
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 11, no. 1, pp. 195–214 (2007)

Estimating the Number of s-t Paths in a Graph

Ben Roberts

Department of Pure Mathematics and Mathematical Statistics
University of Cambridge
Cambridge CB3 0WB

United Kingdom
http://www.dpmms.cam.ac.uk

bgr26@cam.ac.uk

Dirk P. Kroese

Department of Mathematics
The University of Queensland

Brisbane 4072
Australia

http://www.maths.uq.edu.au/∼kroese/
kroese@maths.uq.edu.au

Abstract

The problem of counting the number of s-t paths in a graph is #P-

complete. We provide an algorithm to estimate the solution stochastically,

using sequential importance sampling. We show that the method works

effectively for both graphs and digraphs. We also use the method to

investigate the expected number of s-t paths in a random graph of size n

and density d, and develop a model that shows how this quantity behaves

when n and d are varied.

Article Type Communicated by Submitted Revised

Regular paper S. Albers September 2006 April 2007

This research was supported by the Australian Research Council, via grant No.

DP0558957.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)196

1 Introduction

Many difficult counting problems belong to the class of #P -complete problems
[11, 18]. One such problem is counting the number of s-t paths in a graph,
which was proved to be #P -complete in [17]. Although it is trivial to establish
whether there exists an s-t path in an arbitrary graph, to date no efficient al-
gorithm exists for counting the number of such paths for general graphs. The
purpose of this paper is to introduce a simple Monte Carlo method for fast and
accurate estimation of the number of s-t paths for general graphs, and to apply
this to find an expression for the expected number of such paths in a random
graph as a function of the order and density of the graph. The method uses the
principle of importance sampling, a fundamental variance reduction technique
in statistics, which has been successfully applied to a great variety of estimation
problems, see for example [5, 6, 10, 3, 16, 9]. Although the idea of using im-
portance sampling for counting goes as far back as [4] and [13], who developed
algorithms for generating and counting self-avoiding random walks, there has
been renewed interest in this area following recent developments in sequential
and adaptive Monte Carlo techniques, such as sequential importance sampling
[1], the cross-entropy method [15] and importance resampling, see e.g., [12].
Various importance sampling approaches to combinatorial counting problems,
such as counting the number of zero-one tables, counting the permanent of a
binary matrix, and determining the number of Hamiltonian cycles, are discussed
in [7] and [14]. Other stochastic algorithms for counting problems can be found
in [19], who provide an algorithm to estimate the maximum number of node-
independent paths between two vertices of a graph, and in [2], who estimate the
number of Hamiltonian cycles in dense graphs.

The rest of the paper is organized as follows: In Section 2 we discuss the main
ideas behind counting via importance sampling, and in Section 3 we formulate
our main algorithm. Several test cases are provided in Section 4 (and further
specified in the appendix) to support the accuracy of the method, especially for
high-density graphs. We also discuss a number of simple modifications to the
algorithm when dealing with graphs of lower density. In Section 5 we use the
method to investigate the expected number of s-t paths in random graphs as a
function of the size (order) n and density d of the graph. Finally, in Section 6
we summarize our findings and discuss possible directions for future research.

2 Counting by Estimation

Consider a graph G of order n. We wish to determine/estimate the number of s-t
paths in the graph. Let X ∗ be the set of all such paths. Our objective is thus to
find |X ∗|. We use an arbitrary vertex labeling {1, . . . , n}, and assume that the
source vertex s is labeled as 1, and the termination vertex t is labeled as n. We
denote by A the adjacency matrix of G. As an example, in the graph G of order 5
shown in Figure 1, we have X ∗ = {(1, 2, 5), (1, 4, 2, 5), (1, 4, 3, 5), (1, 2, 4, 3, 5)},
and |X ∗| = 4.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)197

1

2 3

4

5 A =




0 1 0 1 0
1 0 0 1 0
0 0 0 1 1
1 1 1 0 0
0 1 1 0 0




Figure 1: There are four 1-5 paths in the graph with adjacency matrix A

Instead of determining |X ∗| exactly, e.g., by total enumeration — which is
only feasible for very small graphs —, one can try to estimate |X ∗| via Monte
Carlo simulation. This can be done by sampling objects x from a larger set
X ⊇ X ∗ via some probability mass function (pmf) g, where g(x) > 0 for all
x ∈ X ∗. With N independent copies, X(1), . . . ,X(N), the quantity |X ∗| can
be estimated using the estimator

|̂X ∗| =
1

N

N∑

i=1

I{X(i) ∈ X ∗}
g(X(i))

, (1)

where I{X(i) ∈ X ∗} is an indicator variable — that is, it is 1 if the expression
within the brackets is true, and 0 otherwise. To see that (1) is an unbiased
estimator, observe that the expectation of I{X(i) ∈ X ∗}/g(X(i)) is given by

∑

x(i)∈X

I{x(i) ∈ X ∗}
g(x(i))

g(x(i)) =
∑

x(i)∈X

I{x(i) ∈ X
∗} = |X ∗| .

The challenge is to find a pmf g that is easy to sample from and that in-
troduces low variance to the estimator (1). The theoretically best pmf is the
uniform pmf g∗ on X ∗ — which generates only x ∈ X ∗, and each of these with
equal probability. However, obtaining g∗ requires knowledge of the unknown
|X ∗|, and is therefore as difficult as the original problem. An alternative ap-
proach is to choose a pmf g that is “close” to the uniform pmf g∗ in some sense.
This is where sequential Monte Carlo methods are often useful. Many of these
procedures are carried out in combination with importance sampling techniques,
and such methods are frequently referred to as sequential importance sampling

(SIS) methods; see e.g., [8].
With respect to (1) the sequential approach means that paths x are gener-

ated in a sequential manner. That is, assuming that x1 = 1, the second vertex
x2 is drawn from some pmf g2(x2 | x1), then, given x1 and x2, the third vertex
x3 is drawn from a conditional pmf g3(x3 | x1, x2), and so on, so that eventually

g(x) = g2(x2 | x1)g3(x3 | x1, x2) · · · gm(xm | x1, · · · , xm−1) . (2)

Note that g1(x1) = 1, as we always choose x1 to be the vertex 1.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)198

3 Main Algorithm

In the following methods, the adjacency matrix A is heavily relied upon. We
start with a “naive” method for generating a path x, which can be used to gain
information about X ∗. It works simply by starting at vertex 1, and at each
step choosing a random available vertex that is adjacent to the previous one.
Note that every path from vertex 1 to n can be generated in this manner, so
g(x) > 0 for all x ∈ X ∗. Let V = {1, . . . , n} be the vertex set of G.

Algorithm 1 (Naive path generation)

1. Start with x1 = 1, let c = 1 (current vertex), g = 1 (likelihood) and t = 1
(counter).

2. Set A(·, 1) = 0 to ensure that the path will not return to 1.

3. Let V ′ be the set of possible vertices for the next step of the path. (V ′ =
{i ∈ V | A(c, i) = 1}.) If V ′ = ∅, we do not generate a valid path, so stop.

4. Choose the next vertex i ∈ V ′ of the path randomly using the uniform
distribution on V ′. So xt+1 = i.

5. Set c = i, g = g/|V ′|, A(·, i) = 0, and t = t + 1.

6. If c = n, then stop. Otherwise return to step 3.

After having generated independently N (partial) paths in this way one can
take the outcome of (1) as an estimate of the total number of 1-n paths. Note,
however, that the naive generation method is very biased towards generating
paths of shorter length. To reduce this bias we introduce next the following
length-distribution method.

Let the length of a path x be denoted by |x|. Note that this is not the length
of the vector, but rather one less than it. We first simulate a pilot run of N ′

samples using the “naive” method to find an estimate of the length-distribution

vector l = (l1, . . . , ln−1), where

lk =
number of paths of length k

number of paths of length > k in which A(xk, n) = 1
. (3)

We can think of lk in the following way: Suppose a 1-n path x is chosen at
random from X ∗, and suppose that for some k, A(xk, n) = 1, then we would
expect xk+1 to be the vertex n with probability lk. We estimate l using the
Crude Monte Carlo (CMC) estimator

l̂k =

∑N ′

i=1
I{|X(i)|=k} I{X(i)∈X

∗}
g(X(i))

∑N ′

i=1
I{|X(i)|>k} I{X(i)∈X ∗} I{A(X

(i)
k

,n)=1}

g(X(i))

. (4)

We then use l̂ = (l̂1, . . . , l̂n−1) to generate paths similarly to the “naive” method,
except that at each step t where A(xt, n) = 1, we choose the next vertex to

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)199

be n with probability l̂t, and choose a different random available vertex with
probability 1 − l̂t. If there are no other available vertices we just choose the
next vertex to be n. To ensure that g(x) > 0 for all x ∈ X ∗, it is sufficient that

0 < l̂k < 1, for all k. If we do calculate l̂k = 0 or 1 for some k, then we just

replace it with 1/|̂X ∗
1 | or 1 − 1/|̂X ∗

1 | respectively, where |̂X ∗
1 | is the estimate

of |X ∗| from the pilot run.

Algorithm 2 (Length-distribution Method)

1. Simulate a pilot run of N ′ samples using the “naive” method to find an
estimate l̂ of the length distribution l using (4).

2. Start with x1 = 1, so let c = 1 (current vertex), g = 1 (likelihood) and
t = 1 (counter).

3. Set A(·, 1) = 0 to ensure that the path will not return to 1.

4. If A(c, n) = 0, go to step 5. If A(c, n) = 1 and n is the only available
vertex adjacent to c, set xt+1 = n and stop. If there are other vertices

adjacent to c, choose the next vertex to be n with probability l̂t. If this
happens, set xt+1 = n, g = g× l̂t and stop. Otherwise, set g = g× (1− l̂t),
A(c, n) = 0 and continue with step 5.

5. Let V ′ be the set of possible vertices for the next step of the path. (V ′ =
{i ∈ V | A(c, i) = 1}.) If V ′ = ∅, we do not generate a valid path, so stop.

6. Choose the next vertex i ∈ V ′ of the path randomly using the uniform
distribution on V ′. So xt+1 = i.

7. Set c = i, g = g/|V ′|, A(·, i) = 0, and t = t + 1. Return to step 4.

Final Step: Lastly, we estimate |X ∗|, using (1) and the values of g, for each
valid path generated.

4 Test Cases

We tested the length-distribution method on 6 random graphs and digraphs of
differing sizes and densities. Descriptions of these are shown in Table 1 and
the adjacency matrices are given in Appendix A. All programs were written in
Matlab, and were run on an AMD Athlon 2600 with 512MB of RAM. When
feasible we also calculated the exact answer using a systematic counting algo-
rithm. For each test graph, the program to find the exact answer counted the
paths at a rate between 3000 and 20000 paths per second. There are too many
paths in Case 4 and Case 6 to count in this fashion.

The results for the length-distribution method on the 6 test graphs are shown
in Table 2, using a pilot run of N ′ = 5000 samples, and an estimation run of
N = 10000 samples. We show results of three runs of the program for each

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)200

Table 1: Test graphs
Case n Graph/Digraph Density |X ∗|

1 8 graph 0.8 397
2 12 digraph 0.95 4,959,864
3 16 digraph 0.4 138,481
4 20 graph 0.85 NA
5 24 graph 0.2 1,892,724
6 30 digraph 0.8 NA

graph to illustrate the consistency of the estimates. We estimate the relative
error (RE) of the estimate |X ∗| using the following:

R̂E =
sY√

N |̂X ∗|
, (5)

where Y = I{X ∈ X ∗}/g(X) and sY is the sample standard deviation of Y .
The solution frequency is the proportion of valid 1-n paths generated out of the
N samples.

Table 2: Results for “length-distribution” method on test graphs, N ′ = 5000,
N = 10000

Case Description |̂X ∗| R̂E time(s) sol’n freq
1 n = 8 396.6 0.0067 1.4 0.84

high density 396.0 0.0066 1.4 0.85
|X ∗| = 397 398.1 0.0065 1.4 0.85

2 n = 12 4.993 × 106 0.0045 2.6 0.93
high density digraph 4.960 × 106 0.0045 2.5 0.94
|X ∗| = 4, 959, 864 4.966 × 106 0.0044 2.6 0.93

3 n = 16 1.36 × 105 0.024 2.8 0.77
low density digraph 1.38 × 105 0.029 2.8 0.78
|X ∗| = 138, 481 1.38 × 105 0.032 2.8 0.77

4 n = 20 9.532 × 1014 0.0059 4.9 0.89
high density 9.504 × 1014 0.0060 4.9 0.89

9.495 × 1014 0.0059 4.9 0.89
5 n = 24 1.85 × 106 0.040 4.6 0.29

low density 1.92 × 106 0.042 4.6 0.30
|X ∗| = 1, 892, 724 1.98 × 106 0.043 4.6 0.30

6 n = 30 1.463 × 1027 0.0093 8.1 0.92
high density digraph 1.438 × 1027 0.0093 8.4 0.92

1.471 × 1027 0.0096 8.5 0.92

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)201

We can see that this method does indeed provide accurate estimates for |X ∗|
in all of the test graphs for which we know the true value. We can also see that
it produced significantly less error in the estimates for |X ∗| in the graphs with
higher density, and that the error is not very dependent on the size of the graph.
This is good because we know that as the graphs get larger, the error does not
get out of control.

There are various ways in which one can further improve the efficiency of
the algorithm when dealing with graphs of lower density, such as in Cases 3 and
5. We next discuss a few common-sense modifications.

One of the main sources of error in Case 5 is the fact that valid paths are
generated only about 30% of the time. By inspecting the adjacency matrix
(see Appendix A), we see that this is because there are only 2 vertices that are
adjacent to the termination vertex n. If during the generation of a path both
of these vertices are included without vertex n immediately following the last
one included, one cannot generate a valid path. To avoid this happening one
can introduce a condition in the algorithm that forces the path to finish if there
are no other available vertices adjacent to vertex n. This makes a significant
difference to the solution frequency, increasing it to about 70% for Case 5, which
reduces the error significantly. However, this is arguably less efficient for the
graphs of higher density, as the error is often not reduced enough to offset the
extra computation time involved.

Another simple modification is to consider both backwards and forward

paths. Namely, for any ordinary graph (not a digraph), the number of paths
from 1 to n is the same as the number of paths from n to 1. Therefore, if it
makes it easier to generate paths, one should generate them backwards starting
at n. Generally, this happens if deg(1) > deg(n). The reason for this is that it
is easier to end up at a vertex of higher degree that one of lower degree.

Finally, in a case such as Case 5 where there are only 2 vertices adjacent to
vertex n (vertices 16 and 23), it is often more efficient to split the problem into
two, counting the paths from 1 to 16 and from 1 to 23, in the graph G − {n}.
We then sum the two estimates to find an estimate for the number of paths
from 1 to n.

5 Random Graphs

We can use the previous algorithm to investigate the behaviour of |X ∗| for
random graphs of various size and density. Let ZG be the number of 1-n paths
in a random graph G of given size n and density d. Note that ZG is a random
variable. We are interested in finding both the mean and variance of ZG. Let
Zn;d = E[ZG].

5.1 The Complete Graph Kn

It is easy to investigate the behaviour of Zn;1 for varying n, as any random
graph of size n and density 1 is the complete graph Kn. It is not difficult to see

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)202

that the number of paths between any two vertices of Kn is

K(n) =

n−2∑

k=0

(n − 2)!

k!
= Zn;1 . (6)

Note that
K(n) = (n − 2)!e(1 + o(1)) . (7)

5.2 Estimating Zn;d

Algorithm 2 gives us a method to efficiently estimate Zn;d for any given n and d.
We take our samples {Y (i)} to be estimates of {ZG(i)} for a number of random
graphs of appropriate size and density. We then take the mean of the {Y (i)} as
our estimate of Zn;d.

Random Graphs: It is important to specify exactly what we mean by a
random graph of size n and density d. We do not simply include each possible
edge in the graph independently with probability d, as this adds unneeded
variance. Instead, we include the precise number of edges required for a density
of d. As there are 1

2 n (n − 1) possible edges in a graph of size n, we include
E = 1

2 dn (n− 1) edges in the graph, chosen randomly. However, this will often
not be an integer. We do not simply include [E] edges, because the density of
the resulting graph might not be d. Instead, we include ⌊E + U⌋ edges, where
U is a uniform random number on the interval [0, 1). The reason for this is that
the expected density of the resulting graph is exactly d.

Length Distribution Vector: It is not efficient to generate a different length
distribution vector for each random graph, as most of them will be very similar.
Instead, we want to generate an “overall” length distribution vector. We do this
simply by defining l as follows:

lk = E

[
number of paths of length k

number of paths of length > k

]
. (8)

From a pilot run of the “naive” method over N ′
1 random graphs, with N ′

2 samples
for each graph, we estimate l by

l̂k =
1

N ′
1

N ′

1∑

i=1



∑N ′

2
j=1

I{X(ij)∈X
∗

G(i)}I{|X(ij)|=k}

g(X(ij))

∑N ′

2
j=1

I{X(ij)∈X ∗

G(i)
}I{|X(ij)|>k}

g(X(ij))


 , (9)

where X ∗
G(i) is the set of valid 1-n paths in the graph G(i).

Algorithm 3 (Estimating Zn;d)

1. Simulate a pilot run of the “naive” method over N ′
1 random graphs of size

n and density d, with N ′
2 samples for each graph, and find an estimate l̂

of the length distribution vector l using (9).

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)203

2. Simulate the “length-distribution” method over N1 random graphs of size
n and density d, with N2 samples for each graph, using the length distri-
bution vector l̂.

3. Estimate Zn;d by

Ẑn;d =
1

N1

N1∑

i=1

Y (i) , (10)

Y (i) =
1

N2

N2∑

j=1

I{X(ij) ∈ X ∗
G(i)}

g(X(ij))
. (11)

5.3 Estimating Var(ZG)

We have an estimate (10) for E[ZG] = Zn;d, but we are also interested in the
variance of ZG. Let Y be an estimate of ZG in a random graph G. Then,

Var(Y) = E[Var(Y | G)] + Var(E[Y | G])

= E[Var(Y | G)] + Var(ZG) .

We can estimate ℓ1 = Var(Y) and ℓ2 = E[Var(Y | G)] from our previous simu-
lation as follows:

ℓ̂1 =
1

N1 − 1

N1∑

i=1

(Y (i) − Ẑn;d)
2, (12)

ℓ̂2 =
1

N1(N2 − 1)

N1∑

i=1

N2∑

j=1

(
I{X(ij) ∈ X ∗

G(i)}
g(X(ij))

− Y (i)

)2

. (13)

Therefore, we can estimate Var(ZG) by

̂Var(ZG) = ℓ̂1 − ℓ̂2 . (14)

5.4 Results

We ran the previous algorithm over varying values of n and d, n ranged from
11 to 40, and d ranged from 0.1 to 1, with a step size of 0.1. For each combi-
nation of n and d, we ran a simulation of Algorithm 3 with (N ′

1, N
′
2, N1, N2) =

(50, 100, 500, 100). Figure 2 shows the estimates of log(Zn;d) for these simula-
tions.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)204

10 15 20 25 30 35 40
−20

0

20

40

60

80

100

120

n

lo
g(

Z
)

d=1
0.9

0.4

0.3

0.8
0.7
0.6
0.5

0.2

0.1

Figure 2: log(Ẑn;d) for varying values of n and d. The contours represent the
different values of d. d = 0.1 is the lowest contour, ranging up to d = 1 for the
highest contour. The contour representing d = 1 contains the exact values of
log(Zn;1), using (6).

For d > 0.2, we can see very consistent behaviour showing that our estimates
are accurate. However for d = 0.1, slightly inconsistent behaviour for low n
shows that our estimates might not be as accurate. This is supported by the
estimates for the relative errors of the {Ẑn;d} shown in Appendix B. Using (14),
we obtain estimates for the relative standard deviations of ZG for each (n, d).
These are also given in Appendix B.

5.5 Modeling the Data

To help construct a model for the data, consider the following analysis for large
n. Let X be the set of all 1-n paths in Kn, so that |X | = K(n). Suppose
that X ∼ U(X), and recall that |X| is the number of edges in the path X. Let
the number of edges in Kn be k(n) = n(n − 1)/2. Let X ∗ be the set of 1-n
paths in a random graph G of size n and density d (so we treat X ∗ as a random

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)205

variable).

Zn;d = K(n) P(X ∈ X
∗)

= K(n) E

[(dk(n)

k(n)

)(dk(n) − 1

k(n) − 1

)
· · ·
(dk(n) − |X| + 1

k(n) − |X| + 1

)]

= K(n) E

[(dk(n) − |X|/2 + 1/2

k(n) − |X|/2 + 1/2

)|X|
]
(1 + o(1))

= K(n) E

[(
dn − 1 + n−|X|

n−1

n − 1 + n−|X|
n−1

)|X|
]
(1 + o(1)) .

The third equality comes from the fact that |X| < n, and the following result
for a < b ≪ n:

(n2 + bn)(n2 + bn − 1) · · · (n2 + an + 1)(n2 + an)

=(n2 + b+a
2 n)(b−a)n+1 + 1

24 (b − a)3n3(n2 + b+a
2 n)(b−a)n−1 + · · ·

=(n2 + b+a
2 n)(b−a)n+1(1 + o(1)) .

We know that P(|X| = y) =
[
(n − 2)!/(n − y − 1)!

]
/K(n), so

Zn;d = K(n)

[
(n − 2)!

K(n)

(
1

0!

(
dn − 1 + 1

n−1

n − 1 + 1
n−1

)n−1

+
1

1!

(
dn − 1 + 2

n−1

n − 1 + 2
n−1

)n−2

+
1

2!

(
dn − 1 + 3

n−1

n − 1 + 3
n−1

)n−3

+ · · ·
)]

(1 + o(1)) .

For b ≪ n, it is easy to see that (an−1+ b/(n−1))n−b = (an−1)n−b(1+o(1)),
so

Zn;d = (n − 2)!

(
1

0!

(dn − 1

n − 1

)n−1

+
1

1!

(dn − 1

n − 1

)n−2

+ · · ·
)

(1 + o(1))

= (n − 2)!
(dn − 1

n − 1

)n−1

e(n−1
dn−1)(1 + o(1))

= (n − 2)! dn−1
(
1 +

1 − 1/d

n − 1

)n−1

e1/d(1 + o(1))

= (n − 2)! dn−1e(1 + o(1)) .

Using the fact that K(n) = (n − 2)! e(1 + o(1)) from (7), and to force equality
to K(n) when d = 1, we use a model of the form:

Zn;d = K(n)dn−1+δ(n,d) , (15)

where δ(n, d) → 0 as n → ∞. Note that K(n) can be calculated explicitly for
any n very quickly.

In Figure 3 we show the data transformed to show the corresponding es-
timates of δ(n, d) for each pair (n, d). That is, the Z-axis displays the values

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)206

of δ̂(n, d) = log(Ẑn;d/K(n))/log(d) − n + 1. Note that we disregard the data
obtained when d = 0.1, as the estimates are inaccurate. For d = 1, the trans-
formation is not defined, so we cannot use these values either.

0.2
0.4

0.6
0.8

1

10

20

30

40
−2.5

−2

−1.5

−1

−0.5

0

dn

de
lta

Figure 3: δ̂(n, d) for varying values of d and n.

This supports the model (15) as the estimates of δ(n, d) are small, and seem
to be approaching 0 as n increases. Suppose δ(n, d) = α/n + β/(dn) + o(n−1),
for some constants α and β. When fitting the data, we find the the following
least squares estimates (α, β) = (3.32,−5.16). The corresponding proportion of

variation of the {δ̂(n, d)} explained by the model is a very encouraging R2 ≈
0.985, while the explained proportion of variation of the {log(Ẑn;d)} is a striking
R2 ≈ 0.999996. In Figure 4 we show how our model for δ(n, d) behaves over the
same range as the data.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)207

0.2
0.4

0.6
0.8

1

10

20

30

40
−2.5

−2

−1.5

−1

−0.5

0

dn

de
lta

Figure 4: Our model for δ(n, d) over the same range as the data.

Due to this extremely good fit, we propose the following approximation Z̃n;d

to Zn;d:

Z̃n;d = K(n) · dn−1+δ(n,d) , where (16)

K(n) =
n−2∑

k=0

(n − 2)!

k!
, and

δ(n, d) =
3.32

n
− 5.16

dn
.

5.6 Testing the Model

We tested the final approximation (16) for random graphs of varying size and

density. These results are shown in Table 3, comparing the approximations Z̃n;d

with 95% confidence intervals for Zn;d obtained from simulations of Algorithm
3, using (N ′

1, N
′
2, N1, N2) = (50, 100, 1000, 100).

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)208

Table 3: Comparing the approximation with 95% CIs for Zn;d

n d 95% CI for Zn;d Z̃n;d

50 0.7 [8.850, 8.980] × 1053 8.924 × 1053

60 0.3 [1.146, 1.226] × 1048 1.193 × 1048

70 0.8 [1.388, 1.404] × 1090 1.401 × 1090

80 0.4 [1.212, 1.271] × 1084 1.255 × 1084

90 0.9 [4.261, 4.294] × 10130 4.280 × 10130

100 0.5 [4.148, 4.301] × 10124 4.244 × 10124

In each case, the estimate from our model (16) lies within the 95% CI of the
true value. So we can see that our model estimates Zn;d extremely well for
practically no computational cost, even for graphs of size 100. Recall that the
model is based on data from graphs of size 11 to 40. This extrapolation is a
good indication that for large n, Zn;d does indeed increase as our model says it
should.

6 Summary

We briefly described the main ideas behind counting via importance sampling
and how it applies to the enumeration of simple s-t paths in a graph. We
provided an importance sampling algorithm to efficiently estimate the solution
to this problem, and showed various numerical results to support the accuracy
and speed of this algorithm. Furthermore, the algorithm was applied to the
investigation of s-t paths in random graphs, and resulted in a model (16) for
the expected number of s-t paths in a random graph of fixed size and density.
Numerical results that justify the accuracy of the model were also shown.

In this paper, we have shown how to estimate the mean and variance of ZG,
the number of paths in a random graph G of fixed size and density. However,
for future research, the distribution of ZG could be further investigated. It
is intuitive that this distribution would be significantly skewed to the right,
implying that it is unlikely to have an approximate normal distribution. If
this distribution was more accurately understood, it would be possible to make
prediction intervals for ZG which could be useful.

Acknowledgements

The authors would like to thank professor Reuven Rubinstein for many fruitful
discussions on how to solve #P complete problems via Monte Carlo simulation.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)209

References

[1] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods

in Practice. Springer-Verlag, New York, 2001.

[2] M. Dyer, A. Frieze, and M. Jerrum. Approximately
counting Hamilton paths and cycles in dense graphs.
http://citeseer.ifi.unizh.ch/dyer95approximately.html, 1995.

[3] P. W. Glynn and D. L. Iglehart. Importance sampling for stochastic simu-
lations. Management Science, 35:1367–1392, 1989.

[4] J. M. Hammersley and K. W. Morton. Poor man’s Monte Carlo. Journal

of the Royal Statistical Society, 16(1):23–38, 1954.

[5] H. Khan. Modification of the Monte Carlo method. In Proceedings, Seminar

on Scientific Computation, pages 20–27. IBM, 1950.

[6] H. Khan. Use of different Monte Carlo sampling techniques. In Symposium

on Monte Carlo Methods, pages 146–190. John Wiley & Sons, 1956.

[7] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer-Verlag,
2001.

[8] J. S. Liu and R. Chen. Sequential Monte Carlo methods for dynamic
systems. Journal of the American Statistical Association, 93:1032–1044,
1998.

[9] N. Madras and M. Piccioni. Importance sampling for families of distribu-
tions. Ann. Appl. Probab., 9:1202–1225, 1999.

[10] M. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equations of state calculations by fast computing machines. J.

of Chemical Physics, 21:1087–1092, 1953.

[11] R. Motwani and R. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1997.

[12] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer,
New York, 2nd edition, 2004.

[13] M. N. Rosenbluth and A. W. Rosenbluth. Monte Carlo calculations of the
average extension of molecular chains. J. Chem. Phys., 23:356–360, 1955.

[14] R. Y. Rubinstein. How many needles are in a hay stack, or how to solve fast
#P-complete counting problems. Methodology and Computing in Applied

Probability, 2006. To appear.

[15] R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A uni-

fied approach to Combinatorial Optimization, Monte Carlo Simulation and

Machine Learning. Springer Verlag, New York, 2004.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)210

[16] D. Siegmund. Importance sampling in the Monte Carlo study of sequential
tests. Annals of Statistics, 4:673–684, 1976.

[17] L. G. Valiant. The complexity of enumeration and reliability problems.
Siam Journal of Computing, 8(3):410–421, 1979.

[18] D. J. A. Welsh. Complexity: Knots, Colouring and Counting. Cambridge
University Press, 1993.

[19] D. R. White and M. E. J. Newman. Network vulnerability and cohesion:
Fast approximation algorithms for finding node-independent paths in net-
works and k-components. Informal working paper: Santa Fe Institute,
2001.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)211

A Adjacency Matrices of Test Graphs

Case 1: (n = 8, normal graph, high density.)

A =




0 1 1 1 0 1 1 1
1 0 0 0 1 1 1 0
1 0 0 1 1 1 1 1
1 0 1 0 1 1 1 1
0 1 1 1 0 1 0 0
1 1 1 1 1 0 1 1
1 1 1 1 0 1 0 1
1 0 1 1 0 1 1 0


 .

Case 2: (n = 12, digraph, high density.)

A =




0 1 1 1 1 1 1 0 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 1 1 0 1
1 1 1 0 0 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0




.

Case 3: (n = 16, digraph, low density.)

A =




0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1
1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1
0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 1 1 1 0 1 0 0 1 0 1 1 0 1
1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0




.

Case 4: (n = 20, normal graph, high density.)

A =




0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1
1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1
1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1
1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0
1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0
1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1
0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1
0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0




.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)212

Case 5: (n = 24, normal graph, low density.)

A =




0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1
1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0
0 1 1 0
1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0




.

Case 6: (n = 30, digraph, high density.)

A =




0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0
1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1
1 0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1
1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1
1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0
1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0
0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1
1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1
0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1
0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1
1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1
1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1
1 0 1 1 0 1 0
1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1
1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1
1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0




.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)213

B Estimates for various quantities from the sim-

ulation of Algorithm 3.

Table 4: Relative errors for the estimates of Zn;d from Algorithm 3 using (5).
d

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

11 .013 .0095 .0077 .0060 .0052 .0041 .0034 .0026 .0018

12 .013 .011 .0082 .0066 .0050 .0043 .0034 .0026 .0018

13 .013 .011 .0083 .0066 .0053 .0044 .0036 .0027 .0018

14 .013 .011 .0088 .0070 .0055 .0046 .0036 .0028 .0018

15 .016 .012 .0094 .0071 .0056 .0046 .0037 .0028 .0019

16 .016 .013 .0091 .0072 .0058 .0047 .0038 .0029 .0019

17 .018 .014 .0096 .0075 .0058 .0048 .0038 .0028 .0020

18 .019 .015 .010 .0077 .0061 .0049 .0039 .0030 .0019

19 .019 .014 .010 .0080 .0062 .0050 .0040 .0030 .0020

20 .023 .015 .010 .0078 .0064 .0051 .0040 .0030 .0020

21 .023 .015 .011 .0082 .0063 .0052 .0041 .0030 .0020

22 .025 .016 .011 .0083 .0067 .0052 .0041 .0031 .0020

23 .028 .017 .011 .0086 .0067 .0053 .0042 .0031 .0021

24 .025 .017 .011 .0085 .0066 .0054 .0042 .0032 .0021

25 .030 .017 .012 .0088 .0072 .0054 .0043 .0033 .0021

26 .032 .016 .012 .0092 .0071 .0055 .0043 .0032 .0021

27 .037 .017 .013 .0091 .0074 .0056 .0044 .0033 .0022

28 .036 .018 .012 .0094 .0075 .0057 .0044 .0033 .0022

29 .042 .018 .012 .0096 .0074 .0059 .0045 .0033 .0022

30 .055 .020 .012 .0098 .0076 .0058 .0045 .0033 .0021

31 .041 .019 .013 .0097 .0075 .0060 .0045 .0033 .0022

32 .030 .020 .014 .010 .0077 .0061 .0046 .0035 .0022

33 .047 .021 .015 .011 .0077 .0061 .0046 .0034 .0022

34 .057 .020 .014 .011 .0080 .0060 .0046 .0034 .0022

35 .044 .023 .015 .010 .0079 .0061 .0048 .0035 .0022

36 .051 .022 .015 .010 .0081 .0061 .0048 .0035 .0023

37 .047 .022 .016 .011 .0085 .0062 .0048 .0035 .0023

38 .076 .021 .014 .011 .0084 .0066 .0048 .0036 .0023

39 .061 .024 .016 .011 .0084 .0065 .0049 .0035 .0023

40 .068 .024 .016 .012 .0083 .0065 .0049 .0036 .0023

Note that these are the relative errors of the {Ẑn;d}, not the {log(Ẑn;d)}.
However, they are small enough so that they are still very good estimates of the
relative errors of the {log(Ẑn;d)}.

Roberts and Kroese, Enumeration of s-t paths, JGAA, 11(1) 195–214 (2007)214

Table 5: Estimates for the relative standard deviations of the {ZG} from Algo-
rithm 3 using (14).

d

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

11 2.0 0.83 0.57 0.36 0.39 0.30 0.27 0.20 0.16

12 1.9 0.79 0.50 0.42 0.35 0.32 0.28 0.21 0.15

13 1.8 0.72 0.49 0.40 0.37 0.30 0.26 0.20 0.14

14 1.6 0.75 0.52 0.42 0.36 0.34 0.26 0.19 0.13

15 1.5 0.64 0.47 0.40 0.37 0.31 0.24 0.18 0.14

16 1.8 0.58 0.47 0.40 0.38 0.30 0.25 0.18 0.12

17 1.4 0.62 0.49 0.41 0.36 0.31 0.25 0.18 0.13

18 1.5 0.66 0.50 0.43 0.38 0.31 0.24 0.18 0.12

19 1.3 0.56 0.50 0.44 0.41 0.30 0.25 0.18 0.12

20 1.2 0.54 0.46 0.41 0.36 0.28 0.22 0.16 0.10

21 1.1 0.53 0.50 0.43 0.36 0.28 0.20 0.16 0.11

22 1.2 0.53 0.59 0.47 0.36 0.29 0.23 0.16 0.11

23 1.1 0.59 0.52 0.45 0.39 0.29 0.21 0.17 0.11

24 1.1 0.62 0.57 0.45 0.38 0.29 0.21 0.16 0.10

25 1.1 0.58 0.53 0.46 0.36 0.27 0.21 0.14 0.097

26 1.0 0.64 0.55 0.45 0.36 0.28 0.22 0.15 0.10

27 0.99 0.61 0.49 0.39 0.33 0.27 0.21 0.16 0.099

28 0.97 0.63 0.51 0.44 0.33 0.28 0.21 0.15 0.093

29 0.80 0.63 0.53 0.44 0.33 0.24 0.20 0.15 0.10

30 0.89 0.69 0.56 0.41 0.31 0.27 0.20 0.14 0.10

31 0.85 0.60 0.66 0.41 0.34 0.24 0.19 0.15 0.089

32 1.1 0.78 0.51 0.45 0.32 0.24 0.20 0.14 0.093

33 0.94 0.62 0.55 0.45 0.32 0.24 0.19 0.14 0.085

34 0.87 0.74 0.57 0.43 0.33 0.25 0.18 0.14 0.086

35 0.86 0.64 0.57 0.42 0.32 0.24 0.18 0.13 0.087

36 0.68 0.62 0.55 0.40 0.32 0.22 0.18 0.14 0.084

37 0.87 0.73 0.56 0.42 0.30 0.25 0.17 0.13 0.080

38 0.77 0.77 0.51 0.39 0.31 0.21 0.17 0.12 0.086

39 0.75 0.68 0.49 0.38 0.30 0.24 0.18 0.12 0.080

40 0.73 0.71 0.53 0.39 0.29 0.24 0.18 0.12 0.080

