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Abstract

Dense subgraphs of sparse graphs (communities), which appear in
most real-world complex networks, play an important role in many con-
texts. Computing them however is generally expensive. We propose here
a measure of similarity between vertices based on random walks which has
several important advantages: it captures well the community structure
in a network, it can be computed efficiently, and it can be used in an ag-
glomerative algorithm to compute efficiently the community structure of
a network. We propose such an algorithm, called Walktrap, which runs in
time O(mn

2) and space O(n2) in the worst case, and in time O(n2 log n)
and space O(n2) in most real-world cases (n and m are respectively the
number of vertices and edges in the input graph). Extensive comparison
tests show that our algorithm surpasses previously proposed ones concern-
ing the quality of the obtained community structures and that it stands
among the best ones concerning the running time.
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1 Introduction

Recent advances have brought out the importance of complex networks in many
different domains such as sociology (acquaintance networks, collaboration net-
works), biology (metabolic networks, gene networks) or computer science (in-
ternet topology, web graph, p2p networks). We refer the reader to [7, 50, 47, 1,
37, 15] for reviews from different perspectives and for an extensive bibliography.
The associated graphs are in general globally sparse but locally dense: there
exist groups of vertices, called communities, highly interconnected but with
few links to other vertices. This kind of structure brings out much information
about the network. For example, in a metabolic network the communities corre-
spond to biological functions of the cell [43]. In the web graph the communities
correspond to topics of interest [34, 20].

This notion of community is however difficult to define formally. Many def-
initions have been proposed in social networks studies [50], but they are too
restrictive or cannot be computed efficiently. However, most recent approaches
have reached a consensus, and consider that a partition P = {C1, . . . , Ck} of the
vertices of a graph G = (V,E) (∀i, Ci ⊆ V ) represents a good community struc-
ture if the proportion of edges inside the Ci (internal edges) is high compared to
the proportion of edges between them (see for example the definitions given in
[8]). Therefore, we will design an algorithm which finds communities satisfying
this criterion. More precisley, we will evaluate the quality of a partition into
communities using a quantity (known as modularity [38, 39]) which captures
this.

We will consider throughout this paper an undirected graph G = (V,E) with
n = |V | vertices and m = |E| edges. To take into account the self similarity
of vertices, we impose that each vertex is linked to itself by a loop (this also
guarantees that the graph is aperiodic, useful for Property 1). We also suppose
that G is connected, the case where it is not being treated by considering the
components as different graphs.

1.1 Our approach and results

Our approach is based on the following intuition: random walks on a graph tend
to get “trapped” into densely connected parts corresponding to communities.
We therefore begin with some properties of random walks on graphs. Using
them, we define a measurement of the structural similarity between vertices
and between communities, thus defining a distance. We relate this distance to
existing spectral approaches of the problem. But our distance has an important
advantage on these methods: it is efficiently computable, and can be used in a
hierarchical clustering algorithm (merging iteratively the vertices into commu-
nities). One obtains this way a hierarchical community structure that may be
represented as a tree called dendrogram (an example is provided in Figure 1). We
propose such an algorithm, called Walktrap, which computes a community struc-
ture in time O(mnH) where H is the height of the corresponding dendrogram.
The worst case is O(mn2). But most real-world complex networks are sparse
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(m = O(n)) and, as already noticed in [10], H is generally small and tends to
the most favorable case in which the dendrogram is balanced (H = O(log n)).
In this case, the complexity is therefore O(n2 log n). We finally evaluate the
performance of our algorithm with different experiments which show that it
surpasses previously proposed algorithms in most cases.

1.2 Related work

Many algorithms to find community structures in graphs appeared recently in
the context of complex network studies. However, this topic is closely related
to the classical problems of data clustering [30] and graph partitioning which
needs the number of partitions as parameter. The recent interest from the
complex system domain has started with a new divisive approach proposed by
Girvan and Newman [25, 39]: the edges with the largest betweenness (number of
shortest paths passing through an edge) are removed one by one in order to split
hierarchically the graph into communities. This algorithm runs in time O(m2n).
Similar algorithms were proposed by Radicchi et al [41] and by Fortunato et al
[21]. The first one uses a local quantity (the number of loops of a given length
containing an edge) to choose the edges to remove and runs in time O(m2).
The second one uses a more complex notion of information centrality that gives
better results but poor performances in O(m3n).

Hierarchical clustering is another classical approach introduced by sociolo-
gists for data analysis [3, 18]. From a measurement of the similarity between
vertices, an agglomerative algorithm groups iteratively the vertices into com-
munities (different methods exist, depending on the way of choosing the com-
munities to merge at each step). Several agglomerative methods have been
recently introduced and we will use it in our approach. Newman proposed in
[38] a greedy algorithm that starts with n communities corresponding to the
vertices: he uses heuristics that merge communities in order to optimize at each
step a function called modularity (which measures the quality of a partition,
see below). This algorithm runs in O(mn) and has recently been improved to
a complexity O(mH log n) (with our notations) [10]. The algorithm of Donetti
and Muñoz [13] also uses a hierarchical clustering method: they use the eigen-
vectors of the Laplacian matrix of the graph to measure the similarities be-
tween vertices. The complexity is determined by the computation of all the
eigenvectors, in O(n3) time for sparse matrices. Guimerà and Amaral [26] also
optimized the modularity by simulated annealing to find functional modules
in metabolic networks. Other interesting methods have been proposed, see for
instance [33, 51, 11, 44, 5, 9, 17].

Random walks themselves have already been used to infer structural prop-
erties of networks in some previous works. Gaume [22] used this notion in
linguistic context. Yen et al. [52] used the Euclidean commute time distance
based on the average first-passage time of walkers. Zhou and Lipowsky [54]
introduced another dissimilarity index based on the same quantity; it has been
used in a hierarchical algorithm (called Netwalk). Markov Cluster Algorithm [48]
iterates two matrix operations (one corresponding to random walks) bringing
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out clusters in the limit state. Unfortunately these three last approaches run
in O(n3) and cannot manage networks with more than a few thousand vertices.
Harel and Koren [27] also used the same idea of iteratively modify the weight
of the edges using random walks to separate clusters; each iteration is done in
O(mn). Then, the clusters are merged with an agglomerative clustering process.

Finally, the distance defined in Section 3.1 has been introduced indepen-
dently and during the same period of time by [36] in their geometric diffusion
framework. They called it diffusion distance and they proved the same spectral
identity (Theorem 1).

2 Preliminaries on random walks

The graph G is associated to its adjacency matrix A: Aij = 1 if vertices i

and j are connected and Aij = 0 otherwise. The degree d(i) =
∑

j Aij of
vertex i is the number of its neighbors (including itself). As we discussed in the
introduction, the graph is assumed to be connected. To simplify the notations,
we only consider unweighted graphs in this paper. It is however trivial to extend
our results to weighted graphs (Aij ∈ R

+ instead of Aij ∈ {0, 1}), which is an
advantage of this approach.

Let us consider a discrete random walk process (or diffusion process) on the
graph G (see [35, 4] for a complete presentation of the topic). At each time step
a walker is on a vertex and moves to a vertex chosen randomly and uniformly
among its neighbors. The sequence of visited vertices is a Markov chain, the
states of which are the vertices of the graph. At each step, the transition
probability from vertex i to vertex j is Pij =

Aij

d(i) . This defines the transition

matrix P of random walk processes. One can also write P = D−1A where D is
the diagonal matrix of the degrees (∀i,Dii = d(i) and Dij = 0 for i 6= j).

The process is driven by the powers of the matrix P : the probability of going
from i to j through a random walk of length t is (P t)ij . In the following, we
will denote this probability by P t

ij . It satisfies two well known properties of the
Markov chains which we will use in the sequel:

Property 1 (stationary distribution) When the length t of a random walk
starting at vertex i tends towards infinity, the probability of being on a vertex j

only depends on the degree of vertex j (and not on the starting vertex i):

∀i, lim
t→+∞

P t
ij =

d(j)∑
k d(k)

We will provide a proof of this property in the next section.

Property 2 (reversibility) The probabilities of going from i to j and from j

to i through a random walk of a fixed length t have a ratio that only depends on
the degrees d(i) and d(j):

∀i,∀j, d(i)P t
ij = d(j)P t

ji
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Proof: This property can be written as the matricial equation DP tD−1 =
(P t)T (where MT is the transpose of the matrix M). By using P = D−1A and
the symmetry of the matrices D and A, we have: DP tD−1 = D(D−1A)tD−1 =
(AD−1)t = (AT (D−1)T )t = ((D−1A)T )t = (P t)T . 2

Note that the first property is valid only on undirected, connected and ape-
riodic graphs (which we consider all along the paper). For directed ones, the
stationary distribution exists but it is no longer proportional to the vertex de-
grees. Likewise, the second property only stands for undirected graphs.

3 Comparing vertices using short random walks

3.1 A distance r to measure vertex similarities

In order to group the vertices into communities, we will now introduce a distance
r between the vertices that captures the community structure of the graph. This
distance must be large if the two vertices are in different communities, and on
the contrary if they are in the same community it must be small. It will be
computed from the information given by random walks in the graph.

Let us consider random walks on G of a given length t. We will use the infor-
mation given by all the probabilities P t

ij to go from i to j in t steps. The length
t of the random walks must be long enough to gather enough information about
the topology of the graph. However t must not be too long (compared to the
mixing time of the markov chain), to avoid reaching the stationary distribution
given by Property 1; the probabilities would only depend on the degree of the
vertices. Each probability P t

ij gives some information about the two vertices
i and j, but Property 2 says that P t

ij and P t
ji encode exactly the same infor-

mation. Finally, the information about vertex i encoded in P t resides in the n

probabilities (P t
ik)1≤k≤n, which is nothing but the ith row of the matrix P t. We

denote these probabilities by a column probability vector P t
i.. To compare two

vertices i and j using these data, we must notice that:

• If two vertices i and j are in the same community, the probability P t
ij will

surely be high. But the fact that P t
ij is high does not necessarily imply

that i and j are in the same community.

• The probability P t
ij is influenced by the degree d(j) because the walker

has higher probability to go to high degree vertices.

• Two vertices of a same community tend to “see” all the other vertices in
the same way. Thus if i and j are in the same community, we will probably
have ∀k, P t

ik ≃ P t
jk.

We can now give the definition of our distance between vertices, which takes
into account all previous remarks:
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Definition 1 Let i and j be two vertices in the graph and

rij =

√√√√
n∑

k=1

(P t
ik − P t

jk)2

d(k)
=

∥∥∥D− 1

2 P t
i. − D− 1

2 P t
j.

∥∥∥ (1)

where ‖.‖ is the Euclidean norm of R
n.

One can notice that this distance can also be seen as the L2 distance [4] between
the two probability distributions P t

i. and P t
j.. Notice also that the distance

depends on t and should be denoted by rij(t). We will however consider it as
implicit to simplify the notations.

Now we generalize our distance between vertices to a distance between com-
munities in a straightforward way. Let us consider random walks that start from
a community: the starting vertex is chosen randomly and uniformly among the
vertices of the community. We define the probability P t

Cj to go from community
C to vertex j in t steps:

P t
Cj =

1

|C|
∑

i∈C

P t
ij

This defines a column probability vector P t
C. that allows us to generalize our

distance:

Definition 2 Let C1, C2 ⊂ V be two communities. We define the distance
rC1C2

between these two communities by:

rC1C2
=

∥∥∥D− 1

2 P t
C1. − D− 1

2 P t
C2.

∥∥∥ =

√√√√
n∑

k=1

(P t
C1k − P t

C2k)2

d(k)

This definition is consistent with the previous one: rij = r{i}{j} and we can also
define the distance between a vertex i and a community C: riC = r{i}C . Notice
that this is still an Euclidean distance, which is crucial for Theorems 3 and 4
below.

3.2 Relation with spectral approaches

Theorem 1 The distance r is related to the spectral properties of the matrix P

by:

r2
ij =

n∑

α=2

λ2t
α (vα(i) − vα(j))2

where (λα)1≤α≤n and (vα)1≤α≤n are respectively the eigenvalues and right eigen-
vectors of the matrix P .

In order to prove this theorem, we need the following technical lemma:
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Lemma 1 The eigenvalues of the matrix P are real and satisfy:

1 = λ1 > λ2 ≥ . . . ≥ λn > −1

Moreover, there exists an orthonormal family of vectors (sα)1≤α≤n such that

each vector vα = D− 1

2 sα and uα = D
1

2 sα are respectively a right and a left
eigenvector1 associated to the eigenvalue λα:

∀α, Pvα = λαvα and PT uα = λαuα

∀α,∀β, vT
α uβ = δαβ

Proof: The matrix P has the same eigenvalues as its similar matrix S =
D

1

2 PD− 1

2 = D− 1

2 AD− 1

2 . The matrix S is real and symmetric, so its eigenvalues
λα are real. P is a stochastic matrix (

∑n
j=1 Pij = 1), so its largest eigenvalue is

λ1 = 1. The graph G is connected and primitive (the gcd of the cycle lengths
of G is 1, due to the loops on each vertex), therefore we can apply the Perron-
Frobenius theorem which implies that P has a unique dominant eigenvalue.
Therefore we have: |λα| < 1 for 2 ≤ α ≤ n.

The symmetry of S implies that there also exists an orthonornal family sα

of eigenvectors of S satisfying ∀α,∀β, sT
αsβ = δαβ (where δαβ = 1 if α = β and

0 otherwise). We then directly obtain that the vectors vα = D− 1

2 sα and uα =

D
1

2 sα are respectively a right and a left eigenvector of P satisfying uT
αvβ = δαβ .

2

We can now prove Theorem 1 and obtain Property 1 as a corrolary:

Proof: Lemma 1 makes it possible to write a spectral decomposition of the
matrix P :

P =

n∑

α=1

λαvαuT
α , and P t =

n∑

α=1

λt
αvαuT

α , and so P t
ij =

n∑

α=1

λt
αvα(i)uα(j)

When t tends towards infinity, all the terms α ≥ 2 vanish. It is easy to show that
the first right eigenvector v1 is constant. By normalizing we have ∀i, v1(i) =

1√
P

k d(k)
and ∀j, u1(j) = d(j)√

P

k d(k)
. We obtain Property 1:

lim
t→+∞

P t
ij = lim

t→+∞

n∑

α=1

λt
αvα(i)uα(j) = v1(i)u1(j) =

d(j)∑n
k=1 d(k)

Now we obtain the expression of the probability vector P t
i.:

P t
i. =

n∑

α=1

λt
αvα(i)uα = D

1

2

n∑

α=1

λt
αvα(i)sα

1These eigenvectors are not normalized.
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We put this formula into the second definition of rij given in Equation (1).
Then we use the Pythagorean theorem with the orthonormal family of vectors
(sα)1≤α≤n, and we remember that the vector v1 is constant to remove the case
α = 1 in the sum. Finally we have:

r2
ij =

∥∥∥∥
n∑

α=1

λt
α(vα(i) − vα(j))sα

∥∥∥∥
2

=

n∑

α=2

λ2t
α (vα(i) − vα(j))2

2

This theorem relates random walks on graphs to the many current works that
study community structure using spectral properties of graphs. For example,
[46] notices that the modular structure of a graph is expressed in the eigenvectors
of P (other than v1) that corresponds to the largest positive eigenvalues. If two
vertices i and j belong to a same community then the coordinates vα(i) and
vα(j) are similar in all these eigenvectors. Moreover, [45, 23] show in a more
general case that when an eigenvalue λα tends to 1, the coordinates of the
associated eigenvector vα are constant in the subsets of vertices that correspond
to communities. A distance similar to ours (but that cannot be computed

directly with random walks) is also introduced: d2
t (i, j) =

∑n
α=2

(vα(i)−vα(j))2

1−|λα|t .

Finally, [13] uses the same spectral approach applied to the Laplacian matrix
of the graph L = D − A.

All these studies show that the spectral approach takes an important part
in the search for community structure in graphs. However all these approaches
have the same drawback: the eigenvectors need to be explicitly computed (in
time O(n3) for a sparse matrix). This computation rapidly becomes untractable
in practice when the size of the graph exceeds some thousands of vertices. Our
approach is based on the same foundation but has the advantage of avoiding the
expensive computation of the eigenvectors: it only needs to compute the prob-
abilities P t

ij , which can be done efficiently as shown in the following subsection.

3.3 Computation of the distance r

Once the two vectors P t
i. and P t

j. are computed, the distance rij can be com-
puted in time O(n) using Equation (1). Notice that given the probability vectors
P t

C1.
and P t

C2.
, the distance rC1C2

is also computed in time O(n)
The probability vectors can be computed once and stored in memory (which

uses O(n2) memory space) or they can be dynamically computed (which in-
creases the time complexity) depending on the amount of available memory.
We propose an exact method and an approximated method to compute them.

Exact computation

Claim 1 Each probability vector P t
i. can be computed in time O(tm) and space

O(n).
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Proof: To compute the vector P t
i., we multiply t times the vector P 0

i. by
the matrix P (∀k, P 0

i.(k) = δik), each in time O(m). This direct method is
advantageous in our case because the matrix P is generally sparse (m = O(n)
for most of real-world complex networks). The initialization of P 0

i. is done in
O(n) and thus each of the n vectors P t

i. is computed in time O(n+tm) = O(tm).
2

Approximate computation

Claim 2 Each probability vector P t
i. can be approximated in time O(Kt) and

space O(K) with an relative error O( 1√
K

).

Proof: We compute K random walks of length t starting from vertex i. Then
we approximate each probability P t

ik by Nik

K
where Nik is the number of walkers

that ended on vertex k during the K random walks. The Central Limit Theo-
rem implies that this quantity tends toward P t

ik with a speed O( 1√
K

) when K

tends toward infinity. Each random walk computation is done in time O(t) and
constant space hence the overall computation is done in time O(Kt) and space
O(K). 2

Note that the approximated method is interesting only for very large graphs.
Moreover, the low values of t actually used make the exact approach more
appropriate for us. In the following we will only consider the exact method for
both complexity and experimental evaluation.

3.4 Generalizing the distance

We saw that our distance is directly related to the spectral properties of the
transition matrix P . We show in this section how one can generalize easily and
efficiently this distance to use another weighting of the eigenvectors. To achieve
this, we only need to define different vectors P̂i., all the rest of the approach
follows.

Theorem 2 Let us consider the generalized distance r̂2
ij =

n∑

α=2

f2(λα)(vα(i) −

vα(j))2 where f(x) =

∞∑

k=0

ckxk is any function defined by a power series.

Then r̂ij =
∥∥∥D− 1

2 P̂i. − D− 1

2 P̂j.
∥∥∥, where P̂i. =

∑∞
k=0 ckP k

i., can be approxi-

mated in time O(rm) and space O(n) with relative error on each coordinate less

than εr =

∞∑

k=r+1

ck.

Proof: We have P̂i. =
∑∞

k=0 ckP k
i. = D

1

2

∑∞
k=0

∑n
α=1 ckλk

αvα(i)sα. Therefore:

r̂ij =
∥∥∥D− 1

2 P̂i. − D− 1

2 P̂j.

∥∥∥ =
∥∥∥

∞∑

k=0

n∑

α=2

ckλk
α(vα(i) − vα(j))sα

∥∥∥
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And we can conclude because the vectors sα are orthonormal:

n∑

α=2

∥∥∥
∞∑

k=0

ckλk
α(vα(i) − vα(j))sα

∥∥∥
2

=
n∑

α=2

f2(λα)(vα(i) − vα(j))2 = r̂2
ij

To compute the vectors, we approximate the series to the order r: P̂i. ≃∑r
k=0 ckP k

i.. We only need to compute the successive powers P̂ k
i. for 0 ≤ k ≤ r

which can be done in time O(rm) and space O(n). 2

To illustrate this generalization, we show that it directly allows considering
continuous random walks. Indeed, the choice of the length of the random walks
(which must be an integer) may be restrictive in some cases. To overcome
this constraint, one may consider the continuous random walk process: during
a period dt the walker will go from i to j with probability Pijdt. One can
prove that the probabilities to go from i to j after a time t are given by the
matrix et(P−Id). For a given period length t, the associated distance is now
r̂2
ij =

∑n
α=2 e2t(λα−1)(vα(i) − vα(j))2 which corresponds to a function f(x) =

et(x−1) =
∑∞

k=0 ckxk with ck = tke−t

k! .

4 The algorithm

In the previous section, we have proposed a distance between vertices (and
between sets of vertices) to capture structural similarities between them. The
problem of finding communities is now a clustering problem. We will use here
an efficient hierarchical clustering algorithm that allows us to find community
structures at different scales. We present an agglomerative approach based on
Ward’s method [49] that is well suited to our distance and gives very good
results while reducing the number of distance computations.

We start from a partition P1 = {{v}, v ∈ V } of the graph into n communities
reduced to a single vertex. We first compute the distances between all adjacent
vertices. Then this partition evolves by repeating the following operations. At
each step k:

• choose two communities C1 and C2 in Pk according to a criterion based
on the distance between the communities that we detail later,

• merge these two communities into a new community C3 = C1 ∪ C2 and
create the new partition: Pk+1 = (Pk \ {C1, C2}) ∪ {C3}, and

• update the distances between communities (we will see later that we ac-
tually only do this for adjacent communities).

After n − 1 steps, the algorithm finishes and we obtain Pn = {V }. Each step
defines a partition Pk of the graph into communities, which gives a hierarchical
structure of communities called dendrogram (see Figure 1(b)). This structure
is a tree in which the leaves correspond to the vertices and each internal node
is associated to a merging of communities in the algorithm: it corresponds to
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a community composed of the union of the communities corresponding to its
children.

The key points in this algorithm are the way we choose the communities to
merge, and the fact that the distances can be updated efficiently. We will also
need to evaluate the quality of a partition in order to choose one of the Pk as
the result of our algorithm. We will detail these points below, and explain how
they can be managed to give an efficient algorithm.

4.1 Choosing the communities to merge

This choice plays a central role for the quality of the obtained community struc-
ture. In order to reduce the complexity, we will only merge adjacent communi-
ties (having at least an edge between them). This reasonable heuristic (already
used in [38] and [13]) limits to m the number of possible mergings at each stage.
Moreover it ensures that each community is connected.

We choose the two communities to merge according to Ward’s method. At
each step k, we merge the two communities that minimize the mean σk of the
squared distances between each vertex and its community.

σk =
1

n

∑

C∈Pk

∑

i∈C

r2
iC

This approach is a greedy algorithm that tries to solve the problem of minimizing
σk for each k. This problem is known to be NP-hard: even for a given k,
minimizing σk is the NP-hard “K-Median clustering problem” [19, 16] for K =
(n−k) clusters. The existing approximation algorithms [19, 16] are exponential
with the number of clusters to find and unsuitable for our purpose. So for each
pair of adjacent communities {C1, C2}, we compute the variation ∆σ(C1, C2)
of σ that would be induced if we merge C1 and C2 into a new community
C3 = C1 ∪ C2. This quantity only depends on the vertices of C1 and C2, and
not on the other communities or on the step k of the algorithm:

∆σ(C1, C2) =
1

n

( ∑

i∈C3

r2
iC3

−
∑

i∈C1

r2
iC1

−
∑

i∈C2

r2
iC2

)
(2)

Finally, we merge the two communities that give the lowest value of ∆σ.

4.2 Computing ∆σ and updating the distances

The important point here is to notice that these quantities can be efficiently
computed thanks to the fact that our distance is a Euclidean distance, which
makes it possible to obtain the two following classical results:

Theorem 3 [31] The increase of σ after the merging of two communities C1

and C2 is directly related to the distance rC1C2
by:

∆σ(C1, C2) =
1

n

|C1||C2|
|C1| + |C2|

r2
C1C2
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Proof: First notice that
∑

i∈C1
(P t

C1.
− P t

i.) = 0 and (|C1| + |C2|)P t
C3.

=
|C1|P t

C1.
+ |C2|P t

C2.
. Then we consider the distance r as a metric in R

n (that
contains the probability vectors PC.) associated to an inner product < .|. >.
Finally, after some elementary computations, we obtain :

∑

i∈C1

r2
iC3

=
∑

i∈C1

< P t
C3.

− P t
i.|P t

C3.
− P t

i. >=
∑

i∈C1

r2
iC1

+
|C1||C2|2

(|C1| + |C2|)2
r2
C1C2

This also holds if we replace C1 by C2 and C2 by C1. Therefore:

∑

i∈C3

r2
iC3

=
∑

i∈C1

r2
iC3

+
∑

i∈C2

r2
iC3

=
∑

i∈C1

r2
iC1

+
∑

i∈C2

r2
iC2

+
|C1||C2|

|C1| + |C2|
r2
C1C2

We deduce the claim by replacing this expression into Equation (2). 2

This theorem shows that we only need to update the distances between
communities to get the values of ∆σ: if we know the two vectors PC1.

and
PC2.

, the computation of ∆σ(C1, C2) is possible in O(n). Moreover, the next
theorem shows that if we already know the three values ∆σ(C1, C2), ∆σ(C1, C)
and ∆σ(C2, C), then we can compute ∆σ(C1 ∪ C2, C) in constant time.

Theorem 4 (Lance-Williams-Jambu formula [31]) If C1 and C2 are merged
into C3 = C1 ∪ C2 then for any other community C:

∆σ(C3, C) =
(|C1| + |C|)∆σ(C1, C) + (|C2| + |C|)∆σ(C2, C) − |C|∆σ(C1, C2)

|C1| + |C2| + |C|
(3)

Proof: We replace the four ∆σ of Equation (3) by their values given by The-

orem 3. We multiply each side by n(|C1|+|C2|+|C|)
|C| and use |C3| = |C1| + |C2|,

and obtain the equivalent equation:

(|C1| + |C2|)r2
C3C = |C1|r2

C1C + |C2|r2
C2C − |C1||C2|

|C1| + |C2|
r2
C1C2

Then we use the fact that P t
C3.

is the barycenter of P t
C1.

weighted by |C1| and
of P t

C2.
weighted by |C2|, therefore:

|C1|r2
C1C + |C2|r2

C2C = (|C1| + |C2|)r2
C3C + |C1|r2

C1C3
+ |C2|r2

C2C3

We conclude using |C1|r2
C1C3

+ |C2|r2
C2C3

= |C1||C2|
|C1|+|C2|r

2
C1C2

. 2

Since we only merge adjacent communities, we only need to update the values
of ∆σ between adjacent communities (there are at most m values). These values
are stored in a balanced tree in which we can add, remove or get the minimum
in O(log m). Each computation of a value of ∆σ can be done in time O(n) with
Theorem 3 or in constant time when Theorem 4 can be applied.
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Figure 1: (a) An example of community structure found by our algorithm using
random walks of length t = 3. (b) The stages of the algorithm encoded as a
tree called dendrogram. The maximum of ηk and Q, plotted in (c), show that
the best partition consists in two communities. The maximal values of ηk show
also that communities of different scales may be relevant.

4.3 Evaluating the quality of a partition

The algorithm induces a sequence (Pk)1≤k≤n of partitions into communities. We
now want to know which partitions in this sequence capture well the community
structure. We will use the modularity Q, a quality function widely used in recent
community detection approches [10, 11, 13, 14, 17, 21, 25, 26, 38, 39]. This
criterion has been introduced in [38, 39] and it relies on the fraction of edges eC

inside community C and the fraction of edges2 aC bound to community C:

Q(P) =
∑

C∈P
eC − a2

C

The best partition(s) is (are) then considered to be the one(s) that maximize(s)
Q.

However, depending on one’s objectives, one may consider other quality
criterion of a partition into communities. For instance, the modularity is not
well suited to find communities at different scales. Here we provide another
criterion that helps in finding such structures. When we merge two very different

2inter-community edges contribute for 1

2
to each community.
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communities (with respect to the distance r), the value ∆σk = σk+1−σk at this
step is large. Conversely, if ∆σk is large then the communities at step k− 1 are
surely relevant. To detect this, we introduce the increase ratio ηk:

ηk =
∆σk

∆σk−1
=

σk+1 − σk

σk − σk−1

One may then consider that the relevant partitions Pk are those associated with
the largest values of ηk. Depending on the context in which our algorithm is
used, one may take only the best partition (the one for which ηk is maximal) or
choose among the best ones using another criterion (like the size of the commu-
nities, for instance). This is an important advantage of our method, which helps
in finding the different scales in the community structure. However we used the
modularity (which produces better results to find an unique partition and is not
specific to our algorithm) in our experimental tests to be able to compare our
algorithm with the previously proposed ones.

4.4 Complexity

First, the initialization of the probability vectors is done in O(mnt). Then, at
each step k of the algorithm, we keep in memory the vectors P t

C. corresponding
to the current communities (the ones in the current partition). But for the
communities that are not in Pk (because they have been merged with another
community before) we only keep the information saying in which community it
has been merged. We keep enough information to construct the dendogram and
have access to the composition of any community with a few more computation.
When we merge two communities C1 and C2 we perform the following opera-
tions:

• Compute P t
(C1∪C2).

=
|C1|P t

C1.
+|C2|P t

C2.

|C1|+|C2| and remove P t
C1.

and P t
C2.

.

• Update the values of ∆σ concerning C1 and C2 using Theorem 4 if possible,
or otherwise using Theorem 3.

The first operation can be done in O(n), and therefore does not play a significant
role in the overall complexity of the algorithm. The dominating factor in the
complexity of the algorithm is the number of distances r computed (each one
in O(n)). We prove an upper bound of this number that depends on the height
of the dendrogram. We denote by h(C) the height of a community C and by H

the height of the whole tree (H = h(V )).

Theorem 5 An upper bound of the number of distances computed by our algo-
rithm is 2mH. Therefore its global time complexity is O(mn(H + t)).

Proof: Let M be the number of computations of ∆σ. M is equal to m (initial-
ization of the first ∆σ) plus the sum over all steps k of the number of neighbors
of the new community created at step k (when we merge two communities, we
need to update one value of ∆σ per neighbor). For each height 1 ≤ h ≤ H, the



P. Pons et al., Communities in Large Networks, JGAA, 10(2) 191–218 (2006)205

communities with the same height h are pairwise disjoint, and the sum of their
number of neighbor communities is less than 2m (each edge can at most define
two neighborhood relations). The sum over all heights finally gives M ≤ 2Hm.
Each of these M computations needs at most one computation of r in time
O(n) (Theorem 3). Therefore, with the initialization, the global complexity is
O(mn(H + t)). 2

Method Number of distances computed

Upper bounds
2m(n − 1) 282 000 000

2mH 2 970 000

Practical tests
without theorem 4 321 000

with theorem 4 277 000
with additional heuristics 103 000

Table 1: Number of distances computed according to upper bounds and practi-
cal tests.

In practice, a small t must be chosen (we must have t = O(log n) due to
the exponential convergence speed of the random walk process) and thus the
global complexity is O(mnH). We always empirically observed that best results
are obtained using length 3 ≤ t ≤ 8. We moreover observed that the choice of
t in this range is not crucial as the results are often similar. Hence we think
that a good empirical compromise is to choose t = 4 or t = 5. We also advise
to reduce this length for very dense graphs and to increase it for very sparse
ones because the convergence speed of the random walk process increases with
the graph density. Studying more formally the influence of t, and determining
optimal values, remains to be done.

The worst case is H = n − 1, which occurs when the vertices are merged
one by one to a large community. This happens in the “star” graph, where
a central vertex is linked to the n − 1 others. However Ward’s algorithm is
known to produce small communities of similar sizes. This tends to get closer
to the favorable case in which the community structure is a balanced tree and
its height is H = O(log n).

However, this upper bound is not reached in practical cases. We evaluated
the actual number of distance computations done on graphs from the test set
presented in Section 5.1. We chose graphs with n = 3000 vertices, their mean
number of edges is m = 47 000 and the mean height of the computed dendro-
grams is H = 31.6. We compared the worst case upper bound 2(mn(n − 1))
and the upper bound 2mnH with the actual number distances computed with
and without using Theorem 4.

We also considered an additional heuristics that consists in applying Theo-
rem 4 whenever we only know one of the two quantities ∆σ(C1, C) or ∆σ(C2, C).
In this case we assume that the other one is greater than the current minimal
∆σ and we obtain a lower bound for ∆σ(C1∪C2, C). Later, if this lower bound
becomes the minimal ∆σ then we compute the exact distance in O(n). Other-
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wise if the community C3 = C1 ∪ C2 is merged using another community than
C the exact computation is avoided. This heuristics can induce inexact merging
ordering when the other unknown ∆σ is not greater than the current minimal
∆σ, we observed in this test that this happened on 0.05% of the cases.

The results, transcribed in Table 1, show that in practical cases, the ac-
tual complexity of our approach is significantly lower than the upper bound we
proved. However, this upper bound can be reached in the pathological case of
the star graph.

5 Experimental evaluation of the algorithm

In this section we will evaluate and compare the performances of our algorithm
with most previously proposed methods. Some attempts have already be done
to compare the different methods [12], but they remain limited to some special
cases and to rather small graphs. Our comparison has been done in both ran-
domly generated graphs with communities and real world networks. In order
to obtain rigorous and precise results, all the programs have been extensively
tested on the same large set of graphs.
The test compares the following community detection programs:

• this paper (Walktrap) with random walk length t = 5 (WT 5) and t = 2
(WT 2),

• the Girvan Newman algorithm (GN) [25, 39] (a divisive algorithm that
removes larger betweeness edges),

• the Fast algorithm (FM) that optimizes the modularity proposed by New-
man and improved in [10] (a greedy heuristic designed for very large
graphs),

• the approach of Donetti and Muñoz (DM) [13] and its new improved
version using the Laplacian matrix (DML) [14] (a spectral approach with
a hierarchical algorithm),

• the Netwalk algorithm (NW) [54] (another algorithm based on random
walks),

• the Markov Cluster Algorithm (MCL) [48] (an algorithm based on simu-
lation of (stochastic) flow in graphs),

• the Duch Arenas algorithm (DA) [17] (a method based on an extremal
optimization of the modularity),

• and the Cosmoweb algorithm (CW) [6] (a gravitational approach designed
for web clustering).

We refer the reader to Section 1.2 and to the cited references for more details
on these algorithms.
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5.1 Comparison on generated graphs
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Figure 2: Quality and time performance of different approaches in function of
the size of the graphs (N). (Left) Mean quality of the partition found (R′).
Right: Mean execution time (in seconds).

Evaluating a community detection algorithm is a difficult task because one
needs some test graphs whose community structure is already known. A classical
approach is to use randomly generated graphs with communities. Here we will
use this approach and generate the graphs as follows.

The parameters we consider are:

• the number k of communities and their sizes |Ci| (these parameters give
the number of vertices N),

• the internal degree din(Ci) of each community,

• and the wanted modularity Q.

In order to reduce the number of parameters, we consider that the external
degrees are proportional to the internal degrees: ∀i, dout(Ci) = β × din(Ci).
One can check that the expected modularity is then:

Qe =
1

1 + β
−

∑
i(din(Ci) × |Ci|)2

(
∑

i din(Ci) × |Ci|)2
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We therefore obtain the wanted modularity by choosing the appropriate value
for β.

Once these parameters have been chosen, we draw each internal edge of a
given community with the same probability, producing communities according
to the Gilbert’s random graph model3 [24]. Then the external degrees are chosen
proportionally to the internal degrees (with a factor β) and the vertices are
randomly linked with respect to some constraints (no loop, no multiple edge).

To evaluate the quality of the partition found by the algorithms, we compare
them to the original generated partition. To achieve this, we use the Rand
index corrected by Hubert and Arabie [42, 29] which evaluates the similarities
between two partitions. The Rand index R(P1,P2) is the ratio of pairs of
vertices correlated by the partitions P1 and P2 (two vertices are correlated by
the partitions P1 and P2 if they are classified in the same community or in
different communities in the two partitions). The expected value of R for a
random partition is not zero. To avoid this, Hubert and Arabie proposed a
corrected index that is also more sensitive : R′ =

R−Rexp

Rmax−Rexp
where Rexp is the

expected value of R for two random partitions with the same community size
as P1 and P2. This quantity can be efficiently computed using the following
equivalent formula:

R′(P1,P2) =

N2
∑

i,j

|C1
i ∩ C2

j |2 −
∑

i

|C1
i |2

∑

j

|C2
j |2

1
2N2




∑

i

|C1
i |2 +

∑

j

|C2
j |2



 −
∑

i

|C1
i |2

∑

j

|C2
j |2

Where (Cx
i )1≤i≤kx

are the communities of the partition Px and N is the total
number of vertices.

This quantity has many advantages compared to the “ratio of vertices cor-
rectly identified” that has been widely used in the past. It captures the similar-
ities between partitions even if they do not have the same number of commu-
nities, which is crucial here as we will see below. Moreover, a random partition
always gives the same expected value 0 that does not depend on the number of
communities.

We also compared the partitions using the modularity. However, the results
and the conclusions were very similar to those obtained with R′. In order to
reduce the size of this section and to avoid duplicated information, we only
plotted the results obtained with the corrected Rand index R′.

Homogeneous graphs Let us start with the simplest case where all the
communities are similar (same size and same density). Therefore we only have
to choose the size N of the graphs, the number k of communities, the internal
degree din of communities and the wanted modularity Q. The internal edges are
drawn with the same probability, producing a Poisson degree distribution. We
generated graphs corresponding to combinations of the following parameters:

3This model is similar to the Erdős-Renyi one, in which the number of edges is fixed.
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Figure 3: Quality of the partition found in function of the modularity of the
generated partition for different sizes N (same legend as Figure 2).

• sizes N in {100, 300, 1 000, 3 000, 10 000, 30 000, 100 000},

• number of communities, k = Nγ with γ in {0.3, 0.42, 0.5},

• internal degree, din(Ci) = α ln(|Ci|) with α in {2, 4, 6, 8, 10},

• wanted modularity Q in {0.2, 0.3, 0.4, 0.5, 0.6}.

The first comparison of the quality and time performances is plotted on Fig-
ure 2. For each graph size, we plotted the mean corrected Rand index (R′) and
the mean running time. To avoid that some approaches can be advantaged (or
disadvantaged) by particular parameters, the mean has been computed over all
the possible combinations of the parameters listed above. This first comparison
shows that our algorithm has the advantage of being efficient regarding both
the quality of the results and the speed, while other algorithms only achieve one
of these goals. It can handle very large graphs with up to 300 000 vertices (this
limitation is due to its memory requirements). Larger graphs can be processed
(without the same quality of results) with the Fast Modularity algorithm that
has been able to process a 2 million vertex graph.

We also plotted R′ on Figure 3 to observe the influence of the modularity of
the generated partition on the results. These first tests show that most previ-
ously proposed approaches have good performances on small graphs. But our
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approach is the only one that allows to process large graphs while producing
good results. Notice that the improved approach of Donetti and Muñoz also
produces very good results but requires more computational time. This im-
proved version [14] uses exactly the same eigen vectors as the ones we use in
our algorithm, which explains that the quality of the results are similar. The
MCL algorithm was difficult to use in this intensive test since the user must
choose a granularity parameter for each input graph, which is a limitation of
this algorithm. We manually chose one parameter for each size of graph (hence
the results are not optimal and it can explain their fluctuations), doing our best
to find a good one.
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Figure 4: Distribution of the size of the communities for three different numbers
of generated communities corresponding to 11, 30 or 55 communities on N =
3000 vertex graphs.

It is also interesting to compare the distribution of the size of the communi-
ties found to the size of the generated communities. We plotted these quantities
on Figure 4 for graphs with N = 3000 vertices. We generated graphs with three
different sizes of communities and the results can explain the limitations of some
approaches. It seems for instance that the Fast Modularity algorithm [10] pro-
duces communities that always have the same size independently of the actual
size of the communities. Likewise, Cosmoweb [6] produces too many very small
communities (1 to 4 vertices).
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Heterogeneous graphs The second set of graphs has different kind of com-
munities (different sizes and different densities). The sizes of the communities
are randomly chosen according to a power law and the internal densities of
each community are also randomly chosen. We therefore have the two following
additional parameters:

• the range of internal degree: din(Ci) is uniformly chosen in [αmin ln(|Ci|) :
αmax ln(|Ci|)] with (αmin, αmax) = (5, 7), (4, 8) and (3, 9), and

• the community size distribution is a power law of exponent α in 2.1, 2.5
and 3.4

To study the influence of the heterogeneity of the communities, we generated
graphs of size N = 3000 with all combinations of the previous parameters (mod-
ularity, number of communities) and of the two new ones. The three values of
the above parameters correspond to three levels of heterogeneity. Figure 5 shows
that our approach is not influenced by the heterogeneity of the communities,
whereas the others are.

5.2 Comparison on real world networks

To extend the comparison between algorithms, we also conducted experiments
on some real world networks. However judging the quality of the different
partition found is very difficult because we do not have a reference partition
that can be considered as the actual communities of the network. We only
compared the value of the modularity found by the different algorithms. The
results are reported in Table 2.

We used the following real world networks :

• The Zachary’s karate club network [53], a small social network that has
been widely used to test most of the community detection algorithms.

• The college football network from [25].

• The protein interaction network studied in [32].

• A scientists collaboration network computed on the arXiv database [56].

• An internet map provided by Damien Magoni [28].

• The web graph studied in [2].

We reduced the sizes of these networks by only keeping the largest connected
component and by iteratively removing all the one-degree vertices (which do not
provide significant information on community structures). This allowed us to
run the comparison tests with all the algorithms on smaller networks (Table 2
reports the size and the mean degree of the graphs after this processing).

4The community sizes are chosen within a range [Smin..Smax] and the probability that
a community has size S is actually proportional to (S + µ)α, with µ chosen such that the
expected size of the overall graph is equal to a given N .
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Figure 5: Influence of the heterogeneity of the graphs (for four sizes of graphs
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The Zachary’s karate club network has been split into four communities
by almost all approaches. The different partitions found are very similar and
represent divisions compatible with the two groups identified by Zachary himself.
Again, almost all the approaches found the same results on the football club
network. The partitions found correspond to the different conferences in which
teams meet more frequently. However, it is difficult to provide interpretations
for the other graphs because of their large size and the fact that the raw data
were often already anonymized.

However, some questions about the validity of comparing using the modu-
larity can be raised: we observe that partitions found by the different algorithm
have similar modularity values, but they are not correlated each other according
to the corrected Rand index. For example, the three algorithms WT, FM and
DA obtain very similar modularity (between 0.76 and 0.77) on the arXiv graph,
but their respective Rand indexes indicate that the obtained partitions are quite
different: its value is 0.33 for WT/FM, 0.25 for WT/DA and 0.18 for FH/DA.
This means that partitions can have similar (high) modularity values but rep-
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graph karate foot protein arxiv internet www

N/d 33/4.6 115/10.7 594/3.64 9377/5.14 67882/8.1 159683/12

WT 5 0.38/0 0.60/0 0.67/0.02 0.76/4.61 0.76/1030 0.91/5770

WT 2 0.38/0 0.60/0 0.64/0.01 0.71/1.08 0.69/273 0.84/468

FM 0.39/0 0.57/0 0.71/0 0.77/1.65 0.72/483 0.92/1410

DM 0.41/0 0.60/0 0.59/0.34 0.66/1460 – –

DML 0.41/0 0.60/0 0.60/1.37 0.62/1780 – –

CW -0.05/0 0.33/0 0.50/0.02 0.60/0.65 0.47/6.82 0.79/21

GN 0.40/0 0.60/0.39 0.70/6.93 >40000 – –

NW 0.40/0 0.60/0.07 0.60/5.2 >40000 – –

DA 0.41/0 0.60/0.05 0.69/1.9 0.77/14000 – –

MCL 0.36/0 0.60/0.05 0.66/0.58 0.73/61.3 – –

Table 2: Performances on real world networks (modularity / time (in seconds)).
The second line shows the size of the graphs given by their number of vertices
(N) and their mean degree (d).

resent very different community structures. One may wonder if different par-
titions may be considered as relevant community structures of a same network
(potentially due to overlapping communities), or if some irrelevant community
structures may have a high modularity. We think that this is an interesting
issue which should be considered carefully by the different community detection
approaches, especially those based on a direct modularity optimization process
[17, 26, 38].

6 Conclusion and further work

We proposed a new distance between vertices that quantify their structural
similarity using random walks. This distance has several advantages: it captures
much information on the community structure, and it can be used in an efficient
hierarchical agglomerative algorithm that detects communities in a network. We
designed such an algorithm which works in the worst case in time O(mn2). In
practice, real-world complex networks are sparse (m = O(n)) and the height
of the dendrogram is small (H = O(log n)); in this case the algorithm runs in
O(n2 log n). An implementation is provided at [55].

Extensive experiments show that our method provides good results in various
conditions (graph sizes, densities, and number of communities). We used such
experiments to compare our algorithms to the main previously proposed ones.
This direct comparison shows that our approach has a clear advantage in term of
quality of the computed partition and presents the best tradeoff between quality
and running time for large networks. It however has the limitation of needing
quite a large amount of memory, which makes the Fast Modularity approach a
relevant challenger of our method for very large graphs (million vertices).

Our method could be integrated in a multi-scale visualization tool for large
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networks, and it may be relevant for the computation of overlapping communi-
ties (which often occurs in real-world cases and on which very few has been done
until now [40]). We consider these two points as promising directions for further
work. Finally, we pointed out that the method is directly usable for weighted
networks. For directed ones (like the important case of the web graph), on the
contrary, the proofs we provided are not valid anymore, and random walks be-
have significantly differently. Therefore, we also consider the directed case as
an interesting direction for further research.
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