.01 26 0.05
graph11-pp 307 1338 93 7 0.00 16 0.02 8 0.01 28 0.04
graph12-pp 312 1177 87 6 0.00 16 0.02 7 0.01 25 0.03
graph13-pp 420 1772 129 6 0.01 19 0.03 7 0.01 31 0.07
graph14-pp 395 1325 127 5 0.00 20 0.02 8 0.02 27 0.04

Table 7: Upper bounds and results of MMD and MMD+ for preprocessed ver-
sions of frequency assignment instances

instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU

fl3795 2103 3973 11 3 0.01 5 0.09 4 0.06 5 0.10
fnl4461 3326 5147 29 3 0.02 5 0.10 4 0.08 5 0.13
pcb3038 1985 3109 21 2 0.01 5 0.05 4 0.04 5 0.07
rl5915 1939 2935 19 3 0.01 5 0.06 4 0.04 5 0.06
rl5934 2048 3087 23 3 0.01 5 0.05 4 0.04 5 0.07

fl3795-pp 1433 3098 12 3 0.01 5 0.04 4 0.05 6 0.05
fnl4461-pp 1528 3114 30 3 0.01 5 0.04 4 0.03 5 0.06
pcb3038-pp 948 1920 22 3 0.01 5 0.03 4 0.02 5 0.03
rl5915-pp 863 1730 19 3 0.00 5 0.02 4 0.02 5 0.03
rl5934-pp 904 1800 21 3 0.01 5 0.02 4 0.02 5 0.03

Table 8: Upper bounds and results of MMD and MMD+ for TSP graphs and
preprocessed versions of these
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instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU
anna 138 493 12 10 0.00 11 0.01 10 0.00 11 0.01
david 87 406 13 10 0.00 10 0.00 10 0.00 12 0.00
fpsol2.i.1 269 11654 66 64 0.01 66 0.05 64 0.04 66 0.34
games120 120 638 33 8 0.00 12 0.01 9 0.01 19 0.01
homer 556 1628 31 12 0.01 19 0.01 12 0.01 22 0.02
inithx.i.1 519 18707 56 55 0.01 55 0.11 55 0.09 56 0.72
le450-15a 450 8168 272 24 0.01 59 0.15 27 0.03 73 0.45
le450-15b 450 8169 270 24 0.01 59 0.15 27 0.04 75 0.45
le450-15c 450 16680 359 49 0.01 98 0.30 51 0.08 109 1.22
le450-15d 450 16750 360 51 0.00 97 0.30 52 0.07 109 1.14
le450-25a 450 8260 234 26 0.00 56 0.12 29 0.04 75 0.42
le450-25b 450 8263 233 25 0.00 53 0.12 28 0.04 74 0.42
le450-25c 450 17343 327 52 0.01 95 0.28 54 0.08 111 1.14
le450-25d 450 17425 336 51 0.01 97 0.29 53 0.08 111 1.17
le450-5a 450 5714 256 17 0.01 53 0.13 19 0.03 62 0.31
le450-5b 450 5734 254 17 0.00 53 0.13 19 0.03 62 0.32
le450-5c 450 9803 272 33 0.00 74 0.22 35 0.04 86 0.63
le450-5d 450 9757 278 32 0.01 73 0.22 34 0.04 85 0.62
miles1000 128 3216 49 41 0.00 45 0.01 41 0.01 48 0.06
miles1500 128 5198 77 72 0.00 76 0.03 72 0.01 77 0.10
miles250 125 387 9 7 0.00 8 0.00 7 0.00 9 0.00
miles500 128 1170 22 19 0.00 21 0.00 20 0.01 22 0.02
miles750 128 2113 36 31 0.00 33 0.01 31 0.01 34 0.04
mulsol.i.1 138 3925 50 48 0.00 50 0.02 49 0.01 50 0.06
mulsol.i.2 173 3885 32 31 0.00 31 0.01 31 0.02 32 0.06
mulsol.i.3 174 3916 32 31 0.00 32 0.03 31 0.02 32 0.06
mulsol.i.4 175 3946 32 31 0.00 31 0.01 31 0.02 32 0.07
mulsol.i.5 176 3973 31 31 0.00 31 0.01 31 0.02 31 0.06
myciel3 11 20 5 3 0.00 5 0.00 3 0.00 5 0.00
myciel4 23 71 10 5 0.00 8 0.00 5 0.00 8 0.00
myciel5 47 236 19 8 0.00 14 0.01 8 0.00 14 0.00
myciel6 95 755 35 12 0.00 24 0.00 13 0.01 26 0.01
myciel7 191 2360 66 18 0.00 40 0.03 19 0.01 42 0.07
queen10-10 100 1470 72 27 0.00 31 0.02 27 0.01 35 0.03
queen11-11 121 1980 88 30 0.00 34 0.03 30 0.01 38 0.04
queen12-12 144 2596 104 33 0.00 39 0.03 33 0.01 44 0.07
queen13-13 169 3328 122 36 0.01 42 0.05 36 0.01 48 0.10
queen14-14 196 4186 141 39 0.00 48 0.06 39 0.01 53 0.14
queen15-15 225 5180 163 42 0.00 52 0.07 42 0.02 58 0.19
queen16-16 256 6320 186 45 0.01 56 0.11 45 0.02 63 0.26
queen5-5 25 160 18 12 0.00 12 0.00 12 0.00 12 0.00
queen6-6 36 290 25 15 0.00 15 0.00 15 0.00 15 0.01
queen7-7 49 476 35 18 0.01 18 0.00 18 0.00 20 0.01
queen8-12 96 1368 67 25 0.00 29 0.02 25 0.00 33 0.03
queen8-8 64 728 46 21 0.01 22 0.00 21 0.01 25 0.01
queen9-9 81 1056 58 24 0.00 26 0.02 24 0.00 29 0.02
school1 385 19095 188 73 0.01 97 0.19 74 0.08 122 1.04
school1-nsh 352 14612 162 61 0.01 82 0.13 61 0.05 106 0.74
zeroin.i.1 126 4100 50 48 0.00 50 0.02 48 0.01 50 0.08
zeroin.i.2 157 3541 32 29 0.00 31 0.02 30 0.01 32 0.07
zeroin.i.3 157 3540 32 29 0.00 31 0.02 30 0.01 32 0.07

Table 9: Upper bounds and results of MMD and MMD+ for DIMACS colouring
instances
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instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU

barley 5 0.01 6 6 6 6 6 5 0.06
diabetes 4 0.92 4 4 4 4 4 4 5.23
link 5 3.09 8 10 8 11 8 6 43.08
mildew 3 0.00 4 4 4 4 4 4 0.03
munin1 4 0.17 8 10 9 10 9 7 0.95
munin2 4 5.46 6 6 6 6 5 6 31.3
munin3 4 5.87 6 7 7 7 6 7 33.8
munin4 5 6.06 7 7 7 8 6 7 48.3
oesoca+ 9 0.02 9 9 9 9 9 9 0.15
oow-trad 4 0.00 5 5 5 5 5 4 0.03
oow-bas 3 0.00 4 4 4 4 4 4 0.02
oow-solo 4 0.01 4 5 4 5 5 5 0.05
pathfinder 6 0.05 6 6 6 6 6 6 0.34
pignet2 5 59.60 28 39 30 39 16 18 509.6
pigs 3 1.01 7 7 7 7 6 6 5.12
ship-ship 5 0.01 6 6 6 6 6 6 0.06
water 8 0.00 8 8 8 8 8 8 0.04
wilson 3 0.00 3 3 3 3 3 3 0.01

barley-pp 6 0.00 6 6 6 6 6 6 0.02
link-pp 6 0.60 8 11 8 11 8 9 4.65
munin1-pp 5 0.02 9 10 9 9 9 8 0.14
munin2-pp 5 0.15 6 6 6 6 6 6 0.91
munin3-pp 5 0.05 7 7 7 7 6 6 0.34
munin4-pp 5 0.26 7 7 7 7 7 7 1.7
munin-kgo-pp 5 0.00 5 5 5 5 5 5 0.01
oesoca+-pp 10 0.00 10 10 10 10 10 10 0.01
oow-trad-pp 4 0.00 5 5 5 5 5 5 0.01
oow-solo-pp 5 0.00 5 5 5 5 5 5 0.02
pathfinder-pp 6 0.00 6 6 6 6 6 6 0
pignet2-pp 6 7.59 29 38 29 39 20 21 74.76
pigs-pp 5 0.01 7 7 7 7 7 6 0.07
ship-ship-pp 4 0.00 6 6 6 6 6 6 0.02
water-pp 8 0.00 8 8 8 8 8 8 0.02

Table 10: Results of MCSLB+ for (preprocessed versions of) probabilistic net-
works
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instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU

celar01 10 1.20 12 13 12 14 12 13 17.08
celar02 9 0.06 9 10 9 10 9 9 0.3
celar03 9 0.23 11 12 11 13 12 12 1.54
celar04 11 0.66 11 13 12 13 12 13 4.85
celar05 9 0.23 12 13 12 13 12 12 1.8
celar06 11 0.06 11 11 11 11 11 11 0.33
celar06pp 11 0.04 11 11 11 11 11 11 0.24
celar07 12 0.24 13 15 13 15 13 15 1.66
celar07pp 12 0.16 14 15 13 15 13 15 1.22
celar08 12 1.45 13 15 14 15 13 15 17.04
celar08pp 12 0.86 14 15 14 15 14 14 8.39
celar09 12 0.82 13 15 14 15 14 15 4.62
celar10 12 0.71 13 15 14 15 14 15 4.77
celar11 10 0.66 11 13 12 13 12 12 4.43
graph01 9 0.06 9 15 11 14 12 13 0.45
graph02 8 0.24 12 19 12 19 14 13 2.54
graph03 6 0.06 9 13 10 14 9 13 0.49
graph04 8 0.25 12 20 13 20 14 16 1.95
graph05 9 0.06 10 15 11 16 11 14 0.47
graph06 9 0.26 12 22 14 22 14 15 2.22
graph06pp 6 0.07 7 11 7 11 7 8 0.47
graph07 9 0.26 12 22 14 22 14 15 2.15
graph08 9 0.76 17 26 18 26 18 20 5.89
graph09 9 1.43 17 30 20 28 22 23 11.51
graph10 8 0.77 18 26 17 26 19 22 6.25
graph11 8 0.80 15 27 18 27 17 26 6.53
graph11pp 8 0.81 16 27 17 28 18 23 7.25
graph12 7 0.76 15 25 16 25 17 21 5.92
graph13 8 1.48 18 32 19 31 20 28 12.89
graph13pp 8 1.46 19 31 19 32 21 17 12.98
graph14 5 1.35 19 28 20 28 21 25 10.11

Table 11: Results of MCSLB+ for frequency assignment instances
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instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU

celar01-pp 10 0.16 11 13 12 13 12 13 1.27
celar02-pp 10 0.00 10 10 10 10 10 10 0.01
celar03-pp 10 0.04 11 13 12 13 13 12 0.29
celar04-pp 11 0.08 11 13 13 13 13 13 0.57
celar05-pp 9 0.04 11 12 12 12 11 12 0.31
celar07-pp 12 0.11 13 15 14 15 14 15 0.4
celar08-pp 12 0.25 14 15 14 15 14 15 1.89
celar09-pp 12 0.12 14 15 14 15 14 15 0.82
celar10-pp 12 0.12 14 15 14 15 14 15 0.82
celar11-pp 10 0.06 12 13 11 12 11 11 0.42
graph01-pp 9 0.05 10 15 11 14 12 14 0.33
graph02-pp 8 0.22 12 19 14 19 14 15 1.46
graph03-pp 6 0.03 9 14 9 13 10 13 0.25
graph04-pp 8 0.20 12 20 13 20 13 17 1.56
graph05-pp 9 0.06 10 15 10 15 12 14 0.37
graph06-pp 9 0.23 12 22 15 21 15 17 1.75
graph07-pp 9 0.23 12 22 15 21 15 17 1.73
graph08-pp 8 0.67 16 26 17 25 19 23 5.15
graph09-pp 9 1.31 18 29 20 30 21 24 9.35
graph10-pp 8 0.76 16 26 18 26 16 22 5.71
graph11-pp 9 0.67 16 27 18 28 18 25 5.51
graph12-pp 7 0.65 16 25 17 25 17 25 4.98
graph13-pp 8 1.31 19 32 20 32 21 30 10.74
graph14-pp 6 1.03 20 28 21 28 21 25 7.92

Table 12: Results of MCSLB+ for preprocessed versions of frequency assignment
instances

instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU

fl3795 4 41.12 5 6 5 6 5 5 160.84
fnl4461 4 101.46 5 5 5 5 5 5 406.3
pcb3038 4 33.02 5 5 5 5 5 5 127.66
rl5915 4 33.39 5 5 5 6 5 5 114.83
rl5934 4 37.70 5 5 5 6 5 5 128.27

fl3795-pp 4 18.52 5 6 5 6 5 5 115.28
fnl4461-pp 4 22.26 5 5 5 5 5 5 124.29
pcb3038-pp 4 7.48 5 5 5 5 5 5 45.56
rl5915-pp 4 9.13 5 5 5 6 5 6 34.57
rl5934-pp 4 8.27 5 6 5 6 5 6 35.98

Table 13: Results of MCSLB+ for TSP graphs and preprocessed versions of
these
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instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU
anna 10 0.21 10 12 11 12 11 11 1.66
david 10 0.10 11 12 10 12 10 11 0.79
fpsol2.i.1 66 4.45 66 66 66 66 66 66 79.51
games120 10 0.23 12 20 15 19 14 18 1.58
homer 13 3.54 19 23 20 23 18 17 39.36
inithx.i.1 56 13.62 56 56 56 56 56 56 262.49
le450-15a 28 7.08 60 74 59 73 59 71 131.96
le450-15b 27 6.73 59 74 59 75 60 73 127.27
le450-15c 51 10.50 97 110 98 109 97 105 223.34
le450-15d 53 10.66 98 110 97 110 96 107 251.67
le450-25a 30 6.06 56 75 58 75 59 69 138.04
le450-25b 29 6.22 54 75 55 76 56 69 126.24
le450-25c 55 12.23 97 111 96 111 97 110 262.69
le450-25d 54 11.05 97 111 98 111 98 110 264.69
le450-5a 20 5.26 53 63 52 62 53 62 89.01
le450-5b 20 5.16 51 62 52 62 52 61 90.96
le450-5c 35 7.14 73 86 73 87 74 85 152.89
le450-5d 34 7.39 72 85 73 86 73 84 150.14
miles1000 46 0.60 46 48 46 49 46 48 10.21
miles1500 74 1.00 77 77 77 77 76 76 13.16
miles250 8 0.16 9 9 9 9 8 8 1.49
miles500 21 0.30 22 22 22 22 22 22 2.78
miles750 32 0.44 33 34 33 34 33 34 6.23
mulsol.i.1 50 0.77 50 50 50 50 50 50 10.62
mulsol.i.2 32 0.95 32 32 32 32 32 32 15.92
mulsol.i.3 32 0.99 32 32 32 32 32 32 14.51
mulsol.i.4 32 0.99 32 32 32 32 32 32 15.72
mulsol.i.5 31 1.00 31 31 31 31 31 31 14.53
myciel3 3 0.00 4 4 5 4 4 4 0.00
myciel4 5 0.00 8 8 8 8 8 7 0.03
myciel5 8 0.03 14 14 14 14 14 12 0.23
myciel6 13 0.16 23 25 24 24 23 23 1.70
myciel7 20 0.84 40 43 40 43 39 35 13.05
queen10-10 27 0.25 31 35 30 36 30 32 2.72
queen11-11 30 0.41 34 39 35 40 35 37 4.64
queen12-12 33 0.62 37 44 40 45 39 42 7.58
queen13-13 36 0.91 42 51 45 49 43 47 12.54
queen14-14 39 1.29 46 54 49 55 47 52 18.57
queen15-15 42 1.80 52 59 52 62 52 58 27.79
queen16-16 45 2.48 56 64 57 65 55 63 39.83
queen5-5 12 0.01 12 12 12 12 12 12 0.05
queen6-6 15 0.03 15 15 15 16 15 16 0.15
queen7-7 18 0.04 18 19 18 19 19 19 0.37
queen8-12 25 0.22 30 34 29 33 29 31 2.24
queen8-8 21 0.08 22 25 22 25 22 24 0.73
queen9-9 24 0.15 25 30 27 30 26 28 1.21
school1 85 9.73 97 122 110 118 104 118 228.85
school1-nsh 72 6.70 81 108 92 101 88 105 155.16
zeroin.i.1 50 0.67 50 50 50 50 50 50 8.90
zeroin.i.2 31 0.80 31 32 31 32 31 31 10.91
zeroin.i.3 31 0.78 31 32 31 32 31 31 11.45

Table 14: Results of MCSLB+ for DIMACS colouring instances
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instance LBN LBN LBN LBN LBN+ LBP LBP LBP LBP LBP+
(MMD) (MCSLB) (MMD+) (MCSLB+) (MD) (MMD) (MCSLB) (MMD+) (MCSLB+) (MD)
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

barley 5 0.00 5 0.03 6 0.00 6 0.13 6 0.01 6 0.18 6 0.23 6 0.06 6 0.20 6 0.10
diabetes 3 0.03 4 2.39 4 0.02 4 10.42 4 0.13 4 373.22 4 12.27 4 10.01 4 20.69 4 17.89
link 4 0.04 5 8.03 11 0.05 10 127.37 11 0.40 10 2525.67 10 623.78 11 10.93 11 223.65 12 40.70
mildew 3 0.00 3 0.01 4 0.00 4 0.06 4 0.00 4 0.13 4 0.15 4 0.04 4 0.11 4 0.05
munin1 4 0.00 4 0.45 10 0.01 10 2.00 10 0.03 7 3.70 7 4.88 10 0.10 10 2.12 10 0.16
munin2 3 0.08 4 13.74 6 0.04 6 66.72 6 0.47 5 2475.97 5 212.62 6 23.66 6 90.95 6 54.54
munin3 3 0.09 4 15.11 7 0.04 7 69.88 7 0.53 6 3747.90 6 265.25 7 15.88 7 88.35 7 31.31
munin4 4 0.04 5 15.13 8 0.04 7 77.26 8 1.05 6 411.21 6 167.57 8 16.02 8 151.12 8 99.52
oesoca+ 9 0.00 9 0.06 9 0.00 9 0.37 10 0.03 9 0.22 9 0.28 9 0.22 10 0.88 10 0.79
oow-trad 3 0.00 4 0.01 5 0.00 5 0.05 5 0.00 5 0.22 5 0.10 5 0.01 5 0.07 5 0.02
oow-bas 3 0.00 3 0.00 4 0.00 4 0.04 4 0.00 4 0.08 4 0.10 4 0.01 4 0.03 4 0.01
oow-solo 3 0.00 4 0.02 4 0.00 5 0.07 5 0.01 5 0.49 5 0.16 5 0.13 5 0.10 5 0.04
pathfinder 5 0.00 6 0.12 6 0.00 6 0.59 6 0.04 6 0.17 6 0.24 6 0.11 6 0.71 6 0.16
pignet2 6 2.86 6 240.24 38 0.28 39 1051.52 41 21.58 - - - - 40 144.83 39 1091.67 48 1280.96
pigs 3 0.02 3 2.66 7 0.01 7 12.04 7 0.13 5 238.01 5 257.73 7 1.71 7 13.07 8 9.58
ship-ship 4 0.00 5 0.03 6 0.00 6 0.14 6 0.00 6 0.12 6 0.08 6 0.02 6 0.16 6 0.03
water 6 0.00 8 0.02 8 0.00 8 0.08 9 0.01 8 0.21 8 0.08 9 0.09 9 0.21 9 0.16
wilson 2 0.00 3 0.00 3 0.00 3 0.02 3 0.00 3 0.01 3 0.00 3 0.01 3 0.01 3 0.00
barley-pp 5 0.00 6 0.01 6 0.00 6 0.04 6 0.00 6 0.04 6 0.02 6 0.01 6 0.05 6 0.03
link-pp 6 0.01 6 1.62 11 0.03 11 10.35 11 0.17 10 42.60 10 50.41 11 2.65 11 12.99 12 29.94
munin1-pp 4 0.00 5 0.06 10 0.00 10 0.34 10 0.02 7 0.54 7 0.32 10 0.03 10 0.34 10 0.05
munin2-pp 4 0.01 5 0.39 6 0.01 6 1.97 6 0.05 5 19.69 5 3.33 6 0.81 6 2.77 6 3.16
munin3-pp 4 0.00 5 0.14 7 0.00 7 0.72 7 0.03 6 8.10 6 0.58 7 0.08 7 0.83 7 0.23
munin4-pp 5 0.01 5 0.71 8 0.01 7 3.74 8 0.09 6 11.80 6 12.96 8 0.97 8 7.33 8 3.78
munin-kgo-pp 4 0.00 5 0.00 4 0.00 5 0.01 5 0.00 5 0.02 5 0.01 5 0.03 5 0.01 5 0.03
oesoca+-pp 9 0.00 10 0.00 10 0.00 10 0.01 10 0.00 10 0.00 10 0.00 10 0.01 10 0.01 10 0.00
oow-trad-pp 4 0.00 4 0.00 5 0.00 5 0.03 5 0.00 5 0.02 5 0.02 5 0.01 5 0.03 5 0.02
oow-solo-pp 4 0.00 5 0.01 4 0.00 5 0.03 5 0.00 5 0.03 5 0.02 5 0.03 5 0.05 5 0.02
pathfinder-pp 5 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.01 6 0.00 6 0.01 6 0.00
pignet2-pp 9 3.49 9 52.41 38 0.18 38 167.31 41 5.65 27 6598.52 27 3894.26 39 17.17 40 341.93 48 288.83
pigs-pp 4 0.00 5 0.03 7 0.00 7 0.15 8 0.02 6 0.32 6 0.08 7 0.00 7 0.16 8 0.03
ship-ship-pp 4 0.00 4 0.01 6 0.00 6 0.05 6 0.00 6 0.02 6 0.05 6 0.01 6 0.06 6 0.02
water-pp 6 0.00 8 0.01 8 0.00 8 0.04 9 0.01 9 0.08 9 0.04 9 0.03 9 0.09 9 0.07

Table 15: Results of LBN+/LBP+ for (preprocessed versions of) probabilistic networks
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instance LBN LBN LBN LBN LBN+ LBP LBP LBP LBP LBP+
(MMD) (MCSLB) (MMD+) (MCSLB+) (MD) (MMD) (MCSLB) (MMD+) (MCSLB+) (MD)
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

celar01 10 0.07 10 3.32 13 0.03 13 52.81 14 0.17 12 162.42 12 63.11 14 10.82 14 88.67 15 15.64
celar02 9 0.00 9 0.15 10 0.00 10 0.84 10 0.01 9 0.32 9 0.45 10 0.25 10 0.96 10 0.30
celar03 9 0.02 9 0.63 13 0.01 12 3.86 13 0.06 12 19.28 12 14.37 14 0.97 14 9.66 14 2.59
celar04 10 0.01 11 1.78 14 0.01 13 12.32 14 0.19 13 23.07 13 11.72 14 0.70 14 18.79 15 3.35
celar05 10 0.01 10 0.91 13 0.01 13 4.94 13 0.07 13 9.99 13 11.89 13 0.81 13 5.54 14 2.75
celar06 10 0.00 11 0.15 11 0.01 11 0.81 11 0.02 11 0.29 11 0.23 11 0.09 11 0.89 11 0.12
celar06pp 10 0.00 11 0.10 11 0.01 11 0.61 11 0.02 11 0.26 11 0.18 11 0.08 11 0.68 11 0.12
celar07 13 0.02 13 1.21 15 0.02 15 4.49 16 0.12 15 8.61 15 7.81 16 1.12 16 7.45 16 2.41
celar07pp 13 0.02 13 0.68 15 0.01 15 3.16 15 0.06 15 7.64 15 6.48 15 0.80 15 3.96 16 2.11
celar08 13 0.05 13 5.06 15 0.03 15 50.60 16 0.38 15 87.86 15 75.00 16 15.61 15 62.51 16 39.72
celar08pp 13 0.04 13 3.44 15 0.02 16 33.45 16 0.32 15 74.87 15 59.56 15 9.40 16 46.06 16 32.55
celar09 13 0.03 13 2.64 15 0.02 15 11.05 16 0.22 15 16.81 15 16.23 16 2.20 15 13.15 16 3.92
celar10 13 0.02 13 2.67 15 0.02 15 11.26 16 0.22 15 16.38 15 16.15 16 2.18 15 12.93 16 4.03
celar11 9 0.02 10 1.73 13 0.01 13 10.91 14 0.20 12 30.69 12 13.74 14 1.14 14 17.32 14 2.05
graph01 8 0.00 9 0.16 15 0.01 15 0.95 15 0.07 11 2.19 11 1.43 15 0.01 15 0.88 16 0.66
graph02 6 0.01 8 0.69 19 0.03 19 4.22 21 0.21 10 96.08 10 6.95 19 0.03 19 4.02 24 2.19
graph03 5 0.00 6 0.16 14 0.01 13 0.86 14 0.04 8 19.32 8 6.66 14 0.01 13 0.83 16 0.31
graph04 6 0.01 8 0.68 20 0.03 20 4.30 21 0.34 10 194.32 10 10.81 20 0.03 20 4.27 24 4.34
graph05 8 0.00 9 0.17 15 0.01 15 0.98 16 0.08 11 4.71 11 2.37 15 0.01 15 0.99 18 1.03
graph06 8 0.00 9 0.72 22 0.03 22 4.75 23 0.42 12 61.18 12 29.45 22 0.04 22 4.70 26 6.48
graph06pp 5 0.00 6 0.21 11 0.02 11 1.09 12 0.06 7 11.94 7 4.48 11 0.01 11 1.07 13 0.36
graph07 8 0.00 9 0.74 22 0.04 22 4.80 23 0.42 12 62.17 12 29.72 22 0.04 22 4.82 26 6.74
graph08 7 0.02 9 2.04 26 0.06 26 13.50 27 0.56 11 367.94 11 37.06 26 0.07 26 13.42 32 12.19
graph09 8 0.03 9 3.75 29 0.09 30 25.68 32 1.66 13 868.48 13 469.31 29 0.11 30 26.01 37 32.87
graph10 6 0.03 8 2.05 26 0.06 26 13.87 29 0.79 11 1185.31 11 110.52 26 0.08 26 13.94 31 10.78
graph11 7 0.03 8 2.14 28 0.07 27 15.15 30 1.28 12 2135.10 12 797.58 28 0.09 27 15.49 34 26.86
graph11pp 7 0.03 8 2.13 28 0.07 27 15.77 30 0.98 12 2143.73 12 822.35 28 0.09 27 16.10 34 19.69
graph12 5 0.04 7 2.04 25 0.06 25 13.18 27 0.78 10 9699.04 10 374.17 25 0.07 25 13.73 31 15.18
graph13 6 0.07 8 3.94 32 0.11 32 28.43 34 2.06 12 28425.50 12 1130.79 32 0.13 32 29.91 39 61.54
graph13pp 6 0.07 8 3.90 32 0.11 31 30.94 34 2.04 12 28923.54 12 1240.47 32 0.13 31 30.66 39 56.50
graph14 4 0.08 5 4.41 27 0.08 28 22.75 30 1.33 11 5135.39 11 712.27 27 0.10 28 22.99 34 17.49

Table 16: Results of LBN+/LBP+ for frequency assignment instances
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instance LBN LBN LBN LBN LBN+ LBP LBP LBP LBP LBP+
(MMD) (MCSLB) (MMD+) (MCSLB+) (MD) (MMD) (MCSLB) (MMD+) (MCSLB+) (MD)
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

celar01-pp 10 0.04 10 0.43 13 0.02 13 2.84 14 0.06 13 55.96 13 21.25 14 3.89 14 8.31 15 8.87
celar02-pp 10 0.00 10 0.00 10 0.01 10 0.02 10 0.00 10 0.03 10 0.03 10 0.02 10 0.04 10 0.02
celar03-pp 10 0.01 10 0.11 13 0.00 13 0.74 13 0.02 12 3.38 12 2.00 14 0.28 13 0.93 14 0.90
celar04-pp 10 0.01 11 0.24 13 0.02 13 1.47 14 0.07 13 5.97 13 2.75 14 0.44 14 2.51 15 1.57
celar05-pp 10 0.01 10 0.16 13 0.01 12 0.74 13 0.02 13 4.49 13 4.82 13 0.34 13 1.98 14 1.52
celar07-pp 13 0.01 13 0.25 15 0.01 15 1.08 16 0.05 15 3.90 15 3.24 16 0.40 16 1.95 16 0.90
celar08-pp 13 0.02 13 1.00 15 0.01 15 4.66 16 0.15 15 33.64 15 35.31 15 6.73 16 22.61 16 23.85
celar09-pp 13 0.02 13 0.45 15 0.02 15 2.07 16 0.09 15 7.09 15 8.27 15 0.86 16 5.86 16 1.54
celar10-pp 13 0.02 13 0.47 15 0.01 15 1.99 16 0.09 15 9.78 15 8.27 15 0.89 16 4.61 16 1.42
celar11-pp 10 0.01 10 0.16 13 0.00 13 0.94 14 0.06 12 8.27 12 4.96 14 0.39 14 1.76 14 1.13
graph01-pp 8 0.00 9 0.14 14 0.01 15 0.72 15 0.03 11 1.42 11 1.25 14 0.02 15 1.30 16 0.26
graph02-pp 6 0.01 8 0.53 19 0.03 19 3.33 21 0.21 10 38.95 10 8.55 19 0.06 19 5.27 24 1.99
graph03-pp 6 0.00 6 0.10 14 0.01 14 0.57 14 0.07 10 3.67 10 3.84 14 0.02 14 0.92 16 0.47
graph04-pp 6 0.01 8 0.55 20 0.03 20 3.44 21 0.32 11 82.46 11 11.29 20 0.05 20 5.84 24 4.22
graph05-pp 8 0.00 9 0.14 15 0.01 15 0.85 16 0.08 11 6.26 11 3.07 15 0.02 15 1.46 18 0.80
graph06-pp 8 0.01 9 0.58 22 0.03 22 4.08 23 0.39 12 50.71 12 28.18 22 0.05 22 5.81 26 6.40
graph07-pp 8 0.01 9 0.61 22 0.03 22 4.03 23 0.40 12 50.35 12 26.60 22 0.04 22 5.52 26 6.36
graph08-pp 7 0.01 8 2.53 26 0.10 26 13.80 27 0.53 12 194.21 12 73.90 26 0.09 26 15.62 32 11.73
graph09-pp 8 0.02 9 3.56 29 0.08 29 22.77 31 1.18 13 220.09 13 162.56 29 0.19 29 35.83 37 33.81
graph10-pp 6 0.02 8 1.92 26 0.06 26 13.55 29 1.08 11 684.95 11 94.07 26 0.07 26 13.28 31 16.21
graph11-pp 7 0.03 9 1.77 28 0.07 27 13.75 30 0.90 13 569.82 13 73.34 28 0.08 27 13.11 34 20.72
graph12-pp 6 0.02 7 1.85 25 0.06 25 11.70 27 0.76 11 528.67 11 114.95 25 0.08 25 11.73 31 15.34
graph13-pp 6 0.07 8 3.54 32 0.10 32 25.62 34 2.01 13 3186.53 13 344.59 32 0.12 32 26.96 39 62.66
graph14-pp 5 0.03 6 2.75 27 0.06 28 17.38 30 1.25 13 198.29 13 106.43 27 0.10 28 17.59 34 16.91

Table 17: Results of LBN+/LBP+ for preprocessed versions of frequency assignment instances
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instance LBN LBN LBN LBN LBN+ LBP LBP LBP LBP LBP+
(MMD) (MCSLB) (MMD+) (MCSLB+) (MD) (MMD) (MCSLB) (MMD+) (MCSLB+) (MD)
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

fl3795 3 0.42 4 66.52 6 0.12 6 352.62 3 0.73 - - - - 6 65.26 6 415.54 - -
fnl4461 3 0.40 4 169.78 5 0.20 5 882.32 3 0.91 - - - - 6 9.76 6 1317.62 - -
pcb3038 3 0.83 4 57.82 5 0.11 5 282.95 3 3.39 - - - - 5 1.53 5 272.68 - -
rl5915 3 0.17 4 53.56 5 0.11 5 252.75 3 0.70 - - - - 6 9.05 6 385.44 - -
rl5934 3 0.18 4 60.28 5 0.11 5 285.51 3 0.69 - - - - 6 5.45 6 429.39 - -

fl3795-pp 3 0.36 4 31.06 6 0.10 6 163.79 3 1.32 - - - - 6 40.66 6 215.22 7 4269.18
fnl4461-pp 3 0.36 4 36.51 5 0.10 5 180.71 3 0.70 - - - - 6 79.71 6 413.34 - -
pcb3038-pp 3 0.15 4 13.50 5 0.06 5 62.74 3 0.30 - - - - 6 10.43 6 107.43 8 34030.60
rl5915-pp 3 0.14 4 10.96 5 0.05 5 53.00 3 0.31 - - - - 6 7.32 6 89.13 9 54819.50
rl5934-pp 3 0.14 4 11.93 5 0.05 6 61.69 3 0.55 - - - - 6 5.86 6 56.51 9 38137.20

Table 18: Results of LBN+/LBP+ for TSP graphs and preprocessed versions of these
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instance LBN LBN LBN LBN LBN+ LBP LBP LBP LBP LBP+
(MMD) (MCSLB) (MMD+) (MCSLB+) (MD) (MMD) (MCSLB) (MMD+) (MCSLB+) (MD)

LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU
anna 10 0.00 10 0.28 11 0.00 12 1.88 12 0.22 11 1.03 11 1.44 12 0.74 12 2.26 12 1.67
david 10 0.01 10 0.12 12 0.01 12 0.87 12 0.06 11 0.98 11 1.13 12 0.36 12 1.23 12 0.61
fpsol2.i.1 66 0.23 66 4.91 66 0.25 66 93.64 66 5.03 66 1402.59 66 656.75 66 656.36 66 752.30 66 1810.12
games120 8 0.00 10 0.27 19 0.02 20 1.98 21 0.36 12 88.04 12 12.85 19 0.02 20 1.99 24 2.48
homer 14 0.08 14 6.38 23 0.03 23 52.19 25 3.12 21 94.01 21 93.80 24 7.44 24 87.00 26 88.39
huck 10 0.00 10 0.09 10 0.00 10 0.69 10 0.04 10 0.03 10 0.11 10 0.03 10 0.69 10 0.10
inithx.i.1 56 0.43 56 16.68 56 0.47 56 326.61 56 14.75 56 7085.94 56 5588.02 56 5688.78 56 6032.99 56 3937.69
jean 9 0.00 9 0.08 9 0.01 9 0.49 9 0.04 9 0.36 9 0.44 9 0.36 9 0.85 9 0.67
le450-15a 24 0.32 28 8.31 73 0.53 74 145.57 80 48.59 56 8613.52 56 11511.59 73 17.78 74 170.65 94 33607.00
le450-15c 49 1.02 51 14.57 110 1.31 110 283.65 118 196.08 92 41950.71 92 53453.79 110 194.46 110 487.54 139 301507.92
le450-25a 27 0.68 30 8.04 75 0.49 75 148.21 81 40.36 62 7227.17 62 8449.98 77 209.07 77 515.26 96 29270.39
le450-25c 52 0.93 55 14.34 111 1.31 111 290.95 121 228.82 100 36727.37 100 45282.66 116 1453.15 116 2527.20 144 818568.19
le450-5a 17 0.27 20 7.85 62 0.39 63 100.06 66 17.13 33 6955.30 33 6207.72 62 0.42 63 100.46 79 6149.43
le450-5c 33 0.62 35 10.14 86 0.78 86 173.22 93 48.27 51 19667.36 51 21950.36 86 0.73 86 168.45 106 30076.05
miles1000 44 0.27 46 0.81 48 0.07 48 11.43 49 1.01 47 245.14 47 125.33 49 113.87 49 129.82 49 337.91
miles1500 76 0.20 76 2.58 77 0.11 77 14.82 77 0.63 76 399.24 76 275.38 77 107.52 77 122.32 77 113.30
miles250 8 0.00 8 0.22 9 0.01 9 2.28 9 0.07 8 2.48 8 1.29 9 0.64 9 2.86 9 0.78
miles500 21 0.03 22 0.60 22 0.02 22 4.36 22 0.16 22 21.88 22 11.70 22 6.56 22 10.93 22 14.52
miles750 32 0.03 32 0.57 34 0.04 34 7.70 34 0.35 33 70.08 34 64.44 34 27.06 34 35.66 35 160.10
mulsol.i.1 50 0.10 50 0.96 50 0.08 50 13.22 50 0.75 50 243.02 50 120.56 50 118.76 50 135.98 50 103.11
mulsol.i.2 32 0.07 32 1.21 32 0.07 32 17.29 32 1.10 32 111.41 32 73.47 32 73.49 32 91.28 32 68.10
myciel3 3 0.00 3 0.00 4 0.00 4 0.00 5 0.00 4 0.00 4 0.00 4 0.00 4 0.01 5 0.00
myciel4 5 0.00 5 0.00 8 0.01 8 0.03 8 0.01 6 0.02 6 0.03 8 0.00 8 0.04 9 0.01
myciel5 8 0.00 8 0.04 14 0.00 14 0.24 15 0.07 12 0.33 12 0.44 14 0.04 15 0.40 16 0.25
myciel6 15 0.21 15 0.53 24 0.02 25 1.93 27 0.26 20 5.02 20 4.77 26 0.26 26 2.98 29 1.94
myciel7 25 2.96 25 6.45 43 0.08 44 23.61 46 3.39 34 88.09 34 76.75 44 7.65 45 36.74 52 174.52
queen12-12 33 0.02 33 0.83 43 0.09 44 9.18 44 0.78 37 101.99 38 114.91 43 0.08 44 8.85 55 363.91
queen15-15 42 0.08 42 2.37 58 0.24 59 32.85 60 7.36 48 1045.63 50 1221.13 58 0.24 59 32.01 73 7579.01
queen16-16 45 0.12 45 3.33 63 0.31 64 46.89 66 13.44 53 2005.27 53 2512.97 63 0.31 64 46.05 79 16312.83
queen5-5 12 0.00 12 0.01 12 0.00 12 0.06 12 0.01 12 0.00 12 0.03 13 0.01 13 0.09 14 0.04
queen6-6 15 0.00 15 0.03 15 0.01 15 0.18 16 0.05 15 0.08 16 0.13 17 0.09 17 0.41 18 0.35
queen8-12 25 0.02 25 0.35 33 0.04 34 2.96 34 0.46 30 23.52 30 28.56 33 0.04 34 2.66 39 19.54
queen9-9 24 0.01 24 0.19 30 0.03 30 1.61 30 0.31 26 5.46 26 5.93 30 0.03 30 1.60 35 9.75
school1 88 375.93 88 156.33 122 1.49 122 347.09 132 180.80 116 65019.15 116 66247.57 128 3668.42 127 4722.53 149 207254.65
school1-nsh 72 198.00 72 11.47 106 0.90 108 219.47 116 112.63 100 51399.36 100 45639.51 111 1801.06 112 2066.21 132 139781.41
zeroin.i.1 50 0.06 50 0.85 50 0.08 50 10.23 50 0.78 50 72.33 50 36.11 50 35.21 50 45.28 50 33.40
zeroin.i.2 31 0.20 31 1.03 32 0.07 32 12.81 32 1.05 31 211.19 31 72.98 32 57.15 32 69.75 32 74.14

Table 19: Results of LBN+/LBP+ for some DIMACS colouring instances


