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Abstract

An edge coloring of a multigraph is nearly equitable if, among the
edges incident to each vertex, the numbers of edges colored with any two
colors differ by at most two. It has been proved that the problem of finding
a nearly equitable edge coloring can be solved in O(m2/k) time, where m
and k are the numbers of edges and given colors, respectively. In this pa-
per, we present a recursive algorithm that runs in O (mn log (m/(kn) + 1))
time, where n is the number of vertices. This algorithm improves the best-
known worst-case time complexity. When k = O(1), the time complexity
of all known algorithms is O(m2), which implies that this time complex-
ity remains to be the best for more than twenty years since 1982 when
Hilton and de Werra gave a constructive proof for the existence of a nearly
equitable edge coloring for any multigraph. Our result is the first that im-
proves this time complexity when m/n grows to infinity; e.g., m = nϑ for
an arbitrary constant ϑ > 1.
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1 Introduction

Throughout this paper, the graphs considered will be multigraphs that allow
multiple edges between vertices. Given a graph G = (V,E) with n vertices
and m edges and a color set C = {1, 2, . . . , k}, the nearly equitable edge coloring
is an assignment of given colors to edges in G such that, among the edges
incident to each vertex, the numbers of edges colored with any two colors differ
by at most two. The notion of the nearly equitable edge coloring was introduced
in 1982 by Hilton and de Werra [1] (a simplified version [2] was published in
1994), who also proved that any graph has a nearly equitable edge coloring.
Their proof is constructive and easily leads to an algorithm for finding such a
coloring in O(km2) time. Later, Nakano et al. [4] showed an algorithm that
runs in O(m2/k + mn) time. In 2004, Xie et al. [8] presented a more efficient
algorithm, which improves the running time to O(m2/k) and moreover satisfies
the following balanced constraint: The numbers of the edges colored with any two
colors differ by at most one. We call their algorithm BalCol in the following,
which stands for Balanced Coloring. Some randomized algorithms were also
proposed in [9, 10].

It might seem more natural to consider colorings such that, among the edges
incident to each vertex, the numbers of edges colored with any two colors differ
by at most one; such a coloring is called an equitable edge coloring. However, not
all graphs admit an equitable edge coloring [1, 2], and the problem of judging
the existence of an equitable edge coloring is NP-complete. Consider the case
with k = ∆, where ∆ is the maximum vertex degree of the given graph, then
this problem is equivalent with the problem of determining the existence of a
(usual) edge coloring with ∆ colors, a well-known NP-complete problem [3].
Some sufficient conditions for an equitable edge coloring to exist have been
investigated [1, 2, 5, 6, 7].

In this paper, we consider the nearly equitable edge coloring problem and
present a recursive algorithm that runs in O (mn log (m/(kn) + 1)) time. The
edge coloring obtained by this algorithm also satisfies the balanced constraint.
We call the recursive algorithm RecCol, which stands for Recursive Coloring.

The time complexity of RecCol is better than the previous best known time
bound O(m2/k) of algorithm BalCol. When k = O(1), the time complexity of
all known algorithms becomes O(m2), which implies that the time complexity
derived from the proof in [1] remains to be the best for more than twenty years.
RecCol is the first algorithm that improves this time complexity for the case
when m/n → ∞ (n → ∞) holds; e.g., when m = nϑ (ϑ > 1 is an arbitrary
constant).

Algorithm RecCol uses a procedure that constitutes the core part of algo-
rithm BalCol. We call this procedure ChkRec (Check and Recolor). Start-
ing from a given edge coloring π, ChkRec repeats the following until π be-
comes nearly equitable: It checks whether the current edge coloring π is nearly
equitable or not, and if π is not nearly equitable, it invokes an algorithm
called Recolor to modify π. Let Eπ(i) denote the set of edges colored with
i. Xie et al. introduced a potential Φπ and showed that Recolor runs in
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O(|Eπ(i) ∪ Eπ(j)|) time for relevant colors i and j and decreases Φπ by at
least one for each call to it. It is therefore preferable to construct a coloring π
such that potential Φπ is small and |Eπ(i)| is small for all i ∈ C before calling
algorithm ChkRec to keep its computation time smaller.

When |E| ≤ kn, algorithm RecCol uses algorithm BalCol directly to
obtain a nearly equitable edge coloring π of G. Otherwise, it partitions E
arbitrarily into two subsets EL and ER of about the same size, and recursively
applies RecCol to both of them to obtain edge colorings πL and πR of EL

and ER, respectively. It then constructs a coloring π of G by merging the two
colorings πL and πR after permuting them. We show that the resulting edge
coloring π satisfies |Eπ(i)| = O(m/k) for all colors i ∈ C and Φπ = O(kn); these
results lead to the new time complexity O (mn log (m/(kn) + 1)).

The paper is organized as follows. In Section 2, we give some definitions.
Section 3 introduces the basic procedures in [8], which are necessary to under-
stand the new algorithm. Section 4 explains the recursive algorithm. Finally,
concluding remarks are in Section 5.

2 Preliminaries

Let V and E denote the sets of vertices and edges of graph G, respectively. The
following definitions will be used throughout this paper.

• Let n = |V | and m = |E|. Note that m ≥ n − 1 holds for any connected
graph.

• We denote the given color set by C = {1, 2, . . . , k}, where k is the number
of given colors.

• We denote an edge coloring by a mapping π: E → C; i.e., if an edge e ∈ E
is colored with a color i, then π(e) = i.

• For each vertex v ∈ V , let N(v) denote the set of edges incident to v in G
and d(v) = |N(v)| be its degree. Then, dπ(v, i) = |{e ∈ N(v) | π(e) = i}|
stands for the number of edges colored with i and incident to v, while
Eπ(i) = {e ∈ E | π(e) = i} stands for the set of edges in E colored with i.

• For any subset E′ ⊆ E, let VE′ be the set of end vertices of edges in E′.
Then let GE′ = (VE′ , E′).

• Let Vπ(i, j) be the set of end vertices of edges in Eπ(i) ∪ Eπ(j); i.e.,
Vπ(i, j) = {v ∈ V | ∃e ∈ (N(v) ∩ (Eπ(i) ∪ Eπ(j)))}. Then let Gπ(i, j) =
(Vπ(i, j), Eπ(i) ∪ Eπ(j)) be the subgraph whose edges are Eπ(i) ∪ Eπ(j)
and vertices are their end vertices.

The definitions of nearly equitable edge coloring introduced by Hilton and
de Werra [1], and the balanced constraint introduced by Nakano et al. [4] are as
follows.
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Definition 1 ([1]) Given a graph G = (V,E) and a color set C = {1, 2, . . . , k},
the nearly equitable edge coloring π is an assignment of the given k colors to
all the edges in G, such that for any vertex v ∈ V and different colors i, j ∈ C,
|dπ(v, i)− dπ(v, j)| ≤ 2.

Definition 2 ([4]) An edge coloring π satisfies the balanced constraint if
||Eπ(i)| − |Eπ(j)|| ≤ 1 holds for any two colors i and j.

Without loss of generality, we assume that G is connected, m > 0 and 2 ≤ k ≤
m.

3 Basic Procedures for Nearly Equitable Edge
Coloring

In this section, we explain algorithm BalCol and basic procedures ChkRec
and Recolor, and then summarize the results in [8]. Some basic properties
and implementation issues, which were not mentioned in the previous papers,
are also briefly introduced in this section. These are important for understand-
ing the time complexity of algorithm RecCol of the next section. Note that
the algorithms in this section are slightly modified from the original version to
make the discussion clearer. Some implementation details and the proofs of the
lemmas in this section are given in Appendix.

Algorithm BalCol initially assigns colors to all edges so that the resulting
coloring satisfies the balanced constraint of Definition 2, e.g., by choosing an
arbitrary order of edges and assigning colors 1, 2, . . . , k, 1, 2, . . . to them in this
order (i.e., the first edge is assigned color 1, the second is assigned color 2, . . . ,
the kth is assigned color k, the (k + 1)st is assigned color 1, the (k + 2)nd
is assigned color 2, and so on). Then it calls algorithm ChkRec. Whenever
the current coloring π has a vertex u that breaks the condition of Definition 1,
algorithm ChkRec chooses two colors α and β with maximum and minimum
dπ(u, i), respectively, and calls algorithm Recolor to recolor those edges in
Eπ(α)∪Eπ(β). Algorithm Recolor first constructs an augmented graph Ĝ =
(V̂ , Ê) by adding a vertex v̂ and some edges to make Gπ(α, β) connected and
the degrees of all vertices even. It then finds an Euler circuit in Ĝ starting at
the additional vertex v̂ and colors the edges alternately with α and β along the
Euler circuit, so that the resulting coloring π′ is balanced with respect to the
two colors, i.e., ||Eπ′(α)| − |Eπ′(β)|| ≤ 1 holds after recoloring. The algorithms
are formally described as follows.

Algorithm BalCol(G, C)
Input: a graph G = (V,E) and a k-color set C = {1, 2, . . . , k}
Output: a nearly equitable edge coloring π for G

1. Let π : E → C be an edge coloring that satisfies the balanced constraint.
2. Let π ← ChkRec(G, C, π).
3. Output π and stop.
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Algorithm ChkRec(G, C, π)
Input: a graph G = (V,E), a k-color set C = {1, 2, . . . , k},

and an edge coloring π
Output: a nearly equitable edge coloring π for G

1. for each u ∈ V do
2. while there exist colors i, j ∈ C such that |dπ(u, i)− dπ(u, j)| ≥ 3 do
3. For the vertex u, find two colors α, β ∈ C satisfying

dπ(u, α) = maxi∈C (dπ(u, i))
dπ(u, β) = mini∈C (dπ(u, i)).

4. Call Recolor(G,α, β, π).
5. Output π and stop.

Algorithm Recolor(G,α, β, π)
Input: a graph G = (V,E), colors α and β, and an edge coloring π
Task: modify the edge coloring π for Gπ(α, β)

1. Let V̂ ← Vπ(α, β) ∪ {v̂} (v̂ 6∈ V ) and Ê ← Eπ(α) ∪ Eπ(β).
2. for each connected component H in Gπ(α, β) do
3. if H has at least one odd-degree vertex then
4. For each odd-degree vertex v in H,

add into Ê an edge connecting v and v̂.
5. else
6. if H has a vertex v such that |dπ(v, α)− dπ(v, β)| ≥ 2 then

Draw two parallel edges between v and v̂,
and add them into Ê.

7. else
Let v be an arbitrary vertex in H. Draw two parallel edges
between v and v̂, and add them into Ê.

8. Let Ĝ← (V̂ , Ê).
9. Let a sequence of edges e1, e2, . . . , el be an Euler circuit of Ĝ such that

the tail of e1 is v̂. Then let π̂(et)← α if t is odd and π̂(et)← β otherwise
for all t = 1, 2, . . . , l.

10. Let π(e)← π̂(e) for all edges e in Gπ(α, β), and stop.

To show that algorithm Recolor works properly (i.e., the algorithm is well-
defined), it is sufficient to observe that the augmented graph Ĝ has an Euler
circuit. Any graph (including Gπ(α, β)) has even number of odd-degree vertices;
hence the degree of the newly added vertex v̂ is even. Thus all vertices in Ĝ
have even degrees, which implies that Ĝ has an Euler circuit.

To observe that algorithm ChkRec outputs a nearly equitable edge coloring
for the given graph when it stops, the following lemma is essential.

Lemma 1 For any coloring π and two colors α, β ∈ C, let π′ be the color-
ing after invoking Recolor(G,α, β, π). Then we have dπ′(v, α) + dπ′(v, β) =
dπ(v, α) + dπ(v, β) and |dπ′(v, α)− dπ′(v, β)| ≤ |dπ(v, α)− dπ(v, β)| for all ver-
tices v ∈ Vπ(α, β).
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(The proof is given in Appendix.) From this lemma, we have

max
i∈C

dπ′(v, i) ≤ max
i∈C

dπ(v, i) (1)

min
i∈C

dπ′(v, i) ≥ min
i∈C

dπ(v, i) (2)

for any v ∈ V . This indicates that, once∣∣∣∣max
i∈C

dπ(v, i)−min
i∈C

dπ(v, i)
∣∣∣∣ ≤ 2 (3)

is satisfied for a vertex v ∈ V , condition (3) will never be violated again for
the vertex v throughout the remaining execution of ChkRec. Note that (3) is
equivalent with

∀i, j ∈ C, |dπ(v, i)− dπ(v, j)| ≤ 2, (4)

the condition in Definition 1. For each vertex u ∈ V in Line 1 of ChkRec,
whenever the “while” loop in Line 2 of ChkRec terminates, condition (4) holds
with v = u, and this condition will never be violated again as mentioned above.
Hence the coloring π output by ChkRec satisfies (4) for all vertices v ∈ V .

We now consider the running time of algorithm BalCol. As Line 1 takes
O(m) time, its running time is dominated by the running time of ChkRec. Note
that, in ChkRec, algorithm Recolor only modifies the coloring for Gπ(α, β),
which can be extracted from G in O(|Eπ(α) ∪ Eπ(β)|) time if appropriately
implemented; e.g., by keeping, for each color i ∈ C, a linked list of those edges
colored with i.

Two colors α and β in Line 3 of ChkRec can be found in O(1) time for
each iteration if appropriately implemented, and additional time needed for
maintaining data structures for this computation during the whole execution
of ChkRec can be kept in O(m + ξ), where ξ is the total number of calls to
Recolor from ChkRec. Here is a brief sketch of an example of such data
structures. For the current vertex u and for each d = 0, 1, 2, . . . , d(u), prepare a
linked list of those colors i ∈ C satisfying dπ(u, i) = d, and keep pointers to the
maximum and minimum d, respectively, among those d with a nonempty list.
Then α and β can be found in the first cells of the linked lists identified by these
two pointers. The linked lists can be constructed so that the cell for i in the
linked list can be accessed in O(1) time whenever a color i is specified. Then
it takes O(1) time to remove the cells with colors α and β from the current
position and insert them to appropriate positions after executing Recolor.
After modifying the positions of α and β, we may need to update the pointers
to the maximum and minimum d with a nonempty list. Because of (1) and
(2), these pointers are changed O(d(u)) times during the whole execution of
the “while” loop for each vertex u; hence this part takes O

(∑
u∈V d(u) + ξ

)
=

O(m + ξ) time during the whole execution of ChkRec. Care should be taken
in initializing the above data structure when ChkRec begins the computation
for a new vertex u, because if this part is naively implemented, Ω(k) time may
be spent for each u, which results in spending Ω(kn) time during the whole
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computation of ChkRec. A key idea to avoid this is to reuse the list for
d = 0 without constructing it from scratch. Then the initialization can be done
in O(d(u)) time. This part is rather complicated and hence is explained in
Appendix.

Based on the above discussion, we can conclude that the running time of
ChkRec is decided by the running time of Recolor and the number of calls
to Recolor. To analyze the number of calls to Recolor, Xie et al. introduced
a potential Φπ, which is defined as follows. For all vertices v ∈ V , let d̄(v) =
bd(v)/kc. Define

Φπ(v, i) = ϕ
(2)

d̄(v)−1
(dπ(v, i))

Φπ(v) =
∑
i∈C

Φπ(v, i)

Φπ =
∑
v∈V

Φπ(v),

where ϕ(2)

d̄(v)−1
(dπ(v, i)) is defined by

ϕ(b)
a (x) = max{x− a− b, a− x, 0} (5)

with x = dπ(v, i), a = d̄(v) − 1 and b = 2. By definition, Φπ ≥ 0 holds for any
coloring π.

Lemma 2 ([8]) For any colors α, β ∈ C and a coloring π, let π′ be the coloring
after calling Recolor(G,α, β, π). Then Recolor runs in O(|Eπ(α)∪Eπ(β)|)
time, and the coloring π′ satisfies ||Eπ′(α)| − |Eπ′(β)|| ≤ 1.

Lemma 3 ([8]) Assume that there exist a vertex u and colors α, β such that
dπ(u, α) ≥ d̄(u)+1, dπ(u, β) ≤ d̄(u) and dπ(u, α)−dπ(u, β) ≥ 3 for a coloring π,
and let π′ be the coloring after calling Recolor(G,α, β, π). Then Φπ′ ≤ Φπ−1
holds.

The initial edge coloring π of algorithm BalCol satisfies ||Eπ(i)| − |Eπ(j)|| ≤
1 for any i, j ∈ C, which implies that |Eπ(i)| = O(m/k) holds for all i ∈ C.
Lemma 2 implies that after invoking Recolor, the edge coloring π′ also sat-
isfies ||Eπ′(i)| − |Eπ′(j)|| ≤ 1 for any i, j ∈ C; thus Recolor always runs in
O(m/k) time. When Line 3 of algorithm ChkRec is executed, vertex u and
colors α and β satisfy the condition of Lemma 3. Since Φπ ≥ 0 holds for
any π by definition, Lemma 3 implies that the number of calls to Recolor is
bounded by the value of Φπ for the initial coloring π, which can be calculated
to be O(m). Thus, algorithm BalCol runs in O(m2/k) time and the following
theorem holds.

Theorem 1 ([8]) Algorithm BalCol solves the nearly equitable edge coloring
problem in O(m2/k) time, where m and k are the numbers of edges and given
colors, respectively. Moreover, the edge coloring π satisfies the balanced con-
straint; i.e., ||Eπ(i)| − |Eπ(j)|| ≤ 1 for any two colors i, j, where Eπ(i) denotes
the set of edges colored with i.
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4 A Recursive Algorithm for Nearly Equitable
Edge Coloring

In this section, we present the recursive algorithm RecCol, whose worst-case
running time is O (mn log (m/(kn) + 1)). Section 4.1 explains the algorithm,
and Section 4.2 shows its properties. Then Section 4.3 analyzes the running
time of RecCol.

4.1 Recursive Algorithm

The basic framework of algorithm RecCol is explained as follows. When
|E| ≤ kn, RecCol calls algorithm BalCol to obtain an edge coloring of G.
Otherwise, it partitions E arbitrarily into two subsets EL and ER so that they
satisfy EL ∪ ER = E, EL ∩ ER = ∅, |EL| = d|E|/2e and |ER| = b|E|/2c, and
then recursively applies RecCol to GEL and GER to obtain their edge colorings
πL and πR, respectively. It then constructs a coloring π of G by merging the
two colorings πL and πR after permuting them so that the resulting coloring
π satisfies ||Eπ(i)| − |Eπ(j)|| ≤ 1 for any two colors i, j ∈ C. Then it applies
ChkRec to the resulting coloring π.

Algorithm RecCol(G, C)
Input: a graph G = (V,E) and a k-color set C = {1, 2, . . . , k}
Output: a nearly equitable edge coloring π for G

1. If |E| ≤ kn then
Let π ← BalCol (G, C).

2. else
3. Partition E into two subsets EL and ER so that they satisfy

E = EL ∪ ER, EL ∩ ER = ∅, |EL| = d|E|/2e and |ER| = b|E|/2c.
4. Let πL ← RecCol(GEL , C).

Let πR ← RecCol(GER , C).
5. Sort the color indices so that∣∣EL

πL(i1)
∣∣ ≥ ∣∣EL

πL(i2)
∣∣ ≥ . . . ≥ ∣∣EL

πL(ik)
∣∣ holds.

Define a permutation σL : C → C by σL(il) = l for all l = 1, 2, . . . , k.
Let π(e)← σL

(
πL(e)

)
for all e ∈ EL.

6. Sort the color indices so that∣∣ER
πR(j1)

∣∣ ≤ ∣∣ER
πR(j2)

∣∣ ≤ . . . ≤ ∣∣ER
πR(jk)

∣∣ holds.
Define a permutation σR : C → C by σR(jl) = l for all l = 1, 2, . . . , k.
Let π(e)← σR

(
πR(e)

)
for all e ∈ ER.

7. Let π ← ChkRec(G, C, π).
8. Return π.

4.2 Properties of Algorithm RecCol

This section analyzes the properties of algorithm RecCol. Since the edge
coloring obtained by RecCol is the output of algorithm BalCol or ChkRec,



JGAA, 12(4) 383–399 (2008) 391

it is obvious that algorithm RecCol outputs a nearly equitable edge coloring
for the given graph when it stops. Let us consider the computation time of
algorithm RecCol except Line 4. Algorithm BalCol of Line 1 uses O(m2/k)
time by Theorem 1. The permutations in Lines 5 and 6 can be computed in
O(k) = O(m) time (recall that |E| > kn holds when these lines are called), and
hence the time complexities of Lines 3, 5 and 6 are O(m). Thus the remaining is
the time for algorithm ChkRec of Line 7, which is determined by the running
time of algorithm Recolor and the number of calls to Recolor. Lemmas 2
and 3 imply that the running time of Recolor is O (maxi∈C |Eπ(i)|) and the
number of calls to Recolor is bounded by the value of Φπ, where Eπ(i) and
Φπ are those of the coloring π just before calling ChkRec in Line 7. We now
show the following lemmas.

Lemma 4 The edge coloring π output by algorithm RecCol satisfies the bal-
anced constraints; i.e., ||Eπ(i)| − |Eπ(j)|| ≤ 1 for any two colors i, j ∈ C.

Proof: We prove this by the induction on the number of edges.
When |E| ≤ kn, we call algorithm BalCol, and in this case, Theorem 1

implies that the edge coloring π given by algorithm BalCol satisfies the bal-
anced constraint. We now consider the case with |E| > kn, and assume that the
lemma holds for any graph whose number of edges is smaller than |E|. Then,
as |EL| and |ER| are smaller than |E|, after calling RecCol on both GEL and
GER in Line 4, the obtained two edge colorings πL and πR satisfy∣∣∣∣EL

πL(i)
∣∣− ∣∣EL

πL(j)
∣∣∣∣ ≤ 1 (6)∣∣∣∣ER

πR(i)
∣∣− ∣∣ER

πR(j)
∣∣∣∣ ≤ 1 (7)

for any two colors i, j ∈ C by the inductive hypothesis. Hence, after permuting
the colors in Lines 5 and 6, we have

||Eπ(i)| − |Eπ(j)|| ≤ 1 (8)

for any two colors i, j ∈ C, where π is the edge coloring just before calling
ChkRec. Then, Lemma 2 implies that this condition still holds after calling
algorithm ChkRec. �

Lemma 5 The edge coloring π just before calling ChkRec in algorithm RecCol
satisfies

(i) ||Eπ(i)| − |Eπ(j)|| ≤ 1 for all i, j ∈ C, and

(ii) Φπ = O(kn).

Proof: (i) is obvious from the proof of Lemma 4. Below we give the proof of
(ii).
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To make the proof simple, we define Φ̂π(v, i) and Φ̂π as follows:

Φ̂π(v, i) = ϕ
(0)
d(v)/k (dπ(v, i)) =

∣∣∣∣dπ(v, i)− d(v)
k

∣∣∣∣ (9)

Φ̂π(v) =
∑
i∈C

Φ̂π(v, i)

Φ̂π =
∑
v∈V

Φ̂π(v),

where ϕ(0)
d(v)/k (dπ(v, i)) is defined by (5) with x = dπ(v, i), a = d(v)/k and b = 0.

It is easy to show that for any constants a, a′, b ≥ 0 and b′ ≥ 0 satisfying a ≤ a′

and a′+b′ ≤ a+b, ϕ(b)
a (x) ≤ ϕ(b′)

a′ (x) holds for all x. Thus, for d̄(v)−1 ≤ d(v)/k
and (d(v)/k) + 0 ≤ (d̄(v)− 1) + 2, we obtain Φπ(v, i) ≤ Φ̂π(v, i) for all vertices
v ∈ V and all colors i ∈ C, which imply Φπ ≤ Φ̂π.

Let dL(v) denote the number of edges in EL incident to the vertex v and
dL
πL(v, i) denote the number of edges in EL that are incident to v and colored

with i under the coloring πL. The definitions of dR(v) and dR
πR(v, i) are similar.

After calling RecCol(GEL , C), the obtained coloring πL is nearly equitable for
GEL =

(
VEL , EL

)
, and hence∣∣dL

πL(v, i)− dL
πL(v, j)

∣∣ ≤ 2 (10)

holds for any vertex v ∈ VEL and any two colors i, j ∈ C.
Since

min
i∈C

(
dL
πL(v, i)

)
≤ dL(v)

k
≤ max

i∈C

(
dL
πL(v, i)

)
,

we have ∣∣∣∣dL
πL(v, i)− dL(v)

k

∣∣∣∣ ≤ 2 (11)

for any vertex v ∈ VEL and any color i ∈ C. For the same reason, the coloring
πR obtained by calling RecCol(GER , C) satisfies∣∣∣∣dR

πR(v, i)− dR(v)
k

∣∣∣∣ ≤ 2, (12)

for any vertex v ∈ VER and any color i ∈ C. Since dπ(v, i) = dL
πL

(
v,
(
σL
)−1 (i)

)
+

dR
πR

(
v,
(
σR
)−1 (i)

)
and d(v) = dL(v) + dR(v) hold by definition, (11) and (12)

imply that the coloring π before calling ChkRec satisfies∣∣∣∣dπ(v, i)− d(v)
k

∣∣∣∣ ≤ 4. (13)

Hence we have Φπ ≤ Φ̂π ≤ 4kn. �
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4.3 Running Time of Algorithm RecCol

We now consider the running time of algorithm RecCol. As discussed in
Section 4.2, the running time of RecCol except Line 4 is dominated by the
computation time of ChkRec in Line 7, which is determined by the running
time of Recolor and the number of calls to Recolor. Lemma 5-(i) and
Lemma 2 imply that Recolor always runs in O (maxi∈C |Eπ(i)|) = O(m/k)
time, while Lemma 5-(ii) and Lemma 3 imply that the number of calls to
Recolor is bounded by Φπ = O(kn). Thus, the running time of ChkRec
becomes O(kn× (m/k)) = O(mn).

Let T (m,n, k) denote the total running time of algorithm RecCol. Then
we have

T (m,n, k) =
{
O(m2/k) if m ≤ kn
O(mn) + 2T (m/2, n, k) otherwise.

Since m2/k = O(mn) holds for m ≤ kn, we have T (m,n, k) =
O (mn log (m/(kn) + 1)) for m > kn. For m ≤ kn, T (m,n, k) = O(m2/k)
is obvious. Below we show that m2/k = Θ (mn log (m/(kn) + 1)) holds for
m ≤ kn, which implies that T (m,n, k) = O(mn log(m/(kn) + 1)) holds for all
range of m. We also show that mn log(m/(kn) + 1) = O(m2/k), which means
that algorithm RecCol is never slower than BalCol. For these, we use the
following lemma, whose proof is straightforward and is omitted.

Lemma 6 x ≤ lg(x+ 1) holds for any x ∈ [0, 1], while lg(x+ 1) ≤ 2x holds for
any x ≥ 0, where lg = log2.

Lemma 6 implies that

mn lg
(m
kn

+ 1
)
≥ mn m

kn
=
m2

k

holds for 0 < m/(kn) ≤ 1, while

mn lg
(m
kn

+ 1
)
≤ mn2m

kn
=

2m2

k

holds for any m, n and k. Thus, we conclude that T (m,n, k) =
O (mn log (m/(kn) + 1)) always holds, and algorithm RecCol is never asymp-
totically slower than algorithm BalCol. The results are summarized in the
following theorem.

Theorem 2 Algorithm RecCol solves the nearly equitable edge coloring prob-
lem in

O
(
mn log

(m
kn

+ 1
))

time, where m, n and k are the numbers of edges, vertices and given colors,
respectively. Moreover, the edge coloring π satisfies the balanced constraint;
i.e., ||Eπ(i)| − |Eπ(j)|| ≤ 1 holds for any two colors i, j ∈ C.
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When k = O(1), the time complexity of all known algorithms becomes
O(m2), which implies that the time complexity, derived from the constructive
proof of Hilton and de Werra [1], remains to be the best. We now consider the
ratio

mn log(m/n)
m2

=
log(m/n)
m/n

.

Then we have

lim
m/n→∞

log(m/n)
m/n

= 0,

which implies that algorithm RecCol needs less running time than O(m2)
when m/n grows to infinity; e.g., m = nϑ (ϑ > 1 is an arbitrary constant).

5 Concluding Remarks

In this paper, we presented a deterministic algorithm for computing nearly eq-
uitable edge colorings. The algorithm runs in O (mn log (m/(kn) + 1)) time,
where m, n and k are the numbers of edges, vertices and given colors, respec-
tively. The time complexity of the recursive algorithm is better than the previous
best known time bound O(m2/k) presented by Xie et al. When k = O(1), the
time complexity of all known algorithms becomes O(m2), which implies that
this time complexity remains to be the best for more than twenty years since
1982 when Hilton and de Werra gave a constructive proof for the existence of a
nearly equitable edge coloring for any graph. Our recursive algorithm is the first
that improves this time complexity when m/n grows to infinity; e.g., m = nϑ

(ϑ > 1 is an arbitrary constant).
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Appendix

A Some Details Omitted in Section 3

Below we give some details of the implementation issues for finding α and β in
algorithm ChkRec, and the proofs of lemmas in Section 3.

A.1 Time for Finding α and β

As mentioned in Section 3, two colors α and β in Line 3 of ChkRec can be found
in O(1) time for each iteration if appropriately implemented, and additional time
needed for maintaining data structures for this computation during the whole
execution of ChkRec can be kept in O(m+ ξ), where ξ is the total number of
calls to Recolor from ChkRec. Below is an example of such data structures.
For the current vertex u and for each d = 0, 1, 2, . . . , d(u), prepare a doubly
linked list of those colors i ∈ C satisfying dπ(u, i) = d, and keep pointers to
the maximum and minimum d, respectively, among those d with a nonempty
list. Then α and β can be found in the first cells of the linked lists identified
by these two pointers, which takes O(1) time. To maintain the above lists
efficiently, prepare an array of size k whose ith entry contains the pointer to the
cell with color i in the linked list so that the cell for i in the linked list can be
accessed in O(1) time whenever a color i is specified. Then it takes O(1) time
to remove the cells with colors α and β from the current position and insert
them to appropriate positions after executing Recolor. After modifying the
positions of α and β, we may need to update the pointers to the maximum and
minimum d with a nonempty list. Because of (1) and (2), these pointers are
modified O(d(u)) times during the whole execution of the “while” loop for each
vertex u; hence this part takes O

(∑
u∈V d(u) + ξ

)
= O(m+ ξ) time during the

whole execution of ChkRec.
Care should be taken in initializing the above data structure when ChkRec

begins the computation for a new vertex u, because if this part is naively im-
plemented, Ω(k) time may be spent for each u, which results in spending Ω(kn)
time during the whole computation of ChkRec. To avoid this, prepare a linked
list of all colors for d = 0 at the beginning of ChkRec, which takesO(k) = O(m)
time (recall that we assume k ≤ m). Whenever a new vertex u is examined,
initialize the lists by moving only those cells with the colors assigned to edges
incident to u; i.e., those cells with color i with dπ(u, i) = 0 are not scanned and
stay in the list for d = 0. This can be done in O(d(u)) time by scanning the
list of the edges incident to u and computing the values of dπ(u, i) for all i ∈ C
with dπ(u, i) ≥ 1 accordingly. Then, whenever the loop for a u is over, move
all the cells in the lists for d ≥ 1 to the list for d = 0, which also takes O(d(u))
time. In computing the values of dπ(u, i) for all i ∈ C with dπ(u, i) ≥ 1, similar
care should be taken to avoid spending Ω(k) time and execute this in O(d(u))
time. Consequently, such initialization takes O(d(u)) time for each u; hence the
total time for this part is O

(∑
u∈V d(u)

)
= O(m) during the whole execution

of ChkRec.
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In summary, the time for finding α and β, as well as the time for maintaining
relevant data structures, is O (m+ ξ) during the whole execution of ChkRec.

A.2 Proofs of Basic Lemmas

In this section, we give the proof of Lemma 1. We also include the proofs of
Lemmas 2 and 3 to make the paper self-contained. Here we note that these
proofs are simpler than those in [8]. Recall that dπ(v, α) is the number of edges
incident to v and colored with α in a coloring π.

Lemma 1 For any coloring π and two colors α, β ∈ C, let π′ be the coloring
after invoking Recolor(G,α, β, π). Then we have

dπ′(v, α) + dπ′(v, β) = dπ(v, α) + dπ(v, β), (14)
|dπ′(v, α)− dπ′(v, β)| ≤ |dπ(v, α)− dπ(v, β)| (15)

hold for all vertices v ∈ Vπ(α, β).

Proof: The equation (14) is obvious, and the remaining is to show that (15)
holds for all vertices v ∈ Vπ(α, β). We denote by dπ̂(v, α) the number of edges
incident to v and colored with α in the augmented graph Ĝ after executing Line 9
of Recolor. Let η(v) be the number of edges between v and the newly added
vertex v̂. Then η(v) = 0, 1 or 2 by the definition of Ĝ. For any v ∈ Vπ(α, β),
dπ̂(v, α) = dπ̂(v, β) holds because we color edges alternately along an Euler
circuit; hence we have

|dπ′(v, α)− dπ′(v, β)| ≤ η(v). (16)

If η(v) = 0, then (15) is immediate from (16). If η(v) = 1, then |dπ(v, α) −
dπ(v, β)| is odd, and hence is at least 1, which implies (15). For the case with
|dπ(v, α) − dπ(v, β)| ≥ 2, (15) is also immediate from (16) and η(v) ≤ 2. The
remaining is the case with η(v) = 2 and |dπ(v, α) − dπ(v, β)| = 0 (when η(v)
is even, |dπ(v, α) − dπ(v, β)| is even and cannot be 1). This happens only if
the vertex v is connected to v̂ in Line 7 of Recolor. In this case, dπ(w,α) =
dπ(w, β) holds for all vertices w in the connected component of Gπ(α, β) that
includes v, which implies that the number of edges in this component is even.
Hence the two parallel edges between the v and v̂ receive different colors, and
therefore we have (15). �

Lemma 2 [8]: For any colors α, β ∈ C and a coloring π, let π′ be the coloring
after calling Recolor(G,α, β, π). Then Recolor runs in O(|Eπ(α)∪Eπ(β)|)
time and the coloring π′ satisfies ||Eπ′(α)| − |Eπ′(β)|| ≤ 1.

Proof: We first consider the running time of Recolor. It is clear that the
running time of Recolor is dominated by the time for finding an Euler circuit,
which is linear to the number of edges in the augmented graph Ĝ. Let us
consider the number of newly added edges in Ĝ, all of which are incident to the
new vertex v̂. For each vertex v in Vπ(α, β), the number of new edges between v



398 X. Xie et al. An Efficient Algorithm for Nearly Equitable Edge Coloring

and v̂ is at most two. Moreover, |Vπ(α, β)| ≤
∑
v∈Vπ(α,β) (dπ(v, α) + dπ(v, β)) =

2|Eπ(α)∪Eπ(β)| holds because each vertex v in Vπ(α, β) must be an endpoint of
an edge of color α or β. Hence the number of new edges is O(|Eπ(α)∪Eπ(β)|),
which implies that the total running time of Recolor is O(|Eπ(α) ∪ Eπ(β)|).

We next prove that after an invocation of Recolor, ||Eπ′(α)| − |Eπ′(β)|| ≤
1 holds. If Ĝ has odd number of edges, then the coloring along the Euler circuit
begins and ends with α at the new vertex v̂. For there are even number of edges
incident to v̂, |Eπ′(α)| = |Eπ′(β)| − 1 holds after calling Recolor. Otherwise,
|Eπ′(α)| = |Eπ′(β)| is obvious. �

To prove Lemma 3, we first show the following fact.

Lemma 7 For four numbers p, q, r and s satisfying p+ q = r+ s and |p− q| ≥
|r − s|, if a function f satisfies f((1− λ)p+ λq) ≤ (1− λ)f(p) + λf(q) for any
λ ∈ (0, 1), then f(r)+f(s) ≤ f(p)+f(q). Moreover, the last inequality is proper
if the first two inequalities are proper.

Proof: For four numbers p, q, r and s satisfying p+q = r+s and |p−q| > |r−s|,
suppose by symmetry that p < r ≤ s < q. Then there exists a constant
λ ∈ (0, 1/2] that satisfies r = (1− λ)p+ λq and s = λp+ (1− λ)q. If f satisfies
f((1− λ)p+ λq) < (1− λ)f(p) + λf(q) for any λ ∈ (0, 1), then we have

f(r) + f(s) = f((1− λ)p+ λq) + f(λp+ (1− λ)q)
< (1− λ)f(p) + λf(q) + λf(p) + (1− λ)f(q)
= f(p) + f(q). (17)

By a similar argument, we have f(r) + f(s) ≤ f(p) + f(q) if p, q, r and s
satisfy p + q = r + s and |p − q| ≥ |r − s|, and f satisfies f((1 − λ)p + λq) ≤
(1− λ)f(p) + λf(q) for all λ ∈ (0, 1). �

Lemma 3 [8]: Assume that there exist a vertex u and colors α, β such that
dπ(u, α) ≥ d̄(u)+1, dπ(u, β) ≤ d̄(u) and dπ(u, α)−dπ(u, β) ≥ 3 for a coloring π,
and let π′ be the coloring after calling Recolor(G,α, β, π). Then Φπ′ ≤ Φπ−1
holds.

Proof: Recall that the definition of Φπ(v) is

Φπ(v) =
∑
i∈C

ϕ
(2)

d̄(v)−1
(dπ(v, i)) ,

where

ϕ
(2)

d̄(v)−1
(dπ(v, i)) = max{dπ(v, i)− (d̄(v) + 1), (d̄(v)− 1)− dπ(v, i), 0}

is a convex piecewise linear function of dπ(v, i). From the convexity, we have

ϕ
(2)

d̄(v)−1
((1− λ)dπ(v, β) + λdπ(v, α))

≤ (1− λ)ϕ(2)

d̄(v)−1
(dπ(v, β)) + λϕ

(2)

d̄(v)−1
(dπ(v, α))
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for all λ ∈ (0, 1). Moreover, we have (14) and (15) by Lemma 1. Hence Lemma 7
implies

Φπ′(v)− Φπ(v) =
(
ϕ

(2)

d̄(v)−1
(dπ′(v, β)) + ϕ

(2)

d̄(v)−1
(dπ′(v, α))

)
−
(
ϕ

(2)

d̄(v)−1
(dπ(v, β)) + ϕ

(2)

d̄(v)−1
(dπ(v, α))

)
≤ 0 (18)

for all vertices v ∈ Vπ(α, β).
By the assumption of the lemma, there is a vertex u that satisfies dπ(u, α) ≥

d̄(u) + 1, dπ(u, β) ≤ d̄(u) and dπ(u, α)− dπ(u, β) ≥ 3. Then, two points(
dπ(u, β), ϕ(2)

d̄(u)−1
(dπ(u, β))

)
and

(
dπ(u, α), ϕ(2)

d̄(u)−1
(dπ(u, α))

)
cannot be on the same line segment of the convex piecewise linear function
ϕ

(2)

d̄(u)−1
(·). Hence

ϕ
(2)

d̄(u)−1
((1− λ)dπ(u, β) + λdπ(u, α))

< (1− λ)ϕ(2)

d̄(u)−1
(dπ(u, β)) + λϕ

(2)

d̄(u)−1
(dπ(u, α))

holds for all λ ∈ (0, 1). As |dπ′(u, α)−dπ′(u, β)| ≤ 2 < 3 ≤ |dπ(u, α)−dπ(u, β)|,
Lemma 7 implies

Φπ′(u)− Φπ(u) =
(
ϕ

(2)

d̄(u)−1
(dπ′(u, β)) + ϕ

(2)

d̄(u)−1
(dπ′(u, α))

)
−
(
ϕ

(2)

d̄(u)−1
(dπ(u, β)) + ϕ

(2)

d̄(u)−1
(dπ(u, α))

)
< 0. (19)

Recall that Φπ is an integer and Φπ(v) does not change for the vertices not in
Gπ(α, β). Thus, (18) and (19) imply Φπ′ ≤ Φπ − 1. �
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