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Abstract

In this paper we present an experimental study of the statistical and
topological properties of the Webgraph. This work has required the de-
velopment of a set of external and semi-external algorithms for computing
properties of massive graphs, and for the large scale simulation of stochas-
tic graph models. We use these algorithms for running experiments on
a large crawl from 2001 of 200M pages and about 1.4 billion edges made
available by the WebBase project at Stanford [19], and on synthetic graphs
obtained by the large scale simulation of stochastic graph models for the
Webgraph.
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1 Introduction

The Webgraph is the graph whose nodes are (static) web pages and edges are
(directed) hyperlinks among them. The Webgraph has been the subject of a
large interest in the scientific community. The reason of such large interest is
primarily given to search engine technologies. Remarkable examples are the
algorithms for ranking pages such as PageRank [4] and HITS [10].

A large amount of research has recently been focused on studying the prop-
erties of the Webgraph by collecting and measuring samples spanning a good
share of the whole Web. A second important research line has been the devel-
opment of stochastic models generating graphs that capture the properties of
the Web. This research work also poses several algorithmic challenges. It re-
quires to develop algorithmic tools to compute topological properties on graphs
of several billion edges.

The Webgraph has shown the ubiquitous presence of power-law distributions,
a typical signature of scale-free properties. Barabasi and Albert [3] and Kumar
et al. [12] suggested that the in-degree of the Webgraph follow a power-law
distribution. Later experiments by Broder et al. [5] on a crawl of 200M pages
from 1999 by Altavista confirmed it as a basic property: the probability that
the in-degree of a vertex is i is distributed as Pru[in-degree(u)= i]∝ 1/iγ , for
γ ≈ 2.1. In [5] the out-degree of a vertex was also shown to be distributed
according to a power-law with exponent roughly equal to 2.7 with exception
of the initial segment of the distribution. The number of edges observed in
the several samples of the Webgraph is about equal to 7 times the number of
vertices.

Broder et al. [5] also presented a fascinating picture of the Web’s macro-
scopic structure: a bow-tie shape with a core made by a large strongly con-
nected component (SCC) of about 28% of the vertices. A surprising number of
specific topological structures such as bipartite cliques of relatively small size
has been observed in [12]. The study of such structures is aimed to trace the
emergence of hidden cyber-communities. A bipartite clique is interpreted as a
core of such a community, defined by a set of fans, each fan pointing to a set of
centers/authorities for a given subject, and a set of centers, each pointed by all
the fans. Over 100,000 such communities have been recognized [12] on a sample
of 200 million pages on a crawl from Alexa of 1997.

The Google search engine is based on the popular PageRank algorithm first
introduced by Brin and Page [4]. The PageRank distribution has a simple
interpretation in terms of a random walk in the Webgraph. Assume the walk
has reached page p. The walk then continues either by following with probability
1 − c a random link in the current page, or by jumping with probability c to
a random page. The correlation between the distribution of PageRank and
in-degree has been recently studied in a work of Pandurangan, Raghavan and
Upfal [15]. They show, by analyzing a sample of 100,000 pages, of the brown.edu
domain that PageRank is distributed with a power-law of exponent 2.1. This
exactly matches the in-degree distribution, but it is also observed a very weak
correlation between these quantities, i.e., pages with high in-degree may have
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low PageRank.
The topological properties observed in the Webgraph, as for instance the

in-degree distribution, cannot be found in the traditional random graph model
of Erdös and Rényi (ER) [8]. Moreover, the ER model is a static model, while
the Webgraph evolves over time when new pages are published or are removed
from the Web.

Albert, Barabasi and Jeong [1] initiated the study of evolving networks by
presenting a model in which at every discrete time step a new vertex is inserted
in the graph. The new vertex connects to a constant number of previously in-
serted vertices chosen according to the preferential attachment rule, i.e., with
probability proportional to the in-degree. This model shows a power-law dis-
tribution over the in-degree of the vertices with exponent roughly 2 when the
number of edges that connect every vertex to the graph is 7. In the following
sections we refer to this model as the Evolving Network (EN) model.

The Copying model has been later proposed by Kumar et al. [11] to explain
other relevant properties observed in the Webgraph. For every new vertex enter-
ing the graph a prototype vertex p it is selected at random. A constant number
d of links connect the new vertex to previously inserted vertices. The model is
parameterized on a copying factor α. The end-point of a link is either copied
with probability α from a link of the prototype vertex p, or it is selected at
random with probability 1−α. The copying event aims to model the formation
of a large number of bipartite cliques in the Webgraph. In our experimental
study we consider the linear [11] version of this model, and we refer to it simply
as the Copying model.

More models of the Webgraph are presented by Pennock et al. [16], Cal-
darelli et al. [13], Panduragan, Raghavan and Upfal [15], Cooper and Frieze [6].
Mitzenmacher [14] presents an excellent survey of generative models for power-
law distributions. Bollobás and Riordan [2] study vulnerability and robustness
of scale-free random graphs. Most of the models presented in the literature gen-
erate graphs without cycles. Albert et al. [1] amongst others proposed to rewire
part of the edges introduced in previous steps to induce links in the graphs.

Outline of the paper. We present a comprehensive set of external and semi-
external memory algorithms for studying statistical and topological properties
of massive Webgraphs. We test these algorithms on a crawl of about 200 million
pages collected in 2001 by the WebBase project at Stanford [19], a widely used
sample for testing Web applications and studying the structure of the Web. The
experimental findings on the structure of the WebBase crawl are presented in
Section 2.

This work has required the development of semi-external memory [18] algo-
rithms for computing disjoint bipartite cliques of small size, external memory
algorithms [18] based on the ideas of [9] for computing PageRank, and the large
scale simulation of stochastic graph models. Moreover, we use the semi-external
algorithm developed in [17] for computing strongly connected components. The
algorithms and the experimental evaluation of their time performances are pre-
sented in Section 4. A detailed description of the software tools we developed



D.Donato et al., Algorithms for the Webgraph, JGAA, 10(2) 219–236 (2006)222

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000outdegree

nu
m

be
r 

of
 v

er
tic

es

Figure 1: Out-degree distribution of the Web Base crawl

can be found in [7].

2 Analysis of the WebBase crawl

We first present several experimental findings that have been obtained by run-
ning our algorithms on a 200 million nodes crawl collected from the WebBase
project at Stanford [19] in 2001. The in-degree distribution of the graph fol-
lows a power-law with γ = 2.1, to confirm the results of the initial study of
the notredame.edu domain [3] and the observations done on a crawl from 1997,
collected by Alexa [12], and a crawl from 1999 done by Altavista [5].

In Figure 1 the out-degree distribution of the WebBase crawl is also shown.
While the in-degree distribution is fitted with a power-law, the out-degree is
not, even for the final segment of the distribution. The final cut is due to
some limitations of the crawler. A deviation from a power-law for the initial
segment of the distribution was already observed in the Altavista crawl [5].
The distribution of the out-degree is considered at some extent less meaningful
than the in-degree since the outlinks of a page are often all generated by a single
content creator. We also computed the correlation (more precisely, we computed
the Pearson’s correlation coefficient) between in-degree and out-degree. This
assumes value 0.022 on a range of variation in [−1, 1] from negative to positive
correlation, there showing the two observables almost uncorrelated, i.e., sites
with large in-degree are not likely to have large out-degree.

Another important measure is the PageRank of the pages. We computed the
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Figure 2: The number of bipartite cliques (i, j) in the Web Base crawl

PageRank distribution of the WebBase crawl. Here, we confirm the observation
of [15] by showing that this quantity is distributed according to a power-law with
exponent γ = 2.109. We also computed the correlation between PageRank and
in-degree. This assumes a value of 0.307, therefore confirming the observation
of [15] on a weak correlation between in-degree and PageRank.

In Figure 2 the graphic of the distribution of the number of bipartite cliques
(i, j), with i, j = 1, . . . , 10 is shown. The shape of the graphic follows that one
presented by Kumar et al. [12] for the crawl by Alexa. However, we detect a
number of bipartite cliques of size (4, j), with j = 1, . . . , 10, that differs from the
crawl from Alexa for more than one order of magnitude. A possible (and quite
natural) explanation is that the number of cyber-communities has consistently
increased from 1997 to 2001.

3 Strongly connected components

Broder et al. [5] identified a very large strongly connected component of about
28% of the entire crawl. The Evolving Network and the Copying model do not
contain cycles and hence not even a single strongly connected component. We
therefore modified the EN and the Copying model in order to induce cycles
by adding in the graph a number of edges ranging from 1% to 300% of the
number of vertices. Recall that these graphs contain 7 times as many edges as
the vertices.

An interesting observation we make is that, differently from the Erdös-Renyi
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Figure 3: Number and size of SCCs − (Copying Model)

model, we do not observe any threshold phenomenon in the emerging of a large
SCC. In a classical random graph, it is observed the emerging of a giant con-
nected component when the number of edges grows over a threshold that is
slightly more than linear in the number of vertices. What we observe is that
the size of the largest SCC increases smoothly with the number of addes edges
until it spans a big part of the graph. We also observe that the number of SCCs
decreases smoothly with the increase of the percentage of added edges. This can
be observed in Figure 3 for the Copying model on a graph of 10 million vertices.
A similar phenomenon is observed for the Evolving Network model. This phe-
nomenon, not previously known at the best of our knowledge, deserves a much
closer attention and analytical approach for a complete explanation. A similar
conclusion has also been obtained analytically for scale-free undirected graphs
by Bollobas and Riordan [2] about at the same time this paper has appeared.

Identifying strongly connected components in a graph stored on secondary
memory is a non-trivial task. We used for this purpose a semi-external algorithm
developed in [17] whose implementation together with its time performance is
described in Section 4.
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4 Algorithms for analyzing and generating Web

graphs

In this section, we present the external and semi-external memory algorithms
we developed for analyzing massive Webgraphs and the study of their time
performances. Moreover, we will present some algorithmic issues related to the
large scale simulation of stochastic graph models.

For measuring the time performance of the algorithms we have generated
graphs according to the Copying and the Evolving Network model. In particular,
we have generated graphs of size ranging from 100,000 to 50 million vertices with
average degree 7, and later added a number of edges equal to 50% and 200% of
the vertices. The presence of cycles is fundamental for both computing SCCs
and PageRank. In our time analysis we computed disjoint bipartite cliques of
size (4, 4), the size for which the computational task is more difficult.

The analysis of the time complexity of the algorithms has been performed by
restricting the main memory to 256MB for computing disjoint bipartite cliques
and PageRank. For computing strongly connected components, we have used
1GB of main memory to store a graph of 50 million vertices with 12.375 bytes
per vertex. Figures 4, 5 and 6 show the respective plots. The efficiency of
these external memory algorithms is shown by the linear growth of the time
performance whenever the graph does not fit in main memory. More details
about the data structures used in the implementation of the algorithms are
given later in the section.
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Figure 5: The time performance of the computation of PageRank

4.1 Disjoint bipartite cliques

A bipartite clique (i, j) has i fan vertices all linked to j center vertices. Kumar et
al. [12] present a heuristic for enumerating and listing disjoint bipartite cliques
(i, j). Disjointness means that all cliques found by the algorithm have disjoint
sets of fan and centers, thus not excluding a fan vertex of a first clique being
a center vertex of a second clique. A first phase prunes the graph: since the
objective is to detect cores of hidden communities, all the vertices with high
degree are removed. Then, before enumerating the cliques, we remove from the
set of potential fans all the vertices with outdegree smaller than j, and from the
list of potential centers all the vertices with indegree smaller than i.

The algorithm of [12] then enumerates all bipartite cliques of the pruned
graph and selects a set of disjoint bipartite cliques that form the solution. This
enumeration phase is done in main memory, therefore limiting the size of the
graphs that can be analyzed by this algorithm.

The novelty of our approach is a semi-external implementation of the algo-
rithm of [12], i.e., the algorithm can process graphs of any size as soon as a
fixed amount of information for each vertex of the graph can be stored in main
memory. An efficient semi-external implementation of the algorithm requires a
number of changes in the last phase of the algorithm that we’ll present in the
following of this section.

To store the information on nodes that are still potential fans or centers,
we use two n-bit arrays Fan and Center, stored in main memory. We set
Fan(v) := 0 (Center(v) := 0) whether vertex v is still a potential fan (center),
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Fan(v) := 1 (Center(v) := 1) otherwise. We also denote by

• I(v) the list of predecessors of vertex v in the original graph.

• O(v) the list of successors of vertex v in the original graph.

• Ĩ(v) the set of predecessors of vertex v with Fan(·) = 0.

• Õ(v) the set of successors of vertex v with Center(·) = 0.

Along the execution of the algorithm we search for fan vertices v having a
subset S ⊆ Õ(v) with |S| = j such that

| ∩u∈S I(u)| ≥ i. (1)

This gives the evidence of a (i, j) clique in the graph. The main difficulty with
a graph not completely stored in main memory is the evaluation of expression
(1): a distinct access to disk is possibly needed for every vertex of O(v).

To overcome this hurdle, in our semi-external implementation, the graph is
stored on secondary memory in a number of blocks, each one containing the list
of successors and the list of predecessors of B vertices of the graph. Blocks are
numbered b = 1, ..., ⌈N/B⌉. Denote by b(v) the index of the block containing
vertex v, and by B(b) the set of vertices of block b. The algorithm will then
scan the blocks of the graph a number of times from the first to the last block
in search of bipartite cliques until either Fan(v) = 1,∀v, or Center(v) = 1,∀v.

In the following we give a high level description of the algorithm. When a
block is moved to main memory, we scrutiny in sequence all vertices of the block.
For a generic vertex v, we consider all subsets of cardinality j of Õ(v). Let S
be the generic subset. We can evaluate expression (1) for a set S containing
only vertices of block b(v) by simply accessing the information currently stored
in main memory. If one such set forms a clique we have done with vertex v.
We instead postpone the evaluation for those subsets S containing vertices of
other blocks. Let b′ be the block that will be loaded sooner in main memory
containing a vertex of Õ(v). We store Õ(v) and the lists of predecessors of the
vertices of Õ(v)∩B(b) into an auxiliary file A(b′) associated with block b′. The
access to the auxiliary files is actually buffered: file A(b) is written only after
the buffer reaches a given size. In the following we abuse notation by denoting
with A(b) also the set of fan vertices whose exploration will continue with block
b.

When a block b is loaded, we should then decide for both vertices of A(b)
and B(b) with Fan(v) = 0. We start with vertices of A(b). If the evaluation of a
vertex v of A(b) can be completed by looking at the information stored in block
b, we have done with this vertex. Otherwise we postpone again evaluation of
vertex v to the block that will be loaded sooner containing a vertex of Õ(v). We
then move to consider vertices of B(b) as described in the previous paragraph.
We keep on doing this till all fan and center vertices have been removed from
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// Phase I:

// Pruning the graph

Remove all fans v with |O(v)| ≥ 50 and all centers v with |I(v)| ≥ 50.

repeat
no more to remove:=true;
for each vertex v do

if |Õ(v)| < i or |Ĩ(v)| < j then
Remove v;
no more to remove:=false;

end

end

until no more to remove;

// Phase II:

// Enumerating the bipartite cliques of the pruned graph

while there is a fan vertex v with Fan(v) = 0 AND a center vertex u
with Center(u) = 0 do

Load into memory the next block b to be examined;
for every vertex v ∈ A(b) ∪ B(b) such that |Õ(v)| ≥ j do

for every subset S of size j of Õ(v) such that the list of
predecessors of each vertex in S is either stored in A(b) or in block
b do

T := ∩u∈S Ĩ(u);
if |T | ≥ i then

output clique (T [i], S);
set Fan(·) := 1 for all vertices of T [i];
set Center(·) := 1 for all vertices of S;

end

end

end

end

Algorithm 1: Bipartite cliques enumeration

the graph. It is rather simple to see that we decide on all vertices by scanning
the graph at most twice.

Note that the pruning phase can be easily executed in a streaming fashion
as described in [12]. In our experiments, the graph of about 200 million vertices
is reduced to about 120M vertices after the pruning. About 65M of the 80M
vertices that are pruned belong to the border of the graph, i.e., they have in-
degree 1 and out-degree 0.

Figure 4 shows the time performance of the algorithm for detecting disjoint
bipartite cliques of size (4, 4) on a system with 256 MB. 70 MB are used by
the operating system, including operating system’s cache. We reserve 20MB
for the buffers of the auxiliary files. We maintain 2 bit information Fan(·)
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and Center(·) for every vertex, and store two 8 bytes pointer to the list of
successors and the list of predecessors of every vertex. Every vertex in the
list of adjacent vertices requires 4 bytes. The graph after the pruning has
an average degree equals to 8.75. Therefore, on the average, we need about
0.25N + B(2 × 8 + 17.5 × 4) bytes for a graph of N vertices and block size B.
We performed our experiments with a block size of 1 million vertices. We can
observe the time performance to converge to a linear function for graphs larger
than this size. On the same machine, for comparison, it took around 4 hours to
compute the bipartite cliques of the 200 million nodes WebBase sample.

4.2 PageRank

The computation of PageRank is expressed in matrix notation as follows. Let N
be the number of vertices of the graph and let n(j) be the out-degree of vertex
j. Denote by M the square matrix whose entry Mij has value 1/n(j) if there is
a link from vertex j to vertex i. Denote by [ 1

N
]N×N the square matrix of size

N × N with entries 1

N
. Vector Rank stores the value of PageRank computed

for the N vertices. A matrix M ′ is then derived by adding transition edges of
probability (1 − c)/N between every pair of nodes to include the possibility of
jumping to a random vertex of the graph:

M ′ = cM + (1 − c) × [
1

N
]N×N

A single iteration of the PageRank algorithm is

Ranki = M ′ × Ranki−1 = cM × Ranki−1 + (1 − c) × [
1

N
]N×1

We implement the external memory algorithm proposed by Haveliwala [9].
The algorithm uses a list of successors Links, and two arrays Source : /u/rt/proj/cvsrt/rt/ref/jgaa/final/2006
10/10−02−Leonardi/Donato+2006.10.2.tex, v and Dest that store the vector
Rank at iteration i and i + 1. The computation proceeds until either the error
r = |Source − Dest| drops below a fixed value τ or the number of iterations
exceeds a prescribed value.

Arrays Source : /u/rt/proj/cvsrt/rt/ref/jgaa/final/2006 − 10/10 − 02 −
Leonardi/Donato + 2006.10.2.tex, v and Dest are partitioned and stored into
β = ⌈N/B⌉ blocks, each holding the information on B vertices. Links is also
partitioned into β blocks, where Linksl, l = 0, ..., β − 1, contains for every ver-
tex of the graph only those successors directed to vertices in block l, i.e., in
the range [lB, (l + 1)B − 1]. We bring to main memory one block of Dest per
time. Say we have the i-th block of Dest in main memory. To compute the new
PageRank values for all the nodes of the i-th block we read, in a streaming fash-
ion, both array Source : /u/rt/proj/cvsrt/rt/ref/jgaa/final/2006 − 10/10 −
02 − Leonardi/Donato + 2006.10.2.tex, v and Linksi. From array Source :
/u/rt/proj/cvsrt/rt/ref/jgaa/final/2006− 10/10− 02−Leonardi/Donato+
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2006.10.2.tex, v we read previous PageRank values (Ranki−1), while Linksi rep-
resents the colums of the matrix M associated with block i. These are, from
the above PageRank formula, exactly all the information required to compute
the new PageRank values (Ranki).

The main memory occupation is limited to one float for each node in the
block, and, in our experiments, 256MB allowed us to keep the whole Dest
in memory for a 50 million vertices graph. Only a small buffer area is re-
quired to store Source : /u/rt/proj/cvsrt/rt/ref/jgaa/final/2006 − 10/10 −
02 − Leonardi/Donato + 2006.10.2.tex, v and Links, since they are read in a
streaming fashion. The time performance of the execution of the algorithm on
our synthetic benchmark is shown in Figure 5. For comparison, it took around
5 hours and a half to compute the PageRank on the 200 million nodes WebBase
sample.

4.3 Strongly connected components

It is a well-known fact that SCCs can be computed in linear time by two rounds
of depth-first search (DFS). Unfortunately, so far there are no worst-case efficient
external-memory algorithms to compute DFS trees for general directed graphs.
We therefore apply a recently proposed heuristic for semi-external DFS [17].
It maintains a tentative forest which is modified by I/O-efficiently scanning
non-tree edges so as to reduce the number of cross edges. However, this idea
does not easily lead to a good algorithm: algorithms of this kind may continue
to consider all non-tree edges without making (much) progress. The heuristic
overcomes these problems to a large extent by:

• initially constructing a forest with a close to minimal number of trees;

• only replacing an edge in the tentative forest if necessary;

• rearranging the branches of the tentative forest, so that it grows deep
faster (as a consequence, from among the many correct DFS forests, the
heuristic finds a relatively deep one);

• after considering all edges once, determining as many nodes as possible
that have reached their final position in the forest and reducing the set of
graph and tree edges accordingly.

The used version of the program accesses at most three integer arrays of
size N at the same time plus three boolean arrays. With four bytes per integer
and one bit for each boolean, this means that the program has an internal
memory requirement of 12.375 · N bytes. The standard DFS needs to store a
number of bytes equal to 16 · N times the average degree; this amount can be
reduced if one does not store both endpoints for every edge. Therefore, under
memory limitations, standard DFS starts paging at a point when the semi-
external approach still performs fine. Figure 6 shows the time performance of
the algorithm when applied to graphs generated according to the EN and the
Copying model.
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Figure 6: The time performance of the computation of SCCs

4.4 Algorithms for generating massive Webgraphs

In this section we present algorithms to generate massive Webgraphs. We con-
sider the Evolving Network model and the Copying model. When generating a
graph according to a specific model, we fix in advance the number of nodes N
of the simulation. The outcome of the process is a graph stored in secondary
memory as list of successors. In Figure 7 we show the time performance of our
implementation of these algorithms.

Evolving Network model. For the EN model we need to generate the end-
point of an edge with probability proportional to the in-degree of a vertex. The
straightforward approach is to keep in main memory a N -element array i[] where
we store the in-degree for each generated node, so that i[k] = indegree(vk) + 1
(the plus 1 is necessary to give to every vertex an initial non-zero probability to
be chosen as end-point). We denote by g the number of vertices generated so far
and by I the total in-degree of the vertices v1 . . . vg plus g, i.e., I =

∑g

j=1
i[j].

We randomly (and uniformly) generate a number r in the interval (1 . . . I); then,

we search for the smallest integer k such that r ≤ ∑k

j=1
i[j]. For massive graphs,

this approach has two main drawbacks: i.) We need to keep in main memory the
whole in-degree array to speed up operations; ii.) We need to quickly identify
the integer k.

To overcome both problems we partition the set of vertices in
√

N blocks.
Every entry of a

√
N -element array S contains the sum of the i[] values of a

block, i.e., S[l] contains the sum of the elements in the range i[l⌈
√

N⌉+1] . . . i[(l+
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Figure 7: The time performance of the generation of Webgraphs

1) · ⌈
√

N⌉]. To identify in which block the end-point of an edge is, we need to

compute the smallest k′ such that r ≤
∑k′

j=1
S[j].

The algorithm works by alternating the following 2 phases:

Phase I. We store in main memory tuples corresponding to pending edges,
i.e., edges that have been decided but not yet stored. Tuple t =< g, k′, r −
∑k′

−1

j=1
S[j] > associated with vertex g, maintains the block number k′ and the

relative position of the endpoint within the block. We also group together the
tuples referring to a specific block. We switch to phase II when a sufficiently
large number of tuples has been generated.

Phase II. In this phase we generate the edges and we update the information on
disk. This is done by considering, in order, all the tuples that refer to a single
block when this is moved to main memory. For every tuple, we find the pointed
node and we update the information stored in i[]. The list of successors is also
stored as the graph is generated.

In the real implementation we use multiple levels of blocks, instead of only
one, in order to speed up the process of finding the endpoint of an edge. An
alternative is the use of additional data structures to speed up the process of
identifying the position of the node inside the block, e.g. a search tree or a hash
table.

Copying model.

The Copying model is parameterized with a copying factor α. Every new
vertex u inserted in the graph by the Copying model is connected with d edges
to previously existing vertices. A random prototype vertex p is also selected.
The endpoint of the lth outgoing edge of vertex u, l = 1, . . . , d, is either copied
with probability α from the endpoint of the lth outgoing link of vertex p, or
chosen uniformly at random among the existing nodes with probability 1 − α.

A natural strategy would be to generate the graph with a batch process that,
alternately, first generates edges and writes them to disk, and second reads from
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Data: v,d,α
Result: O(v)
// v: the index of the node

// d: the outdegree (and therefore the number of successors

to be generated)

// α: the copying probability

// O(v) = O1(v) . . . Od(v): the list of successors of vertex v;

// RandInt(seed,n) returns a random integer between 1 and n
// Rand01(seed) returns a random number between 0 and 1

seed:=GetSeed(v);
// We first choose the prototype vertex p
p:=RandInt(seed,v-1);
// We compute its successors

O(p)=GenerateSuccessors(p, d, α);

// We generate the successors of d by either copying from p

or generating them randomly

for i:=1 to d do
tempvertex:=RandInt(seed,v-1);
coin:=Rand01(seed);
if coin < α then

// We copy

Oi(v):=Oi(p);
else

// We use the randomly generated one

Oi(v):=tempvertex;
end

end

Procedure GenerateSuccessors(v, d, α)

disk the edges that need to be “copied”. This clearly requires an access to disk
for every newly generated vertex.

In the following, we present an algorithm that does not need to access the
disk to obtain the list of successors of the prototype vertex. With O(v) we denote
the list of successors of vertex v. The procedure GenerateSuccessors(v,d,α)
generates the successors of the vertex v: note that, since we may copy from a
prototype vertex p, there is a recursive call to get the successors of p. The main
idea is to store the seed of the random number generator at fixed steps, say
every x generated nodes. We use the function GetSeed(i) that stores, retrieves
and, if necessary, computes the value of the seed depending on the index vertex;
we know that we generate 1+2 ·d random numbers for every node: One for the
choice of the prototype vertex, d for the endpoints chosen at random, and d to
decide, against the value of α, if we copy or not.
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When we need to copy an edge from a prototype vertex p, we step back to
the last time when the seed has been saved before vertex p has been generated,
and let the computation progress until the outgoing edges of p are recomputed;
for an appropriate choice of x, this sequence of computations is still faster than
accessing the disk. Observe that p might also have copied some of its edges.
In this case we recursively refer to the prototype vertex of p. We store the
generated edges in a memory buffer and write it to disk when complete.

In our experiments we gave to x all the available memory left after the
allocation of the other data stuctures needed by the procedure.

5 Conclusions

In this work we have presented algorithms and experiments for the Webgraph.
We designed new algorithms, that we implemented together with known ones, in
order to develop a set of routines able to generate and analyze massive graph in
secondary memory. More details on this softare library, that is freely available,
can be found in [7].

We plan to carry on these experiments on more recent crawls of the Web-
graph in order to assess the temporal evolution of its topological properties.
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