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Overlapping Cluster Planarity.
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Università degli Studi di Perugia, Italy

Abstract

This paper investigates a new direction in the area of cluster planarity

by addressing the following question: Let G be a graph along with a hi-

erarchy of vertex clusters, where clusters can partially intersect. Does G

admit a drawing where each cluster is inside a simple closed region, no two

edges intersect, and no edge intersects a region twice? We investigate the

interplay between this problem and the classical cluster planarity testing

problem where clusters are not allowed to partially intersect. Characteri-

zations, models, and algorithms are discussed.
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1 Introduction

Graphs and their visualizations are essential in data exploration and under-
standing, particularly for those applications that need to manage, process, and
analyze huge quantities of relational data. However, when the graph to be dis-
played consists of hundreds or thousands of vertices, a complete visualization
of the data is typically not effective for the user, and therefore alternative vi-
sualization paradigms have been investigated in the literature. A well studied
approach to handle and visualize large graphs is to organize the vertices into a
hierarchy of clusters. This makes it possible to explore complex relational data
at different levels of detail, by collapsing or expanding clusters. This approach
has been applied to various application domains, including Internet and Web
computing, social network analysis, reverse engineering, knowledge engineering,
and computational biology (see, e.g., [8, 15, 16, 20]).

A clustered graph (or simply c-graph) consists of a pair C = (G, T ), where G
is an undirected graph and T is a rooted tree that describes a hierarchy of vertex
clusters; each cluster is a subset of the vertices of G and any two clusters are
either disjoint or one is completely included in the other. In a visualization of a
c-graph the subgraph induced by each cluster α is drawn inside a simple closed
region which keeps any other vertex that does not belong to α out of it. Also,
the inclusions among cluster regions must reflect the inclusion relations among
the corresponding clusters. An important requirement for the readability of the
drawing is that it has as few crossings as possible: It is required to minimize
both crossings between edges and crossings between a cluster region and edges
that are not incident to vertices inside the region. A crossing-free drawing of a
c-graph is called a c-planar drawing and a c-graph that admits such a drawing
is said to be c-planar. For example, Figure 1 shows two different drawings of the
same clustered graph, where the regions of the clusters are drawn as rectangles.
The drawing in Figure 1(a) is not c-planar, because the bold edge crosses both
other edges and the region of cluster α. Conversely, the drawing in Figure 1(b)
is c-planar.

The problem of testing whether a c-graph is c-planar was first introduced in
a paper by Feng, Cohen, and Eades [9], that inspired and motivated a sequence
of papers on this topic. Feng et al. [9] describe a quadratic-time c-planarity
testing algorithm for clustered graphs where each cluster induces a connected
subgraph. Linear-time testing algorithm for the same class of clustered graphs
are described in [2, 4, 5]. Feng et al. leave as open the problem of testing
a c-graph for c-planarity when clusters can induce non connected subgraphs;
although the time complexity of this problem is still unknown, several special
cases for which polynomial-time testing algorithms exist have been described
in the literature [3, 10, 11]. The relationship between planarity and c-planarity
has also been studied in [1] and a planarization algorithm for c-graphs that are
not c-planar is described in [6].

Motivated by the several applications where relational data are clustered
and the clusters can partially intersect (see, e.g., [13, 14, 20]), recent papers by
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Figure 1: (a) A non c-planar drawing of a clustered graph. (b) A c-planar
drawing of the same clustered graph.Vertices with the same color belong to the
same cluster.

Omote and Sugiyama [17, 18] present effective generalizations of force-directed
techniques to compute drawings of clustered graphs where distinct clusters can
share subsets of their vertices. The methods proposed in [17, 18] can however
give rise to drawings that do not respect some of the classical rules of cluster
planarity; for example, two edges may intersect each other or an edge may
intersect the region of a cluster that contains none of its end-vertices.

Inspired by the above mentioned cluster planarity literature and by the work
of Omote and Sugiyama [17, 18], this paper opens a new research direction in
the field of cluster planarity testing by addressing the following problem: Let G
be a graph along with a hierarchy of vertex clusters, where clusters can overlap,
i.e., they can share a proper subset of their vertices; does G admit a drawing
where each cluster is inside a simple closed region, no two edges intersect, and no
edge intersects a region twice? Figure 3(a) depicts a drawing of an overlapping
clustered graph that satisfies the desired conditions. At a first glance, one might
argue that the question of this paper can be answered by simply regarding each
overlap between any two clusters as an individual cluster and by applying known
results of cluster planarity. However, as it will be shown throughout the paper,
this approach does not work in general even for the apparently simple case of
a graph consisting of exactly two overlapping clusters. Indeed, the main focus
of this paper is on the study of the relationship between cluster planarity with
overlaps and cluster planarity without overlaps.

An overview of the main results in this paper is as follows.

• We define the concept of overlapping clustered graphs (also called oc-
graphs) and of overlapping cluster planarity. An oc-graph that is clus-
ter planar is called oc-planar. A characterization of oc-planar graphs is
given; this characterization extends the one of Feng et al. [9] to the case
of overlapping clusters.
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• We provide examples of oc-planar oc-graphs such that the c-graph ob-
tained by considering the overlaps as individual clusters is not c-planar;
and, vice-versa, we give examples where the oc-graph is not oc-planar
while the corresponding c-graph is c-planar.

• Based on the above characterization and negative results, we describe
models that make it possible to translate the planarity testing problem
for meaningful classes of oc-graphs as the planarity testing problem of
associated c-graphs.

• Planarity testing and embedding algorithms for oc-graphs are devised by
combining our models with known results about c-planarity.

We recall that a generalization of clustered graphs that includes the family of
oc-graphs, known as compound graphs, has been introduced in the graph drawing
literature several years ago by Sugiyama and Misue [21]. In a compound graph
clusters may overlap and adjacency relations among clusters may be defined (in
other words, there may be edges connecting pairs of clusters and not just pairs
of vertices). It has to be remarked however that, to the best of our knowledge,
all drawing algorithms provided in the literature to visualize compound graphs,
including the techniques in [21], work under the restrictive assumption that no
two clusters overlap (see, e.g., [15, 16, 20]). Also compound graphs have never
been studied from a planarity testing perspective.

The remainder of this paper is organized as follows. The definition of oc-
graphs is given in Subsection 2.1 and a characterization of oc-planarity is pre-
sented in Subsection 2.2; models and algorithms can be found in Section 3; final
remarks and open problems are in Section 4.

2 Overlapping Clustered Graphs and Planarity

We first define oc-graphs and oc-planarity and then present a characterization
result. We assume familiarity with basic concepts of graph theory [12] and
geometric computing [19]; we recall here only those definitions that pertain
cluster planarity.

2.1 Definitions

A graph G is connected if it consists of one vertex only, or if for any pair of its
vertices u and v there exists a path connecting u to v in G. A connected graph
G is k-connected (k > 1) if it remains connected after the removal of any subset
of k − 1 vertices.

A clustered graph C = (G, T ), also called c-graph, consists of an undirected
graph G and of a rooted tree T , called inclusion tree of C, which describes the
inclusion relationships among the vertex clusters. Namely:

• The leaves of T are the vertices of G;
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• Let µ be an internal node of T . Node µ has at least two children and
it represents a cluster of vertices of G, denoted as V (µ). Cluster V (µ)
consists of all leaves of the subtree rooted at µ. If ν is an ancestor of µ in
T , then V (µ) ⊂ V (ν).

Figure 2 shows an example of a c-graph. In the remainder of the paper
G(µ) denotes the subgraph of G induced by V (µ). A c-graph C is said to
be c-connected if G(µ) is a connected graph for each µ of T . The c-graph
of Figure 2(a) is not c-connected, because both clusters α2 and β2 induce a
disconnected subgraph of G.
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Figure 2: (a) A c-graph C = (G, T ); the clusters are represented as rectangles.
(b) The inclusion tree T of C.
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Figure 3: (a) An oc-graph W ; the clusters are depicted as rectangles. Clusters
µ1, ν1 and clusters µ2, ν2 are overlapping clusters. (b) The inclusion digraph of
W .

An overlapping clustered graph W = (G,H) consists of an undirected graph
G and an acyclic digraph H with a single source such that:

• The sinks of H are the vertices of G;

• Let µ be a non-sink node of H . Node µ has at least two outgoing arcs and
it represents a cluster of vertices of G, denoted as V (µ). Cluster V (µ)
consists of all sinks of H reachable from µ with a directed path;

• There are no transitive arcs in H .

In the following we call W an oc-graph and H the inclusion digraph of
W . Figure 3 shows an example of an oc-graph and of its inclusion digraph.
Similarly to the definition of c-graphs, H describes the inclusions among the
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clusters: V (µ) ⊂ V (ν) if there exists a directed path from ν to µ in H . Also,
G(µ) denotes the subgraph of G induced by the cluster represented by µ. If µ
and ν are two distinct nodes of H such that V (µ) 6⊂ V (ν), V (ν) 6⊂ V (µ) and
V ′ = V (µ) ∩ V (ν) 6= ∅, then we call V ′ the overlap of V (µ) and V (ν), and
we say that V (µ), V (ν) are two overlapping clusters. An oc-graph W is said
to be c-connected if for each non-sink node µ of H , G(µ) is connected. For
example, the oc-graph in Figure 3(a) is c-connected. Observe that c-graphs can
be considered as special cases of oc-graphs, because a c-graph C = (G, T ) is an
oc-graph with no overlap where all arcs of T are oriented downward, from the
root to the leaves.

We remark that the class of intersecting clustered graphs defined by Omote
and Sugiyama [17, 18] is a proper subclass of the overlapping clustered graphs
studied in this paper, because in an intersecting clustered graph the subgraph
induced by an overlap cannot be further decomposed into clusters. In other
words, the inclusion digraph for an intersecting clustered graph is a rooted
tree except that it allows sharing of leaves between clusters. For example,
the clustering structure depicted in Figure 3 does not satisfy the definition of
intersecting clustered graph because nodes ν2 and µ2 share node δ2.

In their work, Feng et al. [9] define the concept of a c-planar drawing of
a c-graph. We extend this definition to oc-graphs. An oc-planar drawing of
an oc-graph W = (G,H) is a representation of W in the plane such that each
vertex of G is drawn as a distinct point in the plane, each edge of G is drawn as
a simple Jordan curve, and each node µ of H is drawn as a simple closed region
R(µ) according to the following rules. We denote as v a vertex of G and as p(v)
the point representing v in the drawing.

R1: R(µ) contains the drawing of G(µ).

R2: If V (µ) ⊂ V (ν) then R(µ) ⊂ R(ν), and if the boundaries of R(ν) and R(µ)
intersect then every connected region of R(ν)∩R(µ) contains at least one
vertex of V (µ) ∩ V (ν).

R3: If v 6∈ V (µ), p(v) is outside R(µ).

R4: There is no edge crossing, i.e., any two edges of G never cross.

R5: There is no edge-region crossing, i.e., there is no edge of G that crosses
the boundary of a region R(µ) twice.

An oc-graph is oc-planar if it admits an oc-planar drawing; for example, the
oc-graph of Figure 3 is oc-planar. For the special case that an oc-graph W is a
c-graph, a drawing of W that satisfies Rules R1–R5 is called c-planar; a c-graph
is c-planar if it admits a c-planar drawing. For example, the c-graph of Figure 2
is c-planar. Note that, by Rule R1, in an oc-planar drawing the boundaries
of two regions R(µ), R(ν) necessarily intersect if V (µ), V (ν) are overlapping
clusters. Conversely, in a c-planar drawing the boundaries of any two regions
can be always “shrank” so that they never intersect.
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We conclude this section with definitions that are going to be used in the
remainder of the paper. Let C = (G, T ) be a c-planar graph. We denote as Γ(C)
a c-planar drawing of C and as Γ(G) the planar drawing of G in Γ(C). Also,
Γ(G(µ)) denotes the drawing of G(µ) in Γ(C), for each cluster µ. Analogously,
let W = (G,H) be an oc-planar graph. We denote as Γ(W ) an oc-planar
drawing of W , and as Γ(G) and Γ(G(µ)) the drawing of G and G(µ) in Γ(W ),
respectively.

A planar drawing Γ(G) of a graph G subdivides the plane into topologically
connected regions, called faces ; exactly one of this faces is unbounded, and it
is called the external face; the other faces are internal faces. An internal (resp.
external) face f is described by the clockwise (resp. counterclockwise) sequence
of vertices and edges that form its boundary. The description of a set of faces
for G is a planar embedding of G and the planar embedding of Γ(G); we recall
that if a graph is planar and 3-connected, any two planar embeddings of the
graph can only differ for their external face [12]. Throughout the paper a face
f is regarded as an open set; therefore when we say that a vertex v is in f we
mean that v lies inside the region f but not on its boundary.

2.2 Characterizing Overlapping Cluster Planarity

Feng et al. [9] gave a characterization of those c-connected clustered graphs
C = (G, T ) that are c-planar. Their characterization is based on the existence
of a planar embedding of G with certain properties.

Theorem 1 [9] A c-connected c-graph C = (G, T ) is c-planar if and only if
G admits a planar embedding such that, for each node µ of T , all vertices of
G−G(µ) are in the external face of G(µ).

The next theorem can be proved by extending the technique of [9] in order
to deal with the more complex structure of an inclusion digraph instead of the
structure of an inclusion tree.

Theorem 2 A c-connected oc-graph W = (G,H) is oc-planar if and only if
G admits a planar embedding such that, for each node µ of H, all vertices of
G−G(µ) are in the external face of G(µ).

Proof: Suppose that W is oc-planar and let Γ(W ) be an oc-planar drawing
of W . Let µ be a node of H and let v be a vertex of G − G(µ). Suppose by
contradiction that v lies in an internal face of G(µ). Since by Rule R1, region
R(µ) contains the drawing of G(µ) in Γ(W ), it follows that also the point p(v)
representing v is inside R(µ), which however contradicts Rule R3. Therefore v
is in the external face of G(µ).

Conversely, suppose that G has a planar embedding that satisfies the state-
ment. Denote by ψ such an embedding. To prove that W is oc-planar, compute
a planar drawing Γ(G) of G that preserves ψ, i.e., a planar drawing that induces
the set of faces of ψ (this can be done by applying standard graph drawing algo-
rithms [7]). Incrementally construct the cluster regions by following a suitable
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order. Namely, let S = µ1, . . . , µh be the sequence of the non-sink nodes of H
ordered according to the reverse of a topological sorting. This implies that µh

is the source of H and that for each µj (1 ≤ j ≤ h) those non-sink nodes of H
reachable from µj with a directed path have index smaller than j.

Γ(W ) is constructed from Γ(G) by executing h−1 steps. At Step j (1 ≤ j ≤
h−1)), regionR(µj) is added to the drawing. The computed drawing, denoted as
Γ(j)(W ) is Γ(G) ∪R(µ1),∪ . . . ∪R(µj) and represents G together with clusters
V (µ1), . . . , V (µj). We describe the construction and prove by induction that
Γ(j)(W ) verifies Rules R1-R5, limited to the regions R(µ1), . . . R(µj).

At Step 1, region R(µ1) is defined. The boundary of R(µ1) is a simple closed
curve, denoted as C, drawn in the external face of Γ(G(µ1)). Curve C follows the
profile of the boundary of the external face of Γ(G(µ1)), ǫ > 0 distance away (on
the outside) from it. SinceG(µ1) is connected, R(µ1) contains drawing Γ(G(µ1))
and therefore Γ(1)(W ) satisfies Rule R1. Γ(1)(W ) contains the region of exactly
one cluster and therefore Rule R2 is trivially satisfied. Defining Γ(1)(W ) we
choose ǫ to be sufficiently small such that C crosses each edge incident to G(µ1)
exactly once and that it does not cross any other vertex or edge of the drawing of
G−G(µ1). The existence of such an ǫ follows from the fact that Γ(G) preserves
ψ which, by assumption, has all vertices of G−G(µ1) (and hence also all edges
of G−G(µ1)) in the external face of G(µ1). Such a choice of ǫ guarantees that
Γ(1)(W ) satisfies Rule R3 and Rule R5. Finally, Rule R4 is satisfied by the
planarity of Γ(G).

Suppose by induction that Γ(j−1)(W ) (j > 2) verifies Rules R1-R5, limited
to regions R(µ1), . . .,R(µj−1) and execute Step j. If µj has some outgoing edges
that are incident to non-sink nodes, denote as ν1, . . . , νk such non-sink nodes.
Note that for the chosen ordering, regions R(ν1), . . . , R(νk) have been already
drawn in Γ(j−1)(W ). Consider the drawing Γ′ given by the union of Γ(G(µj))
with the boundaries of regions R(ν1), . . . , R(νk). If µj does not have outgoing
edges incident to non-sink nodes, Γ′ coincides with Γ(G(µj)). See also Figure 4
for an illustration of the construction of Γ′. The boundary of R(µj) is a simple
closed curve, denoted as C, that follows the profile of the external boundary of
Γ′ ǫ > 0 distance away (on the outside) from it. Since by construction R(µj)
contains Γ(G(µj)), Γ(j)(W ) satisfies Rule R1. Also, since by hypothesis all the
vertices that do not belong to G(µj) are in the external face of G(µj), then the
choice of ǫ can be such that both R3 and R5 are satisfied; Rule R4 is guaranteed
by the planarity of Γ(G). It remains to prove Rule R2. By construction, the
regions of all clusters contained in V (µj) are properly contained in R(µj). Also,
by the inductive hypothesis and since all vertices and edges that do not belong
to G(µj) are in the external face of G(µj), ǫ can be further reduced in order to
avoid intersections between R(µj) and regions of clusters that do not overlap
with V (µj). Finally, suppose that V (µi) is a cluster that overlaps with V (µj)
(i ≤ j), and let R be a connected region of R(µj) ∩R(µi). Since the boundary
of R(µi) has been constructed by following the profile of Γ(G(µi)), then there
must be an edge e of G(µi) that enters inside R and that crosses the boundary of
R(µj). Since e cannot crosses twice the boundary of R(µj) (otherwise Rule R5
would be violated), it follows that there is an end-vertex of e inside R. Hence,
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Rule R2 is satisfied. 2
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Figure 4: Illustration of Step j in the proof of Theorem 2. (a) Drawing
Γ(j−1)(W ); black vertices belong to cluster V (µj), which contains sub-clusters
V (ν1) and V (ν2). (b) Drawing Γ(j)(W ); region Rµj

is constructed by following
the boundary of Γ′ (bold polygon).

In Feng et al. [9], the characterization of Theorem 1 is used to design an
O(n2) time algorithm to test whether C is c-planar, and in the positive case to
compute a c-planar drawing of C. Their approach looks for a planar embedding
of G that verifies the properties given in Theorem 1; the algorithm proceeds
bottom-up, with a post-order visit of T . One of the key-ideas is that for each
node µ of T G(µ) can be tested independently of any other cluster that is not
in the subtree rooted at µ. Unfortunately, it does not seem immediate to follow
a similar approach to design an algorithm for oc-planarity directly based on
Theorem 2, mainly because the graphs induced by the clusters of an oc-graph
cannot be always tested independently of each other due to their overlaps. This
observation motivates us to better understand the circumstances under which
an oc-planarity testing algorithm can be designed by using a corresponding
algorithm for c-planarity. The next definitions and lemma will be of use for this
purpose.

Let W = (G,H) be a c-connected oc-graph. Given any two overlapping
clusters V (µ) and V (ν), let V ′ denote their overlap. We say that:

• W is 1-oc-connected if for every pair V (µ), V (ν) of overlapping clusters,
V ′ induces a connected subgraph of G.

• W is 2-oc-connected if it is 1-oc-connected and for every pair V (µ), V (ν)
of overlapping clusters, at least one of V (µ) − V ′ and V (ν) − V ′ induces
a connected subgraph of G.

• W is 3-oc-connected if it is 1-oc-connected and for every pair V (µ), V (ν)
of overlapping clusters, both V (µ) − V ′ and V (ν) − V ′ induce connected
subgraphs of G.
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Observe that if W is 3-oc-connected, it is also 2-oc-connected. For example,
Figure 5 shows the drawings of a 1-oc-connected, a 2-oc-connected, and a 3-
connected oc-graph.

µ ν

(a)

µ ν

(b)

µ ν

(c)

Figure 5: Three oc-planar drawings of three distinct oc-graphs; in each oc-
graph, white and gray vertices belong to a cluster V (µ) while black and gray
vertices belong to a cluster V (ν). The cluster regions have dashed boundaries.
(a) The oc-graph is 1-oc-connected. (b) The oc-graph is 2-oc-connected. (c)
The oc-graph is 3-oc-connected. Observe that in the drawings (b) and (c), the
boundaries of the cluster regions of µ and ν share exactly two points, while this
is not true for drawing (a).

Lemma 1 Let W = (G,H) be a 2-oc-connected oc-graph. If W is oc-planar,
there exists an oc-planar drawing of W such that the boundaries of the regions
of any two overlapping clusters share exactly two points.

Proof: Construct an oc-planar drawing Γ(W ) of W by applying the procedure
described in the proof of Theorem 2. Let V (µ) and V (ν) be two overlapping clus-
ters of W and let V ′ denote their overlap. By hypothesis, W is 2-oc-connected.
This implies that V ′ induces a connected subgraph of G and that at least one
of V (µ) − V ′ and V (ν) − V ′ induces a connected subgraph of G. Without loss
of generality, assume that the subgraph induced by V (µ)−V ′ is connected. Let
R(µ), R(ν) be the cluster regions of µ and ν, respectively, and let R′ denote the
region containing the subgraph induced by V ′ and delimited by the boundaries
of R(µ) and R(ν). Clearly, the number of intersections between the bound-
aries of R(µ) and R(ν) is an even number. Also, since Γ(W ) is oc-planar and
since R(µ) and R(ν) have been constructed by following the profiles of µ and
ν, respectively, it follows that R′ is simple and connected (because V ′ induces a
connected subgraph) and R(µ)−R′ is simple and connected (because V (µ)−V ′

induces a connected subgraph). Therefore, the boundaries of R(µ) and R(ν)
intersect in exactly two points (see also Figure 5 for an example). 2
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3 Models and Algorithms for Overlapping Clus-

tered Graphs

In this section we study first the simple case of an oc-graph having exactly
two overlapping clusters (Subsection 3.1) and then extend the investigation to
a meaningful class of oc-graphs with many clusters (Subsection 3.2).

3.1 A Model for Two Clusters

Let W = (G,H) be a c-connected oc-graph where the vertices of G are grouped
in exactly two overlapping clusters V (µ) and V (ν). We call W a two overlap-
ping clustered graph or toc-graph for short. An example of a toc-graph is in
Figure 6(a). Let C = (G, T ) be the c-graph constructed by considering three
disjoint clusters V (µ)− V ′, V ′, and V (ν)− V ′, where V ′ is the overlap of V (µ)
and V (ν). In C = (G, T ), the leaves of T are the vertices of G; T has four
internal nodes: The root r and three children of r, denoted as α, β, and γ,
where V (α) = V (µ) − V ′, V (β) = V (ν) − V ′, and V (γ) = V ′. We call C the
c-image of W . Figure 6(b) shows the c-image of the toc-graph in Figure 6(a).

µ
W

ν

µ ν

H

(a)

βα γ

TC

α βγ

(b)

Figure 6: (a) A toc-graph W . Gray vertices belong to the overlap. (b) The
c-image C of W .

A natural question to ask is whether testing a toc-graph for oc-planarity is
equivalent to testing its c-image for c-planarity. Figure 7(a) shows a drawing
of a toc-graph W and Figure 7(b) shows a c-planar drawing of the c-image
C of W where each of the clusters of C induces a connected subgraph of G.
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Notice however that the planar embedding of the c-planar drawing of Figure 7(b)
cannot be the embedding of an oc-planar drawing of W ; namely, either Rule R1
is violated because some of the edges of G(µ) are not contained in R(µ) (see
Figure 7(a)) or R(µ) must contain R(ν) which violates Rule R3.

On the positive side, notice however that the planar embedding can be
changed by suitably redefining the external face, in order to guarantee both
the existence of an oc-planar drawing of W and the existence of a c-planar
drawing of C; for example, one can choose face f of Figure 7(b) as the new
external face, as shown in Figure 7(c).

µ
W

ν

(a)

βα γ
f

C

(b)

f

µ
ν

W

(c)

Figure 7: (a) A toc-graph W ; the drawing depicted in the figure is not oc-
planar, since the two edges in bold are not completely inside the region of µ;
an oc-planar drawing of W with this embedding cannot exist. (b) A c-planar
drawing of the c-image C of W . (c) An oc-planar drawing of W obtained by
changing its original embedding; namely, face f is chosen as the new external
face.

Lemma 2 Let W = (G,H) be a toc-graph and let C be the c-image of W . If
C is c-planar, then W is oc-planar.

Proof: Let V (µ), V (ν) be the two overlapping clusters of W and let V ′ be the
overlap of V (µ), V (ν). Let the clusters of C be V (α) = V (µ) − V ′, V (β) =
V (ν) − V ′, and V (γ) = V ′. Let Γ(C) be a c-planar drawing of C and let φ
be the planar embedding of Γ(G). We define a planar embedding ψ of G that
satisfies the statement of Theorem 2, which implies that W is oc-planar.

If the boundary of the external face of φ contains both a vertex of V (α)
and a vertex of V (β), then φ coincides with ψ. Otherwise, ψ is obtained from
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φ by choosing a new external face whose boundary contains a vertex of V (α)
and a vertex of V (β). We claim that such a face always exists in φ. Indeed, if
such a face did not exist, for every pair of vertices a, b such that a ∈ V (α) and
b ∈ V (β), there would exist a simple cycle χ consisting only of vertices of V (γ)
such that a and b lie one inside and one outside χ. However, this would imply
that the region of cluster V (γ) in Γ(C) contains a vertex that does not belong
to V (γ), violating Rule R3 and therefore contradicting the fact that Γ(C) is a
c-planar drawing. This proves the claim.

Let f be a face of φ with both a vertex a of V (α) and a vertex b of V (β) on
its boundary; let ψ be the planar embedding obtained from φ by choosing f as
the external face. In order to prove that ψ satisfies the statement of Theorem 2,
we show that every vertex of V (α) is in the external face of G(ν) and that every
vertex of V (β) is in the external face of G(µ). Clearly, vertex a is in the external
face of G(ν) because it is a vertex of the boundary of the external face of ψ. Let
a′ be any vertex of V (α) different from a and assume for a contradiction that a′

is not in the external face of G(ν). This implies that there exists a cycle χ in ψ
consisting only of vertices and edges of G(ν) and such that a′ is in the interior
of χ while a is in the exterior of χ. Since embeddings φ and ψ can only differ
for their external faces, we have that in Γ(C) cycle χ has one of the vertices a
and a′ in its interior, while the other one in its exterior. Since a, a′ both belong
to V (α), the boundary of region R(α) and χ cross each other twice. If these
two crossings are between one edge of χ and R(α), then Γ(C) violates Rule R5.
Otherwise, there must be a vertex of χ inside R(α), which violates Rule R3
because no vertex of χ belongs to V (α). Hence, cycle χ cannot exist and a′ is
in the external face of G(ν) in ψ.

By a symmetric argument, every vertex of V (β) is in the external face of
G(µ). Therefore ψ satisfies the statement of Theorem 2 and W is oc-planar. 2

As the next lemmas show, it is however not always true that the oc-planarity
of a toc-graph implies the c-planarity of its c-image.

Lemma 3 There exists an oc-planar toc-graph whose c-image is not c-planar.

Proof: Let W = (G,H) be the toc-graph of Figure 6(a), where V (µ) is the
set of white and gray vertices while V (ν) is the set of black and gray vertices.
Let C be the c-image of W (Figure 6(b)); the three clusters of C are the gray
vertices, the black vertices, and the white vertices. As the figure shows, W is
oc-planar because it has an oc-planar drawing. The bold edges in the figure
form a cycle, denoted as χ, consisting of only black and white vertices and such
that a gray vertex is inside χ and the other gray vertex is outside χ. Since G
is 3-connected, cycle χ leaves the two gray vertices one inside and one outside
in all planar embeddings of G. As a consequence, every clustered drawing of C
such that the two gray vertices are inside regionR(γ) must contain two crossings
between χ and the boundary of R(γ). If these two crossings are between one
edge of χ and R(γ), then Rule R5 is violated. Otherwise, there must be a vertex
of χ inside R(γ) which violates Rule R3 because no vertex of χ belongs to V (γ).
It follows that C is not c-planar. 2
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The counterexample of Lemma 3 exploits the fact that the vertices of the
overlap induce a non-connected subgraph of G and thus the toc-graph is not
1-oc-connected. One can ask whether the converse of Lemma 2 holds for 1-oc-
connected toc-graphs. Unfortunately, also in this case the answer is negative.

ν

µ
W

(a)

C

γ

β

α
C

α

β

γ

(b)

Figure 8: (a) An oc-planar drawing of a toc-graph W = (G,H). (b) Two
drawings of the c-image C of W for two different planar embeddings of G. Both
the drawings are not c-planar.

Lemma 4 There exist oc-planar 1-oc-connected toc-graphs whose c-image is
not c-planar.

Proof: Consider the toc-graph W = (G,H) drawn in Figure 8(a). As the
figure shows, W admits an oc-planar drawing. We show however that the c-
image C of W is not c-planar. Since G is a 3-connected graph, two distinct
planar embeddings of G differ only for their external face. By the symmetry of
G, it is sufficient to consider the two possible classes of planar embeddings of G
depicted in Figure 8(b). For each of these two embeddings, any drawing of the
simple closed regions R(α) and R(β) is such that either these regions intersect
or the boundary of one of them crosses twice some edge of G. Hence, a c-planar
drawing of C does not exist. 2

The next lemma shows that for the family of 2-oc-connected toc-graphs the
oc-planarity implies the c-planarity of the c-image.
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Lemma 5 Let W = (G,H) be a 2-oc-connected toc-graph and let C be the
c-image of W . If W is oc-planar then C is c-planar.

Proof: Let V (µ), V (ν) be the two overlapping clusters of W and let V ′ be the
overlap of V (µ), V (ν). Let the clusters of C be V (α) = V (µ) − V ′, V (β) =
V (ν) − V ′, and V (γ) = V ′.

Since W is oc-planar and 2-oc-connected, by Lemma 1 W has an oc-planar
drawing Γ(W ) such that the boundaries of the regions R(µ) and R(ν) intersect
in exactly two points, which we denote as p1 and p2 (refer also to Figure 9 for
an illustration).

To prove that C is c-planar, we construct a c-planar drawing Γ′(C) of C from
Γ(W ). Namely, in Γ′(C) the drawing of G is the same as in Γ(W ). Regions
R(α), R(β), and R(γ) are defined as follows. Denote as C(µ) the boundary of
R(µ) and as C(ν) the boundary of R(ν) in Γ(W ). Points p1 and p2 split C(µ)
into two distinct curves, denoted as C′(µ), C′′(µ) and having p1 and p2 as their
end-points; C′(µ) is outside R(ν) while C′′(µ) is inside R(ν). Similarly, C′(ν)
(C′′(ν)) denotes the portion of C(ν) between p1 and p2 outside (inside) R(µ).
In Γ(C), the boundary of R(α) is the union of C′(µ) and C′′(ν); the boundary
of R(β) is the union of C′(ν) and C′′(µ); the boundary of R(γ) is a simple
closed curve that follows the profile of C′′(µ) ∪ C′′(ν), ǫ > 0 distance away (on
the inside) from it. Observe that, with the construction described so far, the
boundary of R(α) and R(β) share exactly the points p1 and p2; to remove these
two contact points between the two regions, we can always slightly move the
corners of R(α) and R(β) at points p1 and p2 by a suitable ǫ > 0 distance.

We finally show that Γ′(C) verifies Rules R1-R5. Rules R1 and R2 are
satisfied by construction. Rule R3 follows from Rules R1 and R2 and the fact
that clusters α, β, and γ are at the same level of the inclusion tree of C and
that every vertex of G belongs to exactly one of α, β, and γ. Rule R4 is a
consequence of the planarity of Γ(G). Finally, observe that the boundary of
each cluster region R(ξ) (ξ ∈ {α, β, γ}) can be made sufficiently close to the
drawing Γ(G(ξ)) of G(ξ) such that the region crosses each edge incident to G(ξ)
exactly once. Rule R5 is thus satisfied. 2

Lemmas 2 and 5 can be summarized as follows.

Theorem 3 Let W = (G,H) be a 2-oc-connected toc-graph and let C be the
c-image of W . W is oc-planar if and only if C is c-planar.

Based on Theorem 3 and on known results about c-planarity testing ([4, 5,
2, 11]), one can design polynomial-time algorithms for oc-planarity testing. The
following result summarizes the algorithmic contribution of this section.

Theorem 4 Let W = (G,H) be a toc-graph and let n be the number of vertices
of G. The following statements hold:

(a) If W is 2-oc-connected then it can be tested for oc-planarity in O(n2) time.

(b) If W is 3-oc-connected then it can be tested for oc-planarity in O(n) time.
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Figure 9: Illustration of the procedure described in Lemma 5 to modify an
oc-planar drawing of a toc-graph W in order to get a c-planar drawing of the
c-image of W .

Proof: Let C = (G, T ) be the c-image of W = (G,H). C can be constructed
from W in O(n) time. Indeed, C and W have the same underlying graph G,
and the inclusion tree T of C can be constructed from the inclusion digraph H
be simply considering a visit of H . Both in Statements (a) and (b), the overlap
induces a connected subgraph and hence, by Theorem 3, testing the oc-planarity
of W is equivalent to testing the c-planarity of C.

To prove Statement (a), we recall that in [11], the class of almost c-connected
c-graphs is defined, and an O(n2)-time c-planarity testing algorithm is described
for this class of c-graphs. A c-graph is almost c-connected if one of the following
conditions applies:

• All clusters inducing non-connected subgraphs of G lie on a same path
from the root to a leaf of T .

• For each node µ of T such that G(µ) is not connected, the cluster of the
parent of µ induces a connected subgraph of G, and the cluster of every
sibling of µ induces a connected subgraph of G.

In the hypothesis of Statement (a), W is 2-oc-connected, and therefore at
most one cluster of C – say V (α) – induces a non-connected subgraph of G,
and both G, G(β) and G(γ) are connected. This implies that C is an almost
c-connected c-graph, and can be tested for c-planarity in O(n2) time.

In the hypothesis of Statement (b), W is 3-oc-connected, and therefore C is
a c-connected c-graph. Hence, the c-planarity of C can be tested in O(n) time
with the algorithm of Dahlhaus et al. [4, 5] or with the algorithm of Cortese et
al. [2]. 2
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3.2 A Model for Many Clusters

A natural extension of the study in the previous section is to consider oc-graphs
with m ≥ 2 clusters and such that only pairs of clusters can overlap.

A multiple-two overlapping clustered graph, also called moc-graph for short,
is an oc-graph such that each cluster can overlap with at most another cluster.
Notice that a moc-graph can have clusters included in other clusters and that a
toc-graph is a special case of moc-graph. The oc-graph depicted in Figure 3(a)
is an example of moc-graph.

The c-image of a moc-graph W = (G,H) is the c-graph C = (G, T ) defined
as follows:

• Each non-overlapping cluster of W is also a cluster of C;

• For each pair V (µ), V (ν) of overlapping clusters of W , let V ′ be their
overlap; V (µ), V (ν), and V ′ define the following four clusters in C: V (α) =
V (µ) − V ′, V (β) = V (ν) − V ′, V (γ) = V ′, and V (λ) = V (µ) ∪ V (ν).

The c-graph depicted in Figure 2 is the c-image of the moc-graph of Figure 3.
Observe that, in the special case all vertices of a moc-graph W are grouped into
exactly two overlapping clusters V (µ) and V (ν) (i.e., W is a toc-graph), then the
c-image of W coincides with the one defined for a toc-graph, where λ is the root
of T . From this observation, it immediately follows that the counterexamples of
Lemmas 3 and 4 also hold for moc-graphs, because a toc-graph and its c-image
can be considered as a special case of a moc-graph and its c-image. The next
lemma extends Lemma 5 to the case of many clusters.

Lemma 6 Let W = (G,H) be a 2-oc-connected moc-graph and let C be the
c-image of W . If W is oc-planar then C is c-planar.

Proof: If W is oc-planar, the c-planarity of C can be shown by a similar
argument as in the proof of Lemma 5. Namely, based on Lemma 1, we can
construct an oc-planar drawing Γ(W ) such that, for every pair of overlapping
clusters V (µ), V (ν), the boundaries of the regionsR(µ), R(ν) intersect in exactly
two points p1 and p2 (see Figure 9(a)). To prove that C is c-planar, we show
how to construct a c-planar drawing Γ′(C) of C from Γ(W ). The drawing of
G in Γ′(C) is the same as in Γ(W ). Also, for each non-overlapping cluster
V (δ), the drawing of the region R(δ) is the same as in Γ(W ). For every pair
V (µ), V (ν) of overlapping clusters with overlap V ′, regions R(α), R(β), and
R(γ) are defined as follows. Denote as C(µ) the boundary of R(µ) and as C(ν)
the boundary of R(ν) in Γ(W ). Points p1 and p2 split C(µ) into two curves,
denoted as C′(µ), C′′(µ) and having p1 and p2 as their end-points; C′(µ) is outside
R(ν) while C′′(µ) is inside R(ν). Similarly, C′(ν) (C′′(ν)) denotes the portion of
C(ν) between p1 and p2 outside (inside) R(µ). In Γ(C), the boundary of R(α)
is the union of C′(µ) and C′′(ν); the boundary of R(β) is the union of C′(ν) and
C′′(µ); the boundary of R(γ) is a simple closed curve that follows the profile of
C′′(µ) ∪ C′′(ν), ǫ > 0 distance away (on the inside) from it. Observe that, with
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the construction described so far, the boundary of R(α) and R(β) exactly share
the two points p1 and p2; to remove these two contact points between the two
regions, we can always slightly move the corners of R(α) and R(β) at points p1

and p2 by a suitable ǫ > 0 distance. Now, consider the region R(µ) ∪ R(ν) in
Γ(W ) and let Λ be its boundary. The boundary of the region of V (µ)∪ V (ν) in
Γ′(C) is drawn as a simple closed curve that follows Λ, ǫ > 0 distance away (on
the outside) from it.

We prove that Γ′(C) verifies Rules R1-R5. Rule R1 and R2 are verified
by construction. Indeed, every non-overlapping cluster region satisfies Rule R1
in Γ′(C), since it is the same region as in Γ(W ) and Γ(W ) is an oc-planar
drawing. Also, for every pair of overlapping clusters V (µ), V (ν), we can draw
R(α), R(β), R(γ) and R(λ) in such a way that they contain the drawing of
the subgraph induced by V (α), V (β), V (γ) and V (δ), respectively. By suitably
choosing the boundaries of the cluster regions, we can keep in the exterior
of R(δ) all regions of clusters non included in any of V (α), V (β) and V (γ).
Likewise, every cluster possibly included in V (α), V (β) or V (γ) is in the interior
of R(α), R(β) or R(γ). Every non-overlapping cluster region R(δ) in Γ(W )
satisfies Rule R3 in Γ′(C), because the same rule is satisfied in Γ(W ). Consider
now a pair of overlapping clusters V (µ) and V (ν). Since Γ(W ) is an oc-planar
drawing, all vertices of V −(V (µ)∪V (ν)) are outside R(µ) and outside R(ν). We
can always choose distance ǫ sufficiently small forR(λ) to guarantee they are also
outside R(λ) in Γ′(C). Moreover, all vertices of V (µ) − V ′ are outside R(ν) in
Γ(W ) and by construction R(α) does not contain vertices that are not in V (α).
Analogously, R(β) does not contain vertices that are not in V (β). Consider
a vertex v ∈ V (α). If p(v) were inside R(γ) in Γ′(C), by the connectivity
of G(γ) and by construction of R(γ), p(v) would be inside R(ν) in Γ(W ), a
contradiction. With a symmetric argument, every vertex of V (β) is drawn
outside R(γ) in Γ′(C). It follows that Rule R3 is satisfied. Rule R4 is satisfied
as a consequence of the planarity of Γ(G). Finally, observe that, for each pair
of overlapping clusters V (µ), V (ν) in Γ(W ), the boundary of each cluster region
R(ξ) (ξ ∈ {α, β, γ}), can be made sufficiently close to G(ξ) in such a way that it
crosses each edge incident to G(ξ) exactly once. Rule R5 is therefore satisfied.

2

Unfortunately, Lemma 2 cannot be extended to moc-graphs, even for very
simple types of moc-graphs consisting of just three clusters.

Lemma 7 There exists a moc-graph W = (G,H) with exactly three clusters,
such that the c-image of W is c-planar but W is not oc-planar.

Proof: Let W = (G,H) be the moc-graph of Figure 10(a). White and gray
vertices define a cluster V (µ), and black and gray vertices define a cluster V (ν)
that overlaps with V (µ). The remaining three vertices define a third cluster
V (δ) that does not overlap with the other clusters. As shown by Figure 10(b),
there exists a c-planar drawing of the c-image of W ; but W is not oc-planar.
Indeed, by Theorem 2, the embedding of every oc-planar drawing of W must
have the black vertices and the vertices of V (δ) in the external face of G(µ),
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i.e., outside every cycle of G(µ). However, the embedding of G in Figures 10(a)
and 10(b) has a cycle χ such that the black vertices lie inside χ and the vertices
of V (δ) are outside. Since G is a 3-connected graph, cycle χ (which separates
black vertices and vertices of V (δ)) exists in any planar embedding of G, and
therefore W does not admit an oc-planar drawing. 2
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Figure 10: (a) A moc-graph W that is not oc-planar; the drawing in the figure
is not oc-planar since the three edges in bold should be completely inside the
region of µ. (b) A c-planar drawing of the c-image C of W .

Motivated by Lemma 7, we consider a sub-family of moc-graphs where each
cluster has an edge connecting its non overlapping portion to some “external
vertices”. More formally, a moc-graph W = (G,H) is externally connected if
for each pair V (µ), V (ν) of overlapping clusters with overlap V ′ there are two
edges (u1, v1), (u2, v2), called bridges, with u1 ∈ V (µ) − V ′, u2 ∈ V (ν) − V ′

and v1, v2 6∈ V (µ) ∪ V (ν). For example, Figure 3(a) is an externally connected
moc-graph; the moc-graph in Figure 10(a) is not externally connected, because
none of the black vertices is the end-vertex of a bridge.

The proof of the following lemma relies on the fact that in every planar
embedding of an externally connected moc-graph the bridges force the external
face of the subgraph induced by any pair of overlapping clusters V (µ), V (ν)
to have at least one vertex of V (µ) − V ′ and one vertex of V (ν) − V ′ on its
boundary.

Lemma 8 Let W = (G,H) be an externally connected moc-graph and let C be
the c-image of W . If C is c-planar, then W is oc-planar.
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Proof: Let C = (G, T ) be the c-image of W . If C is c-planar, let ψ be the
planar embedding of a c-planar drawing Γ(C) of C. We show that ψ satisfies
the conditions of Theorem 2. Let µ be a node of H and let v be a vertex of
G − G(µ). We need to show that v is in the external face of G(µ). Two cases
are possible:

• V (µ) does not overlap with another cluster. In this case, µ is also a node
of T , and therefore v is in the external face of G(µ) because ψ is the
embedding of a c-planar drawing of C.

• V (µ) overlaps with another cluster V (ν). Let V ′ be the overlap, and let
V (α) = V (µ)−V ′, V (β) = V (ν)−V ′, V (γ) = V ′, and V (λ) = V (µ)∪V (ν).
We distinguish between two subcases:

– v 6∈ V (β): In this case, v 6∈ V (λ) and hence it is drawn outside the
region of cluster V (λ) in Γ(C). It follows that v is in the external
face of G(µ) in ψ.

– v ∈ V (β): In this case, suppose by contradiction that there existed
in ψ an internal face f of G(µ) such that v is in f . Since W is
externally connected, there exists an edge (u,w) such that u ∈ V (β)
and w 6∈ V (λ). Vertex u must lie in the external face of G(µ),
because otherwise there would be a cross between (u,w) and the
external boundary of G(µ), contradicting the fact that ψ is a planar
embedding. However, since in Γ(C) the cluster region R(β) is a
simple closed region and contains both u and v, it follows that there
would be an edge region crossing between the boundary of R(β) and
an edge of the boundary of f , a contradiction.

2

Lemmas 8 and 6 can be summarized as follows.

Theorem 5 Let W = (G,H) be a moc-graph such that W is 2-oc-connected
and externally connected. Let C be the c-image of W . W is oc-planar if and
only if C is c-planar.

Combining Theorem 5 with the results in [2, 4, 5, 11] the following result
can be proved.

Theorem 6 Let W = (G,H) be an externally connected moc-graph and let n
be the number of vertices of G. The following statements hold:

(a) If W is 2-oc-connected then it can be tested for oc-planarity in O(n2) time.

(b) If W is 3-oc-connected then it can be tested for oc-planarity in O(n) time.



288 W. Didimo et al. Overlapping Cluster Planarity

Proof: Let C = (G, T ) be the c-image of W = (G,H). C can be constructed
from W in O(n) time. Indeed, C and W have the same underlying graph G, and
the inclusion tree T of C can be constructed by simply considering a bottom-up
visit of the inclusion digraph H .

Notice that for each pair of overlapping clusters V (µ), V (ν) of W , cluster
V (µ) ∪ V (ν) of C induces a connected subgraph of G, because both V (µ) and
V (ν) induce connected subgraphs of G and they share at least one vertex.

In the hypothesis of Statement (a) (i.e., if W is 2-oc-connected) C belongs to
the class of almost c-connected c-graphs [11], whose definition has been recalled
in the proof of Theorem 4. Namely, with the usual notation, let V (α), V (β),
V (γ) and V (λ) be the four clusters of the c-image C induced by two overlapping
clusters V (µ) and V (ν) of W . In T , nodes α, β, and γ are the three children of
λ, G(λ) and G(γ) are always connected, and at most one of G(α), G(β) is not
connected. Therefore C can be tested for c-planarity in O(n2) time.

In the hypothesis of Statement (b), C is a c-connected c-graph and therefore
it can be tested for c-planarity by using [4, 5] or [2]. 2

4 Final Remarks and Open Problems

This paper has introduced and studied a new problem in the field of cluster
planarity, i.e., the overlapping cluster planarity testing problem. It has started
the investigation by analyzing the not obvious relation with classical c-planarity
testing; classes of oc-graphs have been described for which polynomial-time oc-
planarity testing algorithms exist.

Several questions are naturally raised by the research described in this paper.
Some of the most relevant in our opinion are listed below:

• It would be interesting to describe other meaningful families of oc-graphs
for which the oc-planarity testing problem can be performed in polynomial-
time. For example, what about oc-graphs containing three clusters at the
same hierarchy level with a non empty intersection?

• It is well known that c-planar graphs can be tested for c-planarity in
polynomial time if they are c-connected. What is the time complexity of
testing a c-connected oc-graph for oc-planarity in the general case?

• A polynomial-time planarization algorithm is described in [6] for those
c-graphs that are not c-planar. From the application side, it is important
to investigate efficient planarization algorithms for oc-graphs that are not
oc-planar or for which a polynomial-time planarity testing algorithm is
not known.

• The approach used in this paper for studying the overlapping cluster pla-
narity problem is to translate it to a classical c-planarity problem. At-
tacking the problem with a more direct approach is an interesting field of
investigation.
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