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Degree-constrained edge partitioning in graphs
arising from discrete tomography
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Abstract

Starting from the basic problem of reconstructing a 2-dimensional im-
age given by its projections on two axes, one associates a model of edge
coloring in a complete bipartite graph. The complexity of the case with
k = 3 colors is open. Variations and special cases are considered for the
case k = 3 colors where the graph corresponding to the union of some color
classes (for instance colors 1 and 2) has a given structure (tree, vertex-
disjoint chains, 2-factor, etc.). We also study special cases corresponding
to the search of 2 edge-disjoint chains or cycles going through specified
vertices. A variation where the graph is oriented is also presented.

In addition we explore similar problems for the case where the under-
lying graph is a complete graph (instead of a complete bipartite graph).
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This paper is dedicated to H.J. Ryser in acknowledgement for his seminal
work which stated the now famous Ryser conditions exactly 50 years ago.

1 Introduction

Our aim is to explore some problems that arise from a graph-theoretical formu-
lation of the basic image reconstruction problem in discrete tomography (see
[11, 12]). These models are also frequently used for problems of timetabling
and scheduling (see [6] for instance). Additional applications are presented in
[11, 12].

Assume we are given an m × n array A = (aij) where each entry contains
one of the colors 1, . . . , k. This matrix models an image of m × n pixels: for
each s ∈ {1, . . . , k}, we define hs

i (resp. vs
j ) as the number of pixels with color

s for each row i, i ∈ {1, . . . ,m} (resp. each column j, j ∈ {1, . . . , n}).
The basic image reconstruction problem consists in assigning a color in

{1, . . . , k} to each entry of A so that in each row i (resp. column j) there
are exactly hs

i (resp. vs
j ) entries with color s. Formally, we have:

BASIC RECONSTRUCTION PROBLEM

Input: (hs
1, . . . , h

s
m), (vs

1, . . . , v
s
n) for each s ∈ {1, . . . , k}

Output: an array A = (aij) such that in each row i (resp. column j) there are
exactly hs

i (resp. vs
j ) entries with color s, ∀i ∈ {1, . . . ,m},∀j ∈ {1, . . . , n},∀s ∈

{1, . . . , k}.

Clearly the values hs
i and vs

j must satisfy some (necessary) conditions:

k∑
s=1

hs
i = n ∀i ∈ {1, . . . ,m} (1)

k∑
s=1

vs
j = m ∀j ∈ {1, . . . , n} (2)

m∑
i=1

hs
i =

n∑
j=1

vs
j ∀s ∈ {1, . . . , k} (3)

It is known that for k = 2, one can efficiently decide whether there exists
or not an image corresponding to values hs

i , v
s
j satisfying (1)-(3). Indeed in

[15], Ryser gives, for the case k = 2, necessary and sufficient conditions to
be verified by the values hs

i and vs
j for a solution to exist. Furthermore these

conditions can be checked in polynomial time. They can be formulated as
follows for each color s: we rearrange the values hs

i in non increasing order and
call them r1 ≥ r2 ≥ ... ≥ rm. We do the same for the values vs

j and call them
s1 ≥ s2 ≥ ... ≥ sn. Then the Ryser conditions are

∑m
i=1 min{k, ri} ≥

∑k
j=1 sj

for each k ∈ {1, ..., n} with equality for k = n.
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For k = 4, the decision problem associated with the basic reconstruction
problem was shown to be NP−complete [4], while for k = 3 its status is to our
knowledge still open.

In this paper we essentially consider the case where we have k = 3 colors
unless stated otherwise. Some tractable cases have been discussed in [5] and [6]
in particular. [11, 12] contain also some related results for special cases of the
general problem.

The graph-theoretical model we will associate with this problem is the fol-
lowing (see [2] for all graph theoretical terms not defined here). We have a
complete bipartite graph KX,Y with |X| = m, |Y | = n. Each row i of A
corresponds to vertex i; X is the set of these vertices. Similarly each column j
of A corresponds to vertex j and Y is the set of these vertices. Each entry aij

of A corresponds to the color of the edge [i, j], i ∈ X and j ∈ Y .
Given the values hs

i and vs
j , the reconstruction problem consists in partition-

ing the edge set E(KX,Y ) into k subsets E1, . . . , Ek (Es is the subset of edges
which will be given color s) such that for each s ∈ {1, . . . , k}

hs
i is the number of edges of Es adjacent to vertex i,∀i ∈ X (4)

vs
j is the number of edges of Es adjacent to vertex j,∀j ∈ Y (5)

For the rest of the paper, when working in complete bipartite graphs, we
assume that conditions (1)-(3) are verified as well as the Ryser conditions for
each color s ∈ {1, ..., k}.

For all these problems we also examine the corresponding problem in the
case where instead of having an underlying graph which is bipartite (as was
KX,Y ) we have now a complete graph KX on |X| = m vertices. So we are given
for each vertex i in KX and for each color s ∈ {1, ..., k} a non negative integer
hs

i . Our problem then consists in finding a partition of the edge set E(KX) into
k subsets E1, ..., Ek such that for each vertex i ∈ {1, . . . ,m} and for each color
s ∈ {1, . . . , k}:

hs
i is the number of edges of Es adjacent to vertex i in X (6)

Clearly for a solution to exist the following conditions must hold:

k∑
s=1

hs
i = m− 1 ∀i ∈ {1, . . . ,m} (7)

∑
i∈X

hs
i is even ∀s ∈ {1, . . . , k} (8)

For the rest of the paper, when working in complete graphs, we assume that
conditions (7)-(8) are satisfied. Moreover, for k = 2, one can efficiently decide
whether there exists or not an edge partition satisfying the values h1

i . Indeed
in [7], Erdös and Gallai give necessary and sufficient conditions to be verified
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by the values h1
i . Furthermore these conditions can be checked in polynomial

time.
Finally, we will also study the case where, instead of a complete bipartite

graph, the underlying graph is a digraph. The paper is organized as follows.
In Section 2, we give complexity results for the case where the graph is a

complete graph GX .
In general no requirement is imposed on the structure of the graphs gener-

ated by Es or by Est ≡ Es
⋃

Et besides satisfying (4)-(5). Here we shall first
examine some variations where the union of some subsets Es has to satisfy some
additional constraints. We will focus on these subsets and we will not care about
the other subsets corresponding to the remaining colors. We shall show that for
these special cases of the problem with k = 3 colors solutions can be obtained in
polynomial time. These special cases correspond in discrete tomography to sit-
uations where one has some additional information on the occurrences of some
colors or of some combinations of two or more colors.

Let us observe that from constraints (1)-(2) we see that there are indeed
k− 1 independent colors, the last one, say color k, will be the ground color (the
number of its occurrences in each row and in each column is determined by the
occurrences of the k − 1 other colors). Since we assume k = 3, we will have to
determine disjoint sets E1, E2 and E3 = E − (E1 ∪ E2) will be automatically
determined and it will satisfy (4) and (5).

In Section 3, we give sufficient conditions based on the maximum degree in
E12 for a solution to exist for the case of non oriented complete bipartite graphs
and complete graphs (see [18] for additional results on the sequences of degrees
of a graph). This exhibits a solvable case of the basic image reconstruction
problem with k = 3 colors.

In Section 4 we examine some variations of the problem with k = 3 colors
where E12 has to satisfy some additional constraints. We give necessary and
sufficient conditions for the cases where the edges of E12 form a tree or a col-
lection of vertex-disjoint chains. These conditions can be checked in polynomial
time.

Finally, in Section 5, we will consider the problem corresponding to special
values (0, 1 or 2) of hs

i (and vs
j ), i.e., the search of two edge-disjoint chains or

cycles going through specified vertices in complete bipartite graphs or complete
graphs (see [10, 13] for additional results on the sequences of degrees of a graph
forming two (or three) edge-disjoint forests).

2 Complexity results for complete graphs

Here, we study the complexity status of the degree-constrained edge partitioning
problem. We will show the NP -completeness of the problem in case of complete
graphs.

Although this has no immediate connection with discrete tomography as
before, this result is given for its interest in a graph theoretical context.

Let us consider a complete graph KX on a set X of m vertices.
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As already mentioned in the introduction we now want to find a partition
E1, . . . , Ek of the edge set E(KX) such that in Es there are exactly hs

i edges
adjacent to vertex i for each i ∈ {1, . . . ,m} and each s ∈ {1, . . . , k} (condition
(6)). Es is usually called a b-factor: we recall that in a graph where to each
vertex v is associated a nonnegative integer b(v) a b-factor is a subset E∗ of edges
such that each vertex v is adjacent to exactly b(v) edges of E∗; conditions of
existence are given in [16]. Es can be constructed in polynomial time by using
a b-matching algorithm [16]. We shall assume that these conditions hold for
each Es (otherwise our problem has no solution). These can be formulated as
follows for each color s: for each partition T, U, W of X, the subgraph induced
by T has at most

∑
i∈U hs

i −
∑

i∈W hs
i + 2|E[W, W ]|+ |E[T, W ]| components K

with
∑

i∈K hs
i + |E[K, W ]| odd, where E[A, B] = {[a, b] ∈ E(G)|a ∈ A, b ∈ B}.

Furthermore we assume that every vertex in KX,Y is adjacent to at least
one edge of E1,...,k−1(otherwise we simply delete the vertices not adjacent to
any edge of E1,...,k−1 and consider the remaining graph). This assumption can
be stated as follows:

V (E1) ∪ V (E2) ∪ . . . ∪ V (Ek−1) = V (G) (9)

The following proposition sheds some light on the relative complexity of the
decision versions of the edge k-partitioning problems in a complete graph and
in a complete bipartite graph.

Proposition 1 The degree-constrained edge k-partitioning problem in a com-
plete graph is at least as difficult as in a complete bipartite graph.

Proof: We are given a degree-constrained edge k-partitioning problem P de-
fined by a complete bipartite graph KX,Y and values hs

i (i ∈ X), vs
j (j ∈ Y ) for

each s ∈ {1, . . . , k}. We recall that conditions (1)-(3) do hold. We construct
a complete graph G′ = KX∪Y on X ∪ Y by introducing in KX,Y a clique on
X and a clique on Y . Let m = |X| and n = |Y |. For each i ∈ X we set
h

′1
i = h1

i + m − 1, h
′s
i = hs

i for each s ∈ {2, ..., k} and for each j ∈ Y we set
v

′2
j = v2

j + n− 1, v
′s
j = vs

j for each s ∈ {1, . . . , k} \ {2}. This defines a problem
P ′ on G′. Clearly if P has a solution S, we can derive a solution S′ to P ′

by keeping the colors of the edges [xi, yj ] of G′, by giving color 1 to all edges
[xr, xt] ∈ X ×X and color 2 to all edges [yu, yv] ∈ Y × Y . Conversely assume
that P ′ has a solution S′ in G′. Then all edges with both ends in X (resp. in
Y ) have color 1 (resp. color 2): suppose an edge [xi, xj ] has some color c 6= 1;
then xi and xj are adjacent to m − 2 edges of color 1 (instead of m − 1) with
both ends in X; so the number of edges of color 1 going out of X will be at least∑

i∈X h1
i + 2 >

∑
j∈Y v1

j =
∑

j∈Y v
′1
j which is at least as large as the number of

edges of color 1 which may have one or two ends in Y . This is impossible. For
color 2, the same holds (interchanging the roles of X and Y ). Then by keeping
the colors of all edges [x, y] of KX∪Y , we get a solution for P in KX,Y . �

From Proposition 1 and from the NP -completeness of the image reconstruc-
tion problem for k = 4 [4], we obtain the following:
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Corollary 2 For any fixed k ≥ 4, the degree-constrained edge k-partitioning
problem in a complete graph is NP -complete.

3 Sufficient conditions for a solution to exist
when k = 3

In this section, we shall give a sufficient condition for a partition E1, E2, E3

satisfying (4)-(5) (or (6)) to exist.
First we study the case of a complete bipartite graph KX,Y (i.e. the case

of image reconstruction problem) The condition involves the largest degree p
in E12 = E1

⋃
E2. We shall assume that p ≥ 2 in this section (since the case

p = 1 is trivial).

Proposition 3 In a complete bipartite graph KX,Y let p = maxi∈X,j∈Y {h1
i +

h2
i , v

1
j + v2

j } ≥ 2. There exists a partition E1, E2, E3 of E satisfying (4)-(5) if
|E12| ≥ 2p(p− 2) + 3.

Proof: By [15], we know how to construct separately E1 and E2. If there are
no cycles of length 2, then we are done since E1 and E2 are disjoint and the
remaining (uncolored) edges will necessarily belong to E3.

Otherwise we have at least one cycle of length 2, consisting of the parallel
edges [x, y]1, [x, y]2, where x ∈ X, y ∈ Y , [x, y]1 ∈ E1 and [x, y]2 ∈ E2. If
we can find an edge [z, t] ∈ E12 (z ∈ X, t ∈ Y ) of color s ∈ {1, 2} such that
[x, t], [z, y] 6∈ E12, then by replacing [x, y]s and [z, t] by [x, t] and [z, y] which get
color s, conditions (4)-(5) are still satisfied and we have at least one less cycle
of length 2. By repeating this procedure, we get 2 disjoint edge sets E1, E2

satisfying (4)-(5) and thus a solution of our problem.
Let us now show in which case we can always find an edge [z, t] ∈ E12 such

that [x, t], [z, y] 6∈ E12. Such an edge will be called a good edge. Notice that
x and y are considered as linked by two edges. Clearly all edges having as
endvertices x or y are not good edges. We have at most 2(p − 1) such edges.
Furthermore, all edges [u, v] ∈ E12 such that [x, v] or [u, y] belongs to E12 are
not good edges; there are at most 2(p−2)(p−1) such edges. Clearly every other
edge in E12 not belonging to these two sets will be a good edge. Thus if we
require that E12 contains at least 2(p− 1) + 2(p− 2)(p− 1) + 1 = 2p(p− 2) + 3
edges, there will always be a good edge and hence all cycles of length 2 can be
replaced by two disjoint edges. �

We will now deal with the analogous case where the graph is a complete
graph KX .

Proposition 4 In a complete graph KX , let p = maxi∈X{h1
i + h2

i }, p ≥ 2.
There exists a partition E1, E2, E3 of the edge set E satisfying (6) if |E12| ≥
p2 − 2p + 3.
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Proof: We proceed in a similar way as in the proof of Proposition 3, i.e., we
first construct E1 and E2 independently (using the construction given in [16]).
If they are disjoint, then we are done. Otherwise there is at least one cycle of
length 2 consisting of the parallel edges [x, y]1, [x, y]2, where [x, y]1 ∈ E1 and
[x, y]2 ∈ E2.

If we find a (good) edge [z, t] ∈ E12 such that [x, z], [y, t] 6∈ E12 or [x, t], [y, z] 6∈
E12, then we can replace [z, t] and one edge of the cycle by one of these pairs
of edges and condition (6) will still be satisfied. Repeating this procedure will
necessarily lead to a solution.

Now we will show a sufficient condition for a good edge [z, t] to exist. Clearly
all edges incident to x or y in E12 are not good edges. We have at most 2(p−1)
such edges. Let q denote the number of vertices which are neighbors of both x
and y in E12. Then all edges incident to these vertices are not good edges either.
We have at most q(p − 2) of them different from edges [x, y]1, [x, y]2. Finally
each edge [u, v] joining two neighbors of x (resp. y) which are not neighbors of
y (resp. x) is not a good edge. We have at most (p−2−q)(p−3−q) such edges.
It is easy to see that every other edge will be a good edge. Thus if we require
that |E12| ≥ 2(p−1)+q(p−2)+(p−2−q)(p−3−q)+1, then we can always find
a good edge and hence replace the cycle of length 2. If we consider the extreme
cases where q = 0 and q = p−2, we find that |E12| ≥ max(p2−2p+3, p2−3p+5)
and thus |E12| ≥ p2 − 2p + 3 since p ≥ 2. �

4 The case where E12 is acyclic

4.1 Trees in complete bipartite graphs

The first problem which we consider can be formulated as follows: given a com-
plete bipartite graph KX,Y and the values h1

i , h
2
i , v

1
j , v2

j (for each i ∈ {1, . . . ,m},
for each j ∈ {1, . . . , n}) find two disjoint subsets E1, E2 of edges of E(KX,Y )
such that (4) - (5) hold for each s ∈ {1, 2} and in addition E12 forms a tree.
Observe that h1

i + h2
i (resp. v1

j + v2
j ) will be the degree of vertex i in X (resp.

vertex j in Y ) in the tree E12.
To avoid dealing with trivial cases, we shall assume that our problem is not

degenerate so that each one of colors 1, 2 occurs on at least one edge.
We shall first state two lemmas that will be repeatedly used to construct the

required subset E12 of edges by reducing the number of connected components.
These two lemmas hold for both complete bipartite graphs and complete graphs.

Recoloring Lemma Let C1, C2 be two connected components of E12 satis-
fying (4)-(5) and such that C2 contains at least one cycle.

Assume one can find an edge [x1, y1] in C1 and an edge [x2, y2] belonging
to some cycle C of C2 such that [x1, y1] and [x2, y2] have the same color (both
are in E1 or both are in E2).

Then by replacing [x1, y1], [x2, y2] by [x1, y2], [x2, y1] and by giving them the
same color as the removed edges we get a single connected component C ′ which
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still satisfies (4)-(5).

Proof: Since [x1, y2], [x2, y1] get the same color as [x1, y1], [x2, y2], (4)-(5) are
still satisfied. One verifies that x2 and y2 are still connected in C − [x2, y2];
furthermore in C ′ x1 and y1 are connected by a chain consisting of edge [x1, y2]
followed by C − [x2, y2] and by edge [x2, y1]. It follows that there is at least a
chain between any two vertices of C ′, and so C ′ is connected. Notice furthermore
that C ′ is still bipartite if C1 and C2 were bipartite. �

Recycling Lemma Assume we have a connected component C of E12 con-
taining some cycle C and let e be an edge of C not contained in any cycle. If
there is a chain C̃ in C containing e and starting with some edge [x2, y2] in C
and ending with an edge [x1, y1] 6= e in C − C with the same color as [x2, y2],
then one may replace edges [x1, y1], [x2, y2] by [x1, y2], [x2, y1] so that (4)-(5) still
hold and e is on a cycle.

Proof: Notice that [x1, y2], [x2, y1] are not in E12 (otherwise e would be in
a cycle). Replacing [x1, y1], [x2, y2] by [x1, y2], [x2, y1] and assigning them the
same color as [x1, y1], [x2, y2] gives another connected component where (4)-(5)
still hold. It can be checked that there is a cycle C ′ (possibly of length 2)
containing e which goes either through x1, y2 or through x2, y1. �

Remark 4.1 We shall use later an oriented version of these lemmas; the trans-
lation to the new case will be immediate. �

Proposition 5 In KX,Y there exist two disjoint subsets E1, E2 of edges such
that (4)-(5) hold and E12 is a tree if and only if:

(a)
∑

i∈X

(h1
i + h2

i ) =
∑

j∈Y

(v1
j + v2

j ) = (m + n− 1)

(b)
∑

i∈X

hs
i =

∑
j∈Y

vs
j ≤ (ms + ns − 1) for each s ∈ {1, 2}, where ms (resp. ns)

is the number of vertices i in X (resp. j in Y ) with hs
i > 0 (resp. vs

j > 0)
for each s ∈ {1, 2}.

Proof:

⇒ If E12 is a tree it does satisfy (a) and E1, E2 cannot contain any cycle, so
they are forests and (b) is verified.

⇐ From [15] we know how to construct E1 and E2, since the Ryser conditions
are satisfied. Notice that some edges may appear in both E1 and E2,
creating cycles of length 2 (in this case the graph is not simple). But
these will be removed later in the process.

If E12 is connected, it is a tree from (a) and (9) and we are done.
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Otherwise, E12 consists of p ≥ 2 connected components C1, . . . , Cp. From
(a) there is at least one such component, say C1, which is a tree and at
least one that contains cycles. By (9), C1 contains at least one edge.

As long as we can find two edges [x1, y1], [x2, y2] of the same color (1 or
2) in two connected components and such that in addition [x1, y1] is in
some cycle, we can reduce these components to a single component by the
Recoloring Lemma. This will not create any new cycle of length 2 since
the new edges join distinct vertices of two different connected components.

When we cannot find such pairs of edges anymore, either we are done or
we are necessarily in the following situation: all connected components
that are trees are monochromatic and all have the same color, say 1.
Furthermore there is exactly one additional connected component C that
contains cycles (otherwise we could have used the Recoloring Lemma); all
edges belonging to cycles in C have color 2.

Notice that in C there must be at least one edge of color 1, otherwise (b)
would be violated for color 2. From (b) we know that C must also contain
an edge [x2, y2] of color 2 which is not incident to any cycle of C. It is
linked to some vertex x∗ of a cycle C by a chain Q containing at least
one edge e of color 1. Now take some edge [x1, y1] of C. Applying the
Recycling Lemma, we replace [x1, y1] and [x2, y2] by [x1, y2] and [x2, y1];
it gives a connected component where edge e (of color 1) now belongs to
some cycle (which may possibly be of length 2). Since there is at least one
connected component which is a tree and where all edges have color 1, we
can apply the Recoloring Lemma.

�

4.2 Trees in complete graphs

Here, we give two statements analogous to Proposition 5 in case of complete
graphs and complete symmetric oriented graphs.

Proposition 6 In a complete graph KX there exist disjoint subsets E1, E2 of
edges such that (6) holds for each vertex i and for each s ∈ {1, 2} and E12 is a
tree, if and only if

(a)
∑

i∈X(h1
i + h2

i ) = 2 (|X| − 1)

(b)
∑

i∈X hs
i ≤ 2 (ms − 1) for each s ∈ {1, 2} where ms is the number of

vertices i with hs
i > 0.

The proof follows the same lines as the proof of Proposition 5 (except that
we do not have to take care of the bipartite character of E12 when connecting
different components).

In order to further generalize the previous formulations of these variations on
the basic image reconstruction problem we could consider that the underlying
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graph G is now oriented with arcs (x, y) instead of edges [x, y]. We shall assume
that when two vertices x, y are linked in G, there may be several arcs (x, y).
This will be needed for constructing an initial solution.

Let us consider here the case where G =
−→
KX is a complete symmetric

oriented graph on a set X of m vertices.
For each vertex i in X we are given 2k integers h+s

i , h−s
i for each s ∈

{1, . . . , k}. We have to find a partition
−→
E 1, . . . ,

−→
E k of the arc set

−→
E (G) such

that for each color s we have:

h+s
i is the number of arcs of

−→
E s leaving vertex i,∀i ∈ X (10)

h−s
i is the number of arcs of

−→
E s entering vertex i, ∀i ∈ X (11)

Clearly for a solution to exist we must have:

k∑
s=1

h+s
i = d+

G(i) (out degree of i in G),∀i ∈ X (12)

k∑
s=1

h−s
i = d−G(i) (in degree of i in G),∀i ∈ X (13)∑

i∈X

h+s
i =

∑
i∈X

h−s
i ∀s ∈ {1, . . . , k} (14)

We assume that (12)-(14) are verified. As before we shall assume that for
each color s the values h+s

i , h−s
i are such that there exists a subset

−→
E s satisfying

(10) and (11). Necessary and sufficient conditions for the existence of such a
subset

−→
E s are given in [2] (chapter 6); to construct such a subset

−→
E s, we have

to find a b-factor in a bipartite graph G = (X, X ′, U) obtained by introducing
for every vertex i ∈ X a vertex i′ ∈ X ′ and linking every i ∈ X to every j′ ∈ X ′

(with i 6= j) by an arc (i, j′). We set b(i) = h+s
i for each i ∈ X and b(i′) = h−s

i

for every i′ ∈ X ′. Finding a b-factor can be done in polynomial time with
network flow techniques (see [16]).

As in the previous sections, we shall consider here the case of k = 3 colors.
We assume w.l.o.g. that there is no vertex with h+1

i = h−1
i = h+2

i = h−2
i = 0.

Proposition 7 Let
−→
KX be an oriented complete symmetric graph with values

h+s
i , h−s

i given for each vertex i in X and for each s ∈ {1, 2}.
There exist disjoint subsets

−→
E 1,
−→
E 2 of the arc set

−→
E (
−→
KX) satisfying (10),

(11) and such that
−→
E 12 =

−→
E 1

⋃−→
E 2 is a tree if and only if

(a)
∑

i∈X

(h+1
i + h+2

i ) =
∑

i∈X

(h−1
i + h−2

i ) = |X| − 1

(b)
∑

i∈X

h+s
i =

∑
i∈X

h−s
i ≤ ms − 1 for each s ∈ {1, 2}

where ms is the number of vertices i in X with h+s
i +h−s

i > 0 (i.e. vertices
adjacent to at least one arc of color s).
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Proof: Condition (a) is necessary for
−→
E 12 to be a tree. Furthermore if there is

a solution, then
−→
E 1 and

−→
E 2 have to be forests, so (b) must hold.

Let us now show that the conditions are sufficient. By our assumptions one
can find subsets

−→
E 1,
−→
E 2 of

−→
E (G) satisfying (10) and (11). Notice that

−→
E 1

and
−→
E 2 may use parallel arcs (x, y)1 (x, y)2, . . . , or (y, x)1, (y, x)2, . . . , between

pairs of vertices x ∈ X, y ∈ X. But since
−→
E 12 has to be a tree, these parallel

arcs will have to be removed during the process.
Consider

−→
E 12 =

−→
E 1

⋃−→
E 2; if it generates a connected graph, it is a tree

from (a) and we are done.
Otherwise

−→
E 12 generates several connected components; at least one of them

is a tree (from (a)). Now let us suppose that we can find two connected com-
ponents C1, C2 such that C1 contains at least one cycle C. Take an arc (x1, y1)
in C and assume there is in C2 an arc (x2, y2) of the same color.

Replacing (x1, y1) and (x2, y2) by (x1, y2) and (x2, y1) gives a single con-
nected component and the conditions (10) and (11) are still satisfied. No new
pair of parallel arcs is created and the graph generated by

−→
E 12 has one less con-

nected component. We can then apply systematically the Recoloring Lemma
and the Recycling Lemma as in the bipartite case.

This can be repeated until we get a tree for
−→
E 12. �

4.3 The case of vertex disjoint chains

First, we study the case of a complete bipartite graph KX,Y . We are now given
values hs

i , v
s
j which satisfy

1 ≤ h1
i + h2

i ≤ 2 for each i in X (15)
1 ≤ v1

j + v2
j ≤ 2 for each j in Y (16)

Here E12 will have to consist of a collection of elementary open chains having
their endvertices at vertices r (resp. t) with h1

r + h2
r = 1 (resp. v1

t + v2
t = 1).

These will be called odd vertices. Clearly we must have an even positive number
of odd vertices for the existence of a solution.

Notice that we exclude cycles in a solution, i.e., we have to show that we
only have open chains.

Proposition 8 In a complete bipartite graph KX,Y there exist subsets E1, E2 of
edges of E(KX,Y ) satisfying (4)-(5) and such that E12 is a collection of vertex-
disjoint open chains covering the vertices of KX,Y if and only if (15)-(16) hold
and:

(a) For each color s, there is at least one vertex which has to be adjacent to
exactly one edge of color s.

(b) There exists a vertex i ∈ X with h1
i + h2

i = 1 or a vertex j ∈ Y with
v1

j + v2
j = 1.
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Proof: Clearly (15)-(16) are necessary.
It follows from (b) and from (3) that the number of odd vertices is even and

positive.
If (a) does not hold, there is one color s such that every vertex is adjacent

to two edges or to no edge of color s. Clearly the edges of color s cannot be on
a chain of E12.

To show that the conditions are sufficient, we start from a set E12 satisfying
(15)-(16); E1 and E2 can be constructed separately since the Ryser conditions
are assumed to hold. As before E12 may contain cycles of length two. If it
contains no connected component which is a cycle we are done. Otherwise
consider a cycle C; since there is at least one odd vertex (from (b)) there is a
chain C ′ in E12; if we can find a pair of edges [x1, y1] in C ′, [x2, y2] in C of the
same color, we use the Recoloring Lemma. When we cannot use this lemma
anymore we are in the situation where we have monochromatic cycles (all of
the same color, say 1) and monochromatic chains (all of color 2) between odd
vertices. But this is not possible: from (a) for color 1, there must be a vertex
adjacent to exactly one edge of color 1. Hence we do not have this case and we
can construct a set E12 satisfying (15)-(16) and consisting of open chains. �

Now, we consider the case of a complete graph KX where E12 is a collection
of chains between odd vertices (i.e. h1

i + h2
i = 1). If we have exactly two odd

vertices then the problem amounts to finding a subset E12 (satisfying the degree
requirements) which is a Hamiltonian chain with fixed end vertices.

We may as well consider the case where a Hamiltonian cycle has to be
constructed while taking the condition (6) into account.

Proposition 9 Given values h1
i , h

2
i , satisfying h1

i + h2
i = 2 for each vertex i of

a complete graph KX , there are disjoint subsets E1, E2 of the edge set E(KX)
such that (6) holds for each vertex i and for each s ∈ {1, 2} and in addition
E12 is a Hamiltonian cycle, if and only if there exists at least one vertex with
h1

i = h2
i = 1.

Proof: If the condition does not hold, no connected solution can be found.
The sufficiency is shown by the Recoloring Lemma: the only case where it
cannot be applied is when E12 consists of two disjoint elementary cycles which
are monochromatic (one with color 1, the other one with color 2), but this is
impossible from the condition. �

5 Cases where each one of E1, E2 is structured

We shall now examine additional cases where k = 3 and the subsets E1, E2 have
a given structure.

5.1 E1, E2 are Hamiltonian chains

We study the situation where both E1 and E2 are Hamiltonian chains in KX,Y .
For this graph to have Hamiltonian chains we shall assume |X| = |Y | (notice
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that we could have |X| ≤ |Y | ≤ |X|+1 but for simplicity we will limit our study
to the case where |X| = |Y |) and each chain has an endvertex in X and the
other one in Y . Let X = {x1, ..., xn} and Y = {y1, ..., yn} and let a ∈ X, b ∈ Y
be the endvertices of the Hamiltonian chain forming E1; this means that we
have

h1(xi) =

{
1 if xi = a,

2 if xi 6= a.

and

v1(yi) =

{
1 if yi = b,

2 if yi 6= b.

Let u ∈ X, v ∈ Y be the endvertices of the Hamiltonian chain E2; we will
have similarly

h2(xi) =

{
1 if xi = u,

2 if xi 6= u.

and

v2(yi) =

{
1 if yi = v,

2 if yi 6= v.

In terms of tomography, it would mean that each one of the colors 1, 2 occurs
twice in some fixed rows, once in two specific rows and it does not occur in the
other rows and moreover one can define for each color in {1, 2} a sequence of
moves from one entry containing this color to a next one in the same row or the
same column, and this can be done for this color in such a way that we visit
exactly once each row and each column containing this color.

Proposition 10 In KX,Y (with |X| = |Y | = n) there exist two disjoint Hamil-
tonian chains E1 (with arbitrary endvertices a, b) and E2 (with arbitrary end-
vertices u, v) if and only if n ≥ 5.

Proof: If n ≤ 4 one cannot find two disjoint Hamiltonian chains with a = u
and b = v. We assume now that n ≥ 5. Let x1, x2, ..., xn and y1, y2, ..., yn be a
numbering of the vertices in X and in Y such that x1 = a, y1 = b. We construct
E1 by taking edges [xi, yi+1], [xi+1, yi] for each i ∈ {1, ..., n − 1} and [xn, yn].
We have several cases to consider for E2.

a) u = a, v = b
We construct E2 as follows (see Figure 1): we build the sequence of indices
of vertices which will be visited by E2 by taking first the odd indices
in increasing order followed by the even indices in increasing order but
where we just interchange 4 with the largest even index; the sequence−→
C obtained in this way is then completed by the same sequence

←−
C in
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reverse order; then we assign labels x and y alternately to all terms of
the sequence

−→
C ⊕

←−
C ; we get thus x1, y3, ..., x3, y1. This gives clearly a

Hamiltonian chain E2 with endvertices x1, y1 which is disjoint from E1

since E2 contains neither edges [xi, yj ] with |i− j| = 1 nor [xn, yn].

1 3 5 7 9 2 4 6 8 10

1 3 5 7 9 2 10 6 8 4 4 8 6 10 2 9 7 5 3 1

x1 y3 x5 y7 x9 y2 x10 y6 x8 y4 x4 y8 6x y10 x y9 x7 y5 x3 y12

Figure 1: Construction of E2 in the case of n = 10.

b) u = a, v 6= b
Notice that v is a fixed arbitrary vertex of Y with v 6= y1. We can w.l.o.g.
assume that from the beginning our vertices have been numbered in such a
way that v = y3. Now replacing [x1, y3] by [x1, y1] in the E2 constructed in
a) gives a new Hamiltonian chain E2 disjoint from E1 and with endvertices
u, v.

c) u 6= a, v 6= b
Again u and v are fixed arbitrary vertices of X and Y respectively. We can
w.l.o.g. assume that from the beginning our vertices have been numbered
in such a way that u = x4, v = y4. We obtain E2 by replacing [x4, y4] by
[x1, y1] in the E2 constructed in a). Clearly E2 is a Hamiltonian chain
disjoint from E1.

�

Remark 5.1 One can easily verify that Proposition 10 can be extended to the
case of a complete graph on m vertices KX with m ≥ 4 if a 6= u and b 6= v,
m ≥ 5 if a = u and b 6= v, m ≥ 6 if a = u and b = v.

5.2 E1 and E2 are cycles

Consider now the case where for each color s ∈ {1, 2} we have hs
i , v

s
j ∈ {0, 2}

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. V (Es) will be the set of vertices with
hs

i = 2 or vs
j = 2 for each s ∈ {1, 2}. The problem consists then in finding two

edge-disjoint cycles E1, E2 in KX,Y through specified vertex sets V (E1) and
V (E2). W.l.o.g. we can assume that (9) holds: V (G) = V (E1) ∪ V (E2).

The reconstruction problem where both E1 and E2 are collections of vertex-
disjoint cycles in KX,Y was studied in [5] under the name RPB(m, n, p = 2)
(see also [3, 17]). It was shown that a solution can be constructed if and only if
one does not have one of the four following pathological cases:
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a)
∑

i∈X h1
i = 4 =

∑
i∈X h2

i , |X| ≤ 3, |Y | ≤ 3

b)
∑

i∈X h1
i = 4,

∑
i∈X h2

i = 6, |X| = 3, |Y | ≤ 4

c)
∑

i∈X h1
i = 6 =

∑
i∈X h2

i , |X| = 3, |Y | ≤ 5

d)
∑

i∈X h1
i = 6,

∑
i∈X h2

i = 8, |X| = 4 = |Y |

For more results on edge-disjoint cycles in graphs, we refer the reader to [14]
where the case of Hamiltonian cycles is considered.

Goddyn and Stacho give in [9] the following theorem concerning general
graphs:

Theorem 11 Let G = (V,E) be a finite undirected simple graph of order m,
let W ⊆ V , |W | ≥ 3, and let k be a positive integer. Suppose that G[W ] is
2k-connected, and that

max(dG(u), dG(v)) ≥ m

2
+ 2(k − 1) (17)

for every u, v ∈ W such that distG[W ](u, v) = 2. Then G contains k pairwise
edge-disjoint cycles E1, ..., Ek such that W ⊆ V (Ei), for each i ∈ {1, . . . , k}.

(Here, dG(v) is the degree of v in G, G[W ] is the subgraph induced by W ,
and distG(u, v) is the distance from u to v in G.)

Notice that for k ≥ 2 condition (17) cannot be verified in the case of bipar-
tite graphs. For complete bipartite graphs we give the following proposition.
W.l.o.g. we assume that

∑
i h1

i ≤
∑

i h2
i .

Proposition 12 Let KX,Y be a complete bipartite graph. There exist two edge-
disjoint cycles E1, E2 through specified vertex sets V (E1) and V (E2) satisfying
(4)-(5) if and only if we are not in one of the four pathological cases and we do
not have the forbidden configuration F given in Figure 2.

1

1

1

12 2

2 2

2

2 2

2

Figure 2: Configuration F . The black vertices belong to X and the white ones
to Y .

Proof: First, if
∑

i h2
i ≥ 10, then, whenever (1.1)-(1.3) are satisfied, there

always exist two edge-disjoint cycles E1 and E2 satisfying (4)-(5). Indeed,
remove a cycle of length

∑
i h1

i (the cycle E1 through V (E1) corresponding to
edges of color 1) from KX,Y . Then, if we consider any p by p subgraph of
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the resulting graph (and so, in particular, the one induced by the
∑

i h2
i = 2p

vertices adjacent to edges of color 2), it has a minimum degree of p − 2. Since∑
i h2

i ≥ 10, we have p ≥ 5 and so p−2 ≥ p+1
2 . Thus, by [1] (Chapter 7, Section

3), there exists a Hamiltonian cycle in this (sub)graph which will correspond to
E2. This implies that we can obtain two disjoint cycles (one for color 1 and one
for color 2) respecting the given projections.

Second, if
∑

i h1
i =

∑
i h2

i = 8, then, as previously, there always exist two
edge-disjoint cycles E1 and E2 satisfying (4)-(5) whenever (1.1)-(1.3) are satis-
fied. Take any cycle E1 on V (E1). Say E1 = {[x1, y1], [y1, x2], ..., [x4, y4], [y4, x1]}.
Consider the cycle C = {[x′1, y′1], [y′1, x

′
2], ..., [x′4, y

′
4], [y′4, x

′
1]}, where x′i = xi if

h2(xi) = 2 and x′i = zi if h2(xi) = 0, where zi 6= xj , for each j ∈ {1, 2, 3, 4}, is
some vertex in X with h2(zi) = 2 as well as y′i = yi if v2(yi) = 2 and y′i = ti
if v2(yi) = 0, where ti 6= yj , for each j ∈ {1, 2, 3, 4}, is some vertex in Y with
v2(ti) = 2. We construct E2 by linking each vertex v in C to the two vertices
in C which are at distance three of v.

Finally, let us deal with the case where
∑

i h1
i ≤ 6 and

∑
i h2

i ≤ 8. First, it
is easy to check in Figure 2 (where

∑
i h1

i = 4 and
∑

i h2
i = 8) that F is the

unique configuration satisfying these degree requirements h1
i and h2

i for each
i ∈ {1, . . . ,m}, and that, in F , E2 consists of two vertex-disjoint cycles. If∑

i h1
i ≤ 6 and

∑
i h2

i ≤ 6, then, if we are not in one of the four pathological
cases, there exists a solution and this solution necessarily consists of two edge-
disjoint cycles (since there can be no cycle of length three or less). The last case
to consider is when

∑
i h2

i = 8 and
∑

i h1
i ≤ 6. Assume that we are not in one

of the four pathological cases (and thus there exist two disjoint subsets of edges
E′1 and E′2 satisfying (4)-(5), such that E′1 is a cycle) and that the subgraph
induced by V (E′1)∪V (E′2) is not the one in Figure 2. If E′2 consists of one C8,
we are done (here Ck denotes as usual a chordless cycle on k vertices). Otherwise
(E′2 consists of two C4), if there exists in the solution a C4 with edges of color
2, 3, 2, 3 (recall that we have k = 3) then color 2 and color 3 can be interchanged
in the C4: this provides an equivalent solution in which the edges of color 2 form
a C8. If such a cycle does not exist, then anyway there exists at least one edge
of color 3 between the vertices of the two C4 of color 2 (since otherwise there
are 8 edges of color 1 between these vertices, and this contradicts

∑
i h1

i ≤ 6).
This implies that there exist four edges of color 1 between these vertices (since
otherwise there is a C4 with edges of color 2,3,2,3), which form a C4. Therefore,
this C4 is the cycle of color 1: hence, we obtain the graph in Figure 2, which is
a contradiction. �

Consider now the case where E1 and E2 are required to be two edge-disjoint
cycles in a complete graph KX with |X| = m, i.e. hs

i = 0 or hs
i = 2 for each

s ∈ {1, 2} and each i ∈ X. We shall assume that V (E1) ∪ V (E2) = X and
|V (E1)|, |V (E2)| ≥ 3. We have the following:

Proposition 13 In KX with |X| = m, one can find two edge-disjoint cycles
E1 on V (E1) and E2 on V (E2) satisfying (6) if and only if we are not in the
following cases:
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(a) m ≤ 4,

(b) 3 ≤ |V (E1) ∩ V (E2)| ≤ 4 and m = 5.

Proof: The conditions are clearly necessary. If we are in case (a) or (b), one
can easily check that E1 and E2 cannot be disjoint, by enumerating all possible
configurations (case (a) or (b) and different lengths of the cycles, namely 3, 4,
or 5).

Consider now the case where m ≥ 5.
From Theorem 11 we deduce that the proposition is true for |V (E1) ∩

V (E2)| ≥ 5. Indeed, in a complete graph there are no two vertices at dis-
tance 2 and V (E1) ∩ V (E2) is 4-connected if |V (E1) ∩ V (E2)| ≥ 5. Thus, the
conditions of Theorem 11 are verified and the graph contains 2 edge-disjoint
cycles through V (E1) and V (E2).

If |V (E1)∩V (E2)| < 5, V (E1)∩V (E2) is not 4-connected and the conditions
do not hold anymore. Let us now study the different cases.

If |V (E1) ∩ V (E2)| ≤ 1, clearly E1 and E2 will be edge-disjoint.
If V (E1) ∩ V (E2) = {a, b}, then w.l.o.g. |V (E1) \ (V (E1) ∩ V (E2))| ≥

2, say V (E1) \ (V (E1) ∩ V (E2)) = {c, d, ..., z}. We construct a cycle E1 =
a, c, b, d, ..., z, a and for E2 a cycle consisting of the union of [a, b] and a chain
between a and b in V (E2) \ (V (E2) ∩ V (E1)). These subsets E1, E2 will be
disjoint.

If |V (E1) ∩ V (E2)| = 3 or 4 and m ≥ 6, it is easy to obtain two edge-
disjoint cycles. We give the construction for |V (E1) ∩ V (E2)| = 4 (the case
|V (E1)∩V (E2)| = 3 can be treated similarly). Let V (E1)∩V (E2) = {a, b, c, d}.
Then |V (E1) − V (E2)| + |V (E2) − V (E1)| ≥ 2. If e ∈ V (E1) − V (E2) and
f ∈ V (E2) − V (E1), we can take for E1 the cycle beginning with vertices
a, b, c, d, e, ... followed by the remaining vertices of V (E1)− V (E2). For E2 we
can take the cycle beginning with vertices c, a, d, b, f, ... followed by the remain-
ing vertices of V (E2) − V (E1). If f does not exist, i.e., V (E2) ⊆ V (E1) then
we have V (E1) − V (E2) = {e, g, ...}. In this case we take for E1 the cycle
beginning with vertices a, b, e, c, d, g, ... followed by the remaining vertices of
V (E1)− V (E2). For E2, we take the cycle (a, d, b, c, a). Clearly E1, E2 will be
disjoint. �

We have considered here the problem of constructing in a complete (bipar-
tite) graph two disjoint subsets of edges satisfying some requirements on their
degrees at every vertex. Since the given values hs

i , v
s
j determine the cardinali-

ties |E1|, |E2|, we have in fact to find if there exist two disjoint subsets of edges
with given cardinalities which satisfy some additional requirements (on their
degrees). This problem is related to the following NP -complete problem (see
[8]): given a bipartite graph G and two integers p > q > 0, does G contain two
edge-disjoint matchings Mp, Mq with |Mp| = p, |Mq| = q? If the values hs

i , v
s
j

are 0 or 1, then E1, E2 are matchings of a fixed size. But we know which ver-
tices belong to E1 or E2 and the graph G is a complete bipartite graph. This
situation has been studied in [5] under the name RPU(m, n, p).
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6 Conclusion

We have investigated some graph theoretical problems related to the image re-
construction problem in discrete tomography. We have exhibited a solvable case
of the basic image reconstruction problem with k = 3 colors. The complexity
of the related problem in a complete graph has already been settled for a fixed
k ≥ 4.

We imposed the structure of the graph formed by the union of two colors.
Here having a tree allowed us to find solutions whenever they exist. The choice
was adequate since it eliminated the cycles that were introduced by the parallel
edges or arcs needed in the model (the presence of parallel edges in E12 would
have meant that the corresponding entries of the array A received several colors).
In fact we have imposed constraints on the cardinalities of E1, E2 and/or E12

and it is worth observing that if we introduce some requirements on |E1| (for
instance |E1| ≤ f(m, n) where f is a linear function of the size of the array
A = (aij)), this additional piece of information does not simplify the problem
in the following sense: one may transform any reconstruction problem P with
k = 3 colors into a larger problem P ′ with k = 3 colors where the first color
class will satisfy a requirement of the form |E1| ≤ f(m′, n′) and P ′ will have a
solution if and only if P has one. This can be seen easily by embedding array
A in a corner of a larger m′×n′ array A′ where we impose color 3 to all entries
of A′ outside of A.

It would be interesting to examine other structures for the graph associated
to the union of several colors.

Finally we mention the case where each one of E1, E2 is a spanning tree;
this problem seems to be of interest. As far as we know problems consisting
of packing some special types of graphs, like trees, have not been explored
intensively when there are requirements on the degrees of the vertices.
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