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Abstract

The cluster structure of many real-world graphs is of great interest,
as the clusters may correspond e.g. to communities in social networks or
to cohesive modules in software systems. Layouts can naturally represent
the cluster structure of graphs by grouping densely connected nodes and
separating sparsely connected nodes. This article introduces two energy
models whose minimum energy layouts represent the cluster structure,
one based on repulsion between nodes (like most existing energy models)
and one based on repulsion between edges. The latter model is not biased
towards grouping nodes with high degrees, and is thus more appropriate
for the many real-world graphs with right-skewed degree distributions.
The two energy models are shown to be closely related to widely used
quality criteria for graph clusterings – namely the density of the cut, Shi
and Malik’s normalized cut, and Newman’s modularity – and to objective
functions optimized by eigenvector-based graph drawing methods.
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1 Introduction

Researchers from Herbert Simon [47] to Mark Newman [39] have observed that
many real-world systems share a common structure: They are decomposable
into subsystems with strong intra-subsystem interactions and relatively weak
inter-subsystem interactions. These subsystems are of great interest, as they
potentially correspond e.g. to groups of friends or collaborators in social net-
works, closely interlocked countries in international trade, semantically related
documents in hypertexts, or cohesive modules in software systems. If the sys-
tem elements are modeled as nodes and their interactions as edges, then the
subsystems correspond to graph clusters, i.e. to groups of densely connected
nodes, and the subsystem structure can be represented as a graph layout, i.e. as
assignment of the nodes to positions in low-dimensional Euclidean space. The
goal of this article is to introduce and evaluate measures (called energy mod-
els) that quantify how well a given graph layout reflects the graph clusters, i.e.
how well it groups densely connected nodes and separates sparsely connected
nodes. Together with existing energy minimization algorithms, these energy
models enable the efficient computation and comprehensible presentation of the
subsystem structure in many real-world systems.

Most existing energy models and force models1 for general undirected graphs
(e.g. [16, 30, 20, 13]) have not been designed to find clusters, but to produce
readable visualizations. They enforce small and uniform edge lengths, which
often prevents the separation of nodes in different clusters. As a side effect, they
tend to group nodes with large degree (i.e. with many edges) in the center of
the layout, where their distance to the remaining nodes is relatively small. The
two new energy models in this work, called node-repulsion LinLog and edge-
repulsion LinLog, will be shown to group nodes according to two well-known
clustering criteria, namely the density of the cut (e.g. [33, 38]) and Shi and
Malik’s normalized cut [45]. The normalized cut and the edge-repulsion LinLog
energy model are not biased towards grouping nodes with high degree, and are
thus particularly appropriate for graphs with right-skewed degree distributions,
which are very common in practice [48, 1, 39].

The difference between conventional energy models, node-repulsion LinLog,
and edge-repulsion LinLog can be illustrated with a model of the trade between
ten North American and European countries2. The nodes of the graph corre-
spond to the countries, and the edge weights specify the trade volume between
each pair of countries. Because of geographical closeness and free trade agree-
ments, countries on the same continent trade more intensively than countries on
different continents. Figure 1 shows the minimum energy layouts of the trade
graph for the three force and energy models. The layout of the widely used
Fruchterman-Reingold model [20] does not show any clear groups at all. The
layout of the node-repulsion LinLog energy model groups the countries (nodes)

1 Force models are only alternative representations of energy models: Force is the negative
gradient of energy, and thus an equilibrium of forces is a local minimum of energy.

2 Data source: Subset of the bilateral trade data for the year 1999 from the World Bank
(www.worldbank.org).
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primarily according to their total trade volume (degree). Only the layout of the
edge-repulsion LinLog energy model shows the expected grouping according to
continents.

(a) Fruchterman-Reingold (b) Node-repulsion LinLog (c) Edge-repulsion LinLog

Figure 1: Minimum energy layouts of a trade graph

The remainder of this section clarifies the goals of this article by contrasting
them with related non-goals, and introduces some notations. Section 2 defines
and motivates two graph clustering criteria, namely the density of the cut and
Shi and Malik’s normalized cut. Section 3 introduces the two LinLog energy
models, and demonstrates the internal validity of their layouts, by showing that
they group the nodes according to the two clustering criteria. Section 4 shows
that the edge-repulsion LinLog energy model produces externally valid layouts
of several real-world graphs.

1.1 Goals and Limitations

Interpretability vs. Readability The primary purpose of most energy-
based graph layout techniques is to produce easily readable box-and-line vi-
sualizations of graphs. For example, the classic energy models of Eades [16],
Fruchterman and Reingold [20], and Davidson and Harel [13] primarily reward
the conformance to aesthetic criteria like small and uniform edge lengths, and
uniformly distributed nodes.

Graph layout techniques may also produce interpretable layouts, where the
positions or Euclidean distances of the nodes reflect certain properties of the
graph. Examples of such properties include the density of subgraphs (in this
work), the graph-theoretic distances of nodes (e.g. in [30]), or the direction
of edges in directed graphs (e.g. in [49]). Interpretable layouts can be seen as
simple models of a graph, which reflect some properties of the graph and abstract
from others, and which have the additional benefit of being easily visualizable.
Visualizations of interpretable layouts can convey information about the edges
without actually showing edges, which is essential for non-sparse graphs where
showing all edges inevitably results in heavy clutter.

The goal of this work are layouts that group densely connected nodes and
separate sparsely connected nodes; such layouts often violate aesthetic criteria
like small edge lengths or uniformly distributed nodes.
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Energy Models vs. Energy Minimization Algorithms Energy-based
graph layout methods have two components: an energy model, which specifies
what layouts to compute, and an energy minimization algorithm, which specifies
how to compute these layouts. The algorithms are usually heuristics that do
not guarantee to find global minima of the energy model.

The main contribution of this work are the LinLog energy models; algorithms
for minimizing these energy models are already available. In our experiments we
use the hierarchical algorithm of Barnes and Hut [5], which was introduced to
graph drawing by Tunkelang [50] and Quigley and Eades [44]. Its runtime is in
O(e+n log n) per iteration, where e is the number of edges and n is the number
of nodes. The overall runtime grows somewhat faster because the number of
iterations needed for convergence tends to grow with n. A Java implementation
of the algorithm is freely available3.

Efficient multi-scale algorithms for energy-based graph layout have been de-
veloped by Gajer et al. [21], Harel and Koren [27], Walshaw [51], and Hachul and
Jünger [24]. These algorithms rely on the assumption that nodes with a small
graph-theoretic distance (e.g. adjacent nodes) also have a small Euclidean dis-
tance in the optimal layout. This assumption is usually satisfied for conventional
energy models that enforce uniform edge lengths, but it is not satisfied for the
LinLog energy models. However, the design and evaluation of new multi-scale
algorithms is beyond the scope of this article.

Theoretical vs. Empirical Validation The literature on cluster analysis
distinguishes between the internal validity and the external validity of clusters
[28, Chapter 4], and this distinction also applies to graph layouts that reflect
clusters. Internal validity requires that densely connected nodes are grouped
and sparsely connected nodes are separated. External validity requires that
the grouping of the nodes conforms to an independently obtained authoritative
grouping.

This work provides examples for externally valid layouts with small LinLog
energy in Section 4; however, the focus is on internal validity, which is addressed
in Section 3. Internal validity is demonstrated theoretically: It is proved that
in layouts with minimum LinLog energy, 1) the ratio of the mean edge length
to the mean node distance is minimal, and 2) the distance between dense sub-
graphs is proportional to the sparsity of their connections. Of course, these
properties could also be checked empirically for example layouts, like previous
studies of force and energy models have verified the conformance to aesthetic
criteria (e.g. [9, 25]). However, such empirical validation is inferior to theoreti-
cal validation, because it is limited to a relatively small number of graphs, and
because properties of the used minimization heuristics interfere with properties
of the energy models. Besides the LinLog energy models, techniques for the
theoretical validation of energy models are the main contribution of this article.

3www-sst.informatik.tu-cottbus.de/GD/erlinlog.html

http://www-sst.informatik.tu-cottbus.de/GD/erlinlog.html
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1.2 Basic Definitions

For a set M , let |M | be the number of elements of M , and let M (2) be the set
of all subsets of M that have exactly two elements. A bipartition of a set M is a
pair (M1,M2) of sets with M1 ∪M2 = M , M1 ∩M2 = ∅, M1 6= ∅, and M2 6= ∅.

A graph4 G = (V,E) consists of a finite set V of nodes and a finite set E of
edges with E ⊆ V (2). Because layouts can be computed separately for different
components of a graph, it is assumed that graphs are connected, i.e. that every
pair of nodes is connected by a path.

For a node v, the degree deg(v) is the number |{e ∈ E | v ∈ e}| of edges
incident to v. The total degree

∑
v∈V1

deg(v) of all nodes in a set V1 is de-
noted by deg(V1). For two sets of nodes V1 and V2, the number of edges∣∣{{v1, v2} ∈ E | v1 ∈ V1, v2 ∈ V2}

∣∣ between V1 and V2 is called the cut between
V1 and V2 and denoted by cut(V1, V2). A set of nodes V1 is often identified with
the subgraph (V1, {e ∈ E | e ⊆ V1}) that it induces.

A d-dimensional layout of the graph G is a vector p = (p(v))v∈V of node
positions p(v) ∈ IRd. For a layout p and two nodes u, v ∈ V , the Euclidean
norm of the difference vector p(v) − p(u) is called the distance of u and v in p
and denoted by ||p(v)− p(u)||.

2 Clustering Criteria

Informally, we denote a subgraph as a graph cluster if it has many internal
edges and few edges to the remaining graph. This can be formalized by defining
a measure for the coupling between subgraphs, such that a smaller coupling
indicates a better clustering. This section discusses such measures, starting
with the cut. The main result is that the cut is biased towards uneven cluster
sizes, and needs to be normalized. For graphs with uniform degrees, normalizing
the cut with the number of nodes of the subgraphs is equivalent to normalizing
the cut with the number of edges, but for graphs with nonuniform degrees, these
two alternatives lead to considerably different notions of a cluster.

2.1 The Cut

A simple measure of the coupling between two disjoint sets of nodes V1 and V2

of a graph (V,E) is their cut cut(V1, V2). There exist efficient algorithms for
finding a bipartition of a given graph with the minimum cut [23].

However, the cut prefers bipartitions that consist of a very small and a very
large subgraph, as the following calculation shows. Among the 1

2 (|V |2−|V |)
unordered pairs of nodes from V , there are |V1| · |V2| pairs of one node from V1

and one node from V2. So the expected cut between V1 and V2 is 2|V1|·|V2|
|V |2−|V | |E|,

which is much smaller for bipartitions with |V1| � |V2| than for bipartitions
with |V1| = |V2|.

4To simplify the presentation, only graphs without edge weights are considered. The
generalization to graphs with edge weights is straightforward, and is discussed in Section 3.6.
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2.2 The Node-Normalized Cut

An unbiased measure of the coupling between two disjoint sets of nodes V1

and V2 called the node-normalized cut is obtained by normalizing the cut with
the expected cut (and ignoring constant factors for simplicity):

ncut(V1, V2) =
cut(V1, V2)
|V1| · |V2|

.

For a fixed graph (V,E) and all cluster sizes |V1| and |V2|, the node-normalized
cut has the same expected value 2|E|

|V |2−|V | .
This measure is also known as the density of the cut or the ratio of the cut,

and has been used in VLSI design [2] and software engineering [37]. The prob-
lem of finding the bipartition of a given graph with minimum node-normalized
cut is NP-hard for edge-weighted graphs [38], but approximable within factor
O(
√

log(|V |)) in deterministic polynomial time [3].
The node-normalized cut is still biased towards bipartitions with a very

small and a very large subgraph if the number of edges is used as measure of
subgraph size. Consider two bipartitions of the set of nodes V into two sets V1

and V2 of equal cardinality, where deg(V1) = deg(V2) in the first bipartition, and
deg(V1)� deg(V2) in the second bipartition. (Note that such bipartitions only
exist in graphs with nonuniform degrees.) Then the expected cut, and therefore
the expected node-normalized cut, is much larger for the first bipartition than
for the second.

The following calculation makes this more precise. The |E| edges of a graph
(V,E) have deg(V ) = 2|E| end nodes. So there are 1

2

(
deg(V )2 −

∑
v∈V deg(v)2

)
unordered pairs of end nodes. (The negative term accounts for “pairs” of two
equal end nodes.) Among these pairs, there are deg(V1) deg(V2) pairs of one
node from V1 and one node from V2. So the expected cut between |V1| and
|V2| is 2 deg(V1) deg(V2)

deg(V )2−
∑

v∈V
deg(v)2

|E|, which is much smaller for bipartitions with

deg(V1)� deg(V2) than for bipartitions with deg(V1) = deg(V2).

2.3 The Edge-Normalized Cut

Normalizing the cut with the expected cut (without constant factors) results in
another measure of coupling called the edge-normalized cut:

ecut(V1, V2) =
cut(V1, V2)

deg(V1) deg(V2)
.

For a fixed graph (V,E) and all clusters sizes deg(V1) and deg(V2), the edge-
normalized cut has the same expected value 2|E|

deg(V )2−
∑

v∈V
deg(v)2

.

The problem of finding the bipartition of a given graph with minimum edge-
normalized cut is NP-hard for edge-weighted graphs [45], but approximable
within factor O(

√
log(|V |)) in deterministic polynomial time [3].
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2.4 Related Work: Other Clustering Criteria

Shi and Malik’s Normalized Cut Shi and Malik [45] introduced the nor-
malized cut between two disjoint sets of nodes V1 and V2 of a graph (V,E):

smcut(V1, V2) =
cut(V1, V2)

deg(V1)
+

cut(V1, V2)
deg(V2)

.

Shi and Malik’s normalized cut is closely related to the edge-normalized cut:

smcut(V1, V2) = (deg(V1) + deg(V2)) ecut(V1, V2) .

So both measures differ only by a constant factor of deg(V ) if V1 ∪ V2 = V .
However, Shi and Malik’s normalized cut is biased towards small clusters when
deg(V1) + deg(V2) is not fixed.

Expansion and Conductance Two other well-known measures of coupling
are the expansion (e.g. [31])

expansion(V1, V2) =
cut(V1, V2)

min(|V1|, |V2])

and the conductance (e.g. [31])

conductance(V1, V2) =
cut(V1, V2)

min(deg(V1),deg(V2))
.

The terms isoperimetric number and Cheeger constant of a graph have been
used to denote both the minimum expansion and the minimum conductance
over all bipartitions, because both the number of nodes and the total degree of
a (sub)graph can be considered as its area or volume.

The problems of finding the bipartition of a graph with minimum expansion
or conductance are NP-hard [29, 46]. A recent O(

√
log(|V |))-approximation

algorithm for both problems by Arora, Rao and Vazirani [3] improves the classic
O(log(|V |))-approximation of Leighton and Rao [33, 34].

The expansion is related to the node-normalized cut by

expansion(V1, V2) = max(|V1|, |V2]) ncut(V1, V2)

and thus

1
2

(|V1|+ |V2|) ncut(V1, V2) ≤ expansion(V1, V2) ≤ (|V1|+ |V2|) ncut(V1, V2) .

The conductance is similarly related to the edge-normalized cut. Thus a bi-
partition whose expansion is k times the optimal expansion has also a node-
normalized cut of at most 2k times the optimal node-normalized cut. So the
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algorithms of Arora, Rao and Vazirani also approximate the node-normalized
cut, the edge-normalized cut, and Shi and Malik’s normalized cut within factor
O(
√

log(|V |)).
The expansion is biased towards similarly-sized clusters: For |V1| = |V |−1

and |V2| = 1, the expected expansion is 2|E|
|V | , while for |V1| = |V2| = 1

2 |V |, the

expected expansion is only |E|
|V |−1 . The conductance has a similar bias when the

total degree is used as measure of cluster size.

Newman’s Modularity Newman [40] proposed a measure of coupling for k
disjoint sets of nodes called modularity5:

Q(V1, ..., Vk) =
k∑

i=1

(
cut(Vi, Vi)
|E|

− deg(Vi)2

deg(V )2

)
.

The first term is the fraction of all edges that are within Vi, and the second
term is the expected value of this quantity (for graphs with loops, i.e. edges from
a node to itself). To make this measure comparable to the other measures in
this section, it is restricted to two sets of nodes, and corrected for the absence
of loops, which yields

Q′(V1, V2) =
cut(V1, V1) + cut(V2, V2)

|E|
− deg(V1)2 + deg(V2)2

deg(V )2 −
∑

v∈V deg(v)2
.

If V1 ∪ V2 = V , then

cut(V1, V1) + cut(V2, V2) = |E| − cut(V1, V2)

and
deg(V1)2 + deg(V2)2 = deg(V )2 − 2 deg(V1) deg(V2) ,

and thus maximizing Q′(V1, V2) is equivalent to minimizing

cut(V1, V2)− 2 deg(V1) deg(V2)
deg(V )2 −

∑
v∈V deg(v)2

|E| .

The second term is precisely the expected cut of V1 and V2, as derived in Sec-
tion 2.2. So if V1 ∪ V2 = V , maximizing Newman’s modularity is equivalent to
minimizing the difference between the actual cut and the expected cut, while
the edge-normalized cut is the quotient of the actual cut and the expected cut.

Our reason for preferring the edge-normalized cut over Newman’s modularity
is rather pragmatic: In the next section, the coupling of subgraphs will be
related to their distance in layouts, and this is easier for a coupling measure
that is nonnegative and takes the value 0 in the case of no coupling.

5This version of the measure differs slightly from an earlier version published in [41], where
the second term is the squared fraction of edges that connect to nodes in Vi.
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3 Energy Models for Graph Clustering

As representations of the cluster structure, graph layouts offer several benefits
over the more common partitions of the set of nodes. They do not simply as-
sign nodes to clusters, but can show how closely nodes are associated with their
cluster, and how clearly clusters are separated; and they facilitate the compre-
hension of the clusters, because viewers naturally interpret closely positioned
nodes as strongly related [8, 14].

This section introduces two energy models that correspond to the two un-
biased clustering criteria of the previous section, and demonstrates the internal
validity of their minimum energy layouts. Specifically, it is shown that the lay-
outs group densely connected nodes and separate sparsely connected nodes, and
that the Euclidean distances of groups reflect their coupling (as measured by
the clustering criteria).

3.1 The LinLog Energy Models

The node-repulsion LinLog energy of a layout p is defined as

UNodeLinLog(p) =
∑

{u,v}∈E

||p(u)− p(v)|| −
∑

{u,v}∈V (2)

ln ||p(u)− p(v)|| .

To avoid infinite energies we assume that different nodes have different positions,
which is no serious restriction because we are interested in layouts with low
energy. The first term of the difference can be interpreted as attraction between
adjacent nodes, the second term as repulsion between different nodes.

In the edge-repulsion LinLog energy model the repulsion between nodes is
replaced with repulsion between edges. In our formalization, the repulsion does
not act between entire edges, but only between their end nodes. So the repulsion
between two nodes is weighted by the number of edges of which they are an end
node, i.e. by their degrees:

UEdgeLinLog(p) =
∑

{u,v}∈E

||p(u)−p(v)|| −
∑

{u,v}∈V (2)

deg(u) deg(v) ln ||p(u)−p(v)||.

The beauty of edge repulsion lies in its symmetry: Edges cause both at-
traction and repulsion. In other words, nodes that attract strongly also repulse
strongly. More precisely, each node has consistently – in terms of attraction and
repulsion – an influence on the layout proportional to its degree. (This can be
visualized by setting the size of each node to its degree, as in the figures of this
article.)

In a node-repulsion LinLog layout of a graph with very nonuniform degrees,
the positions of the nodes mainly reflect their degrees: The (strongly attracting)
high-degree nodes are mostly placed at the center, and the (weakly attracting,
but equally repulsing) low-degree nodes at the borders. This bias is removed in
the edge-repulsion LinLog model. For graphs with uniform node degrees, both
models have equivalent minima up to scaling.
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3.2 Separation of Clusters

In a graph layout that reflects the cluster structure, nodes of the same dense
subgraph are close to each other, and nodes of different sparsely connected sub-
graphs are clearly separated. This can be achieved by minimizing the distances
between connected nodes (i.e. by minimizing the edge lengths), and at the same
time maximizing the distances between all pairs of nodes.

The first theorem in this subsection states that layouts with minimal node-
repulsion LinLog energy minimize the ratio of the mean distance between con-
nected nodes to the mean distance between all nodes. The second theorem is a
similar statement for edge-repulsion LinLog, with the difference that the dis-
tances of nodes in the denominator are weighted by their degrees. The analogy
to the first theorem becomes more clear when each node v is considered as con-
sisting of deg(v) end nodes of edges. Then the second theorem states that layouts
with minimal edge-repulsion LinLog energy minimize the ratio of the mean dis-
tance between connected end nodes to the mean distance between all end nodes.
In both theorems, the mean in the numerator is the arithmetic mean, while
the mean in the denominator is the geometric mean, which penalizes very short
distances more and rewards very large distances less than the arithmetic mean.

For a graph (V,E), a set F ⊆ V (2) of unordered node pairs, and a layout p,
the arithmetic mean of the distances of F is defined as

arithmean(F, p) =
1
|F |

∑
{u,v}∈F

||p(v)− p(u)|| ,

the geometric mean of the distances of F is defined as

geomean(F, p) =
(∏

{u,v}∈F
||p(v)− p(u)||

)1/|F |

,

and the degree-weighted geometric mean of the distances of F is defined as

geomean ′(F, p) =
(∏

{u,v}∈F
||p(v)− p(u)||deg(u) deg(v)

)1/
∑

{u,v}∈F
deg(u) deg(v)

.

Theorem 1 Let G = (V,E) be a connected graph, and let p0 be a layout of G
with minimum node-repulsion LinLog energy. Then p0 is a layout of G that
minimizes arithmean(E,p)

geomean(V (2),p)
.

Proof: The basic idea is to fix the average edge length temporarily. This does
not restrict generality, but only the scaling factor, and thus can be removed at
the end of the proof. It permits transforming the minimization of energy into a
minimization of the inverse geometric mean of the node distances.

Let the layout p0 be a solution of the minimization problem:

Minimize UNodeLinLog(p).
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Let c :=
∑
{u,v}∈E ||p0(u)− p0(v)||. Note that c ≥ 0. Then p0 is also a solution

of

Minimize UNodeLinLog(p) subject to
∑
{u,v}∈E

||p(u)− p(v)|| = c.

This is equivalent to

Minimize −
∑
{u,v}∈V (2)

ln ||p(u)−p(v)|| subj. to
∑
{u,v}∈E

||p(u)−p(v)|| = c.

Because exp
(
x
/
|V (2)|

)
is monotonically increasing in x, p0 is a solution of

Min. exp
(
−
∑
{u,v}∈V (2)

ln ||p(u)−p(v)||
|V (2)|

)
subj. to

∑
{u,v}∈E

||p(u)−p(v)|| = c.

This is equivalent to

Minimize
1

geomean(V (2), p)
subject to arithmean(E, p) =

c

|E|
.

(|E| > 0 because we only consider connected graphs with at least two nodes.)
Because c

|E| is nonnegative, p0 is also a solution of

Minimize
arithmean(E, p)
geomean(V (2), p)

subject to arithmean(E, p) =
c

|E|
. (1)

Assume that there is a layout q0 of G with arithmean(E,q0)
geomean(V (2),q0)

< arithmean(E,p0)
geomean(V (2),p0)

.

Because geomean(V (2), q0) > 0, no two different nodes in q0 have the same po-
sition, and thus arithmean(E, q0) > 0. The layout q1 := c

|E| arithmean(E,q0)q
0 has

arithmean(E, q1) = c
|E| and arithmean(E,q1)

geomean(V (2),q1)
= arithmean(E,q0)

geomean(V (2),q0)
< arithmean(E,p0)

geomean(V (2),p0)
.

This contradicts statement (1); thus the assumption is wrong, and p0 is also a
solution of

Minimize
arithmean(E, p)
geomean(V (2), p)

.

2

Theorem 2 Let G = (V,E) be a connected graph, and let p0 be a layout of G
with minimum edge-repulsion LinLog energy. Then p0 is a layout of G that
minimizes arithmean(E,p)

geomean′(V (2),p)
.

Proof: Similar to the proof of Theorem 1. 2

3.3 Interpretable Distances between Clusters

Ideally, a graph layout that reflects the cluster structure not only shows clus-
ters, but also the coupling between clusters. This subsection shows that the
distance of two dense, sparsely connected clusters approximates their inverse
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node-normalized cut in layouts with minimal node-repulsion LinLog energy, and
approximates their inverse edge-normalized cut in layouts with minimal edge-
repulsion LinLog energy.

A formal proof is given for an idealization of this statement. Let (V,E)
be a graph, and let (V1, V2) be a bipartition of the set of nodes V into two
dense, sparsely connected subgraphs. In a minimum LinLog energy layout p,
the distances within V1 and within V2 should be much smaller than the distance
between V1 and V2. In the theorems, this situation is approximated by assuming
that all nodes in V1 have the same position and all nodes in V2 have the same
position in p. For this simplified situation it can be shown that the distance
between V1 and V2 equals the inverse normalized cut between V1 and V2. A
similar theorem for less restricted layouts is proved in [42].

Theorem 3 Let G = (V,E) be a connected graph, and let (V1, V2) be a bipar-
tition of its set of nodes. Let P be the set of layouts of G that assign the same
position to all nodes in V1, and the same position to all nodes in V2. Let p0 be
a layout in P with minimum node-repulsion LinLog energy. Then the distance
of V1 and V2 in p0 is 1

ncut(V1,V2)
.

Proof: The basic idea is to express the node-repulsion LinLog energy as a
function of the distance of the two sets of nodes, and to exploit the fact that
the minimum energy layout is a minimum of this function.

Let p0 be a layout in P with minimum node-repulsion LinLog energy, and
let d0 be the distance of V1 and V2 in p0. Because the distances between all
nodes in V1 and between all nodes in V2 are equal (namely, 0) for all layouts
in P , the distance d0 is a minimum of

U(d) = cut(V1, V2) d− |V1||V2| ln d .

The derivative of this function is 0 at its minimum d0.

0 = U ′(d0) = cut(V1, V2)− |V1| · |V2|/d0

d0 =
|V1| · |V2|

cut(V1, V2)
=

1
ncut(V1, V2)

2

Theorem 4 Let G, V1, V2, P be defined as in Theorem 3. Let p0 be a layout
in P with minimum edge-repulsion LinLog energy. Then the distance of V1

and V2 in p0 is 1
ecut(V1,V2)

.

Proof: Similar to the proof of Theorem 3. 2

The simple technique used in the proofs allows a quick assessment of the
clustering properties not only of the LinLog energy models, but also of other
energy models that are based on pairwise attraction and repulsion.
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3.4 Example

Figure 2 shows six layouts of a pseudo-random graph with eight clusters of
50 nodes. The probability of an edge {u, v} is
• 1 if u and v belong to the same of the first four clusters,
• 0.5 if u and v belong to the same of the second four clusters,
• 0.2 if u and v belong to different of the first four clusters,
• 0.05 if u and v belong to different of the second four clusters, and
• 0.1 if u belongs to one of the first and v to one of the second four clusters.

In total, the graph has 400 nodes, 14 738 edges between nodes of the same
cluster, and 7 770 edges between nodes of different clusters. Nodes of the first
four clusters generally have larger degrees than nodes of the second four clusters,
and thus have larger representations in Figure 2.

The layouts of the LinLog models clearly show the clusters; the other four
layouts will be discussed in the next subsection. The node-repulsion LinLog
layout places the first four clusters more closely than the second four clusters,
which reflects the fact that node-normalized cuts between the first four clusters
are higher than between the second four clusters. In the edge-repulsion LinLog
layout the distances between all clusters are similar, reflecting the fact that the
edge-normalized cuts between all pairs of clusters are similar.

(a) Kamada-Kawai (c) Fruchterman-Reingold (e) Node-repulsion
LinLog

(b) Kamada-Kawai,
adapted by Gansner et al.

(d) Edge-repulsion
Fruchterman-Reingold

(f) Edge-repulsion
LinLog

Figure 2: Pseudo-random graph
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3.5 Related Work

Graph Clustering with Energy Models Most existing force and energy
models have not been designed to find clusters, but to produce readable box-
and-line visualizations. For example, the classic models of Eades [16], Fruchter-
man and Reingold [20], and Davidson and Harel [13] enforce uniform (or other
given) edge lengths, which often prevents the separation of clusters. Because
they are (like LinLog) based on the pairwise attraction and repulsion of nodes,
the analysis technique of Section 3.3 is applicable, and it can be proved that
the coupling and the Euclidean distance of subgraphs are only weakly related
in their layouts. The model of Kamada and Kawai [30] enforces Euclidean dis-
tances to approximate graph-theoretic distances, which are only weakly related
to the density (and thus to the cluster structure). The example layouts for
the Kamada-Kawai model and the Fruchterman-Reingold model in Figures 2(a)
and 2(c) indeed fail to show the clusters.

Graph Clustering by Minimizing Distance Ratios Theorem 1 states
that a layout that minimizes the node-repulsion LinLog energy also minimizes
the ratio arithmean(E,p)

geomean(V (2),p)
. It was introduced as a characterization of LinLog lay-

outs, but may also be seen as basis for applying force-directed layout algorithms
to minimize distance ratios, and thus to reveal the cluster structure. Earlier
works have minimized similar distance ratios to find clusters. In particular,
some approximation algorithms for graph clustering problems (e.g. [36, 4]) de-
rive partitions from layouts that minimize the ratio arithmean(E,p)

arithmean(V (2),p)
. However,

these layouts are not suitable for human viewers (e.g. many nodes are placed at
the same position), and are not even computed in Euclidean space.

Edge Repulsion in Energy-Based Graph Drawing Several works intro-
duce forces that are similar to the edge repulsion in the LinLog energy model,
but differ from this work in two respects: First, they do not suggest to replace
repulsion between all pairs of nodes with repulsion between all pairs of edges.
Second, the forces are intended to improve the conformance to specific aesthetic
criteria, and do not enable interpretations with respect to the cluster structure.

Coleman and Parker [11] propose a repulsive force between edge midpoints,
and Davidson and Harel [13] and Bertault [6] introduce a repulsive force between
edges and nodes, all to avoid edges that are very close or cross each other.
Cruz and Twarog [12] suggest (without giving details) that for 3D layouts, the
latter force can be replaced with a repulsive force between non-adjacent edges.
Lin and Yen [35] use a repulsive force only between adjacent edges, mainly to
improve angular resolution. Frick, Ludwig and Mehldau [19, Section 4.3] scale
the attractive force acting on each node v with a factor 1

deg(v)(1+deg(v)/2) (without
justifying the choice of this factor), to distribute the nodes more uniformly.
Gansner, Koren and North [22, Section 3] adapt the Kamada-Kawai energy
model (and similar models) for the same purpose, by increasing the desired
edge length between high-degree nodes.



Noack, Energy Models for Graph Clustering , JGAA, 11(2) 453–480 (2007) 467

Edge Repulsion in Spectral Graph Drawing According to Theorems 1
and 2, layouts with minimal LinLog energy minimize certain ratios of mean edge
lengths to mean all-pairs distances. Spectral graph layouts minimize similar
distance ratios. Also, we distinguished between a node-repulsion and an edge-
repulsion version of the LinLog energy model. A similar distinction exists in
spectral graph layout.

Spectral graph layout methods compute layouts of graphs from eigenvectors
of related matrices, most commonly the Laplacian. The adjacency matrix A of
a graph G = (V,E) is a symmetric |V |×|V | matrix with

A(u, v) =
{

0 if {u, v} 6∈ E
1 if {u, v} ∈ E .

The degree matrix D of G is a |V |×|V | diagonal matrix with D(v, v) = deg(v).
The Laplacian L of G is defined as L = D −A.

For connected graphs, all eigenvalues of the Laplacian are real, the smallest
eigenvalue is 0 (with associated eigenvector (1, 1, ..., 1)T ), and all other eigen-
values are positive. The eigenvector corresponding to the second smallest eigen-
value is called the Fiedler vector.

Theorem 5 (Fiedler [17]) The Fiedler vector of a graph (V,E) minimizes∑
{u,v}∈E(x(u)− x(v))2∑
{u,v}∈V (2)(x(u)− x(v))2

over all vectors x ∈ IR|V | that are non-constant (i.e. have at least two different
entries).

This property justifies the use of the Fiedler vector not only as node coordi-
nate vector in one-dimensional graph layouts (pioneered by Hall [26]), but also
for deriving graph clusters e.g. by simple thresholding (pioneered by Donath
and Hoffman [15]). The next eigenvectors of the Laplacian have similar prop-
erties and can be used as additional coordinates in higher-dimensional layouts
(see [26, 32] for details).

More recently, solutions of the generalized Laplacian eigensystem Ly = µDy
have received considerable attention [10, 45, 32]. We denote the generalized
eigenvector corresponding to the second smallest generalized eigenvalue as the
degree-normalized Fiedler vector.

Theorem 6 (Chung [10, Chapter 1.2], similarly Koren [32, Section 4])
The degree-normalized Fiedler vector of a graph (V,E) minimizes∑

{u,v}∈E(x(u)− x(v))2∑
{u,v}∈V (2) deg(u) deg(v)(x(u)− x(v))2

over all non-constant vectors x ∈ IR|V |.
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Comparing Theorems 1 and 2 with Theorems 5 and 6 shows a striking anal-
ogy between LinLog layouts and spectral layouts: LinLog layouts minimize the
ratio of the arithmetic mean of edge lengths to the geometric mean of all-pairs
distances. Spectral layouts minimize the ratio of the sum (or equivalently, arith-
metic mean) of squared edge lengths to the sum (or arithmetic mean) of squared
all-pairs distances. And for both LinLog and spectral methods, there exists a
variant (with edge repulsion and degree normalization, respectively) where the
distances in the denominator are weighted by the node degrees.

From the applications perspective, the benefits of edge repulsion for drawing
and clustering graphs with nonuniform degrees are available with both force-
directed and spectral methods. However, spectral layouts do not reflect coupling
as directly as LinLog layouts (see Theorem 3 and 4), and tend to place many
nodes at the same position, which impairs readability. This latter property
can be easily seen from the minimized distance ratios, and has been observed
empirically e.g. in [25, 32]. On the other hand, efficient algorithms for computing
globally optimal layouts exist only for spectral methods.

3.6 Extensions

Classes of Energy Models As discussed in Section 3.5, no single energy
model can both isolate clusters and enforce uniform edge lengths, but classes of
energy models may provide users with a choice. An example for such a class is
r-PolyLog. For all r ∈ IR with r > 0, the node-repulsion r-PolyLog energy of a
layout p is defined as

Ur-NodePolyLog(p) =
∑

{u,v}∈E

1
r
||p(u)− p(v)||r −

∑
{u,v}∈V (2)

ln ||p(u)− p(v)|| ,

and the edge-repulsion r-PolyLog energy is defined similarly.
This class of energy models contains two models that were already men-

tioned: The 1-PolyLog energy model is the LinLog model, and the 3-PolyLog
energy model is the Fruchterman-Reingold model [20] (which is usually ex-
pressed as a force model). The class contains energy models that isolate clusters
(r → 0), energy models that enforce uniform edge lengths (r →∞), and many
compromises between both extremes (0 < r <∞).

Edge Repulsion for Conventional Energy Models In many force and en-
ergy models, including those of Eades [16] and Fruchterman and Reingold [20],
adjacent nodes attract and all pairs of nodes repulse. Like node-repulsion Lin-
Log, these models tend to draw dense subgraphs too small (because attraction
dominates repulsion) and sparse subgraphs too large.

Figure 3(a) shows two examples for the Fruchterman-Reingold model: The
eight central nodes of the left graph are connected by many edges, but use only
a small part of the area. Much area is wasted by the unnecessarily long edges
to the eight peripheral nodes. The (sparse) right graph is drawn much larger
than the dense part of the left graph, although it contains much fewer edges.
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(a) (Node-repulsion)
Fruchterman-Reingold

(b) Edge-repulsion
Fruchterman-Reingold

Figure 3: Two small graphs

Like for LinLog, replacing node repulsion with edge repulsion improves the
balance between attraction and repulsion, because both are caused by the edges.
Figure 3(b) shows that this leads to a more uniform information density and
thus better readability. A full evaluation of these readability improvements is
beyond the scope of this article, which focuses on interpretability.

Weighted Graphs A weighted graph G = (V,E,w) consists of a finite set V
of nodes, a finite set E of edges with E ⊆ V (2), and a function w : V ∪E → IR+

that assigns a positive weight to each node and each edge. The degree deg(v) of
a node v is the sum of the weights of its incident edges

∑
e∈E:v∈e w(e).

The node-repulsion LinLog energy of a layout p of a weighted graph (V,E,w)
is ∑

{u,v}∈E

w({u, v})||p(u)− p(v)|| −
∑

{u,v}∈V (2)

w(u)w(v) ln ||p(u)− p(v)||,

and the edge-repulsion LinLog energy is∑
{u,v}∈E

w({u, v})||p(u)− p(v)|| −
∑

{u,v}∈V (2)

deg(u) deg(v) ln ||p(u)− p(v)||.

So the node-repulsion LinLog energy of a layout equals the edge-repulsion Lin-
Log energy if the weight of each node is its degree.

Unconnected Graphs If a graph has more than one connected component,
the distances of the connected components approach infinity in layouts with
minimum LinLog energy. This can be avoided by adding a gravitational energy
that attracts each node to the barycenter of the layout [19].

For a weighted graph G = (V,E,w), a layout p of G with the barycenter

b(p) :=
∑

v∈V
w(v)p(v)∑

v∈V
w(v)

, and a small constant g that determines the distances

of the components, the gravitational energy
∑

v∈V gw(v)||b(p) − p(v)|| can be
added to the node-repulsion LinLog energy of p. For edge-repulsion LinLog, the
weight w(v) should be replaced with the degree deg(v).
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A special case of a connected component is a node with the degree 0. The
edge-repulsion energy of such a node is 0, independent of its position. Appro-
priate positions for such nodes can be determined by treating them as if they
had a small positive degree.

Graphs with Clusterings A clustering of a graph (V,E) is a partition of
its set of nodes V into nonempty subsets. Sometimes a layout should group
the nodes according to a given clustering, as opposed to a good clustering with
respect to one of the clustering criteria in Section 2. This can be achieved by
generalizing the gravitational energy (introduced in the previous paragraph) to
attract each node to the barycenter of its subset (see [43] for details).

4 Real-World Examples

This section discusses example layouts of the two LinLog energy models and,
for comparison, of the widely used Fruchterman-Reingold force model [20]. It
provides evidence for the external validity of layouts with small edge-repulsion
LinLog energy, by showing that the grouping of the nodes in these layouts
conforms with authoritative groupings.

The layouts are shown in Figures 4 to 7. The degree of each node is propor-
tional to the area of its representing circle. (A certain minimum area ensures
visibility.) The edges are not represented, because they are not relevant to ex-
ternal validity, and because they could not be discerned due to their relatively
large density. Some layouts were rotated manually. (Rotation does not change
the energy.) The graph data, a tool for computing the layouts, and VRML
files of the larger layouts are available on the supplementary web page6. Unlike
static pictures, the VRML files enable zooming and the selective display of node
labels, which is particularly useful for visualizations of large graphs.

For all four graphs, the Fruchterman-Reingold model (Subfigures (a)) and
the node-repulsion LinLog model (Subfigures (b)) tend to place nodes with high
degree in the center, and nodes with low degree near the borders. Thus the
positions of the nodes in the node-repulsion layouts mainly reflect their degree,
and only the edge-repulsion LinLog layouts will be discussed in more detail.

Event Participation (Figure 4) The graph represents the participation of
18 women in 14 informal social events. Each woman and each event is modeled
by a node, and each participation is modeled by an edge. Freeman [18] per-
formed a meta-analysis of 21 earlier studies that assigned the women to groups.
Applying consensus analysis to combine the results of these studies, he obtained
a decomposition into two groups, with the first group containing Brenda, Char-
lotte, Eleanor, Evelyn, Frances, Laura, Pearl, Ruth, and Theresa, and the other
group containing the remaining nine women. The individual studies show con-
siderable disagreement about the assignment of Pearl, Olivia, and Flora. Some

6www-sst.informatik.tu-cottbus.de/GD/erlinlog.html

http://www-sst.informatik.tu-cottbus.de/GD/erlinlog.html
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studies assign Pearl to the first group, some to the second group, others to no
group or both groups. Olivia and Flora are often assigned to the second group,
but sometimes considered as a separate group, or assigned to no group at all.

The edge-repulsion LinLog layout shows the two main groups of women, but
also shows that Pearl is rather between these groups. The disagreement between
edge-repulsion LinLog and node-repulsion LinLog mirrors the disagreement of
previous studies: While the earlier assigns Olivia and Flora to the second group
because they exclusively attend events of this group, the latter separates them
from the second group because they attend few such events.

Airline Routing (Figure 5) The nodes of this graph represent US airports,
and the (unweighted) edges represent direct flights. The probability that two
airports are connected by a direct flight is strongly related to their geographical
distance: Most direct flights are relatively short, and only few large hub airports
are connected by direct long-range flights.

The distances in the edge-repulsion LinLog layout resemble the relative geo-
graphical distances of the airports remarkably closely, given that the graph does
not contain any explicit information about geographical distances.

World Trade (Figure 6) The nodes of this graph represent countries, and
the edge weights specify the trade volume between each pair of countries. The
main factor that determines the transaction costs and thus the intensity of trade
between two countries is their geographical distance.

The edge-repulsion LinLog layout reflects the relative geographical distances
on all scales. Globally, it separates the three large economic areas of the world,
namely America, East Asia and Australia, and Europe. Locally, it groups, for
example, the North European countries (Norway, Sweden, Finland, Denmark),
and pairs Spain and Portugal, Australia and New Zealand, and China and Hong
Kong.

The degrees of the nodes in the world trade graph are extremely non-uniform,
because the total trade of the largest and the smallest countries differs by more
than three orders of magnitude. As a consequence, the distances of economically
large countries in the node-repulsion layouts are very small compared to the
distances of small countries, and the difference between edge-repulsion layouts
and node-repulsion layouts is huge.

Dictionary (Figure 7) The nodes represent terms in the Online Dictionary
of Library and Information Science (ODLIS), and the edges represent hyperlinks.
A hyperlink between two terms exists if one term is used to describe the meaning
of the other term, and thus connects semantically related terms.

The edge-repulsion LinLog layout indeed groups semantically related terms,
which is better reflected in the VRML file on the supplementary web page
than in Figure 7(c). Such a grouping is useful, for example, for discovering the
global topic areas (like publishing, printing, information technology, etc.), for
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identifying entry points for the exploration of topics, or for finding semantically
related terms even if they are not explicitly linked.

Coupling of Software Artifacts [7] In large software systems, the indi-
vidual software artifacts (e.g. files or classes) are hierarchically organized into
subsystems. Artifacts that are frequently changed together should belong to
the same subsystem, because changes across subsystem boundaries tend to be
more expensive and error-prone. Thus grouping artifacts with respect to com-
mon changes helps to propose new subsystem hierarchies, and to evaluate and
improve existing subsystem hierarchies. Beyer and Noack have applied the edge-
repulsion LinLog energy model to identify such groups of artifacts [7]. Example
layouts and the tool CCVisu with particular support for this application can be
found at the web page mtc.epfl.ch/~beyer/co-change/.

5 Summary

The main contributions of this article are

• the LinLog energy models, whose minimum energy layouts reflect the clus-
ter structure of graphs with respect to two well-defined clustering criteria.

• edge repulsion in energy models, which avoids or reduces the bias towards
grouping nodes with high degree when used instead of or in addition to
node repulsion.

Some techniques from the development and evaluation of these results may
also be applicable in other contexts, in particular

• the identification and elimination of biases in clustering criteria in Sec-
tion 2, and

• the analysis of minimum energy layouts with respect to optimized ratios of
mean edge lengths to mean node distances in Section 3.2, and with respect
to the correspondence of distances to clustering criteria in Section 3.3.

Main results that connect the proposed clustering criteria and energy models
with previous work are

• formal relationships between Shi and Malik’s normalized cut, Newman’s
modularity, and the edge-normalized cut (which is the clustering criterion
associated with the edge-repulsion LinLog energy model).

• the analogy of the distance ratios minimized by the node-repulsion and
the edge-repulsion version of the LinLog energy model, and the distance
ratios minimized by the unnormalized and the degree-normalized version
of spectral graph drawing.

• the class r-PolyLog of energy models which contains the LinLog energy
models, the Fruchterman-Reingold force model, and many other compro-
mises between isolating clusters and enforcing uniform edge lengths.
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(a) Fruchterman-Reingold model

(b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Figure 4: Women participating in social events (18 women, 14 events, 89 edges).
The lighter-colored nodes correspond to the events.
Data source: [18, Figure 1]
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(a) Fruchterman-Reingold model (b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Figure 5: Direct flights between US airports (332 nodes, 2126 edges). Some
distant airports in Alaska and the South Sea (e.g. Guam) are omitted to improve
readability.
Data source: Pajek project (vlado.fmf.uni-lj.si/pub/networks/data/)
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(a) Fruchterman-Reingold model (b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Figure 6: Trade between 66 countries. Edges are weighted with the trade vol-
ume.
Data source: Bilateral trade data for the year 1999 from the World Bank
(www.worldbank.org)
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(a) Fruchterman-Reingold model (b) Node-repulsion LinLog model

(c) Edge-repulsion LinLog model

Figure 7: Hyperlinks between terms in the Online Dictionary for Library and
Information Science ODLIS (2896 nodes, 18238 edges).
Data source: Pajek project (vlado.fmf.uni-lj.si/pub/networks/data/)
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