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Abstract

Visualization of circuits is an important research area in electronic
design automation. One commonly accepted method to visualize a circuit
aligns the gates to layers and uses orthogonal lines to connect the gates.
In our model we assume that between two consecutive layers every net is
allowed to occupy only one track. This avoids unnecessary bends in the
wires and helps to improve the clarity of the drawing. Then a crossing
reduction step is applied to further improve the readability of the circuit
schematics.

First we assume that the nodes have already been fixed on a layered
hypergraph structure. We consider the problem of assigning the hyper-
edges between two layers to tracks. The idea is to minimize the total
number of hyperedge crossings. We prove that finding the best solution is
NP-hard. Then, in contrast to many other approaches which route all the
wiring after placing all nodes we focus on a new approach which dynami-
cally reorders the nodes within the layers to further reduce the number of
hyperedge crossings. An efficient algorithm is presented that minimizes
the hyperedge crossings. Experimental results are provided which show
that the drawings can be improved significantly while the running time
remains moderate.
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1 Introduction

The process of hardware design is divided into several phases. First, a specifi-
cation of the design is generated which describes the properties of the circuit on
a very high level of abstraction. While the first models are quite often written
in C, the actual design is usually encoded on the Register Transfer Level (RTL)
in a special hardware description language like VHDL (see e.g. [3]). In theory,
a “real” circuit can be synthesized out of this RTL-model automatically. In
practice, however, a large amount of interaction is required for several reasons:

• The generated circuit does not meet some of the requirements. For in-
stance, it has to run at a certain speed, but its delay is too large. Power
consumption is another criteria that is becoming increasingly more impor-
tant. While a modification in the RTL code may improve the performance,
sometimes interaction on the gate-level may be required.

• Synthesis tools may translate the RTL model incorrectly. Some variations
are widely accepted and common to most synthesis tools because they
simplify the compilation process (synthesis-simulation-mismatches), oth-
ers are simply bugs in the software. While there are powerful industrial
tools to find functional differences in two designs (see e.g. [1, 2]), locating
the errors still requires an understanding of the design.

• Finally, for various reasons it may be necessary to slightly change the spec-
ification late in the design process (Engineering Change Orders, ECOs).
To avoid a recompilation of the design, this modification is carried out
directly on the circuit’s layout.

In all those cases, an easy-to-read visualization of the circuit is crucial for the
understanding of the design. Other applications of circuit visualization include
teaching of hardware design, presentation of new synthesis methods, and circuit
related documentation.

At first glance the visualization of a circuit and the physical layout of a circuit
[21, 27] may seem to be similar problems. However, different goals and different
restrictions make it impractical to use existing physical layout algorithms to
compute readable circuit schematics. Three important issues are:

• The result of circuit visualization is a two-dimensional drawing, while it
is three-dimensional in the physical design process.

• On chip, the area constraints are more important than both the number of
crossings and the number of bends. This leads to a compact but confusing
routing of the wires.

• Hardware designers are used to a certain “style” of drawings, i.e. lines
must be on an orthogonal grid.

A common framework for automated circuit visualization is based on visual-
ization techniques for directed graphs first introduced by [28]. First approaches
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to extend the framework to orthogonal hypergraph visualization were given in
[12]. An integration into an industrial toolset was discussed in [26]. Theoretical
results can be found in [13]. These techniques split the process into several
steps:

1. The circuit is partitioned into smaller pieces, either following a hierarchy
that is contained in the RTL design, or following a strategy that tries to
split the design into parts that can be displayed on a single screen [7].
Depending on the application, this phase may be omitted.

2. The circuit is transformed into a graph. Nodes are used to represent gates,
while lines are used to represent wires (see Figure 1).

3. Nodes are assigned to levels. Inputs are put to the top level, outputs to
the bottom level [8].

4. Within each level, the nodes are re-ordered such that the number of cross-
ings is minimized [28, 10, 22, 18, 15, 25].

Finally, the graph is transformed back into a circuit which then can be drawn.
It is important to note that the optimization criterion used in the previous

phases differs from that of the final drawing: in the graph model, the number
of crossings is counted using straight lines, while an orthogonal hypergraph
model is used to draw the final circuit. At first glance it is not obvious that
optimizing the number of crossings in the first model leads to better solutions in
the second model, and there are even examples where the number of crossings
differs considerably. Therefore, it makes sense to carry out an additional phase
that improves the number of crossings in the final model.

We assume that all the gates are placed on layers, and that they are in a
“good” initial order with respect to the orthogonal hypergraph crossing min-
imization problem. First a proof is provided that finding the best solution is
NP-hard. Then, to optimize the order of the horizontal lines, a heuristic ap-
proach known from formal verification of hardware is chosen: Sifting [24]. This
algorithm was first applied to optimize the variable order in binary decision
diagrams (BDDs) [5]. BDDs are a graph-based data structure that allows
efficient representation and manipulation of Boolean functions which are often
used in formal verification (e.g. [6]). The algorithm basically works as follows:
each horizontal line is chosen one after another. When a line is chosen, all pos-
sible positions are examined assuming that the relative order of all the other
lines remains the same. Then the line is brought to the position that lead to
the smallest number of crossings. The algorithm is iterated until no further
improvement is obtained.

Then we extend the framework with a new step which dynamically reorders
iteratively two nodes in one layer and repeats the orthogonal embedding of the
hyperedges to further reduce the number of hyperedge crossings until a local
optimum is reached. This new approach [14] combines the placement and rout-
ing process with respect to the hypergraph structure in contrast to many known
heuristic methods. Since finding exact solutions for both steps together means



T. Eschbach et al., Orth. Hypergraph Drawing , JGAA, 10(2) 141–157 (2006)144

to traverse a huge search space, two fast heuristic methods are used by turns
to compute the final solution. Combining two phases during optimization often
leads to a significant increase in running time, however, we present experimen-
tal evidence that our heuristics do not suffer from this drawback. Experimental
results are given which strongly suggest the significant reduction of hyperedge
crossings if the new phase is added.

2 Preliminaries

A circuit can be modeled as a hypergraph HG = (V,H) where gates are repre-
sented by nodes V and nets correspond to hyperedges (connecting a subset of
V ). Each hyperedge consists of all wires which are directly connected to each
other. Nodes are created for every input, every output and every gate in the
circuit. The hypergraph can easily be converted in a directed graph G = (V,E)
by replacing each hyperedge by a set of ”corresponding” edges. (For illustration
see Figure 2.)

The directed graph G = (V,E) is used to compute an initial embedding of
all nodes in a short time. It can be converted into a multi-layered graph with d

layers (d ∈ IN). By this, the node set V is partitioned into disjoint subsets V1,
V2, . . ., Vd, i.e. V1 ∪ V2 ∪ . . . ∪ Vd = V and (∀m 6= m′) Vm ∩ Vm′ = ∅, Vm is called
the m-th layer of the graph. All edges in E connect nodes in different layers.
A layering of a graph is called a proper layering if the edges are only connected
to nodes of adjacent layers Vm and Vm+1. If a layering of a graph is not a
proper layering, one can introduce dummy nodes along edges (u, v) if layer(v)
− layer(u) > 1. We replace (u, v) by a path of length l (u = v1, v2, . . . , vl = v).
In each layer between u and v, one dummy node has to be inserted. If multiple
dummy nodes belonging to the same hyperedge exist on the same layer, they
are merged. Please notice that the dummy nodes are not visualized in the final
drawing. An example of a circuit and its graph representation resulting from
the above construction is given in Figure 1. From now on we assume that the
layering considered is proper.

Figure 1: Example of a circuit and its graph representation.

It is important to note that the order of the nodes in a layer Vm, m ∈
{1, . . . , d}, only affects the number of crossings with adjacent layers. To solve
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the exact multi-layer straight-line crossing minimization problem we have to
determine an order ordm for all layers m containing all the nodes in layer Vm

so that the number of crossings is minimized. Unfortunately, minimizing edge
crossings in graphs with two layers is NP-hard [17], and it remains NP-hard
even if one ordering of a layer is fixed [11].

One of many known heuristic methods to solve the problem is the averaging
heuristic method [28]. It computes the position of a node n only with respect
to all nodes in the above layer which are connected to it. More precisely, it
computes the average of the x-coordinates of its neighbors for all nodes on one
level. Then it sorts the nodes with respect to this value.

We can generalize the notation of the crossing number [10] introduced for
layered graphs to layered hypergraphs if the orderings of all nodes are fixed. For
each pair of nets we define the crossing number cij as the number of crossings
between the nets i and j where net i is assigned to a higher track than net
j. Furthermore, we define cii = 0 for all nets. On the right hand side of
Figure 3, the crossing number c1,5 between net 1 and net 5 is defined as one
and the crossing number c5,1 is defined as two. It is important to note that the
definition of the crossing numbers and all algorithms in this paper can deal with
hyperedges which are connected with r nodes in the upper layer and k nodes in
the lower layer (r, k ∈ IN). However, all experiments are carried out with real
benchmark circuits [4, 23] where all hyperedges have a 1 : k relation.

To compute an orthogonal embedding of a circuit, the algorithm has to route
the wires in the channel between the two layers. We divide this channel into
tracks, and only one wire is allowed per track. This prevents wires within one
track from overlapping or being too close. Thus, between two consecutive layers
every net is represented by at most one horizontal line and one or multiple
vertical lines. This strategy is in contrast to many other algorithms which only
try to minimize the number of tracks. For an example, see Figures 2.

(a) (b)

Figure 2: Remark: A track minimal embedding (a) does not imply a crossing
minimal embedding (b).

An orthogonal hypergraph embedding can reduce the number of crossings
compared to the straight line embedding of its corresponding graph as shown
in Figure 3.

If π is the actual permutation of the nets in the channel and the permutation
of all nodes is fixed, one can compute the number of crossings C as

C =
∑

π(i)<π(j)

cij .
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1 2 3 4 5 6 1 2 3 4 5 6

Figure 3: An example graph and the corresponding orthogonal hypergraph
embedding.

We now define the hypergraph crossing minimization problem (HCM):
Let the following be given: a hypergraph H = (L0, L1, h) with two layers L0 and
L1, a set of hyperedges h which are connected to at maximum one node from
layer L0, an ordering π0 of L0, and an ordering π1 of L1. All hyperedges h are
drawn in a orthogonal way and consist of at maximum one horizontal line which
is located between the two layers. It is connected to all incident nodes with a
vertical line. The HCM problem is now to find an assignment of all hyperedges
to different tracks which minimizes the number of hyperedge crossings. In the
same way we define the problem of finding an optimal orthogonal embedding of
all edges of a graph (GCM).

The complexity results can be directly transfered to all hypergraphs. Restrict
the hypergraph to the hypergraphs defined in the HCM problem by only allowing
that every hyperedge is at most connected to one node of L0.

3 Hypergraph Crossing Minimization is Diffi-

cult

Computing an optimal embedding of all hyperedges in the given framework is
NP-hard. In contrast to that, an optimal solution to the GCM problem in
this framework can be computed asymptotically with respect to the number of
edges of the given graph. In the reminder of this section we give a proof for
both claims.

HCM can be transformed into the decision hypergraph crossing problem
(DHCP). Given a hypergraph H = (L0, L1, h) with two layers L0 and L1, a set
of hyperedges h, an ordering π0 of L0, an ordering π1 of L1, and an integer C̃,
is there an ordering πh of all hyperedges h so that the number of hyperedge
crossings is ≤ C̃?

Proof: It is easy to see that the DHCP problem is in NP. To show that the
DHCP problem is NP-complete, we transform the feedback arc set into a DHCP
problem. As it was shown in [20, 16], the problem of finding a subset A′ of arcs
from a given graph G = (V,A) where |A′| ≤ k such that A′ contains at least
one arc from every directed cycle in G is NP-complete.

Let the graph G = (V,A) together with the positive integer k ≤ |A| consti-
tute an arbitrary instance of the feedback arc set problem. Let n = |V | be the
number of nodes of the feedback arc set problem. We now demonstrate how
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each instance of the feedback arc set problem can be transformed in polynomial
time to the corresponding DHCP problem:

First, for every node of the feedback arc set problem, one node is placed on
layer L0 and two nodes are placed on layer L1 of the hypergraph. For the i-th
node of the graph, we place one node located on L0 on position n − i + 1 and
two nodes located on L1 on position i and n + i. Without loss of generality
all nodes located on L0 are placed in the middle of the drawing, more precisely
between nodes n and n + 1 of layer L1 (see also Figure 4). The vertical dotted
lines in Figure 4 are drawn to show the 2n−1 different parts of the hypergraph,
which are introduced if the hypergraph is constructed in this manner.

1 2 ... n n+1 ... 2n−1

...L 0

1L

Figure 4: Transformation of the nodes.

Every hyperedge of this graph uses only one horizontal track. Two hyper-
edges have exactly two crossings with each other which leads to 2 ∗ ((n − 1) +
(n − 2) + (n − 3) + . . . + (n − (n − 1))) different hyperedge crossings.

It is important to notice that the number of hyperedge crossings is indepen-
dent of the assignment of hyperedges to horizontal tracks. This is due to the
fact that swapping two hyperedges of adjacent tracks does not change the total
number of hyperedge crossings, because of the symmetry of the arrangement.
Therefore, without loss of generality, we use the simplified representation of the
constructed hypergraph shown in Figure 5 for the rest of the proof.

... ...

n

3

2

1

Figure 5: Transformation from a graph with n nodes without arcs.

Now, in the simplified representation of the hypergraph, we introduce a
corresponding couple of nodes for every arc of the feedback arc set problem
on layer L1, which are represented by vertical lines. In general, an arc in the
feedback arc set problem can point from a node with a smaller number to a
node with a larger number, or vice versa.

Case 1: The arc points from node x to node y where x < y. For this arc one
additional vertical line is added to hyperedge x in the (y − 1)’th part of
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the hypergraph. Next, y − 1 vertical lines are added in the y’th part of
the hypergraph connected to all the hyperedges except hyperedge x. In
Figure 6, a transformation of a graph with five nodes and one arc pointing
from node 2 to node 4 is given.

1

2

3 4

5

1

2

3

4

5

4

3

2

1

5

1 2 3 7 8 9654

Figure 6: A graph with five nodes and one arc from node 2 to node 4 and its
hypergraph.

Please notice that the additional vertical lines induce a constant number
of hyperedge crossings cxy for all permutations of the hyperedges when x is
located above y because these vertical lines cause one hyperedge crossing
for every pair of involved hyperedges except for the pair (x, y) (see also
Figure 6). Also, all permutations of the hyperedges induce exactly cxy +1
hyperedge crossings when y is located above x.

Case 2: The arc points from node x to node y and x > y. One additional
vertical line is connected to hyperedge y in the x’th part of the hypergraph.
Then x − 2 vertical lines are connected to all hyperedges in the (x −
1)’th part of the hypergraph except hyperedge y. Again, the additional
vertical lines are inducing a constant number of hyperedge crossings cxy

for all permutations of the hyperedges where x is located above y. For all
permutations of the hyperedges where y is located above x, the additional
vertical lines induce exactly cxy + 1 hyperedge crossings. In Figure 7, a
transformation of a graph with five nodes and one arc pointing from node
4 to node 2 is given.

1

2

3

4

5

4
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1

2

3 4

5

Figure 7: A graph with five nodes and one arc from node 4 to node 2 and its
hypergraph.

Let C be
∑

(x,y)∈A cxy + 2∗ ((n−1)+(n−2)+(n−3)+ . . .+(n− (n−1))).
C is a lower bound to the hyperedge crossing minimization problem because
hyperedge hi has to be placed before or after hyperedge hj for all i 6= j and
i, j ∈ 1, 2, . . . , n. Now we show that G has a feedback arc set of size ≤ k if
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and only if an ordering of the hyperedges can be chosen so that the number of
hyperedge crossings is ≤ C̃ = C + k.

If the graph has a feedback arc set A′ of size ≤ k the resulting acyclic graph
G′ = (V,A − A′) can be used to obtain an ordering πG′ of G′ by a topological
sort. This topological ordering assures that πG′(x) < πG′(y) for all arcs (x, y) ∈
A − A′. Now the same ordering is used to assign the hyperedges to the tracks.
This implies that each arc ∈ A′, where A′ = {(x, y) ∈ A : πG′(x) > πG′(y)}
produces one additional hyperedge crossing. As there are at most k arcs in A′,
the hypergraph can have at most C̃ = C + k hyperedge crossings.

Otherwise, given an ordering πh of the hyperedges such that the hypergraph
has at most C̃ hyperedge crossings, it is shown to imply a feedback arc set A′

with |A′| ≤ k. The ordering of the hyperedges πh is mapped to the ordering of
the nodes πG and then the edge set A′ = {(x, y) ∈ A : πG(x) > πG(y)} is deleted
to obtain an acyclic graph. Because of the construction of the hypergraph,
it follows that C hyperedge crossings are caused independent of the ordering
πh and at most k additional hyperedge crossings are caused by the set A′ =
{(x, y) ∈ A : πG(x) > πG(y)}. Furthermore |A′| ≤ k and the graph G′ =
(V,A − A′) is acyclic, therefore, A′ is a feedback arc set. 2

Please notice that an optimal orthogonal embedding of all edges of a graph
G = (V0, V1, E) (GCM) in this framework has the same number of crossings
than the straight line embedding of the graph. It is also the number of crossings
that occur if (without loss of generality) all nodes of layer V0 are placed left to
all nodes of layer V1 and the edges (ordered from the first node in V0 to the last
node in V0 and if more than one edge is incident to a node the edges are ordered
with respect to the ordering given by V1) are assigned to the lowest up to the
topmost track of the embedding.

4 Heuristic Methods

The computational complexity of the hyperedge crossing reduction problem re-
quires the use of fast heuristic methods, especially in the field of circuit visual-
ization where a short response time is crucial. The next sections briefly describe
the combination of a greedy and a sifting and a reordering heuristic method.

4.1 Greedy Assign

The greedy hyperedge assignment heuristic method iteratively assigns hyper-
edges starting at the top most track. First the algorithm computes the number
of crossings for all hyperedges which are induced if the hyperedge is positioned
above the remaining hyperedges. Then it chooses the hyperedge which causes
the smallest number of crossings, fixing it to the top most track. The algorithm
repeats this greedy selection step until all hyperedges are assigned to one track.
Pseudo code for the greedy assign method is given below:
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greedy assign(crossing matrix cm, hyperedges nets){
for k = 1 to |nets| − 1 do {

mincost = +∞
for every net i ∈ nets do {

cost =
∑

j∈nets cij

if(cost < mincost) {
best = i
mincost = cost

}
nets = nets \ best

}
assign best to track k

}
}

4.2 Sifting

The sifting [24] algorithm was originally applied for minimizing the number
of nodes in Binary Decision Diagrams (BDDs) [5], frequently used in logic
synthesis applications and formal verification of logic circuits. Given all the
crossing numbers, it is easy to apply the sifting algorithm to minimize the
number of crossings. To get a first embedding the greedy assign method is
applied. Then the algorithm chooses one net and moves it in the lowest track
by repeatedly swapping it with its neighbor. Next, it is moved up to the topmost
track. Finally, it is moved to its locally optimal position. Then the algorithm
proceeds with the next net until every net has been touched. It is easy to see
that swapping a net with its neighbor is a local operation and that the number
of crossings after the operation is

Crossings = Crossingsbefore − cij + cji.

In this case, sifting one net takes O(n) time, and sifting all nets summarizes to
O(n2) time.
The algorithm can be improved by an intelligent strategy to select the next
node to be sifted. In the field of circuit visualization it seems to make sense
to sift nets which are connected to many nodes before the nets which are only
connected to a few nodes. It is also possible to use a randomly selected net. To
obtain high quality results the algorithm repeats the sifting procedure for all
nodes until it has reached a local optimum.
There are two well known methods to speed up the implementation:

• Moving the net first to the top most or the deepest track, which ever one
requires the fewest swappings. This idea was first introduced by [24].

• Using upper and lower bounds to prune the search space, as introduced
in [9].

Pseudo code for the algorithm is given below:
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cmsifting(crossing matrix cm, hyperedges nets){
crossings = compute crossings of start permut.
for i=1 to #nets{

pos = actual track of net i
for j = pos-1 down to 1 {

k = net in track j
swap net in track j with net in track j+1
crossings = crossings − cik + cki

}
best = crossings
for j = 1 to #nets-1{

k = net in track j+1
swap net in track j with net in track j+1
crossings = crossings − cki + cik

if(crossings < best){
best = crossings
bestpos = j+1

}
}
for j = #nets-1 down to bestpos {

swap net in track j with net in track j+1
}
crossings = best

}
return best

}

4.3 Reordering

Now we describe how the algorithms from the placement and routing phase are
combined to further reduce the number of hyperedge crossings with respect to
the hypergraph structure. Since finding exact solutions for both steps together
implies to traverse a huge search space, two fast heuristic methods are used by
turns to compute the final solution.

The new approach extends the well known greedy switch heuristic method
for graphs to the hypergraph structure. It reorders iteratively two nodes in one
layer and computes the orthogonal embedding of the hyperedges until a local
optimum is reached. This new approach combines the placement and routing
process with respect to the hypergraph structure in contrast to many known
heuristic methods. The algorithm then repeats the reordering procedure until
a local optimum is reached. The experimental results show that the runtime
for all instances which easily fit on one screen are short which is crucial for an
interactive circuit visualization tool.
Pseudo code for the reordering procedure is given below:
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reordering(hypergraph hg) {
for each layer {

for each node in actual layer {
before = compute crossings using sifting
swap actual node with its right neighbor
after = compute crossings using sifting
if (before ≤ after) {

swap actual node with its right
neighbor

}
}

}
}

Figure 8 shows the result after the crossing minimization step and the or-
thogonal embedding of the example circuit in Figure 1.

Figure 8: The graph after the crossing minimization step using the reordering
and the orthogonal embedding of the circuit.

5 Experimental results

The algorithm has been implemented in C. All experimental results are based
on examples which were taken from the sequential benchmark circuits in [4, 23].
The experiments were carried out on a 2 GHz personal computer with 1 GB
main memory running linux OS. All running times are given in CPU seconds.

We utilized the barycenter heuristic method [28] combined with the greedy
switch method to obtain a fast embedding of the nodes. Like observed in [19, 15],
the barycenter method combined with the greedy switch heuristic computes
high quality results in a short period of time compared to many other well
known methods. The algorithm then applies the sifting procedure to assign
each hyperedge to one track in the corresponding channel. This is done to get
the orthogonal layout of each channel with respect to the number of crossings.
Then the reordering algorithm improves the result by switching nodes within the
same level and recomputing a orthogonal embedding, if the number of hyperedge
crossings does not increase.
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In Table 1 the results are summarized. In the second column we present
the number of straight line crossings for each graph using the barycenter imple-
mentation combined with the greedy switch methods. In the third column the
number of hyperedge crossings using sifting are given. The final result in terms
of hyperedge crossings after applying the sifting and reordering procedure can
be found in the fourth column. Compared to an assignment of the hyperedges
over the tracks without using the reordering heuristic method the new method
reduced the number of crossings by 25 percent on average. The running times of
the algorithm on each circuit are shown in the last column. This demonstrates
that in the VLSI CAD scenario, using the sifting heuristic together with the
reordering method to compute the final orthogonal embedding is very effective.

Table 1: Benchmark results
edge crossings h-edge crossings

circuit strl sifting siftplace time/s

add6 170 136 105 0.44
alu1 116 89 55 0.02
alu2 415 352 249 0.39
alu3 572 465 345 0.62
adr4 147 102 75 0.06
co14 74 65 54 0.09
dk17 367 274 203 0.2
dk27 77 64 38 0.03
dk48 427 378 305 0.39
mish 60 60 49 2.7
radd 59 48 38 0.03
rd53 253 172 141 0.04
s208 291 284 175 1.05
s298 904 550 434 2.16
s382 745 468 367 2.21
s386 1793 1254 853 1.89
s400 838 562 427 2.45
vg2 184 154 126 0.55
x1dn 195 175 136 0.76
x9dn 228 210 156 0.76
z4 117 91 60 0.07
Z9sym 3901 2320 1788 16∑

11933 8273 6179 32.91

In Table 2 it is shown that fewer edge crossings in the graph embedding
lead in almost all cases to less crossings in the orthogonal drawing if only the
sifting algorithm is applied. To obtain less crossings in the graph model we
postprocessed the results computed with the averaging heuristic method with
the windows optimization procedure [15]. The results are provided in the second
and the third column, respectively. The windows optimization method uses a
local optimization technique where subsets of nodes and edges are processed
exactly. In contrast to most other heuristic methods more than two layers are
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Table 2: Benchmark results
edge crossings h-edge crossings time/s

circuit strl winopt sifting splace winopt splace

add6 170 156 144 112 15 0.32
alu1 116 108 88 60 3 0.02
alu2 415 391 323 243 26 0.6
alu3 572 487 391 331 22 0.43
adr4 147 141 101 74 5 0.1
co14 74 69 65 52 6 0.13
dk17 367 308 249 188 17 0.22
dk27 77 71 57 45 2 0.02
dk48 427 397 341 290 32 0.29
mish 60 60 60 49 5 2.7
radd 59 52 43 37 2 0.04
rd53 253 218 152 126 14 0.09
s208 291 269 266 162 36 1.82
s298 904 854 515 428 27 2.38
s382 745 651 425 357 65 2.31
s386 1793 1636 1122 904 102 2.27
s400 838 725 512 400 59 3.63
vg2 184 168 151 131 9 0.58
x1dn 195 173 153 134 21 0.32
x9dn 228 206 185 158 12 0.27
z4 117 101 87 66 9 0.05
Z9sym 3901 3528 2160 1802 188 10.8∑

11933 10769 7590 6149 677 29.3

considered simultaneously. It turned out that using the windows optimization
technique reduces the number of hyperedge crossings in the final orthogonal
representation on average by eight percent. However, using the sifting and
reordering heuristic method together with windows optimization instead of only
sifting and reordering does not lead to significant improvements in terms of
hyperedge crossings. This is because the final result does not depend as much
on the given ordering of the nodes since the reordering heuristic improves the
ordering of the nodes during the crossing minimization. In the fourth and in the
fifth column the number of hyperedge crossings after applying the sifting and the
sifting combined with the reordering algorithm can be found. The runtime for
the windows optimization technique is given in the sixth column. The runtime
for the sifting combined with the reordering algorithm are published in the last
column. In the last rows of Table 1 and Table 2 we give the total number of
crossings for each column.
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6 Conclusions

We considered new methods that improve the visual clarity of circuit schematics.
Between two consecutive layers any hyperedge is assigned to only one track and
then the resulting number of hyperedge crossings is considered as optimization
criterion.

At first, a polynomial transformation from the feedback arc set problem
into the hypergraph crossing reduction problem to prove that the problem is
NP-complete is provided.

Then the placement and the routing phase are merged by using two fast
heuristic methods iteratively. Experiments have shown that the algorithm re-
duces the number of hyperedge crossings significantly compared to a layout
method which does not reorder the nodes dynamically within a layer. Negli-
gible runtime of our algorithm allows the visualization of large circuits in an
interactive way.
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