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Abstract

In this paper we consider the problem of drawing a planar graph using
circular arcs as edges, given a one-to-one mapping between the vertices
of the graph and a set of points in the plane. If for every edge we have
only two possible circular arcs, then a simple reduction to 2SAT yields an
O(n?) algorithm to find out if a drawing with no crossings can be realized,
where n is the number of vertices in the graph. We present an improved
O(n7/ 4polylog n) time algorithm for this problem. For the special case
where the possible circular arcs for each edge are of the same length, we
present an even more efficient algorithm that runs in O(n3/ 2polylog n)
time. We also consider two related optimization versions of the problem.
First we show that minimizing the number of crossings is NP-hard. Second
we show that maximizing the number of edges that can be realized without
crossings is also NP-hard. Finally, we show that if we have three or
more possible circular arcs per edge, deciding whether a drawing with no
crossings can be realized is NP-hard.
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1 Introduction

One of the main goals in information visualization is to present the given in-
formation in a clear and concise manner. Often, the information is captured in
the form of a graph, where the vertices represent a set of objects and the edges
represent a relationship between the objects. The quality of a graph layout is
typically measured by aesthetic criteria, such as, smooth edges, few edge cross-
ings, uniform distribution of the vertices, and display of inherent symmetries.

Depending on the data source, the graph may or may not contain knowledge
about the relative positions of the vertices for a 2 dimensional or 3 dimensional
layout. In telephone graphs, where vertices are phone numbers and edges repre-
sent phone calls, natural 2D coordinates for the vertices can be assigned based
on the physical location of the corresponding phones. Similarly, knowledge
about the positions of vertices is contained in airline graphs, where vertices cor-
respond to cities and edges correspond to flights between cities. Standard graph
drawing algorithms, such as spring embedders [13] and Sugiyama-style layered
methods [9] cannot handle such additional knowledge and there does not seem
to be a straight-forward way to augment them.

Thus, a natural question that arises in graph drawing is whether a graph
with fixed vertex locations can be drawn without crossings, when several choices
are given for each of the edges. From an information visualization point of
view convex edges are preferable, i.e., straight line segments or circular arcs. In
general, embedding a planar graph at fixed locations and drawing it with straight
lines may result in many crossings. Using circular arcs instead can reduce or
eliminate the crossings; see Fig. 1(a). With this in mind, we address the problem
of crossing-free drawings of graphs with predetermined vertex locations, using
circular arcs.

We first consider the 2-Circular Arcs Drawing (2CAD) problem, in which
each edge has to be drawn as one of the two circular arcs defined by a circle
passing through the endpoints. This problem is reminiscent of the Manhattan
wiring problem. Consider the axis-aligned rectangle with a diagonal defined by
the line segment between two vertices connected by an edge. Then the two
semi-rectangles separated by the diagonal are the two choices for drawing the
edge. This formulation of the problem can be decided in O(nlogn) time, using
an efficient find and delete data structure (find intersections between pairs of
semi-rectangles and delete a semi-rectangle from the data structure) [16].

The same approach cannot be applied to the 2CAD problem directly. Al-
though efficient data structures exist for operations on full circles, no such data
structures exist for circular arcs or even semi-circles. The novelty of our 2CAD
algorithm is that we provide a way to use an efficient data structure for full
circles to solve the problem with circular arcs. For the sake of completeness, we
first show that the 2CAD problem can be reduced to 2SAT and thus solved in
O(n?) time. Then we present an O(n"/*polylog n) time algorithm for the gen-
eral case of the 2CAD problem and an O(n?/?polylog n) time algorithm for the
restricted case where all the circular arcs are half-circles. Although the practical
gain in terms of running time is not significant, we believe that our approach
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Figure 1: (a) An example graph with fixed vertex locations (edges shown as dashed
segments) that requires ©(n?) crossings if its edges are drawn as straight-line segments
and none if its edges are drawn as circular arcs; (b) A planar graph (edges shown as dashed
segments) that cannot be drawn without crossings using any circular arc segments.

for solving the 2CAD problem might be of independent interest to solve similar
problems.

Next, we consider the 3-Circular Arcs Drawing (3CAD) problem, where for
each edge there are three circular arcs to choose from. We show that the 3CAD
problem is NP-hard. Finally, we consider two optimization problems related to
the 2CAD problem. Although using circular arcs to represent the edges allows
a certain flexibility, not every planar graph can be drawn without crossings
using circular arcs. Fig. 1(b) shows an example of a planar graph that cannot
be drawn without crossings using any circular arc segments. This difficulty
suggests two optimization problems: Min2CAD is the problem of minimizing
the number of crossings for a given 2CAD instance by representing every edge
with an appropriate circular arc. Maz2CAD is the problem of maximizing the
number of edges that can be drawn without crossings using circular arcs. We
show that both of these optimization problems are NP-hard.

2  Previous Work

Several variations of the problem of embedding a planar graph at fixed point
locations have been studied. If we can choose the mapping between the vertices
V and the points P, then Kaufmann and Wiese [17] show that the graph can be
drawn without crossings using 2 bends per edge in polynomial time. However,
if the mapping between V' and P is given, Pach and Wenger [21] show that Q(n)
bends per edge are necessary to guarantee planarity, where n is the number of
vertices in the graph. Godau [14] shows that given a graph if each vertex is
allowed to move slightly in the neighborhood of a fixed point then the problem
of deciding whether there exists a plane drawing of the graph using straight-line
edges is NP-hard.
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Drawing graphs with circular arcs without assigned vertex locations has been
considered by Cheng et al. [6] in the context of planarity, angular resolution and
drawing area. The problems under consideration in this paper are also related
to the k-position point labeling problem, extensively studied in map labeling 3,
23, 24]. In the k-position point labeling problem we are given a set of points
and a set of k possible label positions for each point and we would like to
find a labeling of the points that optimizes specific criteria. Criteria such as
maximizing the number of labeled points [3] and maximizing the size of the
labels [7, 8, 12] have been considered. A variant of the map labeling problem is
reduced to 2SAT and NP-completeness results are presented in [12]. Although
these problems are related to drawing planar graphs with circular arcs, there is
a significant difference: whereas map labeling problems are restricted by region
intersections, drawing planar graphs with circular arcs is restricted by circular
arc intersections.

3 Circular Arcs Drawing: 2CAD

The input to the problem is a planar graph G = (V, E), a point set P, a
one-to-one function f : V' — P such that |V]| = |P| = n and |E| = m, and a
circle C; for each edge e; = (u,v) € E such that C; passes through u,v . The
two vertices, u and v, determine two circular arcs on Cj; let ¢; and ¢; be their
labels; see Fig. 2(a). We would like to find out whether G can be drawn without
crossings using ¢; or ¢; for each e;, and if so, to provide such a drawing of G.
Note that m = O(n) as G is a planar graph.

We first suggest a straightforward solution of the problem using a reduction
from 2CAD to 2SAT. The reduction to a 2SAT formula & requires that we
identify all intersections between circular arcs. For each such intersection ¢; N
¢j # 0, we add the clause (¢; V ¢;) to ®; see Fig 2(b). As there are O(n?)
crossings, the reduction takes O(n?) time and results in a 25AT formula ® with
O(n) variables and O(n?) clauses. It is easy to see that G' can be drawn without
intersections if and only if the corresponding formula & is satisfiable. As 2SAT
can be solved in time linear in the number of clauses and variables [4, 11], we
have an O(n?) time algorithm for the 2CAD problem. However, we can do
better.

3.1 The 2CAD Algorithm

Note that for a given edge e; = (u,v) € E we consider as possible drawings of
e; the circular arcs defined by the circle C; and the position of u and v on Cj.
Alternatively, we could consider the axis-aligned rectangle having its diagonal
as the line segment (u,v) and then consider the 2 semi-rectangles separated by
the diagonal as two choices for drawings of the edge e;. This formulation of
the problem is known as the Manhattan wiring problem which can be efficiently
solved in O(nlogn) time [16].

We describe a new algorithm that solves a more general problem for circular
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(a) (b)

Figure 2: (a) Given the circle C, edge e; = (u, v) is drawn either with the circular arc ¢;
or ;. (b) An example of a 2SAT reduction: (¢1Ves)A(erVes)A(esVez)A(erVez)A(e1Vez).

arcs. Our approach is different from the Manhattan wiring problem in that we
perform operations only on complete circles. More formally, we find/delete com-
plete circles as part of an intersection, as opposed to performing the operations
on the circular arcs directly.

Let D denote the data structure used to store all the circles. Let find(D, ¢;)
be a function that finds a circle C; intersecting circular arc ¢;, and delete(D, C;)
be a function that deletes the circle C; from D. Let a(n), 3(n) denote the time
required to perform the find and delete operations, respectively. We next de-
scribe how to construct the data structure D and how to perform the find/delete
operations efficiently. The main algorithm is shown on Fig. 3.

Let a possible circular arc be one that is not yet chosen and not yet discarded
and let P denote the set of possible circular arcs. P initially contains all the
circular arcs. In the while loop of line 1, we start with an arbitrary circular arc
¢; and choose it to remain in P. Then we traverse the circles in a depth-first
manner and delete from P all circular arcs that are conflicting with the traversed
arcs chosen to remain in P so far. Let dfsnumber(c;) denote the dfsnumber of ¢;
during this traversal. Note that dfsnumber is cumulative, in the sense that the
number increases throughout the whole loop (lines 1-5). Each circle is found
and deleted exactly once, resulting in a sequence of O(n) find/delete operations
and requiring O(n X (a(n) + S(n)) time. At the end of the while loop of line
1 in the main algorithm, the set P contains exactly one circular arc for each
edge. However, P might contain intersections. Let C denote the set of certain
circular arcs, ones that must definitely be in the final output. At this point we
make the following observation:

Observation 1 Let ¢;,¢c; € P and dfsnumber(c;) < dfsnumber(c;). At the
end of the while loop of line 1, if ¢; N cj; # O then we must have ¢; € C.
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Algorithm 2CAD
1:  while D not empty

2: let C; be a circle in D
3: delete(D, C;), delete ¢ from P
4: mark ¢; with dfsnumber(c;)
5: traverse_possible(c;)
6: start with initial data structure D
7: while 3¢;,c; € P st ¢;Ne; # 0
8: w.l.o.g. let dfsnumber(c;) <dfsnumber(c;)
9: delete(D, C;)
10: delete ¢; from P, add ¢; to C
11: traverse_certain(c;)
12:  if there are intersecting circular arcs in C
13: output No
14:  else
15: output CUP

traverse_possible(c;)
while C;=find(D, ¢;) not empty

delete(D, C;)
w.l.o.g. let ¢; be involved in the intersection
(Ties are broken arbitrarily if both ¢; and ¢;
are involved in the intersection.)
delete c¢; from P
mark ¢ with dfsnumber(c;)
traverse_possible(c;)

traverse_certain(c;)
while C;=find(D, ¢;) not empty

delete(D, C;)
w.l.o.g. let ¢; be involved in the intersection
(Ties are broken arbitrarily if both ¢; and ¢;
are involved in the intersection.)
delete ¢; (or ¢;) from P, add ¢ to C
traverse_certain(c;)

Figure 3: Algorithm 2CAD. The input to the algorithm is D, the data structure used to
store all the circles. If it is possible to draw the graph without crossings, the algorithm
outputs the set of circular arcs used to draw the graph.
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There are two possibilities for each such intersection: either ¢; intersects
both ¢; and ¢j, or ¢; is an ancestor of ¢; in the DFS tree. In the first case,
clearly, ¢; € C. In the latter case, as ¢; € C implies ¢; € C, we again have ¢; € C.

Initially C is empty. Once we find a circular arc, ¢;, that is certainly in the
final solution, by the above observation, we perform a traversal from ¢; (line 11)
placing all certain arcs in the set C. To find the intersections in P it suffices
to perform a plane sweep over the set P, which is incorporated into the while
loop of line 7. At the beginning of the while loop of line 7 we have n arcs in P,
one arc for each circle C;. As whenever we encounter an intersection in P we
delete a circular arc, the plane sweep over P finds O(n) intersections in total.
Therefore, we first divide each circular arc ¢; € P into two subsegments ¢} and
¢ such that each subsegment is y-monotone. We place the endpoints of all the
subsegments into a balanced binary search tree @ which is the event queue of
the plane sweep. We also store another balanced binary search tree 7 for the
ordered sequence of segments intersecting the sweep line.

Unlike in a traditional plane sweep, whenever we encounter an intersection
we delete a subset of the circular arcs from P, in line 10 and line 11 as a re-
sult of traverse_certain. These deletions must be reflected in the plane sweep
data structures Q and 7. As a result a simple plane sweep that runs in time
O((n+k)logn), where k is the number of detected intersections, can be used to
implement the intersection detection of the while loop of line 7. As the plane
sweep encounters O(n) intersections in total, we have k = O(n). The while loop
of line 7 requires O(nlogn) time for the plane sweep and O(n x (a(n) + 3(n)))
time for O(n) find/delete operations, for a total of O(nlogn—+nx (a(n)+3(n)))
time. Finally, we end up with a set C of certain circular arcs and a set P of
possible circular arcs. Note that for every circle C; exactly one of its arcs (¢;
or ¢;) is either in P or C as the while loop of line 7 places one of the arcs in C
while deleting one from P. At this point we make a second observation:

Observation 2 Let ¢;,c; € CUP. At the end of the while loop of line 7,
if ¢; Nej # 0, then ¢, ¢c; € C.

The observation holds for the following reasons. Assume c;,c¢; € P were true.
Then we must have encountered the intersection in the plane sweep step in
which case one of them would have been deleted from P. So, ¢;,c; € P cannot
be true. On the other hand, assume ¢; € C and ¢; € P were true. Then we must
have encountered C; before visiting ¢; in the traverse_certain step. However,
after we traverse through a circle, neither arc of the circle remains in P. So this
cannot be the case either.

Thus, we need to concentrate on the intersections in C. We perform a final
plane sweep over the set C in line 12. The plane sweep described above can
be used with C as the input set of circular segments. The first intersection,
if it exists, can be found in time O(nlogn). If we encounter an intersection,
then there cannot be an assignment without intersections, as that intersection
would be between two certain circular arcs; otherwise, C U P gives us a feasible
assignment as the union contains exactly one arc for each circle C; and there
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exist no intersections between arc pairs in the union. The running time of the
algorithm is the time required for the two while loops in the main algorithm:
O(nlogn+nx(a(n)+5(n))). In the next section we describe the data structure
that supports the needed operations.

Note that Algorithm 2CAD can also be applied to solve the Manhattan
wiring problem with the running time of O(nlogn) which is the running time of
the algorithm by Imai et al. [16]. We can design a data structure for a special
kind of one-dimensional range search such that given a set of horizontal /vertical
segments a sequence of O(n) LIST1/DELETE’s can be executed in O(nlogn)
time, where LIST1(I) returns a segment intersecting an input segment I and
DELETE(I) deletes the input segment I from the data structure [16]. We can
modify the data structure so that each segment has a pointer to the rectangle
it belongs to. Then each find operation to find a rectangle intersecting an input
semi-rectangle consists of at most two LIST1 operations on the data structure
and each delete operation to delete a rectangle from the data structure consists
of four DELETE operations.

3.2 The Data Structure

Given a circular arc query ¢;, finding and deleting a circle C; that intersects c;
is more efficient than performing the same operations on a circular arc ¢; that
intersects ¢;. This observation led us to the 2CAD algorithm which assumes
the existence of a data structure D that stores all the circles and allows for
efficient find/delete operations. Gupta et al. [15] show how to reduce the problem
of querying circles with a circular arc to half-space range searching in higher
dimensions. The method requires at most a 4-dimensional half-space range
searching. To report such intersections, we make use of the ideas from geometric
range-searching [1, 2, 20]. The main data structure we use is a partition tree,
constructed using the partitioning theorem by Matousek [19]: a point set P can
be partitioned into O(n'~'/?) classes in time O(nlogn'~1/9) such that for any
class P;, |P;| < 2n/? and any line intersects at most O(n=/9%) classes, where
d is the dimension of the search space. In our case d = 4. Using this partitioning
theorem we can create a data structure D’ that performs half-space range queries
in time O(n'~'/4(log n)o(l)). Moreover, D’ is dynamic, in the sense that we can
delete a circle from D’ in amortized time O(logn). Then using multiple levels of
D’ to satisfy the intersection conditions of [15] we create the data structure D
that supports find(D, ¢;) operations in O(n*/*polylog n) time and that requires
O(nlogn) time for a sequence of O(n) delete(D,C;) operations. These results
can be summarized with the following theorem for the 2CAD problem.

Theorem 1 The 2CAD problem can be solved in time O(n"/*polylog n).

3.3 Allequal2CAD

We can solve a restricted version of the 2CAD problem even more efficiently.
Let Allequal2CAD be the version of 2CAD where each circle C; has the same
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Figure 4: (a) D7 contains an endpoint of ¢; (b) center(C;) € 7; and center(C;) € D*.

diameter and for every edge e; the line segment between the endpoints of e;
is the diameter of circle C;. In this case, for a given edge e;, the circular arcs
¢; and ¢; are half-circles. We present an algorithm to solve Allequal2CAD in
O(n3/2polylog n) time using a data structure D that enables us to perform
efficient find/delete operations. We provide the details for the construction of
D here as the general data structure described above can be constructed in a
similar fashion.

Let center(C;) and separator(C;) denote, respectively, the center of C; and
the line separating the half-circles ¢; and ¢;. Define 7; as the half-plane bounded
by separator(C;) that contains ¢;. Let D’ be the disk bounded by the circle C;,
and let D% be the disk concentric to D’ but with radius twice the radius of D?;
see Fig 4. The following lemma is easy to verify.

Lemma 1 A circle C; intersects a half-circle c; if and only if (1) D7 contains
an endpoint of c;, or (ii) center(C;) € m; and center(C;) € D?.

In order to report intersections of the first type we use the data structure
described by Efrat et al. [10]: given n equal-sized disks in the plane, construct
a data structure D7; in time O(nlogn) such that for a given query point p,
finding a disk that contains p requires O(logn) time. Moreover, deleting a disk
from D7y requires amortized time O(logn). We preprocess the set of disks
D'...D" by setting up this structure.

To deal with the intersections of the second type we make use of the partition
tree D’ described above. However, this time we perform half-space range search-
ing in two dimensions using a two-level data structure. Let the data structure
for the second type of intersections be D7;5. The first level of D75 is a partition
tree, D7T,’. Based on the partitioning theorem described above, we partition
the centers of all the circles and recursively build the partition tree D75". The
leaves of DTy’ partition the centers into constant-sized subsets. Each internal
node v is associated with a subset P, of the points contained in the leaves of the
subtree rooted at v. We build the second level of the data structure based on
these subsets. The second level data structure used in D75 is the same as D7Tq,
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except we preprocess the disks D?* for each ¢ rather than the disks D’ as is the
case for constructing D7;. We call this second level data structure D75” to dis-
tinguish it from D77 which we used to find the first type of intersections. Each
internal node v in D75’ contains a pointer to the corresponding D73"”, where
DT, contains the data structure for all the disks D? centered at P,. The pre-
processing time for constructing the partition in a node of D75’ with m points is
O(mlogm). Constructing D75" for the same node also takes time O(mlogm).
As the number of points in nodes of D75’ decreases as a double exponential with
their depth in the tree, the total preprocessing time is O(nlogn).

3/2

Theorem 2 Allequal2CAD problem can be solved in time O(n*/?polylog n).

Proof: To find a circle C; intersecting a given half-circle ¢; we first query DTy
with ¢;’s endpoints. This step requires O(logn) time. If we cannot find such a
circle then we query D7, with separator(C;). Upon finding an internal node v
such that P, lies completely above separator(C;), we query the associated D75"
of v with center(C;). Let a(n) be the time to find a circle intersecting a given
half-circle ¢;. Then «(n) is bounded by the query time of D75 and we get:

a(n) < O(vn) x log2y/n + O(V/n) x a(2v/n) (1)

Thus, the time required to perform a find operation is a(n) = O(y/npolylog n).

In order to delete a circle C; we first delete D from D7; in O(logn) amor-
tized time. We also need to delete the appropriate disks in D75. To do this we
simply find each internal node v of D73’ such that center(C;) € P, and delete the
corresponding disk from D75”, the second level data structure pointed to by wv.
As DTy has depth O(loglogn) and deleting a disk from D75” takes amortized
time O(logn), the deletion of a circle takes O(log? n) amortized time. As find
and delete operations are defined for both D77 and D75, the two data structures
form the complete data structure D and the theorem follows. O

4 The 3CAD Problem

The 3CAD problem is similar to 2CAD, except now we have three choices for the
drawing of each edge ¢; = (u,v). We show that the 3CAD problem is NP-hard
even for a restricted version of the problem, where for each edge e; the three
possible circular arcs are determined by the line segment between the endpoints
of e;: the two half circles of the circle C; with the line segment as its diameter
and the line segment itself constituting a circular arc of infinite radius. We show
this restricted version of 3CAD is NP-hard using a reduction from the NP-hard
PLANAR-3SAT [18].

A 3SAT instance ® is called a PLANAR-3SAT instance if the (bipartite)
occurrence graph Gg¢ = (Vg, Eg) is planar. In the occurrence graph Gg the
vertex set Vg contains a vertex for each variable and clause, and edge set Fg
contains an edge between two vertices v, w € Vg if v represents a variable x that
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Figure 5: (a) VR gadget; (b) 1-IN-3 gadget.

occurs in the clause represented by w. Let VR3SAT (Variable Restricted 3SAT)
be the version of 3SAT with the restriction that each variable can appear at
most three times, and VR1IN3SAT be the version of VR3SAT in which ezactly
one literal in each clause is required to be true. In the planar versions of these
two problems the occurrence graphs of the input instances must be planar. We
will convert a PLANAR-3SAT instance ® into a 3CAD instance ®3c4p through
a series of modifications that preserve planarity.

Lemma 2 PLANAR-VRS3SAT is NP-hard.

Proof: The reduction is from PLANAR-3SAT. Let ® be an input formula for
3SAT. The traditional reduction from 3SAT to VR3SAT converts ® into @’ in
such a way that if z is a variable appearing k times in ® then in ®’ the first
occurrence of x is replaced by 1, the second by x5, and so on, where x1, s, ...,
xy are k new variables [22]. @ also includes the new clauses (T1 V z2) A (T2 V
x3) A... N\ (T V). We apply the same reduction to convert a PLANAR3SAT
instance ® into a PLANAR-VR3SAT instance ®'. We show that if ® is planar
then so is ®'. Let Gg, Gg be the occurrence graphs of @, @’ respectively, and
let v,, be the vertex corresponding to the variable x of ® in G¢. For constructing
Gy, we replace v, with a box,, where box, contains the occurrence graph of
the newly added clauses (T7 V x2) A (T2 V x3) A ... A (T V x1) and the newly
added variables z1, 2o, ..., x). It is easy to see that the occurrence graph inside
box, is planar. The vertices corresponding to the clauses containing z can still
be incident to the vertices inside box, without affecting planarity, as shown in
Fig. 5(a). This implies that G is also planar. o

Lemma 3 PLANAR-VRI1IN3SAT is NP-hard.
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Figure 6: Left: Configuration of variable-circle and the connected 2-link chain going up.
Note that only the lower half-circle of the first circle in the x — chain intersects x, and
only the upper half-circle of the fifth circle in the T — chain intersects x. Similarly only the
lower half-circle of the first circle in the Z — chain intersects Z. 2-link chain going down
can be constructed similarly. Right: Configuration of variable-circle and the connected
2-link chain going left. 2-link chain going right can be constructed similarly.

Proof: The reduction from VR3SAT to VRIIN3SAT converts ®’, an instance
of VR3SAT, to ®” so that each clause (x V y V z) is replaced by the clauses
(xVaVvVb)AGVaVe) A(ZVDbVd), and each clause (z V y) is replaced by the
clauses (x Va) A (T VaVc). Let Go be the occurrence graph of @, and vy,
be the vertex corresponding to the clause (z VyV z) of ® in Gg. We replace
Vpy> With a bozgy. in Ger, where box,,. contains the occurrence graph of the
newly added clauses (zVaVb)A(GVaVe)A(ZVDbVd) and the newly added
variables a, b, ¢, d. It follows that Gg~ is also planar; see Fig. 5(b). O

Theorem 3 The 3CAD problem is NP-hard.

Proof: We convert a PLANAR-VRIIN3SAT instance ®” into a 3CAD instance
®3c4p. Note that the occurrence graph G for ®” has maximum degree 3
because of the VR constraint. Then there exists an orthogonal drawing for
Gor (a drawing such that each vertex is on the integer grid and each edge
consists of horizontal and vertical edge segments). An orthogonal drawing of
Gor where the grid is of size quadratic in the size of Gg~ can be found in
linear time [25]. Given the orthogonal drawing of Gg, we obtain ®3cap by
the following method. We begin by enlarging the grid 16 times. Note that the
size of the new grid is still quadratic in the size of Gg. We replace each vertex
corresponding to a variable x with a variable-circle, with one half labeled x and
the other Z. Each variable-circle has diameter equal to four times the width of
a grid square. We replace each vertex corresponding to a clause, say, (zVyV z)
of ®”, with a clause-circle having one half-circle labeled z, one labeled y, and
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|

Figure 7: 2-link chain making a right turn. Half-circles of the chain-circles below line h
are separated by a horizontal diameter, half circles of the ones to the right of line v are
separated by a vertical diameter. The remaining endpoints are as shown.

the diameter of the circle labeled z. and each clause-circle has diameter equal
to eight times the grid square width.

We represent each edge of Ggr with a 2-link-chain which consists of two
parallel links of chain-circles, each with diameter equal to the width of a grid
square. Let e be the edge of Gg» between the vertex corresponding to the
variable x and the vertex corresponding to the clause (x V y V z). Then we
represent e by a 2-link-chain, where one of the links, x — chain, is connected to
x and is used for the flow of the truth assignment to x. The second link-chain,
T — chain, is used for the flow of the assignment to T and is connected to T in
the variable-circle; see Fig. 6. We assume that the direction of the flow is from a
variable-circle to a clause-circle. Except for the edge-turns and the connections
to a clause-circle, the half-circles of a chain-circle are determined by the drawing
of the edge in the orthogonal drawing of G4 ; see Fig. 7. If the edge segment
containing the chain-circle is drawn vertically, then the half-circles are separated
by a horizontal diameter; otherwise, the half-circles are separated by a vertical
diameter.

In order to guarantee a correct flow of truth assignments to the clauses we
connect the link-chains to the clause-circles as shown in Fig. 8. At the top we
show the case where z is assigned to the top-half circle of the clause-circle. If
the link-chain connects from below, then the connections are similar to those
in the left figure (connections from above). If the link-chain connects from left,
then they are similar to those in the right figure (connections from right). At
the bottom we show the case where x is assigned to the diagonal of the clause-
circle. Again we can use similar connections if the connections are from below
or from left. The cases where x is assigned to the bottom half-circle of the
clause-circle are symmetrical to those of the top figures, where x is assigned to
the top half-circle.

The number of variable/clause circles introduced is linear in terms of the
size of Gg~». The number of chain-circles introduced is quadratic in the size of
Gor as every seven adjacent chain-circles are completely embedded within six
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Figure 8: Clause-circle connections. Top: x is assigned to the top half-circle of clause-
circle. Left: Connecting 2-link chain carrying flow from variable-circle x from above.
Right: Connecting 2-link chain carrying flow from variable-circle = from right. Bottom:
x is assigned to the diagonal of clause-circle. Left: Connecting 2-link chain carrying flow
from variable-circle  from above. Right: Connecting 2-link chain carrying flow from
variable-circle x from right.

grid squares. Thus, the whole construction can be completed in quadratic time
with regard to the size of Ggr.

We claim that ®” is satisfiable if and only if ®3c4p has a feasible assign-
ment without crossings. Assume that ®” is a satisfiable instance of PLANAR-
VRIIN3SAT, and let « be a satisfying assignment. A feasible assignment of
edges in P3cap can be obtained as follows. For each variable-circle correspond-
ing to variable x, assign the half-circle labeled with x or Z depending on whether
x is assigned to true or false in « respectively. For each clause-circle correspond-
ing to a clause (x Vy V z), assign the half-circle (or diameter) corresponding to
the (only) true literal in the clause, as determined by a. For each 2-link-chain
connected to the variable-circle of z, if x is assigned to true in «, then for the
link that is connected to z, assign the first chain-circle by choosing the half-circle
that does not cross the z, and continue assigning the chain-circles through the
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link without creating any crossings. For the second link that is connected to the
T half-circle, assign the first chain-circle by choosing the half-circle that crosses
the half-circle Z, and continue assigning the chain-circles through the link with-
out creating any crossings. This assignment does not contain any crossings. The
only crossings that could occur would be between a chain-circle at the tip of a
link and a clause-circle, but our method of assigning the chain-circles eliminates
this possibility.

For the other direction, assume that ®3-4p has a feasible assignment of
edges without crossings. Then, finding a truth assignment « for ®” is straight-
forward. For each variable-circle corresponding to a variable z, if the half-circle
labeled with x is chosen, then assign x true; otherwise, assign it false. This yields
a satisfying assignment, as the feasible assignment of edges in ®3c4p chooses
exactly one edge from each clause-circle such that there are no conflicts with
the variable assignments and the true literal assignment for the other clauses.

O

5 Drawing with Few Crossings

If G cannot be drawn without crossings using two circular arcs, there are two
natural optimization problems that can be defined as decision problems. Define
Min2CAD as the following decision problem: given (G = (V, E), kyin ), where
G is a planar graph, and K, is a non-negative integer, does there exist an
assignment of circular arcs (either ¢; or ¢;) for each e; € E such that the number
of crossings is at most K., ? The second decision problem, Max2CAD, is defined
as follows: given (G = (V, E), Kimaz), where G is a planar graph, and f,q, is a
non-negative integer, does there exist an assignment of circular arcs (either ¢; or
¢;) for some e; € E such that there are no crossings and the number of assigned
edges is at least K7 We prove that both problems are NP-hard by reductions
from the Planar Degree-4 Independent Set problem (PD41IS). Let H = (Vy, Epr)
be an undirected graph. We say that a set I C Vj is independent if for all pairs
(i,7), where i,5 € I, (i,j) ¢ Ep. The PD4IS problem is the following: given
(H = (Vy,En),kinp), where H is a planar graph with maximum degree 4
and kryp is a non-negative integer, does there exist an independent set I with

|I|:F‘31ND?

Lemma 4 PD4IS is NP-hard.

Proof: The proof is based on a reduction from PLANAR-VRIIN3SAT. Let ¢
be an instance of PLANAR-VRIIN3SAT with p clauses C;,Cy, ..., Cp, where
C; = (lzl Vil V lig) or C; = (lzl \Y llg) Each lij is either xj or T, where
xp is one of the ¢ variables. The reduction constructs an instance of PDA4IS,
(H = (Vu,En),kinp) as follows: Vg ={l;; :i=1,...,p;j = 1,2,3} U {ay :
E=1,...,¢tU{zy : k=1,...,q} and Eg = {(lij,lix) : ¢ = 1,...,p;j #
k} @] {(lij,l‘k) if lij = I} Or (lij,ﬁ) if ll‘j =xp:1=1,....p;70 = 1,2,3;k =
1,0, qt U{(2g,Tg) : k=1,...,q} and kryp = p + ¢; see Fig. 9. Note that
because we start with an instance of planar 3SAT, graph H is also planar.
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Clause Boxes

Variable Boxes . b

Figure 9: The PD4IS graph H to which the PLANAR-VR1IN3SAT instance ¢ = (z1 V
y1Vz1) A (@2 Vy2Vze)A ... A(TTV xz2) A (T2 Vai)A ... is reduced.

Moreover, because the instance ¢ also has the property that each variable occurs
at most three times, H will have degree 4.

There exists an independent set I of H with size kyyp = p+ ¢ if and only if
¢ is satisfiable. Assume there exists an independent set I of size p + ¢. I must
contain a node from each box because each box contains a clique and there
are p + g boxes; see Fig. 9. As the nodes are labeled with literals, and I does
not contain nodes corresponding to opposite literals, I corresponds to a truth
assignment that satisfies ¢. Now we assume that a satisfying assignment for ¢
exists. Then we can identify a true literal in each clause ¢;. Let a true literal in
¢; be l;. Then we can pick the vertex corresponding to [; from the clause box
for ¢;, and the vertex corresponding to the literal I; from the variable box for x;
in H to be in I. This yields p + ¢ independent vertices in H. m]

Theorem 4 Min2CAD is NP-hard.

Proof: Let (H = (Vy,En),kinp) be an instance of PD4IS. Let ny denote
the size of V. The reduction produces a Min2CAD instance (G, Kmin), with
Kmin = ng — Kinp- As H has maximum degree 4, we can find an orthogonal
drawing of H, such that each vertex is on the integer grid of size quadratic
in the size of H [25]; see Fig. 10(a). The reduction scales the grid of H by
a factor of 2 x (ng — kynp + 1) and replaces the vertices of H with vertez-
circles, circles of diameter 2 X (ng — kyyp + 1) units. We place two endpoints
in the fourth quadrant. One endpoint is placed so that it lies on the circle and
has x—distance (ng — kynp + 1)/2 from the center of the circle and the other
endpoint at y—distance (ng —rrnp+1)/2 from the center; see Fig. 10(b). These
two endpoints define two circular arcs. We call the larger arc the head and the
smaller one the tail. Each edge of H is represented with ny — k;yp + 1 links
of chain-circles, circles having half a unit diameter connected to a vertex-circle
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ng — kivp + 1 links

N

tail circle

() (b)

Figure 10: (a) The original graph H drawn on an integer grid. (b) Min2CAD reduction
shown for vertex u. Each wvertex-circle (the big circle) corresponds to a vertex in H,
chain-circles lie inside rectangular pipes connecting to a vertex-circle and correspond to
edges in H, and tail-circles are auxiliary circles. There are ngy — krnp + 1 links of chain
circles in each pipe. Each chain circle has endpoints lying on the horizontal diameter and
contains two half-circles.

at its head. Each vertex-circle also has a tail-circle, connected to it at its tail,
in such a way that the diameter of the tail-circle crosses the tail of the vertex-
circle. As the given graph H is planar, we can obtain such a grid drawing of
circles without causing any intersection between the chain-circles. The resulting
drawing induces graph G, where each endpoint of a circle corresponds to a vertex
and each circle itself corresponds to an edge between the vertices representing
the endpoints.

We claim that H has an independent set of size x;yp if and only if G can
be drawn using circular arcs with at most ny — k;np crossings. Assume H
has an independent set I, where |I|=r;np. Then there are k;np vertices in H
that are pairwise disconnected, which further implies that in G there are kynp
vertex-circles which are not connected to each other by links. Then a feasible
assignment of half-circles which allows a drawing of G with at most ng — k;np
crossings follows easily. For each vertex-circle, if the vertex corresponding to it
is in I, then assign the head of the vertex-circle; otherwise, assign the tail as
chosen. This results in an assignment that will have k;yp heads and ny —k;np
tails. The chain-circles of the links connected to a vertex-circle which is already
assigned to its head are assigned so that no crossing is created, i.e., starting from
the chain-circle attached to the already assigned head, choose the half-circle that
does not create any crossings.

The chain-circles of the other links are assigned edges in a similar fashion,
but this time without the condition on the assignment of the first chain-circle.
Finally the tail-circles are assigned arbitrarily to the half-circles. Such an as-
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signment assigns circular arcs for every circle in the drawing and creates no
more than ny — k;yp crossings. The only crossings created are those between
the tail-circles and the vertex-circles assigned to their tails. We already know
that there are ny — Ky p such vertex tails, which implies the first direction of
the claim.

For the other direction, assume G has an assignment of circular arcs with at
most nyg — krnp crossings. Let Cheaa (Crai) be the sets of vertex-circles having
their heads (respectively tails) chosen in this assignment. As the assignment
creates no more than ny — kyyp crossings, we have | Ciail |[< ng — krnp. This
implies that | Chead |> K1nD, 88 | Chail | + | Chead |= nm. For any pair (¢;, ¢;),
where ¢;, ¢; € Chead, there cannot be any links between ¢; and c; because if
¢; and c¢; were linked together, each of the nyg — kyyp + 1 links would have
at least one crossing, creating more than ny — kyyp crossings which would
be a contradiction. Let I C Vg be the set of vertices corresponding to the
vertex-circles in Cleaq; then I is an independent set of size Ky p. O

Theorem 5 Max2CAD is NP-hard.

Proof: The reduction is again from PD4IS. Let (H = (Vg, En),kinp) be an
instance of PD4IS. The reduction produces a Max2CAD instance (G, Kmaz),
with Kppee = tg — ng + KIND, Where ty is the total number of circles in G.
The proof proceeds along the lines of the proof of Theorem 4 with a slight
modification: in this case we add ng — kynp + 1 tail-circles to each vertex-
circle, rather than just one tail-circle. Then H has an independent set of size
kinp if and only if G can be drawn without any crossings such that at least
Kmaz =ty —ng + krnvp edges have been assigned to some circular arc. O

6 Conclusion and Open Problems

We presented two algorithms for the 2CAD problem and showed that two natu-
ral optimization versions are NP-hard. We also showed that the 3CAD problem
is NP-hard. We conclude with several related open problems:

1. Can Min2CAD be approximated within a constant factor?
2. Can Max2CAD be approximated within a constant factor?

3. Can we draw graphs with pre-specified vertex positions, using elliptic or
other parabolic curve segments without creating too many crossings?

4. A closely related open problem is that of partial embeddability. Bran-
denberg et.al. [5] posed the following problem: given a planar graph in
which some vertices have already been placed in the plane (i.e., given a
partial embedding) is there a polynomial time algorithm that places the
remaining vertices such that no two (straight-line) edges intersect? What
if we are allowed to use circular arcs?
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