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Abstract

Let G be a bipartite graph, and let λe, λi be two parallel convex curves;
we study the question about whether G admits a planar straight-line
drawing such that the vertices of one partite set of G lie on λe and the
vertices of the other partite set lie on λi. A characterization is presented
that gives rise to linear time testing algorithm. We also describe a drawing
algorithm that runs in linear time if the curves are two concentric circles
and the real RAM model of computation is adopted.
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1 Introduction

Common requirements for drawing a bipartite graph are that the bipartition
is highlighted in the visualization by representing the vertices on two distinct
layers, the edges have as few bends as possible, and the number of edge crossings
is minimized. A bipartite graph is a biplanar graph if it has a straight-line
crossing-free drawing where the vertices of one partite set are on a horizontal
layer and the vertices of the other partite set are on a separate parallel horizontal
layer [6]. Biplanar graphs have been independently characterized in [5, 8, 11].
Also, the problem of computing straight-line drawings of bipartite graphs with
the vertices on two horizontal layers and minimum number of crossings has been
well studied; see, e.g. [2, 3, 7, 9, 10] for some basic references on this and related
topics.

This paper studies planar drawings of bipartite graphs where vertices are
constrained to be on two parallel convex curves, which generalizes the case
of horizontal layers. Let G be a bipartite graph, and let λe, λi be two parallel
convex curves; we want to answer the question about whether G admits a planar
straight line drawing such that the vertices of one partite set of G lie on λe and
the vertices of the other partite set lie on λi.

Our interest in this question is in part motivated by the observation that
the class of bipartite graphs that admit a planar straight line drawing on two
horizontal lines is quite restricted and that one may hopefully enlarge this class
by allowing some curvature on the two layers. Indeed, there is already some
evidence in the literature that if the vertices in a drawing are not constrained to
be collinear but instead can lie on curves, the family of representable graphs for
specific drawing conventions can increase significantly; see, e.g. [4] for drawings
of planar graphs with at most one bend per edge and vertices constrained to be
on a given curve.

The problem addressed in this paper is also related to the study of radial
planarity testing initiated by Bachmaier, Brandenburg and Forster [1]. In [1] the
input is a k-partite graph G and k-concentric circles; the question is whether G
has a crossing-free drawing where the vertices of the same partite set are points
of the same radial level (circle) and the edges are simple Jordan curves in the
outward direction. Here, we study radial planarity testing for bipartite graphs
with the additional constraint that the edges are straight-line segments (indeed,
two concentric circles are a special case of two parallel convex curves).

Our contribution is as follows. The family of bipartite graphs which admit a
planar straight-line drawing with the vertices constrained to be on two parallel
convex curves and with no two vertices of the same partite set on different
curves is characterized. The characterization gives rise to a linear time testing
algorithm. The proof of sufficiency uses a linear time (real RAM) drawing
algorithm in the case of two concentric circles.
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2 Preliminaries

A graph G = (V,E) is bipartite if there exists a partition V = V0 ∪ V1 of the
vertices of G such that E ⊆ V0 × V1. The two sets V0 and V1 are called partite
sets of G. A bipartite graph with a given planar embedding is maximal if every
internal face of G consists of four edges.

A simple curve λ in the Euclidean plane is a closed curve if it partitions the
plane into two topologically connected regions; λ is an open curve otherwise.
Curve λ is convex if any straight line intersects λ in at most two points. Note
that a circle is a special case of closed convex curve.

Let p, q be two distinct points of λ. If λ is an open curve we say that p
precedes q on λ if p is encountered before q when traversing λ in the clockwise
direction. If λ is a closed curve, let p and q be two distinct points of λ such that
the portion of λ traversed when going from p to q in the clockwise direction is
shorter than the portion of λ traversed when going from q to p; we say that p
precedes q and that q follows p on λ.

Two convex curves are parallel if every normal to one curve is also a normal to
the other curve and the distance between the points where the normals intersect
the two curves is a constant. In the rest of this paper we denote with λe, λi two
parallel convex curves such that the curvature of λe is less than the curvature of
λi; λe is the external curve, λi is the internal curve (in the special case of two
concentric circles, λe is the circle with larger radius). Curves λe, λi are paired
if there exist two points p ∈ λi and q ∈ λe such that the straight-line segment
pq intersects λi twice. A straight-line segment with the property of pq is said to
cross curve λi. Observe that two concentric circles are paired. Two curves will
be called non-paired if they are parallel, convex, but are not paired. Figure 1
shows an example of two paired and two non-paired curves, respectively. In
particular, if the curves are non-paired and ` is the straight line through a point
p of λi, see Figure 1(b), two cases are possible: either ` intersects λe in a point
q without crossing λi or ` crosses λi in a point x without intersecting λe.

λeλi

x

p

q

(a)

`

λe
`

λi

p

x
q

(b)

Figure 1: (a) Two paired curves. (b) Two non-paired curves.

Let λe, λi be two parallel convex curves. A bipartite graph G is curve bipla-
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nar on λe, λi if it admits a curve biplanar drawing, i.e. a planar straight-line
drawing such that all vertices of a partite set of G are represented as points on
λe and the vertices of the other partite set are represented as points on λi. A
graph is a caterpillar if deleting all vertices of degree one produces a (possibly
empty) path. A leaf is a vertex with degree 1. A 2-claw is the graph consisting
of one degree-3 vertex (called the centre) which is adjacent to three degree-2
vertices, each of which is adjacent to the centre and to one leaf. Figure 2 depicts
an example of a caterpillar and a 2-claw. Note that a graph G is a forest of
caterpillars if and only if G is acyclic and contains no 2-claw, see [5, 8, 11]. As
the next theorem shows, if λe, λi are non-paired, the family of curve biplanar
graphs coincides with the family of biplanar graphs characterized in [5, 8, 11].

path

(a)

leaves

centre

(b)

Figure 2: (a) A caterpillar. (b) A 2-claw.

Theorem 1 A bipartite graph admits a curve biplanar drawing on two non-
paired curves if and only if it is a forest of caterpillars.

Proof: The proof is an easy adaptation of the arguments in [5, 8, 11]. Initially
we prove that if a graph G admits a biplanar drawing on two non-paired curves,
then it is a forest of caterpillars.

We prove first that G is acyclic. Since the curves are non-paired and the
edges are drawn as straight-line segments, every edge is contained in the annulus
between the two curves. Let v0, u0, v1, u1, . . . , vh−1, uh−1 be a path such that
vj ∈ V0 and uj ∈ V1 (0 ≤ j ≤ h− 1). In order to avoid crossings in the drawing
of this path, each vertex vj must precede vertex vj+1 on one of the two curves,
say λe, and each vertex uj must precede vertex uj+1 (j = 0, 1, . . . , h− 2) on the
other curve, i.e. λi. If one wants to close a cycle by adding edge (v0, uh−1), then
this edge would cross all edges of the path, because these edges are completely
contained in the annulus between the two curves and the two curves are non-
paired. It follows that G is acyclic.

We prove now that G does not contain a 2-claw and hence it is a forest of
caterpillars. Assume, by contradiction, that G contains a 2-claw. The centre
v of the 2-claw is drawn on one curve, say λe, and it is adjacent to the three
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degree-2 vertices that are on λi. Let u0, u1 and u2 be these degree-2 vertices
and assume that u1 follows u0 and precedes u2 on λi. The leaf v1 adjacent to
u1 either precedes v on λe, in which case there is a crossing between (v, u0) and
(u1, v1), or it follows v on λe, in which case there is a crossing between (v, u2)
and (u1, v1). It follows that G cannot contain a 2-claw.

Let G be a forest of caterpillars and let λe, λi be two non-paired curves.
We prove the sufficiency in the case that G is one caterpillar. If G is not
connected, every connected component can be drawn independently. Let Π =
v0, u0, v1, u1, . . . , vh−1, uh−1 be the path obtained by removing all leafs from G.
Draw each vertex vj on one of the two curves, say λe, and each vertex uj on
the other curve, i.e. λi (j = 0, . . . , h − 1), so that vj precedes vj+1 on λe and
uj precedes uj+1 on λi (j = 0, . . . , h − 2). For each vertex vj , draw the leafs
adjacent to vj as points of λi which follow uj−1 and precede uj . For each vertex
uj , draw the leafs adjacent to uj as points of λe which follow vj and precede
vj+1. 2

Motivated by Theorem 1, we will investigate the family of bipartite graphs
that admit a curve biplanar drawing on two paired curves. We first show how
to draw a specific family of graphs, namely bipartite fans, and then present a
complete characterization of curve biplanar graphs on two paired curves.

3 How to Draw a Bipartite Fan

Let G be a biconnected bipartite graph with a given planar embedding. G is
a bipartite fan if it has a vertex u, called apex, that is shared by all its faces
(including the external one). The edges incident on u are the radial edges of the
fan. Let u, v0, v1, . . . , vn−2 be the vertices of a fan G in the counterclockwise
order they have on the external face. Edges (u, v0) and (u, vn−2) are called first
edge and last edge of the fan, respectively. Any three vertices v2j , v2j+1, v2j+2

(0 ≤ j ≤ n−4
2 ) form a fan triplet of G. Notice that v2j+1 belongs to the same

partite set as u. See Figure 3(a) for an illustration of a bipartite fan.
We show how to compute a curve biplanar drawing of a bipartite fan on

two paired curves such that the drawing is contained in a suitable region of the
plane called a wedge and defined as follows. Let λe, λi be two paired curves, let
p, q, r be three points such that:

(i) p, r ∈ λe and p precedes r on λe;

(ii) q ∈ λi;

(iii) segment pq does not cross curve λi;

(iv) segment qr crosses λi.

Let λpr be the portion of λe consisting of all points x ∈ λe such that x follows
p and precedes r. The closed bounded region delimited by pq, qr and λpr is a
wedge of λe, λi and is denoted as W (p, q, r) (see Figure 3(b) for an example).
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Figure 3: (a) A bipartite fan. (b) A wedge W (p, q, r).

Lemma 1 Let G be a bipartite fan with n vertices and apex u. Let λe, λi be
two paired curves and let W (p, q, r) be a wedge of λe, λi. Fan G admits a curve
biplanar drawing on λe, λi contained inside W (p, q, r) such that:

(i) the first and the last edge of G are represented by segments qr and pq,
respectively;

(ii) for every fan triplet v2j , v2j+1, v2j+2 of G (0 ≤ j ≤ n−4
2 ), the three points

representing the triplet define a wedge of λe, λi.

Moreover, if λe and λi are circles the drawing can be computed in O(n) time.

Proof: We assume that G is maximal, i.e. that every internal face consists
of four edges and four vertices; if not, we can split each internal face f having
more than four edges by connecting u to all vertices of f that are not adjacent
to u and do not belong to the same partite set of u (it is immediate to see that
the resulting augmented graph is still a bipartite fan). Let u, v0, v1, . . . , vn−2

be the vertices of fan G in the counterclockwise order they have on its external
face, (see Figure 3(a)), in what follows we denote as ri points where vertices vi

(0 ≤ i ≤ n− 2) are placed and we adopt the following notation for the faces of
G: f0 is the external face; fj+1 with 0 ≤ j ≤ n−4

2 is the internal face containing
the apex u and the fan triplet v2j , v2j+1, v2j+2.

First, we prove that a bipartite fan can be drawn inside a wedge W (p, q, r)
in such a way that (see Figure 4 for an example):

- condition (ii) is satisfied;

- the apex u is drawn on the point q;

- the first edge of the fan is represented by the segment qr;

- points p, q, rn−2 define a wedge W (p, q, rn−2) entirely contained in W (p, q, r).
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λi λe

p vn−2 = rn−2

u = q

W (p, q, rn−2)

vn−1

v0 = r

v1

Figure 4: Wedge W (p, q, rn−2) obtained after the application of the recursive drawing
technique.

The proof is by induction on the number nfi of the internal faces of G.
Base Case: nfi = 1. G is a 4-cycle and it is sufficient to show how its

internal face f1 must be drawn. The apex u is drawn at point q and the vertex
v0 is drawn at point r0 coincident with r, as depicted in Figure 5(a). Thus, the
first edge of G is represented by the segment qr0. Let x1 be the point where
segment qr0 crosses λi. Since λi is convex, there exists a straight line through
r0 and tangent to λi at a point t1 such that t1 follows q and precedes x1 on λi;
since pq does not cross λi, then t1 is inside wedge W (p, q, r). Choose a point
q1 that follows q and precedes t1 on λi and let `1 be the straight line through q
and q1. Draw vertex v2 at point r2 = `1 ∩ λe (see Figure 5(a)). Let t′1 be the
point on λi that follows q1 and where the tangent to λi through r2 intersects
λi; note that t′1 may not exist. Draw vertex v1 at any point r1 of λi that follows
q1 and precedes t1 and t′1 when it exists.

Segment r1r0 crosses λi because r1 precedes t1 on λi and λi is convex. Let
t′′1 be the point of λi that precedes q1 and where the tangent to λi through r2

intersects λi; t′′1 follows q and precedes r1; since t′1 follows r1 the segment r2r1

does not cross λi.
Therefore points r0, r1, r2, which represent the vertices of the fan triplet

v0, v1, v2, define a wedge W (r2, r1, r0). Also, segment qr2 crosses λi, and there-
fore points p, q, and r2 define a wedge W (p, q, r2), as shown in Figure 5(b).

Inductive Case: nfi = k +1. Suppose that the internal faces f1, f2, . . . , fk

have already been drawn, and let v2k−2, v2k−1, v2k be the fan triplet of fk. By
the inductive hypothesis vertex v2k is drawn at point r2k, the segment qr2k

crosses λi and points p, q, r2k define a wedge W (p, q, r2k) (see Figure 6(a) for an
example).

In order to draw face fk+1, we only need to draw vertices v2k+1, v2k+2 be-
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Figure 5: Illustration of the first step of the proof of Lemma 1.
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Figure 6: Illustration of the inductive step of the proof of Lemma 1.
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cause the apex u and vertex v2k have already been drawn. It can be done
by applying the same technique that we used to draw v1 and v2 inside wedge
W (p, q, r) in the base case of the inductive proof (see also Figure 6(b)).

To complete the proof, we need to show that the drawing of the fan can be
modified in such a way that condition (i) be satisfied. Namely, although the
first edge is represented by the segment qr as required, the last edge of the fan
is not represented by the segment pq. However, this can be accomplished by
changing the drawing of the last internal face fn

2−1 as follows (see Figure 7 for
an illustration).

λi λe

p

u = q

vn−2 = rn−2

vn−3

t′
q′

fn
2
−1

vn−4

rn−4

(a)

λi λe

u = q

vn−4

rn−2

rn−3

vn−2 = p

t′
vn−3

rn−4

tn
2−1

fn

2
−1

(b)

Figure 7: Redrawing technique of the last internal face.
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Let t′ be the point on λi that follows q and where the tangent to λi through p
intersects λi. Move vertex vn−2 to point p and move vertex vn−3 to any point q′

that follows q and precedes both t′ and rn−3. This choice ensures that segment
pq′ does not cross λi. Instead, since q′ precedes rn−3 it precedes tn

2−1, thus
segment q′rn−4 crosses λi. Hence, condition (i) is satisfied and condition (ii) is
preserved.

Note that, moving vertices vn−2, vn−3 as explained above does not introduce
crossings with other elements of the drawing, because vertices vn−2 and vn−3

have been moved inside the wedge W (p, q, rn−4), while all the other vertices
(and edges) are drawn in the plane region delimited by the segment qrn−4, the
segment qr and the portion of λe from point rn−4 to r.

Concerning the time complexity, it is immediate to see that the augmentation
that makes G maximal can be performed by visiting each vertex at most once.
Also, computing the intersection and the tangent to the circle requires O(1)
time in the real RAM model of computation (note that this may not be the case
for other types of curves).

Finally, the drawing algorithm computes the coordinates for the four vertices
of each face of a fan by solving at most four quadratic equations. 2

4 Curve Biplanar Graphs

We start with a sufficient condition whose proof uses the following definition.
Let G = (V, E) be a connected graph. A subset of vertices S ⊂ V is a cut-set if
the removal of S disconnects G. Let G0, . . . , Gk−1 be the connected components
of G−S (possibly isolated vertices). The S-components of G are the subgraphs
of G induced by sets V (Gj) ∪ S (0 ≤ j ≤ k − 1), where V (Gj) denotes the set
of vertices of G.

Lemma 2 Let G be a biconnected bipartite graph with a given planar embedding
such that all vertices in one partite set belong to the external face. Then G is
curve biplanar on two paired curves.

Proof: We describe now how to compute an embedding preserving curve bi-
planar drawing of G. To this aim, we decompose it into subgraphs that are
bipartite fans and draw each fan by using the technique described in Lemma 1.

Let V0 and V1 be the two partite sets of G and assume that all vertices of V0

belong to the external face of G in the given embedding. Since G is bipartite,
there exists a vertex u ∈ V1 such that u belongs to the external face of G. Let
Fu be the subgraph of G induced by all vertices that share an internal face with
u (Fu exists because G is biconnected). Note that Fu is a bipartite fan, which
we call the fan of u. Let λe and λi be two paired curves, let W (p, q, r) be an
arbitrarily chosen wedge of λe, λi (such a wedge always exists because λe and
λi are paired). By Lemma 1, Fu can be drawn inside W (p, q, r) so that its first
and last edge are represented by segments qr and pq, respectively.

Let u, v0, v1, . . . , vn−2 be the vertices of Fu in the counterclockwise order they
have on the external face of Fu. Since u ∈ V1, vertices v2j (j = 0, 1, . . . , n−2

2 )
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Figure 8: Illustration of the decomposition technique described in Lemma 2. White
vertices belong all to the external face. Fan Fu has 12 vertices: u, v0, v1, . . . , v10; the
fan triplets v6, v7, v8 and v8, v9, v10 are cut sets for the whole graph because vertices
v7 and v9 do not belong to the external face.

belong to V0 and are on the external face of G. This implies that every fan
triplet τ = {v2j , v2j+1, v2j+2} is a cut-set for G unless v2j+1 is on the external
face. Indeed, since G is biconnected, the boundary of its external face is a cycle
C, and if v2j+1 ∈ τ is not on the external face, then the vertices of τ induce a
path that splits C in two paths C ′ and C ′′; since no edge of G can connect a
vertex of C ′ to a vertex of C ′′ (otherwise G would not be planar), then τ is a
cut-set for G (see Figure 8 for an illustration).

The τ -component of G that does not contain u is a planar bipartite graph
that satisfies the condition expressed by the statement. Also, by Lemma 1,
points r2j , r2j+1, r2j+2 representing the vertices of τ in the drawing of Fu define
a wedge W (r2j , r2j+1, r2j+2). Therefore, the τ -component of G that does not
contain u can be recursively drawn inside W (r2j , r2j+1, r2j+2). 2

The previous sufficient condition can be extended also to non-biconnected
graphs by using the augmentation technique described in the following lemma.

Lemma 3 Let G be a non-biconnected bipartite graph and let V0 be one of the
partite sets of G. If G has a planar embedding with all vertices of V0 on the
external face, then G can be augmented with dummy vertices and edges so that
the resulting graph G′ is biconnected, bipartite, has a partite set V ′

0 such that
V0 ⊆ V ′

0 , and has a planar embedding with all vertices of V ′
0 on the external

face.

Proof: Consider the embedding of G such that all vertices of V0 belong to the
external face and let v be a cut-vertex of G. If v ∈ V0, then it is on the external
face. If v ∈ V1, all its adjacent vertices are on the external face. It follows that
v belongs to the external face also in this case.
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Suppose that v belongs to h biconnected components. In the cyclic ordering
of the edges incident on v there are h consecutive pairs that belong to different
biconnected components. Consider one such pair (v, u) and (v, w). We augment
G by adding a path u, x, w for h− 1 of these pairs, where x is a dummy vertex.
Since G is bipartite, then v belongs to one partite set and u,w belong to the
other one. To maintain the bipartiteness x is assigned to the same partite set
containing v. All dummy vertices are added on the external face and each vertex
that was on the external face before adding the paths remains on the external
face. By repeating this augmentation until there are no more cut-vertices, we
obtain a biconnected bipartite graph G′ that satisfies the statement. 2

Theorem 2 A bipartite graph G is curve biplanar on two paired curves if and
only if it admits a planar embedding such that all vertices in one partite set
belong to the external face. Also, if G is curve biplanar on two concentric
circles, a curve biplanar drawing of G can be computed in O(n) time in the real
RAM model of computation, where n is the number of vertices of G.

Proof: We first prove the sufficiency. Let V0 be a partite set of G such that
all vertices of V0 belong to the external face of a planar embedding of G. If G
is biconnected, the sufficiency follows from Lemma 2. Otherwise, as shown by
Lemma 3, G can be augmented by adding dummy vertices and edges such that
the augmented graph G′ is biconnected and bipartite, one of its partite sets is
V ′

0 with V0 ⊆ V ′
0 , and has a planar embedding with the vertices of V ′

0 on the
external face. It follows that G′ has a biplanar drawing on two paired curves
by Lemma 2 and hence G is curve biplanar on two paired curves.

We now prove the necessity. Let Γ be a curve biplanar drawing of a graph
G on two paired curves λe and λi. All vertices drawn as points of λe are on the
external face of Γ because the curves are convex and the drawing is straight-
line. Since all vertices on the same curve are in the same partite set, G admits a
planar embedding such that all vertices in one partite set belong to the external
face.

Time complexity. The augmentation technique can be performed in O(n)
time by visiting the vertices on the external face. The fan Fu of u can be
computed in time proportional to the number nu of vertices in Fu by visiting
all faces containing u. As stated in Lemma 3, drawing each fan Fu requires
O(nu) time when the curves are two concentric circles and the real RAM model
of computation is adopted. Moreover, since

∑
Fu

O(nu) = O(n) it follows that
the overall time complexity is O(n). 2

Theorem 3 Let G be a bipartite planar graph with n vertices. The curve bi-
planarity of G on two paired curves can be tested in O(n) time.

Proof: A curve biplanarity test can be performed by executing at most two
planarity tests with the additional constraint that all vertices in one of the
partite sets of G belong to the external face. 2

We conclude this section by describing how the result of Theorem 2 is related
to radial planarity. A k-partite graph G = (V0, . . . , Vk−1, E) is radial k-level
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planar if it admits a planar drawing on k concentric circles C0, C1, . . . , Ck−1,
with the vertices of partition Vi drawn on circle Ci (0 ≤ i ≤ k − 1) and the
edges drawn as strictly monotone curves from inner to outer circles. Radial
planarity has been studied by Bachmaier et al. [1] who present a linear time
algorithm for radial planarity testing and embedding. Based on the fact that
two concentric circles are two paired curves and that straight-line segments with
the end-vertices on two different circles are a special case of strictly monotone
curves from inner to outer circles, the following results immediately follows from
Theorems 2 and 3.

Corollary 1 A bipartite graph G is radial 2-level planar with straight-line edges
if and only if it admits an embedding such that all vertices in one partite set
belong to the external face. Also, there exists an O(n)-time algorithm that tests
whether a bipartite graph G is radial 2-level planar with straight-line edges.

5 Open Problems

In this paper we have studied the curve biplanar drawability problem of bipar-
tite graphs. It may be considered a generalization of the well known biplanar
drawability problem, when parallel layers are allowed to be curves.

We have shown that, if the curves are non-paired, the families of graph that
admits a curve biplanar drawing is the forest of caterpillars, e.g. the same
family that characterizes the biplanar graphs [5, 8, 11]. Instead, if the curves
are paired, we have proved that a bipartite graph is curve biplanar if and only if
it admits a planar embedding with all vertices of one partite set on the external
face. We have provided also a drawing algorithm that runs in linear time if the
curves are two concentric circles and the real RAM model of computation is
adopted. Moreover, we have proven that the curve biplanarity can be tested in
linear time.

We conclude by listing some open problems that in our opinion should be
investigated.

• Extend the study to k-partite graphs and k parallel curves with k > 2. In
particular, it would be interesting to study radial planarity testing with
straight-line edges and more than two concentric circles.

• Study the complexity of the following problem: Let G be a planar bipartite
graph and let c be a positive integer. Does G have a curve biplanar
subgraph (not necessarily induced) with at least c edges?

• Study the complexity of the edge crossing minimization problem for straight-
line drawings of bipartite graphs on two parallel convex curves.

• Investigate what happens when non-convex curves are considered: does
the class of curve biplanar (bipartite) graphs change? If yes, how does it
depend on the profile of the curves?
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• The presented algorithm may require very large resolution, expressed as
the ratio between the longest edge and the shortest edge. What is a lower
bound for the resolution? How does it depend on the distance between
the two curves?
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