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Finding Large Clique Minors is Hard
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Abstract

We prove that it is NP-complete, given a graph G and a parameter h,
to determine whether G contains a complete graph Kh as a minor.
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1 Introduction

The Hadwiger number of a graph G is the number of vertices in the largest clique
that is a minor of G; that is, that can be formed by contracting some edges
and deleting others. Equivalently, it is the largest number of vertex-disjoint
connected subgraphs that one can find in G such that for each two subgraphs
Si and Sj there is an edge vivj in G with vi ∈ Si and vj ∈ Sj . In 1943, Hugo
Hadwiger conjectured that in any graph the Hadwiger number is greater than
or equal to the chromatic number [6], and this important conjecture remains
open in general, although it is known to be true when the chromatic number
is at most six [11]. The Hadwiger number is also closely associated with the
sparseness of the given graph: if G has Hadwiger number h, every subgraph of
G has a vertex with degree O(h

√
log h). It follows from this fact that, if G has

n vertices, it has O(nh
√

log h) edges [9].
Given its graph-theoretic importance, it is natural to ask for the computa-

tional complexity of the Hadwiger number. In this light, Alon et al. [1] observe
that the Hadwiger number is fixed parameter tractable: for any constant h,
there is a polynomial-time algorithm that either computes the Hadwiger num-
ber or determines that it is greater than h, and the exponent in the polynomial
time bound of this algorithm is independent of h, due to standard results in
graph minor theory. However, this is not a polynomial time algorithm for the
Hadwiger number problem because its running time includes a factor exponen-
tial or worse in h. In addition, as Alon et al. show, the Hadwiger number may
be approximated in polynomial time more accurately than the problem of find-
ing the largest clique subgraph of a given graph: they provide a polynomial time
approximation algorithm for the Hadwiger number of an n-vertex graph with
approximation ratio O(

√
n), whereas it is NP-hard to approximate the clique

number to within a factor better than n1−ε for any ε > 0 [15].
To classify the problem of computing the Hadwiger number in complexity

theoretic terms, we consider a decision version of the problem: given a graph
G, and a number h, is the Hadwiger number of G greater than or equal to h?1

We call this decision problem the Hadwiger number problem. Unsurprisingly,
it turns out to be NP-complete. A statement of its NP-hardness was made
without proof by Chandran and Sivadasan [2], but we have been unable to find
a clear proof of the NP-completeness of the Hadwiger number problem in the
literature. In this short paper we fill this gap by providing an NP-completeness
proof of the standard type (a polynomial-time many-one reduction from a known
NP-complete problem) for the Hadwiger number problem.

2 Reduction from domatic number

Recall that a vertex v dominates a vertex w if v = w or v and w are adjacent;
a dominating set of a graph G is a set of vertices such that, for every vertex w

1Chandran and Sivadasan [2] formulate a different decision problem, in which the positive
instances are those with small Hadwiger number, but this is in CoNP rather than NP.
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, 2 , 32

Figure 1: An illustration of our NP-completeness reduction including a confluent
drawing [4] of the graph G′ from the reduction. Two vertices are connected by
an edge in G′ if and only if there is a smooth (possibly self-intersecting) path
between the circles representing them in the drawing. In this example, a 5-cycle
with domatic number 2 is transformed into a 37-vertex graph with Hadwiger
number 32. One possible 32-vertex clique minor is formed by contracting the
two shaded sets of vertices into single supervertices, removing the remaining
middle-layer vertex, and combining the two supervertices with the 30 bottom-
layer vertices.

in G, some member of the set dominates w. The domatic number of a graph
G is the maximum number of disjoint dominating sets that can be found in
G [3]. In the domatic number problem, we are given a graph G and a number d,
and asked to determine whether the domatic number of G is at least d; that is,
whether G contains at least d disjoint dominating sets. This problem is known
to be NP-complete even for d = 3: that is, it is difficult to determine whether
the vertices of a given graph may be partitioned into three dominating sets [5].

We begin by describing a polynomial-time many-one reduction from an in-
stance (G, d) of the domatic number problem into an instance (G′, h) of the
Hadwiger number problem. We may assume without loss of generality that no
vertex of G is adjacent to all others, for if v is such a vertex we may take one
of the dominating sets to be the one-vertex set {v}, simplify the problem in
polynomial time by deleting v from G and subtracting one from d, and use the
remaining simplified problem as the basis for the transformation. As we will
show, with this assumption, the instance (G, d) can be translated in polynomial
time to an equivalent instance (G′, h) of the Hadwiger number problem. We
also assume that the vertices of G are numbered arbitrarily as vi for 1 ≤ i ≤ n.
To perform this translation, construct G′ in three layers:
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• The top layer is a d-vertex clique with vertices ti for 1 ≤ i ≤ d.

• The middle layer is an n-vertex independent set with vertices mi for 1 ≤
i ≤ n.

• The bottom layer is an n(n+1)-vertex clique with vertices bi,j for 1 ≤ i ≤ n
and 1 ≤ j ≤ n+ 1.

• Every top vertex is connected to every middle vertex by an edge.

• Middle vertex mi and bottom vertex bj,k are connected by an edge if and
only if either i = j or G has an edge vivj . That is, there is an edge from
mi to bj,k if and only if vi dominates vj .

We let h = n(n+ 1) + d. This reduction is illustrated in Figure 1.

Lemma 1 Let S be a connected nonempty subset of the vertices of G′. Then
at least one of the following three possibilities is true:

1. S consists only of a single middle vertex.

2. S contains a top vertex.

3. S contains a bottom vertex.

Proof: If S consists only of middle vertices, it can have only one of them,
because the middle vertices form an independent set. On the other hand, if
S does not consist only of middle vertices, it must contain a top vertex or a
bottom vertex. �

Lemma 2 Let vertex vi in G have degree di. Then middle vertex mi in G′ has
degree (di + 1)(n+ 1) + d.

Proof: Vertex mi is connected to (di + 1)(n + 1) bottom vertices: the n + 1
vertices bi,j (for 1 ≤ j ≤ n+1) and the di(n+1) vertices bi′,j (for 1 ≤ j ≤ n+1)
such that vi and vi′ are neighbors. In addition it is connected to all d top vertices.

�

Lemma 3 Suppose that G′ has Hadwiger number at least h, and let Sq (1 ≤
q ≤ h) be a family of vertex-disjoint mutually-adjacent connected subgraphs
forming an h-vertex clique minor in G′. Then each subgraph Sq has exactly one
non-middle vertex and each non-middle vertex belongs to exactly one subgraph
Sq.

Proof: A middle vertex in G′ has degree at most (n − 1)(n + 1) + d < h − 1
by Lemma 2 and by the assumption that G has no vertex that is adjacent to
all other vertices. If there were a subgraph Sq consisting only of a single middle
vertex, it would not have enough neighbors to be adjacent to all h−1 of the other
subgraphs, so we may infer that such subgraphs do not exist and apply Lemma 1
to conclude that each subgraph Sq contains at least one non-middle vertex. But
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there are h subgraphs, and h non-middle vertices, so each subgraph Sq must
contain exactly one non-middle vertex and each such vertex must belong to one
of these subgraphs. �

Lemma 4 Suppose that G′ has Hadwiger number at least h, and let Sq (1 ≤ q ≤
h) be a family of vertex-disjoint mutually-adjacent connected subgraphs forming
an h-vertex clique minor in G′. Then, for each i with 1 ≤ i ≤ n, there is a
bottom vertex bi,j that forms a single-vertex subgraph in the family.

Proof: By Lemma 3, each set that contains more than one vertex contains a
middle vertex. But there are only n middle vertices, so at most n disjoint sets
can contain middle vertices. Since, for each i, there are n + 1 bottom vertices
bi,j , and (by Lemma 3 again) each belongs to a different subgraph, at least one
of the n + 1 subgraphs containing these bottom vertices must have no middle
vertices. Since it contains no middle vertices and only one non-middle vertex,
it must form a single-vertex subgraph. �

Lemma 5 Suppose that G′ has Hadwiger number at least h, let Sq (1 ≤ q ≤ h)
be a family of vertex-disjoint mutually-adjacent connected subgraphs forming an
h-vertex clique minor in G′, and suppose that one of these subgraphs Sq contains
a top vertex tq. Then the set Dq = {vi | mi ∈ Sq} is a dominating set in G.

Proof: Let vk be any vertex in G, and let bk,j be a bottom vertex in G′ that
corresponds to vk and forms a single-vertex subgraph in the family of disjoint
subgraphs; bk,j is guaranteed to exist by Lemma 4. Then Sq must contain a
vertex adjacent to bk,j ; this vertex must be a middle vertex mi of G′, for some
i, because top vertices are not adjacent to bottom vertices and Sq contains top
vertex tq as its only non-middle vertex. In order for middle vertex mi to be
adjacent to bottom vertex bk,j , the vertex vi in G that corresponds to mi must
dominate vk (that is, either i = k or vi and vk are adjacent). Thus, for every
vertex vk in G, there is a vertex vi in Dq that dominates vk; therefore, Dq is a
dominating set. �

Lemma 6 G has domatic number at least d if and only if G′ has Hadwiger
number at least h.

Proof: First, suppose that G has domatic number at least d, with d disjoint
dominating sets Dq for 1 ≤ q ≤ d; we must show that in this case the Hadwiger
number is at least h. We can form a family of h mutually-adjacent connected
subgraphs Sq in G′, as follows: for each bottom vertex bi,j form a subgraph
consisting of that single vertex, and for each dominating set Dq form a subgraph
Sq consisting of a single top vertex together with the middle vertices in G′

that correspond to vertices in Dq. There are n(n + 1) bottom vertices, and
d sets containing a top vertex, so these subgraphs form a clique minor with
n(n+ 1) + d = h vertices as desired.

Conversely, suppose that G′ has Hadwiger number at least h = n(n+ 1) +d;
that is, that it has this many disjoint mutually-adjacent connected subgraphs
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Sq; we must show that, in this case, G has domatic number at least d. Each sub-
graph Sq must include exactly one top or bottom vertex by Lemma 3, together
with possibly some middle vertices. For each top vertex tq, the set Dq is a dom-
inating set in G by Lemma 5; these sets are disjoint because they correspond
to the disjoint partition of the middle vertices in G′ given by the subgraphs
Sq. Thus, we have found d disjoint dominating sets Dq in G, so G has domatic
number at least d. �

Theorem 1 The Hadwiger number problem is NP-complete.

Proof: The construction of (G′, h) from (G, d) may easily be implemented in
polynomial time, and by Lemma 6 it forms a valid polynomial-time many-one
reduction from the domatic number problem to the Hadwiger number prob-
lem. This reduction (together with the known fact that domatic number is
NP-complete and the easy observation that the Hadwiger number problem is in
NP) completes the proof of NP-completeness. �

3 Alternative reduction from disjoint paths

Seymour [13] has suggested that it should be straightforward to prove NP-
completeness of the Hadwiger number problem via an alternative reduction,
from disjoint paths. In the vertex-disjoint paths problem [12], the input consists
of a graphG and a collection of pairs of vertices (si, ti) inG; the output should be
positive if there exists a collection of vertex-disjoint paths in G having each pair
of terminals as endpoints, and negative otherwise. Although the vertex-disjoint
paths problem is fixed-parameter tractable with the number of terminal pairs
as parameter, it is NP-complete when this number may be arbitrarily large,
even when G is cubic and planar [10]. Although there is a polynomial time
equivalence between finding minors of fixed graphs and finding fixed numbers of
disjoint paths [8], those results do not directly apply to the case we are interested
in where both the minor we are trying to find (a clique of indeterminate size)
and the number of paths (part of the input in the NP-hard version of the
disjoint paths problem) may vary. Nevertheless, it is possible to prove that the
Hadwiger number problem is NP-complete in this way, and we briefly outline
such a reduction here.

An instance of the vertex-disjoint paths problem may be reduced to the
Hadwiger number problem as follows. Let n be the number of vertices in G,
and k be the number of terminal pairs in the instance. Let K be an (n + 1)-
clique from which k non-adjacent edges uivi have been removed, and form a
new graph G′ with 2n + 1 − 2k vertices as a union of G and K in which ui is
identified with si and vi is identified with ti. Then, a positive solution to the
disjoint paths problem in G leads to the existence of an (n + 1)-vertex clique
minor in G′, by using the paths to replace each missing edge. Conversely, if G′

has an (n+1)-vertex clique minor, corresponding to a collection of n+1 disjoint
connected and pairwise adjacent subgraphs of G′, then each of these subgraphs
must contain exactly one vertex of K (for any set of vertices of G′ \K has at
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most n−1 neighbors), and the adjacency between the two subgraphs containing
ui and vi can be used to find a path in G connecting si and ti that uses only
vertices drawn from these two subgraphs. Therefore, the given vertex-disjoint
paths problem instance (G, k) is a positive instance if and only if (G′, n+ 1) is
a positive instance of the Hadwiger number problem.

4 Conclusions

We have shown that the Hadwiger number problem is NP-complete. It is nat-
ural to ask whether the problem is also hard to approximate. Very strong in-
approximability results are known for the superficially similar maximum clique
problem [7]. Alon et al. [1] have provided upper bounds that show that such
strong results cannot be true for the Hadwiger number, but they do not rule
out the possibility of weaker inapproximability results. In response to an earlier
version of the results presented here, Wahlen [14] has provided a preliminary
result of this type: unless P = NP, there can be no polynomial-time approxima-
tion scheme for the Hadwiger number. However, there still remains a large gap
between this lower bound and the upper bound of O(

√
n) on the approximation

ratio provided by Alon et al.
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