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Abstract

In this paper we investigate the problem of classification between
sports and news broadcasting. We detect and classify files that consist of
speech and music or background noise (news broadcasting), and speech
and a noisy background (sports broadcasting). More specifically, this
study investigates feature extraction and training and classification proce-
dures. We compare the Average Magnitude Difference Function (AMDF)
method, which we consider more robust to background noise, with a novel
proposed method. This method uses several spectral audio features which
may be considered as specific semantic information. We base the extrac-
tion of these features on the theory of computational geometry using an
Onion Algorithm (OA). We tested the classification procedure as well as
the learning ability of the two methods using a Learning Vector Quantizer
One (LVQ1) neural network. The results of the experiment showed that
the OA method has a faster learning procedure, which we characterise as
an accurate feature extraction method for several audio cases.
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1 Introduction

1.1 Specific Objectives

This study investigates the problem of classifying two different files with highly
similar audio overlapping regions, these being a sports broadcast and a news
broadcast. The classification problem focuses on the development of a number
of features extracted in order to bring out the differences of these two examples,
and simultaneously to downgrade the similarity of the audio features. We in-
troduced a new method to do this which is based on an onion algorithm (OA)
of computational geometry; this reduces the number of fast Fourier transform
(FFT) amplitudes of an audio signal, holding the smallest layer, which, accord-
ing to latest studies [5, 24, 23, 22, 29, 27, 26, 25], encloses a dominant part
of the semantic information of the signal. Thus, the objective of this study
is to verify the above claim with a well-conducted experiment corroborating
this technique. To implement this experiment we selected the best feature ex-
traction, which is used for the same classification purposes [35] as the Average
Magnitude Difference Function (AMDF) method, and we compared this with
the proposed algorithm using as an unbiased criterion the well-fitted artificial
Learning Vector Quantize (LVQ) neural network.

1.2 General Background

Video is a rich source of information, with visual, audio, and textual content.
Many applications, such as information indexing and retrieval in multimedia
databases, video editing, and so forth, require video scene analysis and clas-
sification. Research in this area in the past several years has focused on the
use of speech and image information [34, 16, 17, 33, 32]. A large number of
useful features, based on video and audio, have been proposed for video clas-
sification. Specifically, the foundation of any type of audio analysis algorithm
is the extraction of numerical feature vectors that characterise the audio con-
tent. Until now, feature extraction has been based on a variety of feature sets.
These are Time Domain features, such as ZeroCrossings, Root-Mean-Squared
Energy (RMS) and Ramp Time, the Spectral Domain features Centroid, Rolloff,
and Flux, Mel-Frequency Cepstral Coefficients (MFCC), and linear Predictive
Coefficients (LPC). More details about the definitions of these features can be
found in Hauptmann and Witbrock (1997) and Tzanetakis and Cook (2002)
[8, 36]. The latest studies performed the pitch calculation using the AMDF
method [10], which proved to be more robust to background noise and music
in comparison with the above methods. In addition, according to Tzanetakis
and Chen’s (2004) recent findings [35], the MFCC and LPC features did not
perform as well as the pitch calculation using the AMDF method, probably be-
cause these features are designed for speech modelling and recognition and don’t
work as well for modelling more general audio textures [35]. The Problems: In
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this study we investigated the classification problem of two multimedia types of
audio broadcasting programs. These were recordings of football and basketball
matches and an audio news broadcasting file. The proposed algorithm attempts
to improve the feature extraction technique in a novel way in order to elimi-
nate the classification problems that are present in the literature. To implement
this, we studied the problems as sourced from the calculation of the coefficients,
which we extracted using the AMDF method, the most robust of the feature
extraction techniques. In the literature these problems are the overlapping of
similar backgrounds sounds, the criterion of the audio signal segmentation, and
the criterion of the estimation of the interval frame which is needed for pitch
calculation. More details of these problems are presented below.

1.3 The Problems

In this study we investigated the classification problem of two multimedia types
of audio broadcasting programs. These were recordings of football and bas-
ketball matches and an audio news broadcasting file. The proposed algorithm
attempts to improve the feature extraction technique in a novel way in order
to eliminate the classification problems that are present in the literature. To
implement this, we studied the problems as sourced from the calculation of
the coefficients, which we extracted using the AMDF method, the most robust
of the feature extraction techniques. In the literature these problems are the
overlapping of similar backgrounds sounds, the criterion of the audio signal
segmentation, and the criterion of the estimation of the interval frame which
is needed for pitch calculation. More details of these problems are presented
below.

1.4 The Problem of Overlapping Background Sounds

Sound recordists know that the audio in a sport-broadcasting video is different
from that in a news report. However, the main problem becomes focused when
the two categories (sport audio and news audio) overlap heavily in the same
region, such as when the background sounds are similar. This can be due to
incorrect or noisy training labels. These problems of the inconsistency and in-
completeness of human annotations are so prevalent that any video classification
systems must cope with them [35]. It will be difficult for discriminative clas-
sifiers to make these distinctions, because there is no clear, decisive boundary
separating the two sets of data. A solution to the above problems is select-
ing a suitable length for each shot, in particular by obtaining the decision for
the whole shot by the majority of classified windows within it and using the
percentage of this majority of windows as a confidence measure for classifica-
tion. This approach has the advantage of dealing elegantly with the problem of
shots that contain two different audio textures [6], which, although uncommon,
occurs sometimes in the data. On the other hand, this solution increases the
complexity dramatically, which is quite ineffective for Moving Picture Experts
Group Seven (MPEG7) [1].
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1.5 The Problem of Audio Time Segmentation

The foundation of any type of audio analysis algorithm which is based on the
extraction of numerical features needs the determination of the audio time seg-
mentation. However, all the techniques (including the AMDF) of audio features
extraction based on the variable duration shot [35, 16, 3] usually range between
one and six seconds. The determination of this time segmentation and its partic-
ular sub-segmentation are highly significant, as they take place using a specific
overlapping window called an interval frame.

1.6 The Estimation of the Interval Frame

The other problem, which derives from the previous procedure, is the determi-
nation of the interval frame. This problem depends on the voice’s features . For
example, a speaking voice requires a variable interval frame ranging between
2.3 ms and 15.9 ms. However, in the non-speech intervals within speech, or
breathing pauses, we need a variable segmentation ranging between 100-300 ms
[20, 31]. In our example, this problem is serious for the existing methods, as
the dominant feature of the classification is most often the background activ-
ity, which is a non-speech signal. Thus, we selected an interval time for the
AMDF coefficients greater than 50 ms in order to include all the examples in
our experiment (see section 3.1).

1.7 The Proposed Method

The primary idea is to extract an audio feature that attempts to avoid noise
effects by not using the vulnerable parts of speech spectra and without losing
important discriminative information. This approach differs from noise removal
methods, such as the AMDF, because it does not require an estimate of the
noise and does not assume a stationary or slowly changing noise. The solution
to this problem is the reduction of the spectral resolution of the original FFT
amplitudes using the OA, according to our latest studies [26, 25]. The basis of
the method depicts the centre of the multi-layers of a set of arithmetic points
on the Cartesian plane that represent the values of the application used. For
example, in the case of fingerprint verification [26], these values represent the
values of the FFT amplitudes, which are produced by the pixels’ values. In
our example, these values represent the FFT amplitudes of the original audio
signal. Similarly, this algorithm can be applied in a text categorization pro-
cedure [25]. In this technique, however, we replaced the FFT method with a
numerical conversion of the text characters, thus testing the proposed method
for the first time in the audio signals area in order to ascertain its ability to
classify the two different audio categories. Finally, the present work focuses in
principle on sports broadcasting as opposed to audio news broadcasts and aims
to establish a one-to-one correspondence between the specific information and
certain appropriate features of each audio signal category. A neural network
classifier, Learning Vector Quantizer (LVQ), is employed to classify unknown
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features of each example from the AMDF method in comparison with the OA
method in order to show the OA method’s classification superiority over the
classic AMDF-one Neural network-based classification, which has received con-
siderable attention recently in a wide variety of research fields and experimental
setups. The specific type of neural network employed here, namely the LVQ,
offers the advantage of classifying input vectors of high dimensionality, which is
desirable for our tests. A more detailed description of its architecture and op-
eration is provided in Section 2.3. Spectral values obtained from both methods
(OA and AMDF) are used as features to form the input vectors. Furthermore,
we test the validation of the feature vector of each method in the training pro-
cedure by investigating the training error of convergence of each. This approach
is called the hold out method [30].

2 Method

2.1 Overview

The present study is divided into a feature extraction stage and a training and
classification stage. In the feature extraction stage, the OA method is based on
a novel statistical estimation in which the smallest layer of an onion convex poly-
gon encloses the geometric median value of a feature vector [10]. Furthermore,
this statistical approximation has been verified empirically in several pattern
recognition problems [24, 23, 22, 29, 27, 26, 25]. In our example, the feature
vector is composed by the FFT amplitudes of a particular shot of audio file of
either sport or news video. Specifically, we will use the Matlab function fft(x)
to do a Fourier Analysis of the data. This is the discrete Fourier transform
(DFT) of vector x, computed with an FFT algorithm. If X is a matrix, fft(x)
is the FFT of each column of the matrix. In Matlab, all variables are matrices;
vectors are simply row or column matrices. The fft function employs a radix-2
Fourier transform if the length of the sequence is a power of two, and a slower
mixed-radix algorithm if it is not. The function implements the transformation
given by the following equation (1):

X(k + 1) =
N−1
∑

n=0

x(n + 1)e−ik 2πn

N (1)

where N = length(x). Note that the series is written in an unorthodox way,
running over n + 1 and k + 1 instead of the usual n and k, because Matlab
vectors run from 1 to N instead of from 0 to N − 1.

In our example, in the Cartesian plane (see Figure 1) the absolute values of
X are in the y axis and in the x axis are the order of each element of matrix X.
Thus, we constructed a vector matrix S of size (N × 1)
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The OA method is described as follows:
1. We put the elements of the S vector in the Cartesian plane according to

f(N, |XN |) function. For example see Figure 2.
2. We determine the finite set of points S = S0. Let S1 be the set

S0\∂H(S0) : S minus all the points on the boundary of the hull of S. (see
figure 3)

3. The process continues until reaching a set with three points or less.
Similarly, define Si+1 = Si\∂H(Si) . The hulls Hi = ∂H(Si) are called the
layers of the set and the process of peeling away the layers is called onion
peeling [19, 7]. (see figure 4)

This position may be determined by using a combination of computational
geometry algorithms, which is known as Onion Peeling Algorithms [4], with
overall complexity O(d · n log n) times, where d is the depth of the smallest
convex layer and n is the number of characters in the numerical representation
(in accordance with section 2.1).

Thus, the smallest convex layer Si of the original set S of vector carries spe-
cific information. In particular, vector Si may be characterized as a common

Figure 1: The placement of vector S in Cartesian plane.
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geometrical area of all the elements of vector S. In our example, this consider-
ation is valuable because this subset may be characterized as representing the
significant semantics of the selected audio signal (see figure 5). The decision

Figure 2: The placement of coordinates f(N, |XN |).

Figure 3: The external hull S0
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regarding this selection is explained in the experimental section.
We may consider the smallest convex layer to comprise a significant geo-

metrical region of frequency enclosing the median frequencies of the original

Figure 4: The iterative procedure of convex hulls

Figure 5: The isolation of the smallest convex polygon
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audio shot file. The advantage of this method over the AMDF method is that
the problems of length selection (shot and pitch period) are eliminated, as this
method avoids the problem of specific frequency segmentation and creates coef-
ficients from the original FFT amplitudes. These, in turn, have the additional
advantage of being appropriate for application to an inverse Fourier transform
in order to a particular signal from the original audio file to be retrieved. The
main advantage of the proposed algorithm is that it is possible to be used in a
real time scenario. For the justification of this claim we constructed a scenario,
which is presented in Section 6. Furthermore, we processed the same shots of
audio sport or news files by the AMDF method. These extracted features co-
efficients consist of the AMDF features vector, which is to be used in the next
stage. The training and classification procedure was determined taking into
account the following criteria:

1. The selection of the appropriate neural network, which is best fitted for the
classification procedure of the above examples (OA, AMDF). The justification
of this selection is presented in section 2.3.

2. The selection of the optimum size of the feature vector for the well-
functionality which is used in the selected neural network. More details are
presented in sections 2.2.2 and 3.2.

3. The selection of the suitable number of feature vectors needed for training
and testing procedures for the selected neural network in order to yield accurate
results. The selection took place using bibliographic research. More details of
this selection are presented in section 3.3

4. The determination of the training group of feature vectors per category
that yielded the minimum error training convergence. More details of this are
presented in section 3.3.

Thus, an equal number of feature vectors from both of the OA and AMDF
methods respectively are trained using an independent LVQ1 neural network.
The LVQ1 neural network is adopted according to the bibliographic research
[15]. Specifically, in the comparison among the SVM , K-NN classifier and LVQ
neural network showed that LVQ is more sensitive to the feature audio (speech
data) data than the any other classifiers in the test. Furthermore LVQ yields
satisfactory results for well discriminating features [15].

The remaining feature vectors of both examples are submitted to the testing
procedure. The justification of this selection centres on the ability of this neural
network to classify the above features better than other neural networks, because
an LVQ1 codebook contains highly structured lattice points that effectively
span the signal space [18]. Furthermore, we tested the learning ability of the
two categories in a statistical learning error convergence procedure which we
explain in the experimental section.

2.2 Feature Extraction Using the OA and AMFD Meth-

ods

In this stage we isolated the original audio of a sport video file in Mpeg-2 format
using a suitable multiplexes program. Thereinafter, we segmented the audio
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signal into shots and extracted the features in two feature vector categories:
AMDF and OA. At this point, it must be noted that the configuration of the
specific segmentation of all the audio files took place in order for the AMDF
processing to yield the maximum classification results according to the reports
in the literature. Thus, we used the same settings in the OA algorithm in order
to carry out an honest comparison between our method and the most robust
AMDF method. In this setting, we therefore determined the particular shots,
which are ranged between one to six seconds, for the calculation of the AMDF
coefficients. This selection was calculated taking into account two parameters.
The features extraction should not exceed the number of 20 coefficients (see
section 3.2), and the interval frame must be range between 50-300 ms (see
introduction part). Thus, we obtained AMDF coefficients, which were extracted
from 20 ·50 ms = 1000 ms = 1 sec, 20 ·100 ms = 2000 ms = 2 sec, 20 ·150 ms =
3000 ms = 3 sec, 20 ·200 ms = 4000 ms = 4 sec, 20 ·250 = 5000 ms = 5 sec and
20·300 = 6000 ms = 6 sec shot duration segments. Moreover, this segmentation
came into agreement with the literature [24, 35, 17].

2.2.1 AMDF Feature Vector

The AMDF method is based on the following property: Suppose that a digital
speech signal x(n) is periodic with period T . Then the difference between two
samples is determined as:

Diff(m) = x(n) − x(n + m)

Thus, the difference signal Diff(m), is calculated by delaying the input speech
various amounts, subtracting the delayed waveform from the original, and sum-
ming the magnitude of the differences between sample values, using the following
equation (3):

AMDF (m) =
1

t

t−1
∑

n=0

|x(n) − x(n + m)| (2)

0 ≤ m ≤ t − 1

Where n is the sequence number of the speech wave and t is the sample
number. For reasons of brevity the m elements which are extracted according
to Equation 2 are named AMDF coefficients or AMDF feature vector.

2.2.2 OA Feature Vector

The OA feature vector is extracted in the following steps. First, the spectral
density is calculated from the original audio signal x(n) (N samples) via the
Fourier transform as described previously in Equation 1. Next, the absolute
FFT amplitudes (dBV) of values are put on the Cartesian plane and submitted
to the onion peeling procedure. The idea is to use the convex hull [7] subroutine
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recursively to extract the outmost convex hull (H1) of the given points and to
apply the same subroutine to extract the convex hull of the remaining inner
points (H2), and so forth. The program stops when the innermost convex hull
contains no more than three points. The sequence of nested convex hulls is
called the onion-peeling of a given set of points. This structure can be obtained
in O(H1)+O(H2)+...+O(Hr) times by using the convex hull subroutine, where
H1, H2, Hr denotes the elements of each convex layer of the onion peeling:

H1 = (|f11| , |f12| , ..., |f1x|), ...,Hr = (|fr1| , |fr2| , ..., |frw|) (3)

and where H1 is the external layer and Hr is the internal or smallest layer.
Thus, the

∣

∣

∣

−→
fm

∣

∣

∣

values are re-arranged in a new vector H of dimensionality (1 × m)

H = [H1, ...,Hr] = [|f11| , |f12| , ..., |f1x| , ..., |f2u| , ..., |fr1| , |fr2| , ..., |frw|] (4)

It must be noted that each layer may be of a different size, which justifies
the computation of layer size (convex polygon) being unpredictable and being
implemented in a non-linear manner. Finally, the feature vector is selected from
the t last absolute amplitudes t of vector H which are found in the region of the
smallest layer Hr. The value t, for both cases, is determined in the experimental
part (3.2).

2.3 The Feature of the Proposed Neural Network

In our work we selected and employed a neural network called LVQ1, which was
proposed by Kohonen [9] as a supervised extension of the more general family
of unsupervised classifiers named Self-Organizing Maps (SOMs). The training
of LVQ1 is a two-step procedure. In the first step, initial positions of the class
representatives (or codebook vectors) are determined in the r-dimensional space
using standard clustering algorithms such as the k-Means clustering algorithm
or the Linde-Buzo-Gray (LBG) algorithm, with a given number of classes. In the
second step, class representative positions are iteratively updated to minimise
the total classification error of the training set of vectors. To this end, codebook
vectors are directed towards the data vectors of the same class and distanced
from the data vectors of different classes. A Euclidean distance measure is used
for calculating distances. More specifically, every time a member of the training
set, feature vector ti, is incorrectly classified, the two codebook vectors involved,
correct rc(i − 1) and incorrect rw(i − 1), are updated as follows:

rc(i) = rc(i − 1) + a(i)[ti − rc(i − 1)],

rw(i) = rw(i − 1) − a(i)[ti − rw(i − 1)].
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The rate of the update, or learning rate, a, controls the speed of convergence
and is a descending function of time for iteration index (i). The class-separating
surfaces obtained in this way are nearly optimal in the bayesian sense. Different
rules applied when moving (updating) class representatives during the training
iteration produce different versions of the LVQ1 training algorithm. The version
employed here, namely LVQ1, is chosen for its properties of quick convergence
and robustness of the class representatives’ positions over extended learning
periods.

In our example, the architecture the LVQ1 network used to classify the OA or
AMDF feature vectors is shown in Fig. 6. Input vectors of dimensionality 20×1
are weighted and fed to the first layer of neurons, known as the competitive layer
(the selection of the dimensionality 20 is explained in the experimental section).
These neurons compete for inputs in what we call a greedy way; hence the layer
name. Four such neurons form the competitive layer in our example. The output
of the competitive layer, which is a grouping of the inputs into subclasses, is
fed to the second linear layer, which groups subclasses into target classes. The
weights connecting the two layers take on binary values of zero or one, which
merely indicate class membership and not actual weighting.

Figure 6: Architecture of the LVQ1 neural network employed for the classifica-
tion for OA or AMDF input vectors of dimensionality 20.

3 Experimental Section

3.1 Experimental Data

We evaluated the proposed audio classification and segmentation algorithms by
using our database, which is audio clips from TV programs (CNN, Eurosport) of
news reports and football and basketball sports broadcasts. Each file contained



M. Poulos et al., Broadcasting classification, JGAA, 11(1) 277–307 (2007) 289

combinations of speech and either music or background noise (in the case of
news broadcasting), and speech and noisy backgrounds (in the case of sports
broadcasting). In the news reports clip, the ratio between the amount of pure
speech, music, and noisy speech is about 8:1:1. In the sports clip, the ratio
between the amount of pure speech and noisy speech is about 7:3. In our
experiments, we set one second as a test unit, as in a similar study [17].

We obtained 70 different clips in each category (sport or news) for a total of
140 audio clips, each greater than six seconds long and sampled at 22 KHz. We
used 20 for each category in training the classifier, while using the remaining 100
for testing. The 70 audio news clips were recorded from different broadcast TV
programs using a monophonic audio sound configuration system. In addition
to these originally selected segments we further selected segments greater than
six seconds which all satisfied the aforementioned audio ratio settings. We thus
created a database which contained 6×70 = 420 audio clips for each category, or
a total of 840 audio clips. In the segmentation procedure we created six specific
segments of one, two, three, four, five and six seconds in segmentation for each
audio clip, based on bibliographic research [2, 6], in which the length of the
audio clips could vary from one to six seconds. Furthermore, the data collection
needed for the experimental training and testing stages was compared with a
similar set on which most current research is based [16]. The proposed database
of 420 audio segments proved to be a sufficient sample for our classification
purposes in the statistical evaluation, which is presented in section 5.

The music content in this data set is composed mainly of environmental
sound. All data are 22 kHz sample rate, mono channel and 16 bit per sample,
from which we selected about 420 seconds (1 sec · 20 + 2 sec · 20 + 3 sec · 20 +
4 sec · 20 + 5sec · 20 + 6 sec · 20 = 420 sec) for each category (sport or news),
totalling 840 seconds, as training data, and (1 sec · 50 + 2 sec · 50 + 3 sec · 50 +
4 sec · 50 + 5 sec · 50 + 6 sec · 50 = 1050 sec) for each category (sport or news),
totalling 2100 seconds for testing.

3.2 Feature Vector Extraction

Using the 420 audio clips, the OA (figures 7, 8, and 9) and AMDF feature
vectors were extracted from Equations 1, 2, and 3. Specifically, in Figures 7, 8,
and 9 we can see the snapshots of the zoom of the OA analysis. In particular, in
Figure 9 we can see the specific red area selection, which satisfies the criterion
of 20 elements selection around the latest layer.

The value t (see section 2.2.2) is determined according to bibliographic re-
search [16, 12, 13, 11], in which the optimal dimension size depends on the
experimental part in combination with the LVQ algorithms. These algorithms
typically operate to preserve neighbourhoods on a network of nodes which en-
code the feature vector. In the scientific practice the ideal size of learning feature
vector of an artificial neural network it has been determined after experimenta-
tion and concretely from the minimization of training error procedure. Thus a
size of 24 elements has been showed as an optimal size [13].

Thus, we decided after experimentation that 20 elements is the optimal size
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Table 1: Two examples of the calculation of the OA and AMDF feature vectors.
OA feature vector AMDF feature vector
9.7306 0.0000
9.9551 0.0677
10.0127 0.1120
9.7790 0.1509
9.5094 0.1818
10.2665 0.2090
9.9895 0.2276
8.9618 0.2384
8.9007 0.2424
8.9036 0.2395
9.0546 0.2298
8.7992 0.2162
9.3747 0.2024
9.4351 0.1916
9.0578 0.1841
9.4087 0.1795
9.3630 0.1776
8.9171 0.1782
9.1252 0.1813
9.3524 0.1854
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in our example. For better comprehension, we used an audio sports broadcasting
segment of one second, which has 1 · 22000 = 22000 arithmetic samples. Using
the FFT transform we submitted these values in OA processing and we received
20 central absolute values (table 1), which are contained in the region around
the latest convex layer, as shown in figure 7.

Figure 7: The visual procedure of the extraction of the Onion Algorithm.

Figure 8: A visual zoom of the construction of the Onion Layer. The smallest
onion layer in the centre of the figure is shown.



M. Poulos et al., Broadcasting classification, JGAA, 11(1) 277–307 (2007) 292

3.3 Neural Network Training and Classification Proce-

dure

Another fundamental problem in the construction of the LVQ1 neural network
is the estimation of a certain number of needed feature vectors per category
in order to be able to estimate the densities accurately enough [11, 14]. These
precise calculations require a large number of feature vectors, which, in prac-
tice, is not always possible. Nevertheless, pattern recognition algorithms have
proven to be highly useful in this kind of small sample size problem, in which
generalisation plays an important role. Much research has been done in this
area [14, 21]. Considering this, we adopted 20 training feature vectors for each
category (sports or news).

The next problem of the classification procedure was the selection of the 20
vectors of the original group from the original sample of feature vectors which
we used for the training procedure, using the impartial hold-out method. In
this method we tested each case separately (OA and AMDF methods), and all
the combinations of equal numbers of vectors - in our example this number
of training vectors per group was 10 (see above) - are selected as optimum
selections from the group, due to yielding the minimum amount of training
error quickly. In this way, we ensured that the group of each category gave the
most common characteristics. In other words, we created different groups of 20
feature vectors for each category (sport and news), and repeated this procedure
for all the vectors, segmented by duration (one, two, three, four, five, and six
seconds). More details of this are presented in section 3.4.

Thus, we trained the two feature vectors (AMDF, OA) after experimenta-

Figure 9: Feature extraction. The red area shows were the absolute FFT am-
plitudes were found.
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tion, minimizing the data set to 40 feature vectors (20 for each category), and
taking into account the convergence criterion of error epoch training (Fig.10).
These feature vectors were then fed into an LVQ1 classifier [30], first for train-
ing in order to be directed towards the feature vectors of the same class and
distanced from those feature vectors of a different class, and then for the actual
classification of unknown input feature vectors.

3.4 Training the LVQ1 using AMDF and OA features

The LVQ1 neural network, which was used in the aforementioned training pro-
cedure, is described in section 2, step 2 (Feature extraction and classification),
and was trained for a total of 300 cycles (epochs) with a learning rate in the
order of 0.001.

Figure 10: Error plot while training an LVQ1 network using AMDF coefficients
(solid-blue line) and OA coefficients (dash dot-red line).

3.5 Minimum Error Training

Our goal was to find which kind of feature vector, AMDF or OA, performed
better on the LVQ1 neural network. The simplest approach for the comparison
of different feature vectors was to evaluate the error function, using data which
was independent of that training.

We trained various feature vectors by minimizing an appropriate error func-
tion defined with respect to the LVQ1 neural network hold-out method [30]. We
then compared the performance of the feature vectors by evaluating the train-
ing error function using an independent LVQ1, and selected the feature vector
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having the smallest error function with respect to the LVQ1. We implemented
this procedure experimentally in section 5.2.

4 Results

4.1 Classification Results

The classification results for the six tested LVQ1 neural networks are presented
in tables 2, 3.

Table 2: Classification Results of LVQ1 Neural networks in time 1-3 secs.

Time length 1 sec 2sec 3 sec
Feature
Extraction
Method

Classes Sports News Sports News Sports News

AMDF Sports 42 8 44 6 45 5
AMDF News 5 45 6 44 6 44
Sensitivity 0,89 0.88 0.88
Specificity 0.85 0.88 0.90
OA Sports 45 5 47 3 49 1
OA News 4 46 2 48 2 48
Sensitivity 0.91 0.94 0.96
Specificity 0.90 0.94 0.96

Table 3: Classification Results of LVQ1 Neural networks in time 4-6 secs.
Time length 4 sec 5 sec 6 sec
Feature
Extraction
Method

Classes Sports News Sports News Sports News

AMDF Sports 47 3 49 1 50 0
AMDF News 4 46 2 48 1 49
Sensitivity 0.94 0.96 0.98
Specificity 0.94 0.98 1
OA Sports 49 1 50 0 50 0
OA News 1 49 1 49 0 50
Sensitivity 0.98 0.98 1
Specificity 0.98 1 1

As can be seen in Table 2, the AMDF method shows a weakness in correctly
classifying all the cases in the first three seconds duration, while in Table 3,
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in time greater than four seconds duration, the results for both methods are
similar. This conclusion is reinforced by the interpretation of the extracted
indices of sensitivity and specificity, which ranged between 0.85-0.90, while the
OA method showed better and more successful results, specifically in that OA’s
indices ranged between 0.90-0.96.

According to these results, we concluded that between four and six seconds
is the optimal segmentation time for both methods, but that between one and
three seconds the superiority of the OA method compared to the AMDF method
is obvious. More details about the data of table 4 are presented in the statistical
evaluation in section 5.

4.2 Minimum Error Training Results

We tested the classification ability of each feature vector method in the training
procedure, and investigated the error training vector set, defined as 40 feature
vectors (20 for each category). Twelve (12) different LVQ1 neural networks
from different vector sets (six (6) per time-duration category) were trained.
The vector set was extracted from original audio files of six seconds duration.
The classification results of minimum error training are presented in Table 4.

Table 4: Error training convergence in epochs while training an LVQ1 network
using AMDF and OA feature vectors of 6 sec in length.

OA Method AMDF Method
Number of convergence epochs Number of convergence epochs
6 12
7 10
9 14
5 11
8 14
10 13

5 Statistical Evaluation

The statistical evaluation of the classification results showed that the proposed
OA method is more accurate in all cases, especially in the smallest time segments
(one, two, and three seconds). In all six tests (sports versus news) we considered
either the true positive result or the true negative result of an input vector to
be a correct classification result.

For example, as can be seen the AMDF method has a true positive recog-
nition score for a one-second time length for the sports group of 42/50, or 84
percent, the number of true recognition cases being a=42. The true negative
recognition score for the news group is 45/50 or 90 percent, the number of true
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recognition cases being d=45. In the same table, for a one-second time length,
it can be seen that the false positive recognition score for the sports group is
8/50 or 16 percent, the number of false recognition cases being b=8, while the
false negative recognition score for the news group is 5/50 or 10 percent, the
number of false recognition cases being c=5.

Consequently, we can calculate the sensitivity and specificity values of the
results in table 3, which are statistical indices usually utilised in similar classi-
fication problems [28]. For example, for the AMDF method with a time length
of one second, the values are calculated as follows:

Sensitivity =
a

a + c
= 0.89

Specificity =
d

b + d
= 0.85

In the same way, all the correct negative or positive classification scores are
shown for both methods, along with the calculated values of sensitivity and
specificity. Furthermore, the superiority of the OA method over the AMDF
method is evident from the results of the minimum error training procedure.

More specifically, for all LVQ1-trained OA sets of feature vectors, the mean
value of epochs of training error convergence was approximately seven, with a
variance of 2.44, while in the case of AMDF this value was 12, with a variance
of 2.70.

However, for further statistical processing, in order to evaluate the statistical
significance of the classification scores we obtained in the experimental section,
we applied the chi-square test to the results. We also compared the two feature
extraction methods presented in terms of their Cramer coefficient of mean square
contingency, 1. As we can see, the results are statistically significant at the a =
99.5% level of significance, and can be placed into a two-way contingency table
which is structured on the basis of two criteria along its two dimensions.

Here we use ‘subject belongs to class i’ as the first criterion (vertical dimen-
sion) and ‘subject is classified into class j’ as the second criterion (horizontal
dimension). An ideal classification method should produce a diagonal matrix
of classification scores (‘subject belongs to class i’ and ‘subject is classified into
class i’) corresponding to full dependency between the two above criteria, while
practical methods would tend toward this behaviour.

Evaluation of the statistical significance of the classification results is thus
transformed into a hypothesis-testing problem. The null hypothesis of the in-
dependence of the two criteria is tested against the alternative hypothesis of
dependence. The test statistic used for this purpose is the χ2. Statistically
significant classification results correspond to rejection of the null hypothesis at
a satisfactory level of significance.

Let the contingency matrix S be of dimensions (r×c), meaning r rows and c

columns, and let the (i, j)-th entry of S, S(i, j) = fij ; i = 1, . . . , r; j = 1, 2, . . . , c

denote observed frequency of occurrence of the event (i, j) (‘subject belongs to
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class i’ and ‘is classified into class j’) and eij ; i = 1, . . . , r; j = 1, 2, . . . , c denote
the expected frequency of occurrence of the event (i, j). Then the test statistic
is given by

χ2 =

r
∑

i=1

c
∑

j=1

(fij − eij)
2

eij

(5)

which asymptotically follows the distribution with (r − 1)(c − 1) degrees of
freedom. When unknown, expected frequencies can be estimated from S using

eij =
RiCj

N
(6)

where N is the total number of events in S, Ri is the sum across the i-th
row of S and Cj is the sum across the j-th column of S.

The degree of dependence between the two criteria can also be measured by
the Cramer coefficient [37] of mean square contingency,

φ1 =

√

χ2

N min(r − 1, c − 1)
(7)

Coefficient φ1 takes on values between 0 (independence) and 1 (full de-
pendence). Two classification methods can be compared as to the statistical
significance of their results in terms of their Cramer coefficient. Note that for
2 × 2 contingency tables, 7 becomes

φ1 =

√

χ2

N
(8)

In our example we tested the results using the above statistical criteria in six
cases (one second to six seconds). In all tests, the results form 2×2 contingency
tables are presented on Tables (5-10).

Table 5: Test case, subject sport versus group news classification scores based
on AMDF and OA feature vectors from one-second duration.

Classes
AMDF Method OA Method
Sports News Sports News

Sports

42
50 = (84%) 8

50 = (16%) 45
50 = (90%) 5

50 = (10%)

[23, 5] [26, 5] [24, 5] [25, 5]

News

5
50 = (10%) 45

50 = (90%) 4
50 = (8%) 46

50 = (92%)

[23, 5] [26, 5] [24, 5] [25, 5]
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Table 6: Test case, subject sport versus group news classification scores based
on AMDF and OA feature vectors from two-seconds duration.

Classes
AMDF Method OA Method
Sports News Sports News

Sports

44
50 = (88%) 6

50 = (12%) 47
50 = (94%) 3

50 = (6%)

[25, 0] [25, 0] [24, 5] [25, 5]

News

6
50 = (12%) 44

50 = (88%) 2
50 = (4%) 48

50 = (96%)

[25, 0] [25, 0] [24, 5] [25, 5]

Table 7: Test case, subject sport versus group news classification scores based
on AMDF and OA feature vectors from three-seconds duration.

Classes
AMDF Method OA Method
Sports News Sports News

Sports

45
50 = (90%) 5

50 = (10%) 49
50 = (98%) 1

50 = (2%)

[25, 0] [24, 5] [25, 5] [24, 5]

News

6
50 = (12%) 44

50 = (88%) 2
50 = (4%) 48

50 = (96%)

[25, 0] [24, 5] [25, 5] [24, 5]

Table 8: Test case, subject sport versus group news classification scores based
on AMDF and OA feature vectors from four-seconds duration.

Classes
AMDF Method OA Method
Sports News Sports News

Sports

47
50 = (94%) 3

50 = (6%) 49
50 = (98%) 1

50 = (2%)

[25, 5] [24, 5] [25, 5] [24, 5]

News

4
50 = (12%) 46

50 = (82%) 1
50 = (2%) 49

50 = (98%)

[25, 5] [24, 5] [25, 5] [24, 5]
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Table 9: Test case, subject sport versus group news classification scores based
on AMDF and OA feature vectors from five-seconds duration.

Classes
AMDF Method OA Method
Sports News Sports News

Sports

49
50 = (98%) 1

50 = (2%) 50
50 = (100%) 0

50 = (0%)

[25, 5] [24, 5] [25, 0] [25, 0]

News

2
50 = (4%) 48

50 = (96%) 1
50 = (2%) 49

50 = (98%)

[25, 5] [24, 5] [25, 0] [25, 0]

Table 10: Test case, subject sport versus group news classification scores based
on AMDF and OA feature vectors from six-seconds duration.

Classes
AMDF Method OA Method
Sports News Sports News

Sports

50
50 = (100%) 0

50 = (0%) 50
50 = (100%) 0

50 = (0%)

[25, 0] [25, 0] [25, 0] [25, 0]

News

1
50 = (2%) 49

50 = (98%) 0
50 = (0%) 50

50 = (100%)

[25, 0] [25, 0] [25, 0] [25, 0]
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These tables also present the expected frequencies accompanied by observed
frequencies. Moreover, we constructed six additional tables, 11-16, which in-
dicated the chi-square test value according to the Cramer coefficient of mean
square contingency, φ1 in a 99.5 % level of significance.

Table 11: Chi-square test evaluation of the results in Table 5. Critical χ2 values
from χ2 tables (a = 0.995 level of significance) in brackets, along with the
Cramer coefficient φ1 from one-second’s duration.

Test cases:

AMDF OA
χ2statistic χ2statistic
[χ2

(1,0.995)] [χ2
(1,0.995)]

φ1 value φ1 value
Sports-
News

54,96
[7.879]
0.27

67,3
[7.879]
0.34

Table 12: Chi-square test evaluation of the results in Table 6. Critical χ2 values
from χ2 tables (a = 0.995 level of significance) in brackets, along with the
Cramer coefficient φ1 from one-second’s duration.

Test cases:

AMDF OA
χ2statistic χ2statistic
[χ2

(1,0.995)] [χ2
(1,0.995)]

φ1 value φ1 value
Sports-
News

57,76
[7.879]
0.29

81,03
[7.879]
0.41

For example, in Table 11, for one second the χ2 values of the test statistic,
as computed from the results in Table 4, are [23.5, 26.5, 23.5, 26.5], respectively,
for the AMDF vectors and [24.5, 25.5, 24.5, 25.5] for the OA vectors. As an
example, for the correct positive classification cell (1,1) of Table 4 (OA vectors),
χ2 test value is computed as

χ2 = (42−23.5)2

23.5 + (8−26.5)2

26.5 + (5−23.5)2

23.5 + (45−26.5)2

26.5 = 54.96
From the tables of the χ2 distribution with one degree of freedom, and at

the 99.5 level of significance, we obtained the critical value 7.879, which is lower
than all test statistic values. The null hypothesis of independence is therefore
rejected for all six cases and for both types of feature vectors. Furthermore,
the φ1 coefficient takes on values [0.27, 0.29, 0.30, 0.37, 0.44, 0.48] for the
four experiments based on AMDF feature vectors and [0.34, 0.41, 0.44, 0.42,
0.48, 0.50] for the OA feature vectors. Taking into account these results we
constructed figure 11.
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Table 13: Chi-square test evaluation of the results in Table 7. Critical χ2 values
from χ2 tables (a = 0.995 level of significance) in brackets, along with the
Cramer coefficient φ1 from one-second’s duration.

Test cases:

AMDF OA
χ2statistic χ2statistic
[χ2

(1,0.995)] [χ2
(1,0.995)]

φ1 value φ1 value
Sports-
News

60,86
[7.879]
0.30

88,40
[7.879]
0.44

Table 14: Chi-square test evaluation of the results in Table 8. Critical χ2 values
from χ2 tables (a = 0.995 level of significance) in brackets, along with the
Cramer coefficient φ1 from one-second’s duration.

Test cases:

AMDF OA
χ2statistic χ2statistic
[χ2

(1,0.995)] [χ2
(1,0.995)]

φ1 value φ1 value
Sports-
News

73,99
[7.879]
0.37

84,80
[7.879]
0.42

Table 15: Chi-square test evaluation of the results in Table 9. Critical χ2 values
from χ2 tables (a = 0.995 level of significance) in brackets, along with the
Cramer coefficient φ1 from one-second’s duration.

Test cases:

AMDF OA
χ2statistic χ2statistic
[χ2

(1,0.995)] [χ2
(1,0.995)]

φ1 value φ1 value
Sports-
News

88,83
[7.879]
0.44

96,08
[7.879]
0.48
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Table 16: Chi-square test evaluation of the results in Table 10. Critical χ2

values from χ2 tables (a = 0.995 level of significance) in brackets, along with
the Cramer coefficient φ1 from one-second’s duration.

Test cases:

AMDF OA
χ2statistic χ2statistic
[χ2

(1,0.995)] [χ2
(1,0.995)]

φ1 value φ1 value
Sports-
News

96,08
[7.879]
0.48

100
[7.879]
0.5

As can be seen in figure 11, the superiority of the OA method compared
with the AMDF method is clear in all the duration segments, and particularly
in the segments between one and four seconds.

6 An Implementation in a Real-Time Scenario

We selected the trained LVQ neural network of five-second segmentation which
yielded the best classification results. The next part was to test an unknown for
the trained LVQ neural network, which belongs to the category of sports news
segment, which satisfied the experimental setup settings. Thus, the original for
the testing segment, consisting of n = 22000 · 5 = 111000 values, was submitted
in the OA algorithm. The result of this implementation, yielding layers d = 842,
took place in O(842 ·111000 log 111000) = O(1.0858e+009), and the feature ex-
traction needed a time, using the Matlab 6.1 programming tool, of four seconds

Figure 11: The ranges of φ1 coefficients between the OA (pink colour line) and
the AMDF method (blue colour line).
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for implementation. The testing procedure using a trained LVQ neural network
needed about one millisecond. However, it must be noted that the real time is
significantly lower because Matlab belongs in the interpreted languages, which
are extremely slow in practice. For example, for the same algorithm the unit of
measurement in Matlab is seconds, while in C it is milliseconds [2].

7 Discussion

The main aim of this paper has been to apply a statistical method, which we
have first introduced as a pattern recognition method, to several of our own
classification problems [32, 8, 6, 1, 3, 20, 31], as well as in the field of au-
dio signal classification. This study is a consequence of our study of pattern
recognition problems using computational geometric algorithms [30]. For the
achievement of this aim we selected the traditional problem of audio classifica-
tion files (sports and news broadcasting). More classification problems such as
these are presented in the introduction. This study then showed the superiority
of the OA method of feature extraction over the AMDF method by compar-
ing their results in respect to an independent LVQ1 neural network. It then
tested the ability of our proposed method using two methodological procedures:
first the classification procedure and then the time learning of the input feature
vectors of the LVQ1 neural network, found by measuring the minimum time
error convergence which was taken as the optimal selected criterion. Moreover,
as the six-seconds time segmentation for the AMDF method showed itself to
be optimal in our example, this agreed with the findings of previous studies
[24, 25], and thus proved the validity of our experiment. Thus, taking into ac-
count the experimental and statistical results, we may conclude that our method
produces specific feature extraction coefficients which may be classified better
and trained easier, with less error, than the AMDF coefficients using the LVQ1
neural network. Furthermore, we concluded that the processing time length of
an audio file may be statistically accurate to greater than three seconds. In gen-
eral, in future we could classify the weather report, or the political and studio
news of a broadcast by adopting different philosophies of shot segmentation.
Furthermore, the testing of reliability of the proposed method in relation to
other philosophy neural networks such as the RBF and Recurrent classifiers is
one of our upcoming objectives. The fast-learning ability of the OA coefficients
of an independent neural network may be used as a feature extraction tool in
more difficult audio classification problems, such as for the discrimination of
a subclass of a main category of audio file, such as weather reports, political
news, studio news, and so forth. The minimization of the accurate classification
time length to fewer than four seconds shows that the application of our method
promises to reduce the complexity significantly and to improve storage problems
in pattern-recognition databases.

The results of our research show that the computational geometric algorithm
is a pattern-recognition method which may be applied accurately for multimedia
classification purposes. The greatest advantage of this method is that it may
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be used in real time experimentation, as the feature extraction doesn’t need
such complex settings as the determination of interval frame, which is needed
for pitch calculation. However, the achievement of this target needs further
research, specifically in the reduction of its complexity, as our understanding
of computational geometry improves dramatically every day. We intend the
next step in our experimentation program to be in the area of larger data sets
by applying this method to hierarchical classification problems involving the
separation of many more categories of audio signals than the current sports and
news broadcasts.

Finally, we believe that this method is the first attempt to implement the
problem of the semantic classification of audio broadcasting files by using a
philosophically different technique, producing a significant statistical evaluation
score using Cramer criterion (see section 5). This evaluation yields a useful
conclusion about the accuracy of the proposed method, giving promise that
continuing research will prove useful.
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