
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 13, no. 2, pp. 219–232 (2009)

Towards an optimal algorithm for recognizing
Laman graphs

Ovidiu Daescu Anastasia Kurdia

Department of Computer Science,
The University of Texas at Dallas, Richardson, TX 75080, USA.

Abstract

A graph G with n vertices and m edges is a generically minimally rigid
graph (Laman graph), if m = 2n−3 and every induced subset of k vertices
spans at most 2k − 3 edges. Laman graphs play a fundamental role in
rigidity theory.

We discuss the Verification problem: Given a graph G with n ver-
tices, decide if it is Laman. We present an algorithm that recognizes
Laman graphs in O(Tst(n) + n log n) time, where Tst(n) is the best time
to extract two edge disjoint spanning trees from a graph with n vertices
and 2n − 2 edges, or decide no such trees exist. So far, it is known that
Tst(n) is O(n3/2√log n).

Submitted:
April 2008

Reviewed:
December 2008

Revised:
January 2009

Reviewed:
May 2009

Revised:
May 2009

Accepted:
July 2009

Final:
July 2009

Published:
July 2009

Article type:
Concise paper

Communicated by:
I. G. Tollis

Daescu’s research is supported in part by NSF award CCF-0635013. The authors would

like to thank Ileana Streinu for organizing the 2005 and 2006 Barbados workshops, partially

supported by NSF. This work would not have been possible without participation in those

workshops.

E-mail addresses: daescu@utdallas.edu (Ovidiu Daescu) akurdia@utdallas.edu (Anastasia Kur-

dia)

mailto:daescu@utdallas.edu
mailto:akurdia@utdallas.edu

220 Daescu, Kurdia Recognizing Laman graphs

1 Introduction

A graph G = (V,E) with n = |V | vertices and m = |E| edges is a generically
minimally rigid graph (also called Laman graph [10]), if m = 2n − 3 and every
k-vertex subgraph has at most 2k− 3 edges. Laman graphs play a fundamental
role in rigidity theory: they characterize minimally rigid planar bar-and-joint
systems that appear in robotics, sensor and network topologies and polymer
physics. (A system of fixed-length bars and flexible joints connecting them is
minimally rigid if it becomes flexible once one bar is removed).

In this paper we address the Verification problem: Given a graph G with
n vertices, decide if it is Laman.

1.1 Previous work

Most existing verification algorithms take quadratic time in the number of in-
put vertices to recognize Laman graphs [1, 7, 8, 11, 17]. A very elegant and
simple algorithm is the pebble game algorithm, first proposed by Jacobs and
Hendrickson [9], and generalized later on by Streinu, Lee, and Theran in a num-
ber of papers [6, 11, 15, 16]. The pebble game algorithm solves the verification
problem in O(n2) time.

The characterizations of Laman graphs with tree partitions are due to Rec-
ski [14], Crapo [3] and Lovasz and Yemini [12]. Lovasz and Yemini proved that
a graph G = (V,E) is Laman if and only if, for each edge e ∈ E, the multigraph
G ∪ {e} is the union of two edge disjoint spanning trees; Recski proved this
statement also holds for any e 6∈ E. Crapo showed that graph is Laman if and
only if it is decomposable into three disjoint trees such that every vertex is in
every two of those trees and no nontrivial subrtrees of distinct trees have the
same set of vertices. Verifying any of these conditions directly requires Ω(n2)
time.

A subquadratic time algorithm for the verification problem is due to Gabow
and Westermann [5]. It requires O(n3/2

√
log n) time and solves the problem

in two steps: (1) Find a 2-forest of G ∪ {e} (two edge disjoint spanning trees),
which is done in O(n3/2

√
log n) time, and (2) Test if a data structure computed

in step (1), called top clump, is empty: this is done in O(n log n) time. Thus,
step (2) is coupled with step (1), in the sense that if two edge disjoint spanning
trees are given to step (2), computed by some arbitrary method, then step (2)
should be changed and could require asymptotically larger time.1

A different verification method was proposed recently by Bereg [1]. Bereg’s
algorithm performs a step-by-step decomposition of G, aiming to construct a
hierarchical decomposition H of G, called a red-black hierarchy (RBH). It is
proven in [1] that G is a Laman graph if and only if H is a RBH.

Hierarchy. [1] A hierarchy H(G,Th, α, β) for a given graph G(V,E), |V | =
n, is a graph H(Vh, Eh), Eh = Th ∪ β(E). Th is a set of edges forming a rooted

1Very recently, it was suggested to us that a method presented in [16] can be adapted to
speed up the top clump test to O(n) time, assuming the data structures computed in step (1)
are available.

JGAA, 13(2) 219–232 (2009) 221

d e

k

l

g

f n o

q

m

p

eadd

a

b

c

j

i

h

Figure 1: A graph G∗ = G ∪ {eadd} and its two edge disjoint spanning trees
(red tree is drawn with thick lines).

tree. The function α : V → L(Th), defines a one-to-one correspondence between
the vertices of V and the leaves of the tree, denoted as L(Th). The function
β : E → V (Th) × V (Th) maps the edge (u, v) of G to the edge β(u, v) =
(β1(u, v), β2(u, v)) of H (called cross edge), so that β1(u, v) and β2(u, v) are
ancestors, but not common ancestors, of α(u) and α(v), respectively.

Red-black hierarchy. [1] A red-black hierarchy H(G,Th, α, β) is a hierar-
chy satisfying the following conditions:

• The root of the tree Th has exactly two children (root rule);

• A vertex is the only child of its parent if and only if it is a leaf (leaf rule);

• For any cross edge its endpoints have the same grandparent but different
parents in the tree (cross-edge rule);

• Cross edges connect all grandchildren of a vertex and form a tree (tree
rule).

The construction of the RBH in [1] has three major phases. (1) A copy of
an edge of G, eadd, is added to G and two edge-disjoint spanning trees, red tree
T r and black tree T b are computed for G∗ = G ∪ {eadd} using a known method
(if no such trees exist, then G is not Laman), see Figure 1. An O(n2) time
algorithm is used to obtain the trees.

(2) A decomposition of G∗ is performed and a characterizing hierarchy H =
H(G∗) is constructed in correspondence with the steps of the decomposition
(Figure 2), which is done in O(n2) time.

(3) A certification whether H satisfies the rules of a RBH is performed in
O(n) time.

Since steps (2) and (3) do not depend on how step (1) is performed, this
method decouples the computation of the two edge disjoint spanning trees in
step (1) from the rest of the computation. (After the preliminary version of this

222 Daescu, Kurdia Recognizing Laman graphs

e q ka i jb h g c d

c d

a q k mnj

l f

i

a i h b l g e f p o n m q k

h g f n m o p

p o

p

p o n m

m o p

o p

b a i l q k j c d

nghkql

m o

ab i j f

e

Figure 2: A corresponding red-black hierarchy H for graph G∗. Red edges are
drawn with thick lines.

article was published, an improved, O(n log n) time solution for step (2), was
posted at [2] that also uses O(n3/2

√
log n) time algorithm for step (1)).

1.2 Our results

Let Tst(n) be the time to find two edge disjoint spanning trees in G. We present
an O(Tst(n)+n log n) time verification algorithm based on a simple observation:
from Corollary 4 in [1], it follows that it is not necessary to actually construct
H to decide G is Laman; we only need to decide whether a RBH decomposition
H exists for G. Thus, steps (2) and (3) from the above Bereg’s algorithm
become: (2) use the two spanning trees to decide whether G admits a RBH
decomposition.

Our algorithm has two steps: (1) Compute two edge disjoint spanning trees
by the best possible method. We use the O(n3/2

√
log n) time algorithm from [5]

since this is the best we know (if, say, a simple O(n log n) time algorithm is
discovered for this part, we will use that one). (2) Given two edge disjoint
spanning trees for G, we give a solution for deciding whether G admits a RBH
decomposition, that uses depth-first search and segment trees only, and takes
O(n log n) time. This step is independent of how step (1) is done.

At the end of step (2) we know if G is Laman or not. Moreover, we also show
that the RBH can be actually constructed in O(n log n) time using a two steps

JGAA, 13(2) 219–232 (2009) 223

procedure that is simple and easy to implement. Thus, our algorithm decouples
step (1) from step (2), to take advantage of future improvements on step (1),
and solves the second step of the verification in O(n log n) time instead of O(n2)
time.

We summarize our results below.

Theorem 1 Given a graph G with n vertices and m edges deciding whether G
is a Laman graph can be done in O(Tst(n) + n log n) time, where Tst(n) is the
time to extract two edge disjoint spanning trees from G or decide no such trees
exist.

Theorem 2 Given two edge-disjoint spanning trees for G∗, a red-black hierar-
chy for G∗, if it exists, can be constructed in O(n log n) time.

In the rest of the paper we explore the properties of the RBH, provide the
proofs for the above theorems and give implementation details for our algorithm.
From now on, we assume familiarity of the reader with the decomposition and
hierarchy construction processes described in [1].

2 A sufficient condition

We begin by showing that if all edges are removed from G during the decom-
position process, the graph H constructed from the decomposition is always a
RBH and thus G is a Laman graph.

Theorem 3 (i) The graph H constructed from the decomposition always satis-
fies the four rules of red-black hierarchy and (ii) The graph G is a Laman graph
if and only if all edges are removed from G during the decomposition process.

The correctness of the above statement follows from Theorem 2 of [16], since
the decomposition proceeding until all edges are removed is a special case of
the (2,3)-pebble-game with colors decomposition [16]. We choose to prove it via
red-black hierarchies to reveal some properties of the latter, described in the
lemmas below.
Notations. Anything marked by the subscript h in what follows refers to
H. Let color(vh) denote the color associated with node vh (red or black). If
c = color(vh) is red then c is black and vice versa. Vertices of H correspond
to spanning trees of connected subgraphs of G. C(vh) denotes the connected
subgraph of vertex vh, parent(vh) denotes a parent of vh in H. V (vh) denotes
the set of vertices of C(vh). V (T) denotes the set of vertices of G spanned by
the tree T .

Lemma 4 The four RBH rules always hold for the graph H that characterizes
decomposition of any graph G∗ = G∪eadd, if the edge set of G∗ can be partitioned
into two edge-disjoint spanning trees.

224 Daescu, Kurdia Recognizing Laman graphs

Proof. Root rule. At the very first step, H is empty and a node rh of color
c, corresponding to the spanning tree T c that does not contain the added edge
eadd, is created in H. The node rh is the root of H. Then, eadd is deleted from
the other tree T c, which necessarily creates exactly two trees of color c in G∗

and exactly two nodes of color c in H that are children of rh, corresponding to
these two trees. Thus, the root rule always holds.

Leaf rule. If a vertex vh is the only child of its parent then vh is a leaf. At
the step when vh was created, the decomposition process has stopped for C(vh):
there was just one tree of color color(vh) in C(parent(vh)) and just one tree of
color color(vh) (otherwise C(parent(vh)) would have been partitioned further
and vh would have siblings). Hence, the vertex vh corresponding to C(vh) is a
leaf in H.

A leaf vertex cannot have any siblings. Suppose there is a vertex yh having
k > 1 children xi

h, i = 1, . . . , k and xj
h is a leaf. The vertex yh corresponds to

a connected subgraph spanned by a tree of color c = color(yh) and a spanning
forest of k trees of color c; xj

h corresponds to a connected subgraph C(xj
h),

spanned by a tree of color c and a forest of color c. If the forest contains
more than one tree, at the next step of the decomposition the edges of color c
connecting the trees of the spanning forest will be deleted, the spanning tree of
color c will split into at least two different trees and corresponding vertices will
be created in H as children of xi

h. Hence, xj
h cannot be a leaf vertex. If the

spanning forest of C(xj
h) contains just one tree, then a vertex corresponding to

that tree, of color c, is created in H as a child of xj
h and xj

h cannot be a leaf
vertex, a contradiction.

Cross-edge rule. A cross edge is added between any two vertices uh and vh

at step i if their corresponding vertex sets V (uh) and V (vh) previously belonged
to one connected subgraph Cu,v and got separated at step i−1 by removing the
edge with endpoints in V (uh) and V (vh). At level i− 2 of H there is always a
vertex that corresponds to Cu,v. The vertices at the same level of H correspond
to connected subgraphs that are disjoint subgraphs of G. Hence, no other vertex
at level i − 2 of H can correspond to a connected subgraph containing V (uh),
V (vh), their subsets, or the union of their subsets. The vertex corresponding to
the connected subgraph Cu,v is a common grandparent of uh and vh.

According to the construction rules, parents of uh and vh in H correspond
to different connected subgraphs and cannot coincide.

Tree rule. If k edges are removed from the tree T ⊂ E(G) spanning the
vertex set V (vh) that corresponds to some vertex vh of H, k+1 new trees result
from T and k+ 1 nodes are created as grandchildren of vh in H. For each edge
e deleted from T , exactly one cross edge is added between the grandchildren of
vh. Each grandchild of vh gets a cross edge incident to it, thus cross edges form
a tree spanning all the grandchildren of vh. 2

Lemma 5 If all edges are removed from G during the decomposition process
then the characterizing graph H of G satisfies the definition of hierarchy.

JGAA, 13(2) 219–232 (2009) 225

Proof. There is a cross edge eh = (uh, vh) in H for each edge e = (u, v) of G.
The edge e is deleted from G when it crosses the cut separating u from v, a cross
edge is then added between the vertices of H corresponding to the connected
components of u and v at the current step.

There is one-to-one correspondence between the leaves of Th and the vertices
of G: If the decomposition continues until all edges are removed, each vertex v
of G is eventually disconnected from the rest of the graph by deleting an edge
of some color c. A vertex lh corresponding to a tree of color c spanning the
connected subgraph Cv = {v} is then created in H. Since Cv cannot be split
further, the decomposition stops for Cv and lh becomes a leaf vertex of Th.
Also, there is no leaf vertex in H that does not correspond to a vertex of G.
Suppose there exists such vertex in H. Then, it corresponds to a tree spanning
a connected subgraph Cx, with |Cx| > 1, i.e. Cx contains edges that were not
deleted during the decomposition of G, a contradiction.

For each edge eh its endpoints uh and vh are ancestors of α(u) and α(v),
respectively, but they are not their common ancestors. (Recall that α(u) and
α(v) are the leaf vertices of H corresponding to vertices u and v of G). The leaf
vertices of H that correspond to vertices in V (uh) are the descendants of uh in
H. Since u ∈ V (uh), uh is an ancestor of α(u). Similarly, vh is an ancestor of
α(v). Since uh and vh belong to the same level of the hierarchy, uh cannot be
an ancestor of α(v), vh cannot be an ancestor of α(u). 2

Lemma 6 If G has edges left at the end of the decomposition process, the char-
acterizing graph H of G does not satisfy the definition of hierarchy.

Proof. If there are non-deleted edges of G when the decomposition stops, then
there are no corresponding edges for them in H. In addition, we do not have
a one-to-one map from V to L(Th): some leaves of Th correspond to connected
subgraphs containing several vertices. 2

This concludes the proof of Theorem 3.
Thus, building H is not required for certifying Laman graphs. It is sufficient

to perform the decomposition of G according to the rules from [1] and then
check whether there are edges left in G when the decomposition ends.

3 Decomposition

Our main goal now is to speed up the decomposition process. At each step of the
decomposition edges of only one color are deleted. The groups of red and black
edges are deleted in turns. At each step, except the first and the last ones, at
least one edge is deleted from G. Let g = (g2, g3, . . . , gk) be a grouping of some
(possibly all) edges of G, such that all edges of a group gi were deleted from G
at step i. Instead of H, we use g to characterize the graph decomposition.

226 Daescu, Kurdia Recognizing Laman graphs

3.1 Algorithm

We slightly alter the graph decomposition algorithm from [1]. The edges to be
deleted at the next step are identified at the end of the preceding step and are
marked for deletion. At the first step, eadd is marked for deletion (and no other
action is performed). Each iterative step in G consists of removing the marked
edges of some color c and identifying and marking the edges (of the opposite
color c) crossing the cuts induced by removing the marked edges.

We note that once the original graph has split into several connected sub-
graphs, the decomposition proceeds independently on each subgraph, and the
problem of finding the edges to be deleted at the subsequent step can be viewed
as several independent subproblems, each on a distinct connected subgraph. We
also note that deletion of any edge e = (u, v) from its tree (of color color(e)),
where u is a parent of v in a depth-first-search (DFS) ordering of the tree of
color color(e), always forms two trees such that one of them is rooted at v and
all nodes in that tree are descendants of v.

Consider the graph G∗ and its two edge disjoint spanning trees T c and T c,
rooted at vertices rc and rc, respectively. Let DFS(c) be the depth-first search
traversal of G∗ starting at rc and using only edges of color c, where c is either
red or black. We assign each vertex of G two DFS order numbers, one from
DFS(red) and another one from DFS(black). New edges are never added to
the trees, so the numbers never change. Whenever an edge e is mentioned in
the following text as a vertex pair, the first vertex is always the parent of the
second vertex in DFS(color(e)).

When an edge e = (u, v) of color c is deleted from a tree T c
k rooted at some

rc and spanning a connected subgraph Ck, two trees emerge: T c
i rooted at rc

and T c
j rooted at v. Only the vertices of T c

j are descendants of v in DFS(c).
The ancestor/descendant relationship can be established in the DFS(c) tree by
looking at the discovery and finish times (dc[·] and f c[·], respectively) of the
vertices.

Lemma 7 An edge (x, y) of color c crosses the cut (V (T c
i), V (T c

j)) induced by
the deletion of the edge (u, v) of color c if and only if one of its endpoints is
a descendant of v and the other one is not, i.e., exactly one of its endpoints
discovery times is in t = [dc[v], f c[v]].

Proof. If dc[x] 6∈ t and dc[y] ∈ t, then x ∈ T c
i and y ∈ T c

j , so (x, y) clearly
crosses the cut. A symmetric argument applies if dc[x] ∈ t and dc[y] 6∈ t.

If dc[x] 6∈ t and dc[y] 6∈ t, neither x nor y are in T c
j , so both endpoints of

(x, y) are in T c
i and (x, y) does not cross the cut. If dc[x] ∈ t and dc[y] ∈ t, both

endpoints of (x, y) are in T c
j and (x, y) does not cross the cut. 2

From Lemma 7 it follows that if we associate an interval [dc[u], dc[v]] with
every edge (u, v) of color c, the intervals corresponding to the edges crossing the
cut have exactly one endpoint in t.

We identify such intervals using a segment tree data structure enhanced
with two lists at each internal node, one sorted by the start time of the intervals
stored at the node and one sorted by their finish time. A segment tree [13] is a

JGAA, 13(2) 219–232 (2009) 227

balanced binary search tree that stores a set of intervals with endpoints from a
finite set of abscissae (intervals corresponding to edges of color c, for example).
Each of its nodes u has an interval I(u) associated with it and stores a list
of input intervals intersecting I(u). Binary search in a segment tree allows to
report the intervals containing a query point.

In our case, the endpoints of the intervals are integer numbers, so an interval
containing a point p+∆ or p−∆, for any 0 < ∆ < 1 and integer p, contains the
point p as well. First, we find the intervals with one endpoint before dc[v] and
the other endpoint in t by querying for intervals containing the point dc[v]−∆
(first query). Then, we find the intervals with one endpoint in t and the other
endpoint after f c[v] by querying for intervals containing the point f c[v] + ∆
(second query).

To ensure that each returned interval has exactly one endpoint in t we aug-
ment the standard segment tree by storing two sorted lists at each node, instead
of just one list. With each node u, we store a list Lfinish(u) of intervals that
intersect I(u) that is sorted by the finish time of the intervals in non-decreasing
order; similarly, the list Lstart stores the same intervals sorted by their starting
time in non-increasing order. Both queries are given an additional parameter:
f c[v] for the first one and dc[v] for the second one. The first query only scans
the lists Lfinish and reports the intervals that have their right endpoint no
greater than f c[v]. The second query only scans at the lists Lstart and reports
the intervals that have their starting point no later than dc[v]. Thus, this data
structure allows us to return intervals with exactly one endpoint in t.

We also maintain an auxiliary list L for each segment tree TS . Each entry
in that list corresponds to one interval and stores a list of pointers to interval’s
positions in Lfinish and Lstart (the pointers are obtained when the interval is
inserted into Lfinish and Lstart). Additionally, the entries of Lfinish and Lstart

should point to their corresponding entry in L. For each interval, O(log n)
auxiliary data is stored.

3.2 Running time

To efficiently identify edges crossing the cuts at each step of the decomposi-
tion, we maintain two segment trees, one for the red intervals [dred[u], dred[v]]
associated with the black edges and the another one for the black intervals
[dblack[u], dblack[v]] associated with the red edges.

Each query with an edge (interval t) takes O(log n+ k) time, where k is the
number of intervals (crossing edges) reported: the query scans the lists Lfinish

(Lstart) at each level of the segment tree, stopping each time when an interval
with a right (left) endpoint greater than f c[v] (dc[v]) is encountered. To avoid
reporting an interval more than once, the interval is deleted from the segment
tree (including the sorted lists associated with the nodes that store it) right
after it is returned by a query.

When an interval is deleted from TS a) a corresponding entry should be
located in L, and b) all the entries in TS associated with that interval should
be deleted. If we keep a pointer from each interval to the corresponding entry

228 Daescu, Kurdia Recognizing Laman graphs

p

o p

o

p o

(a)

m o p

m

p

o p

o

p o

m

(b)
y

Figure 3: (a) H after considering edges of g8 = {(o, p)}. (b) H after considering
edges of g8 ∪ g7 = {(m, o), (m, p)}.

in L, part a) can be done in constant time. Part b) is completed by removing
from the linked lists Lfinish and Lstart all entries pointed to by entries in the
list of L and takes O(log n) per interval deletion. Finally, the entry of L for that
interval should be deleted, which takes constant time.

We can check that m = 2n − 3 in O(n) time. Finding two edge disjoint
spanning trees or deciding no such trees exist takes Tst(n) time. The best
known algorithm so far for this task has Tst(n) = O(n3/2

√
log n) time [5]. The

decomposition takes O(n log n) time: O(n log n) for the maintenance of segment
trees, O(n log n) to answer all queries, and O(n) to check if G has any edges left
at the end of the decomposition. This concludes the proof of Theorem 1.

4 The hierarchy reconstruction algorithm

The order in which edges are deleted from G during the decomposition deter-
mines the structure of the corresponding red-black hierarchy H, so given g, one
can unambiguously construct H in top-down fashion according to the rules from
[1]. In the original approach, to construct the i-th level of H, one has to know
the spanning sub-trees at step i − 2 of the decomposition and to spend O(n)
time figuring out what trees appear after removal of edges at the beginning of
step i.

We consider the decomposition process in reverse order (i.e. start from n
red and n black disjoint trees of one vertex each and add edges to them until
two spanning trees of G are formed). The last group gk of g = (g2, g3, . . . , gk)
contains edges of some color c deleted at the very last step of the decomposition.
Each endpoint v of edges of gk corresponds to a subtree of G of color c spanning
only the vertex v. A leaf node vh = α(v) is added to the k-th level of H for
each such vertex v. Only one leaf vertex is created for the endpoint shared by
multiple edges from gk. For every edge (u, v) of gk a corresponding cross edge
β(u, v) = (α(u), α(v)) is added to H. For every leaf vertex α(v) of H, its parent

JGAA, 13(2) 219–232 (2009) 229

should be at level k − 1 of H, corresponding to a subtree in G that is of color
c and spans only the vertex v. Such parent vertex vp

h = parent(α(v)) is added
to level k − 1 of H along with a tree edge connecting vp

h and α(v) (we call this
the parent creation rule). The vertices of H connected by a cross edge have
the same grandparent. For every cross edge tree T j

k formed at the k-th level, a
vertex vg

h is added to level k − 2 of H, as well as a tree edge connecting vg
h and

vp
h, for every vh ∈ T j

k . We have completed level k of H as well as added some
elements to the two upper levels (see Figure 3).

At the i-th iterative step for each cross edge (x, y) of gi of color c two vertices
vx

h and vy
h on the i-th level of H are identified. They correspond to trees in G of

color c that contained x and y respectively at the i-th step of the decomposition.
If for some endpoint x of an edge from gi v

x
h does not exist on the i-th level of H,

a new vertex vx
h should be created at the i-th level and a parent for it should be

added following the parent creation rule. Then the cross edge corresponding to
(x, y) is added to H between vx

h and vy
h. After all edges of gi are considered, all

cross-edges of the i-th level of H are in place. For each cross edge tree T j
i formed

at the i-th level of H, a node is added to level i−2 of H. That grandparent node
becomes a parent of the parents of the vertices of H spanned by the cross-edge
tree T j

i . At this time the i-th level of H is complete and levels i− 1 and i− 2 of
H are partially constructed. Repeating these steps for all gi, i > 2, yields the
RBH H.

Algorithm. The algorithm takes g as an input and returns the correspond-
ing RBH H. It relies on classical UNION-FIND data structure augmented with
a few simple operations. A pointer to a vertex of H is associated with each
set, and a function GET-VERTEX(s) returns the vertex pointed to by the set
s. The resulting set of the UNION(s,t) operation points to the vertex that s
used to point to. A canonical MAKE-SET(s) is modified to take an additional
parameter v, the vertex of H that the newly created set should point to. A func-
tion REPRESENTATIVE(s) returns an element belonging to the set s. Two
instances of UNION-FIND data structure are used. The sets of one instance
point to vertices of some level i of H, the sets of another instance point to the
parents of the vertices of the ith level. In the pseudocode below these instances
are distinguished by subscripts a and a, such that if a = 0 then a = 1 and vice
versa.
RECONSTRUCTION(g)

1 a← 0
2 i← k
3 while i > 2
4 do for e = (x, y) ∈ gi

5 do for u ∈ {x, y}
6 do if FINDa(u) = nil
7 then vh ← H.createV ertex()
8 MAKE − SETa(u, vh)
9 wh ← H.createV ertex()

10 MAKE − SETā(u,wh)

230 Daescu, Kurdia Recognizing Laman graphs

11 H.addParentEdge(wh, vh)
12 Sx ← FINDa(x)
13 Sy ← FINDa(y)
14 H.addCrossEdge(GET − V ERTEX(Sx), GET − V ERTEX(Sy))
15 UNION(Sx, Sy)
16 for s ∈ UNION − FINDa

17 do vh ← H.createV ertex()
18 SET − POINTER(s, vh)
19 for s ∈ UNION − FINDā

20 do
21 vh ← GET − V ERTEX(s)
22 r ← REPRESENTATIV E(s)
23 wh ← GET − V ERTEX(FINDa(r))
24 H.addParentEdge(vh, wh)
25 a← ā
26 i← i− 1

Running time. Obtaining g for G∗ takes O(n log n) time. The order of edges
in g uniquely determines the sequence of UNION() operations during the hi-
erarchy reconstruction phase, so the algorithm for maintaining UNION-FIND
data structure in time linear in the number of operations can be applied [4].
The time spent on reconstructing one level is proportional to the number of
cross edges at that level. The total number of cross edges is O(n). This al-
lows to complete the reconstruction phase in O(n) time, so the total time for
constructing the RBH is O(n log n). This concludes the proof of Theorem 2.

5 Conclusions

In this paper we discussed the problem of recognizing whether a given graph G
with n vertices is Laman. We presented an algorithm that recognizes Laman
graphs in O(Tst(n) +n log n) time, where Tst(n) is the best time to extract two
edge disjoint spanning trees from a graph with n vertices and 2n− 2 edges, or
decide no such trees exist. So far, it is known that Tst(n) is O(n3/2

√
log n).

We notice that improvements to Tst(n) would result in improvements to our
algorithm. We leave improving Tst(n) as an open problem.

JGAA, 13(2) 219–232 (2009) 231

References

[1] S. Bereg. Certifying and constructing minimally rigid graphs in the plane.
In SCG ’05: Proceedings of the twenty-first annual symposium on Compu-
tational geometry, pages 73–80, 2005.

[2] S. Bereg. Faster algorithms for rigidity in the plane.
http://arxiv.org/abs/0711.2835, 2007.

[3] H. H. Crapo. On the generic rigidity of plane frameworks. Technical Report
1278, Institut de recherche d’informatique et d’automatique, 1988.

[4] H. Gabow and R. Tarjan. A linear-time algorithm for a special case of
disjoint set union. Journal of Computer and System Sciences, 30(2):209–
221, 1985.

[5] H. Gabow and H. Westermann. Forests, frames, and games: algorithms for
matroid sums and applications. Algorithmica, 7(1):465–497, 1992.

[6] R. Haas, A. Lee, I. Streinu, and L. Theran. Characterizing sparse graphs
by map decompositions. Journal of Combinatorial Mathematics and Com-
binatorial Computing (JCMCC), 62:3–11, 2007.

[7] B. Hendrickson. Conditions for unique graph realizations. SIAM J. Com-
put., 21(1):65–84, 1992.

[8] H. Imai. On combinatorial structures of line drawings of polyhedra. Disc.
Appl. Math., 10:79–92, 1985.

[9] D. Jacobs and B. Hendrickson. An algorithm for two dimensional rigid-
ity percolation: The pebble game. Journal on Computational Physics,
137(2):346–365, 1997.

[10] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of
Engineering Mathmatics, 4:331–340, 1970.

[11] A. Lee and I. Streinu. Pebble game algorithms and sparse graphs. Discrete
Mathematics, 308(8):1425–1437, 2008.

[12] L. Lovasz and Y. Yemini. On generic rigidity in the plane. SIAM J.
Algebraic and Discrete Methods, 3(1):91–98, 1982.

[13] F. P. Preparata and M. I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, 1985.

[14] A. Recski. A network theory approach to the rigidity of scheletal structures
II: Laman’s theorem and topological formulae. Discrete Applied Math, 8:63–
68, 1984.

[15] I. Streinu and L. Theran. Sparse hypergraphs and pebble game algorithms.
European Journal of Combinatorics, 2009.

232 Daescu, Kurdia Recognizing Laman graphs

[16] I. Streinu and L. Theran. Sparsity-certifying graph decompositions. Graphs
and Combinatorics, 25:219–238, 2009.

[17] K. Sugihara. On some problems in the design of plane skeletal structures.
SIAM Journal on Algebraic and Discrete Methods, 4(3):355–362, 1983.

	Introduction
	Previous work
	Our results

	A sufficient condition
	Decomposition
	Algorithm
	Running time

	The hierarchy reconstruction algorithm
	Conclusions

