
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 11, no. 2, pp. 325–343 (2007)

Dynamic Spectral Layout with an Application

to Small Worlds

Ulrik Brandes Daniel Fleischer Thomas Puppe

Department of Computer & Information Science
University of Konstanz, Germany

{Ulrik.Brandes,Daniel.Fleischer,Thomas.Puppe}@uni-konstanz.de

Abstract

Spectral methods are naturally suited for dynamic graph layout be-

cause, usually, moderate changes of a graph yield moderate changes of

the layout. We discuss some general principles for dynamic graph lay-

out and derive a dynamic spectral layout approach for the animation of

small-world models.

Article Type Communicated by Submitted Revised

Regular paper P. Eades and P. Healy January 2006 January 2007

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 326

1 Introduction

The main problem in dynamic graph layout is the balance of layout quality and
mental-map preservation [17]. Typically, the problem is addressed by adapting a
static layout method such that it produces similar layouts for successive graphs.
While these adaptations are typically ad-hoc [8], others [2, 1] are based on the
formally derived method [3] of integrating difference metrics [5] into the static
method. See [4] for an overview of the dynamic graph drawing problem.

Spectral layout denotes the use of eigenvectors of graph-related matrices such
as adjacency or Laplacian matrix as coordinate vectors. See, e.g., [15] for an
introduction. We argue that spectral methods are naturally suited for dynamic
graph layout both from a theoretical and practical point of view. Usually,
moderate changes in the graph yield moderate changes of the layout, such that
updates of spectral layouts can be computed efficiently. This holds in particular
for small worlds (see Sect. 5), where the initial ring structure provides stability
of the layout, see Fig. 9.

This paper is organized as follows. In Sect. 2, we define some basic nota-
tion and recall principles of spectral graph layout. The dynamic graph layout
problem is reviewed briefly in Sect. 3, and methods for updates between layouts
of consecutive graphs are treated in more detail in Sect. 4. In Sect. 5, our ap-
proach for small worlds is introduced, and we conclude with a brief discussion
in Sect. 6.

2 Preliminaries

For ease of exposition we consider only two-dimensional straight-line represen-
tations of simple, undirected graphs G = (V,E) with positive edge weights
ω : E → R

+, although most techniques and results in this paper easily carry
over to other classes of graphs.

In straight-line representations, a two-dimensional layout is determined by
a vector

(

p(v)
)

v∈V
of positions p(v) =

(

x(v), y(v)
)

. Most of the time we will
reason about one-dimensional layouts x that represent the projection of p onto
one component.

For any graph-related matrix M(G), a (two-dimensional) spectral layout of G
is defined by two eigenvectors x and y of M(G). For simplicity, we will only
consider layouts derived from the Laplacian matrix L = L(G) of G, which is
defined by elements

Lv,w :=











∑

u∈V ω(u, v) if v = w ,

−ω(v, w) if v 6= w ,

0 otherwise.

The rows of L(G) add up to 0, thus, the vector 1 := (1, . . . , 1)T is a trivial
eigenvector for eigenvalue 0. Since L(G) is symmetric, all eigenvalues are real,
and the theorem of Gershgorin [13] yields that they are bounded into [0, g],

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 327

where g is two times the maximum (weighted) degree of G. Hence, the spectrum
can be written as 0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ g with corresponding unit
eigenvectors 1/

√
n = u1, . . . , un.

Based on the Laplacian, a spectral layout is defined as p = (u2, u3), where u2

and u3 are unit eigenvectors to the second and third smallest eigenvalues λ2, λ3

of the corresponding Laplacian matrix L. This has already been used for graph
drawing in 1970 by Hall [14].

For sparse graphs of moderate size, a practical method to determine the
corresponding eigenvectors is power iteration. For an initial vector x the matrix-
vector multiplication Lx/‖Lx‖ is iterated until it converges to a unit eigenvector
associated with the largest eigenvalue. Since we are not interested in un, we use
matrix L̂ = g · I − L, which has the same eigenvectors with the order of their
eigenvalues g = g − λ1 ≥ g − λ2 ≥ . . . ≥ g − λn reversed. To obtain u2 and u3,
respectively, x is orthogonalized with u1 (and in the case of u3 also with u2)
after each iteration step, i.e., the mean value

∑

v∈V x(v)/n is subtracted from
every element of x to ensure x⊥1. Spectral layouts of larger graphs can be
computed efficiently using multiscale methods [16].

3 Dynamic Layout

In our setting, a dynamic graph is a sequence G(0), G(1), . . . , G(tmax) of graphs
with, usually, small edit distance, i.e., G(t+1) is obtained from G(t) by adding,
changing, and deleting only a few vertices and edges.

There are two main scenarios for the animation of a dynamic graph, depend-
ing on whether the individual graphs are presented to the layout algorithm one
at a time, or the entire sequence is known in advance. Layout approaches for
the offline scenario (e.g., [7]) are frequently based on a layout of the union of all
graphs in the sequence. A variant are 2.5D representations in which all graphs
are shown at once (e.g., [9]). In the online scenario, the typical approach is to
consider only the previous layout (e.g., [8]). A variant in which provisions for
likely future changes are made is presented in [6].

We here focus on the online scenario. In fact, we even restrict our attention
to the elementary case of an update step between two consecutive layouts.

4 Updates

Assume we are given a sequence of layouts p0, p1, . . . , ptmax
for a dynamic graph

G(0), G(1) . . . , G(tmax). The step from pt to pt+1 is called the logical update,
whereas the actual animation of the transition is referred to as the physical
update.

While simple, say, linear interpolation of two layouts is most frequently used
in graph editors, more sophisticated techniques for morphing are available (see,
e.g., [11, 12, 10]). General morphing strategies do not take into account the
method by which origin and target layout are generated.

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 328

For dynamic spectral layout, at least two additional strategies are reasonable.

4.1 Iteration

We focus w.l.o.g. on the step from G(0) to G(1). If the target layout x1 is a
spectral layout, the power iteration for its own computation can and should be
initialized with x0, that will usually be close to the target layout. The power
iteration then produces intermediate layouts which can be used for the physical
update. A way to enhance the smoothness of morphing is needed because of
the observation, that the first steps of the iteration yield greater movement of
the vertices when compared to later steps. Let L̂ = g · I −L(G(1)). An iteration
step consists of computing the new layout L̂x/‖L̂x‖ from a given layout x⊥1.
Let g = λ1 ≥ λ2 ≥ . . . ≥ λn and 1/

√
n = u1, u2, . . . , un be the eigenvalues

and unit eigenvectors of L̂, respectively. Then if λ1 > λ2 > λ3 (otherwise just
proper eigenvectors and eigenvalues would have to be chosen in what follows)
and x =

∑n
j=2 αjuj , α2 6= 0 we have

L̂kx

‖L̂kx‖
−→ u2 and

∣

∣

∣

∣

∣

∣u2 −
L̂kx

‖L̂kx‖

∣

∣

∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣u2 −
∑n

j=2 λk
j αjuj

‖L̂kx‖

∣

∣

∣

∣

∣

∣

≤ 1 − λk
2α2

‖L̂kx‖
+

∑n
j=3 λk

j αj

‖L̂kx‖
= O

(

(λ3/λ2)
k
)

.

One way to handle this non-linear decay is to use layouts after appropriately
spaced numbers of steps, or to use layouts only if the difference to the last used
layout exceeds some threshold c in some metric, e.g., if ‖x−x′‖ > c. Both ways
will enhance the smoothness of morphing by avoiding the drawing of many small
movements at the end of the iteration process. Finally, the overall number of
iterations can always be used to choose between layout quality and mental-map
preservation, where a small number of iterations favors the latter case.

4.2 Interpolation

If both origin and target layout x0 and x1 are spectral layouts, intermediate
layouts can also be obtained by computing eigenvectors of some intermediate
matrices from L(G(0)) to L(G(1)). We interpolate linearly by

(t − 1)L(G(0)) + tL(G(1)), 0 ≤ t ≤ 1 .

Layouts are computed for a sequence of breakpoints (each corresponds to a frame
of the animation) 0 ≤ t1 < t2 < · · · < tk ≤ 1 (tj+1− tj constant, or proportional
to sin(πj/k), depending on what kind of morphing seems to be appropriate, the
latter one slowing down at the beginning and end). For every breakpoint tj the

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 329

iteration is initialized with the layout of tj−1, which allows fast convergence and
small movements between two succeeding breakpoints. Deletion and insertion
of vertices have to be handled in a different manner since the matrix dimension
changes. See Sect. 5 for details.

Figs. 6 and 8 show smooth animations of this method. Theoretical justifi-
cation for smoothness comes along with a theorem by Rellich [18] applied to
the finite dimensional case. Matrix (1 − t)L(G(0)) + tL(G(1)) can be seen as
a perturbed self-adjoint operator L(t) = L(G(0)) + t

(

L(G(1)) − L(G(0))
)

with
corresponding eigenvalues λj(t) and eigenvectors uj(t), that are holomorphic
with respect to t, i.e.,

L(t)uj(t) = λj(t)uj(t), (1)

where uj(0) are eigenvectors at time t = 0 and uj(1) can be permuted by a per-
mutation π, such that uπ(j)(1) are (ordered) eigenvectors at time t = 1. Note
that two eigenvectors may only have to be exchanged if their corresponding
eigenvalues intersect during the time from 0 to 1. And even then, the power
iteration exchanges these eigenvectors sufficiently smoothly for pleasing anima-
tions because the corresponding eigenvalues remain within the same range for
some time.

Consider λ2 and u2 of a small world with n vertices, where starting from a
circle, each vertex is connected to its 2k nearest neighbors, and p = 0, see Sect. 5
about the small world model. Both λ2(t) and u2(t) can locally be written as
power series

λ2(t) = µ0 + tµ1 + t2µ2 + · · · ,

u2(t) = w0 + tw1 + t2w2 + · · · . (2)

We call λ2(t) and u2(t) smooth functions if ‖wj‖ ≤ 1 and |µj | ≤ 8/
√

n for j > 0.
Clearly, this condition yields a smooth animation, say, within [0, 1/2]. Note
that the condition is very strict and not necessary for a smooth animation. In
fact, all animations when inserting an edge into a small world with arbitrary
parameters n, k and p = 0 can be called smooth since the inserted edge just
narrows the original circle. Nevertheless, this strict condition can be seen to
be preserved also for small p 6= 0 in practice, see Figs. 2 to 4, implying that
animations with these graphs are also smooth.

Theorem 1 The eigenvalue λ2(t) and the eigenvector u2(t) when inserting an
edge into a small world with

√
n ≤ k ≤ n/5 (and p = 0) are smooth functions.

Proof: We write L(t) = L + tP , where P is the insertion of an edge between
two non-adjacent vertices (with indices 1 and r), and denote by I the identity
matrix. From (1) and (2) we get

Lw0 = µ0w0 ,

(L − µ0I)wj =

j−1
∑

ℓ=0

µj−ℓwi − Pwj−1 , (j > 0) , (3)

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 330

Figure 1: The eigenvalues λi of a small world with n = 100, k = 10, p = 0

where we can recursively choose wj , (j > 0) such that wj⊥w0. Since the right
hand sides of (3) need to be orthogonal to w0 for j > 0, this yields

µj = 〈Pwj−1, w0〉 , (j > 0) .

A set of unit eigenvectors is, e.g.,

u1 = (1, . . . , 1)T/
√

n ,

uj = (n/2)−1/2
(

cos(⌊j/2⌋2πℓ/n + (−1)jπ/4)
)T

ℓ=1,...,n
, (j > 1) ,

and the corresponding eigenvalues are

λj = 2k − 2

k
∑

ℓ=1

cos(⌊j/2⌋2πℓ/n) .

Note that in this order these are not monotone, see Fig. 1. The multiplicity
of λ2 is 2, and the right hand sides of (3) are also orthogonal to u1, such that
1/(λ4 − λ2) is the least upper bound of the inverse mapping of L− µ0I applied
to the right hand side. Now we can recursively compute bounds for |µj |, ‖wj‖.

|µ1| = (w0,1 − w0,r)
2 ≤ 8/n ≤ 8/

√
n ,

‖w1‖ ≤
√

2|w0,1 − w0,r|
λ4 − λ2

≤ 4/
√

n

λ4 − λ2
=: q ,

|µj | ≤ Cj−1q
j−14/

√
n ,

‖wj‖ ≤ Cjq
j ,

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 331

where Cj stems from the convolution in (3) and is defined by C0 = 1 and

Cj+1 =
∑j

ℓ=0 CℓCj−ℓ for j ≥ 0. Since Lemma 1 states that Cj ≤ 4j , it remains
to be shown that q ≤ 1/4.

λ4 − λ2 ≥ k −
k

∑

ℓ=1

cos(4πℓ/n)

= (k + 1) − cos(2kπ/n) sin(2(k + 1)π/n)

sin(2π/n)

≥ (k + 1)
(1

2
(2kπ/n)2 − 1

24
(2kπ/n)4

)

≥ k3

2
(2π/n)2

(

1 − 1

12
(2π/5)2

)

.

Together with k ≥ √
n this yields q ≤ 1/4. 2

The bounds for k can be improved when we do not use the least upper bound
of the inverse mapping of L− µ0I, but we assume that the right hand sides are
independent random vectors and consider expected values. The lower bound
for k then becomes proportional to the cubic root of n. Anyhow, since during
the summation in (3) many vectors may cancel out, Theorem 1 is not tight. In
fact, as can be seen in Fig. 2, λ2(t) is a smooth function also in some range
outside these bounds.

Figs. 2 to 4 also show that the property of smooth functions carries over to
small worlds with p 6= 0 to some extent. While it still holds quite well for small
worlds up to p = 0.05, it is clearly no longer fulfilled for p = 0.4.

Lemma 1 Cj ≤ 4j for all j ≥ 0 .

Proof: The sequence Cj is well-known as Catalan numbers whose generating
function (1 −

√
1 − 4x)/2x delivers

Cj =
1

j + 1

(

2j

j

)

.

Now, C0 = 1 ≤ 40 and Cj+1/Cj = 4(j + 1/2)/(j + 2) < 4 proves the lemma. 2

5 Application to Small Worlds

Watts and Strogatz [19] introduced a random graph model that captures some
often-observed features of empirical graphs simultaneously: sparseness, local
clustering, and small average distances. This is achieved by starting from a cycle
and connecting each node with its 2k nearest neighbors for some small, fixed k.
The resulting graph is sparse and has a high clustering coefficient (average
density of vertex neighborhoods), but also high (linear) average distance.

The average distance drops quickly when only a few random edges are
rewired randomly. If each edge is rewired independently with some proba-
bility p, there is a large interval of p in which the average distance is already
logarithmic while the clustering coefficient is still reasonably high.

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 332

k = 4 k = 8

k = 16 k = 32

Figure 2: Maximum, minimum and average norm of the coefficients of u2(t) of
100 samples of a small world with n = 100, p = 0 and k = 4, 8, 16, 32

k = 4 k = 8

k = 16 k = 32

Figure 3: Maximum, minimum and average norm of the coefficients of u2(t) of
100 samples of a small world with n = 100, p = 0.05 and k = 4, 8, 16, 32

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 333

p = 0 p = .05

p = .1 p = .4

Figure 4: Maximum, minimum and average norm of the coefficients of u2(t) of
100 samples of a small world with n = 100, k = 16 and p = 0, .05, .1, .4

5.1 Dynamic Laplacian layout

Interestingly, spectral layouts highlight the construction underlying the above
model and thus point to the artificiality of generated graphs. This is due to
the fact that spectral layouts of regular structures display their symmetry very
well, and are, usually, only moderately disturbed by small perturbations in the
graph (mirroring the argument for their use in dynamic layout). The initial ring
structure of the small world in Fig. 9 is still apparent, even though a significant
number of chords have been introduced by random rewiring. In fact, the layout
conveys very well which parts of the ring were joined by short-cut edges.

Figs. 5 and 6 point out differences between the two approaches using interme-
diate layouts obtained from the power iteration and from matrix interpolation.
It can be seen that the power iteration first acts locally around the changes.
This stems from the fact that in the first multiplication only the neighborhood
of the change, i.e., the two incident vertices of an edge with changed weight
or the neighbors of a deleted or inserted vertex, are affected. The next step
also affects vertices at distance 2, and so on. Hence, the change spreads like
a wavefront. The matrix interpolation approach acts globally at every step.
Interpolating the Laplacian matrices corresponds to gradually changing edge
weights. The animation therefore is much more smooth.

Figs. 7 and 8 show differences between simple linear interpolation of the
positions and matrix interpolation. In Fig. 7 it can be seen that the symmetry
of the graph to its vertical axis is not preserved during the animation, whereas

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 334

Figure 5: Update by iteration (read left to right, top to bottom). Note the
spread of change along the graph structure

Figure 6: Update by interpolation. Layout anomalies are restricted to modified
part of graph

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 335

Figure 7: Update by simple linear interpolation. Intermediate layouts are less
symmetric

Figure 8: Interpolation updates maintain symmetry

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 336

in Fig. 8 each intermediate layout preserves this symmetry.
Figure 9 finally shows some snapshots of a small world evolving from the

initial ring structure. The layouts were obtained by using matrix interpolation
(one intermediate step per change shown). Note that deletion and insertion
of vertices requires some extra efforts, in particular, if the deletion of a vertex
disconnects the graph.

5.2 Deletion and insertion of vertices

Consider deletion of a single vertex v, that does not disconnect the graph.
Matrix L(G(1)) is then expanded by one row and column of zeros corresponding
to vertex v, such that L(G(0)) and L(G(1)) have the same dimension. This
derived matrix has a double eigenvalue 0. A new corresponding eigenvector is,
e.g., (0, . . . , 0, 1, 0, . . . , 0)T, where the 1 is at position corresponding to v. This
eigenvector will cause vertex v to drift away during power iteration, and thus
all other vertices stick together. This can be prevented by defining ℓv,v = g
in matrix L(G(1)), leading to a movement of v towards 0. But in practice, the
following method proved to be successful. After every matrix multiplication
reset the position of v to the barycenter of its neighbors. This either prevents a
drifting away or an absorbing to 0, which would otherwise be hard to manage.
Apart from using matrix (t − 1)L(G(0)) + tL(G(1)) for the power iteration,
orthogonalization and normalization also have to be adapted. For time t = 1
we only need x1⊥(1, . . . , 1, 0, 1, . . . , 1), instead of x1⊥1, and only the restriction
to the elements not corresponding to v have to be normalized. Both can be
done by linear interpolation of these operations.

Insertion of a vertex v is treated analogously. Expand matrix L(G(0)) by one
row and column of zeros as above. Orthogonalization and normalization again
have to be adapted.

5.3 Disconnected graphs

The deletion of a cut vertex (or a bridge) disconnects G(1) into p ≥ 2 compo-
nents G1, . . . , Gp. Each component is drawn separately by spectral methods
and afterwards, these layouts are merged to a layout for G(1). Basically, there
are three parameters for each component, that have to be determined after a
layout x1 for each Gj was computed. The first one is a suitable rotation angle ϕj

for each component. The second one determines the size of each component,
i.e., find a constant sj , that scales x1 to sjx1. The third one determines the
barycenter cj of each component.

The removal of a cut vertex (or a bridge) yields a matrix L(G(1)), that, after
rearranging, consists of p blocks L1, . . . , Lp, which are Laplacian matrices of
lower dimensions

L(G(1)) =











L1 0

L2

. . .

0 Lp











.

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 337

Each of the components is now drawn separately, simply by the common power
iteration of the whole matrix L(G(1)), where only normalization and orthogonal-
ization have to be modified appropriately. The barycenter cj of each component
thus is 0, but will be reset later. The goal of the rotation of a component is to
minimize the difference between its old and new layout, i.e., to find an angle ϕj

that minimizes
‖x0 − x̂1‖2

2 + ‖y0 − ŷ1‖2
2 ,

where x̂1, ŷ1 denote the coordinate vectors x1, y1 after a rotation of the co-
ordinates by the angle ϕj . Such problems are usually solved by a Procrustes
analysis, where a singular value decomposition yields the optimal angle. But in
the 2-dimensional case it can be shown with elementary means that either

ϕj = π − arctan
x0y1 − x1y0

x0x1 − y0y1
or ϕj = − arctan

x0y1 − x1y0

x0x1 − y0y1

is the minimum of the optimization function. The scaling factor is set to

sj :=

√
ηj |Gj |

∑

v∈Gj

√

x1(v)2 + y1(v)2
, ηj :=

|Gj |
|G(1)| ,

where |Gj | denotes the number of vertices of Gj . This entails that the average
node distance to the barycenter in the component j is proportional to

√
ηj . A

circle around the barycenter whose radius is the scaled average distance has now
area proportional to ηj . This method works well in practice since components
often are round-shaped. The main idea for arranging the components in the 2-
dimensional plane is to place the barycenters on a circle around the origin with
radius R. A circle sector is assigned to each component with angle proportional
to the number of nodes, analogous to the stretching factor. For notational
purposes identify the plane with complex numbers and reset the barycenters to

cj := R exp
(2πi

η

(

− ηj

2
+

j
∑

ℓ=1

ηℓ

)

)

, η :=

p
∑

j=1

ηj .

The radius R is chosen as

R := max
1≤j≤p

dj

sin(π
ηj

η)
,

where dj is the maximum distance from the barycenter to a node in component j.
This guarantees that there is a circle around each component lying in the sector
of the component, such that overlapping is prevented.

Altogether, when removing a cut vertex, power iteration with modified or-
thogonalization/normalization is applied for the chosen breakpoints, the compo-
nents are rotated, scaled and moved linearly to their new barycenters. Further
splitting and merging of connected components are handled analogously, see
Fig. 10 for an example. Note that the outcome of a splitting/merging process is

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 338

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 339

Figure 9: Evolution of a small world (read left to right, top to bottom)

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 340

assigned the same amount of area and sector as before (under the assumption
that there is only a slight change in the node number). The rotation also helps
recognizing the structures since unmodified components maintain their shape,
size and sector.

6 Discussion

We have proposed a scheme for dynamic spectral layouts and applied it to
changing small-world graphs. While there is no need to make special provisions
for logical updates, it turns out that matrix interpolation is the method of choice
for the physical update. Despite its simplicity, the scheme achieves both static
layout quality and mental-map preservation because it utilizes stability inherent
in spectral layout methods.

Much of the scheme directly applies to force-directed methods as well, and
is in fact driven by common practices [8].

For both spectral and force-directed layout update computations are rather
efficient since the preceding layouts are usually very good initializations for
iterative methods. For large graphs, it will be interesting to generalize the
approach to multilevel methods, possibly by maintaining (at least part of) the
coarsening hierarchy and reusing level layouts for initialization.

In general, spectral layouts are not suitable for graphs with low connectivity,
even in the static case. However, our dynamic approach is likely to work with
any improved methods for static spectral layout as well.

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 341

Figure 10: Drawing connected components (read left to right, top to bottom)

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 342

References

[1] U. Brandes, M. Eiglsperger, M. Kaufmann, and D. Wagner. Sktech-driven
orthogonal graph drawing. In Proc. GD 2002, LNCS 2528, pages 1–11.
Springer, 2002.

[2] U. Brandes, V. Kääb, A. Löh, D. Wagner, and T. Willhalm. Dynamic
WWW structures in 3D. Journal of Graph Algorithms and Applications,
4(3):103–114, 2000.

[3] U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph layout.
In Proc. GD 1997, LNCS 1353, pages 236–247. Springer, 1997.

[4] J. Branke. Dynamic graph drawing. In M. Kaufmann and D. Wagner,
editors, Drawing Graphs, LNCS 2025, pages 228–246. Springer, 2001.

[5] S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogo-
nal graph drawing algorithms. Journal of Graph Algorithms and Applica-
tions, 4(3):47–74, 2000.

[6] C. Demestrescu, G. Di Battista, I. Finocchi, G. Liotta, M. Patrignani, and
M. Pizzonia. Infinite trees and the future. In Proc. GD 1999, LNCS 1731,
pages 379–391. Springer, 1999.

[7] S. Diehl, C. Görg, and A. Kerren. Preserving the mental map using for-
sighted layout. In Proc. VisSym 2001. Springer, 2001.

[8] P. Eades, R. F. Cohen, and M. Huang. Online animated graph drawing for
web navigation. In Proc. GD 1997, LNCS 1353, pages 330–335. Springer,
1997.

[9] C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee.
GraphAEL: Graph animations with evolving layouts. In Proc. GD 2003,
LNCS 2912, pages 98–110. Springer, 2003.

[10] C. Erten, S. G. Kobourov, and C. Pitta. Intersection-free morphing of
planar graphs. In Proc. GD 2003, LNCS 2912, pages 320–331. Springer,
2003.

[11] C. Friedrich and P. Eades. Graph drawing in motion. Journal of Graph
Algorithms and Applications, 6(3):353–370, 2002.

[12] C. Friedrich and M. E. Houle. Graph drawing in motion II. In Proc. GD
2001, LNCS 2265, pages 220–231. Springer, 2001.

[13] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins
University Press, 1983.

[14] K. M. Hall. An r-dimensional quadratic placement algorithm. Management
Science, 17(3):219–229, 1970.

U. Brandes et al., Dynamic Spectral Layout , JGAA, 11(2) 325–343 (2007) 343

[15] Y. Koren. Drawing graphs by eigenvectors: Theory and practice. Comput-
ers and Mathematics with Applications, 49(11–12):1867–1888, 2005.

[16] Y. Koren, L. Carmel, and D. Harel. Drawing huge graphs by algebraic
multigrid optimization. Multiscale Modeling and Simulation, 1(4):645–673,
2003.

[17] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages and Computing, 6(2):183–210,
1995.

[18] F. Rellich. Perturbation Theory of Eigenvalue Problems. Gordon and
Breach Science Publishers, 1969.

[19] D. J. Watts and S. H. Strogatz. Collective dynamics of “small-world”
networks. Nature, 393:440–442, 1998.

