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Abstract

A geometric simultaneous embedding of two graphs G1 = (V1, E1) and
G2 = (V2, E2) with a bijective mapping of their vertex sets γ : V1 → V2 is
a pair of planar straight-line drawings Γ1 of G1 and Γ2 of G2, such that
each vertex v2 = γ(v1), with v1 ∈ V1 and v2 ∈ V2, is mapped in Γ2 to the
same point where v1 is mapped in Γ1.

In this paper we examine several constrained versions and a relaxed
version of the geometric simultaneous embedding problem. We show that
assuming that the input graphs do not share common edges does not yield
larger classes of graphs that can be simultaneously embedded. Further,
if a prescribed combinatorial embedding for each input graph must be
preserved, then we can answer some of the problems that are still open
in the standard geometric simultaneous embedding setting. Finally, we
present some results on the near-simultaneous embedding problem, in
which vertices are not forced to be placed exactly at the same, but just
at “nearby” points in different drawings.
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1 Introduction

Graph drawing techniques are commonly used to visualize relationships between
objects, where the objects are the vertices of the graph and the relationships
are captured by the edges in the graph. The simultaneous embedding problem
arises when visualizing two or more relationships defined on the same set of
objects. If the graphs corresponding to these relationships are planar, the aim
of simultaneous embedding is to find point locations in the plane for the vertices
of the graphs, so that each of the graphs can be realized on the same point-
set without edge crossings. To ensure good readability of the drawings, it is
preferable that the edges are drawn as straight-line segments. This problem
is known as geometric simultaneous embedding. It has been shown that only
a few classes of graphs, such as paths, cycles, and caterpillars admit pairwise
geometric simultaneous embeddings.

Nevertheless, simultaneous embedding techniques have been used to obtain
new result in geometric graph thickness [6] and have been helpful in visualiz-
ing evolving and dynamic graphs [7]. Many intriguing simultaneous embedding
problems remain open. For example, it is not yet fully understood which graph
classes always admit a geometric simultaneous embedding. There are also no
practical algorithms guaranteeing high quality layouts for evolving and dynamic
graphs. With this in mind, we consider three further variants of the geomet-
ric simultaneous embedding problem: one in which we do not allow the input
graphs to share any edges, another in which the input graphs must realize given
combinatorial embeddings, i.e. given cyclic orderings of the edges incident to
each vertex, and yet another in which we allow corresponding vertices to be
placed not exactly at the same point, but just at nearby points.

1.1 Related Work

Brass et al. [3], Erten and Kobourov [8], and Geyer et al. [12] respectively showed
examples of three paths, of a planar graph and a path, and of two trees that do
not admit geometric simultaneous embeddings. Recently, Estrella-Balderrama
et al. [9] proved that determining whether two planar graphs admit a geometric
simultaneous embedding is an NP-hard problem. On the positive side, efficient
algorithms for geometric simultaneous embedding of pairs of paths, pairs of
cycles and pairs of caterpillars have been developed [3].

As geometric simultaneous embedding turns out to be very restrictive, it is
natural to relax some of the constraints of the problem. Not insisting on straight-
line edges led to positive results such as a linear-time algorithm by Erten and
Kobourov for embedding any pair of planar graphs with at most three bends
per edge, or any pair of trees with at most two bends per edge [8]. The results
of Pach and Wenger [15], and of Badent et al. [1] concerning graph embeddings
with vertices at fixed locations directly imply that any number of planar graphs
can be embedded simultaneously using O(n) bends per edge. In such results it is
allowed for an edge connecting a pair of vertices to be represented by different
Jordan curves in different drawings, something not possible when edges are
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straight-line segments. As this can be detrimental to the readability of the
drawings, several papers considered a slightly more constrained version of this
problem, namely, simultaneous embedding with fixed edges. In this version of
the problem bends are allowed, provided that an edge connecting the same pair
of vertices is drawn in exactly the same way in all drawings. Di Giacomo and
Liotta [5] showed that any outerplanar graph can be simultaneously embedded
with fixed edges with a path or with a cycle using at most one bend per edge.
Frati [11] showed that a planar graph and a tree can also be simultaneously
embedded with fixed edges, however the algorithm described in [11] constructs
drawings in which the edges have a large number of bends.

1.2 Our Results

In this paper we consider several variants of the simultaneous embedding prob-
lem. In Section 3, we consider the variants in which the input graphs are
assumed to not share any edge, called geometric simultaneous embedding with
no common edges and the one in which the input graphs must realize given
combinatorial embeddings, called geometric simultaneous embedding with fixed
embedding.

Most of the proofs about the non-existence of simultaneous embeddings ex-
ploit the presence of common edges between the graphs that have to be drawn,
since such edges create a barrier that cannot be traversed by any other edge of
the graphs. Hence, it is natural to ask whether larger classes of graphs admit
geometric simultaneous embedding if no edges are shared by the input graphs.
Quite surprisingly, we show that common edges are not the only geometric ob-
struction for simultaneous embeddability, in fact we show that there exist a
planar graph and a path that do not share edges and that do not allow for a
geometric simultaneous embedding, generalizing the result in [8], where it is
shown that a planar graph and a path that do share edges may not have a
geometric simultaneous embedding. We further conjecture that an analogous
negative result holds for two trees not sharing edges. We remark that, if we
allow edges to have bends, then any number of planar graphs not sharing edges
admit a simultaneous embedding [1, 15].

The second problem we consider is that of simultaneously drawing graphs
with a fixed planar embedding. Drawing graphs with fixed embeddings has
been studied before but not in the context of simultaneous embedding of mul-
tiple graphs. Specifically, it is well-known that every planar embedding can
be realized with straight-line segments [10, 16, 18] and that testing whether
a cyclic ordering of the edges incident to each vertex corresponds to a planar
embedding can be done in linear time [14]. Other well-known results on draw-
ing graphs with fixed embeddings concern upward drawings [2] and orthogonal
drawings [17]. Besides, understanding the geometric simultaneous embedding
with fixed embedding problem could be helpful, in our opinion, for solving some
open questions on the geometric simultaneous embedding problem. While all
negative results known for geometric simultaneous embedding remain valid in
the fixed embedding setting, in this more restrictive setting we are able to re-
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Geometric Disj. Fixed Emb. Disj. Fixed Emb.

path + path YES [3] YES [3] YES [3] YES [3]

star + path YES [3] YES [3] YES Th. 4 YES Th. 4

double-star + path YES [3] YES [3] ? YES Th. 5

caterpillar + path YES [3] YES [3] ? ?

caterpillar + caterpillar YES [3] YES [3] NO Th. 3 NO Th. 3

3 paths NO [3] ? NO [3] ?

tree + path ? ? ? ?

tree + caterpillar ? ? NO Th. 3 NO Th. 3

outerplanar + path ? ? NO Th. 2 NO Th. 2

tree + tree NO [12] ? NO [12] NO Th. 3

outerplanar + outerplanar NO [3] ? NO [3] NO Th. 3

planar + path NO [8] NO Th. 1 NO [8] NO Th. 1

Table 1: Known results and our contribution on geometric simultaneous embedding (Ge-
ometric), geometric simultaneous embedding with no common edges (Disj.), geometric
simultaneous embedding with fixed embedding (Fixed Emb.), geometric simultaneous em-
bedding with fixed embedding and no common edges (Disj. Fixed Emb.).

solve several problems that are still open in more general settings. We show
that there exist an outerplanar graph and a path that have no geometric simul-
taneous embedding with fixed embedding (the same problem is not yet solved if
the embedding of the outerplanar graph is not fixed). Moreover, we show that
some classes of graphs that have geometric simultaneous embeddings do not
admit one with fixed combinatorial embeddings. In particular, we prove such
a negative result for caterpillar-caterpillar pairs. Motivated by understanding
which classes of caterpillars always admit a geometric simultaneous embedding
with fixed embedding, we show that a star and a path always admit a geometric
simultaneous embedding with fixed embedding and that a double-star and a
path always admit a geometric simultaneous embedding with fixed embedding
if they do not share edges.

In the quest for more practical settings where we can still guarantee some
theoretical properties of the resulting embeddings, in Section 4 we study a
variant of geometric simultaneous embedding which we call geometric near-
simultaneous embedding. In a geometric near-simultaneous embedding edges
are drawn as straight-line segments but vertices representing the same entity in
different input graphs can be placed not exactly at the same point but at points
that are just nearby each other. We show that even this version is restrictive,
namely, assuming that the vertices are placed on an integer grid, we prove that
there exist pairs of n-vertex planar graphs in which vertices that represent the
same entity in different graphs must be placed in points that are at distance
Ω(n) each other. Further, we discuss some interesting research directions for
geometric near-simultaneous embedding, among which proving bounds for the
near-simultaneous embedding of sequences of similar planar graphs.
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2 Preliminaries

Here we summarize some of the basic terminology used in this paper; further
graph drawing definitions can be found in the surveys by Di Battista et al. [4]
and by Kaufmann and Wagner [13].

A straight-line drawing of a graph is a mapping of each vertex to a unique
point in the plane and of each edge to a segment between the endpoints of the
edge. A grid drawing is one in which every vertex is placed at a point with
integer coordinates in the plane. A planar drawing is one in which no two
edges intersect. A planar graph is a graph that admits a planar drawing. It
is a well-known result [10] that every planar graph admits a planar straight-
line drawing. A planar drawing of a graph determines a cyclic ordering of the
edges incident to each vertex. Two drawings of the same graph are equivalent
if they determine the same cyclic ordering around each vertex. A combinatorial
embedding, or planar embedding, is an equivalence class of planar drawings. A
planar drawing partitions the plane into topologically connected regions, called
faces. The unbounded face is the external face. An embedding of a graph G
completely determines the faces in any drawing of G in which the cyclic order of
the edges incident to each vertex is the same specified by the embedding, even
though the embedding does not determine which face is the external face. A
combinatorial embedding together with a choice for the external face is called
plane embedding. A graph is triconnected if for every pair of distinct vertices
there exist three vertex-disjoint paths connecting them. A triconnected graph
has a unique embedding, up to a reversal of the cyclic lists of the edges incident
to each node [19].

An outerplanar graph is a graph that admits an outerplanar drawing, that
is, a planar drawing in which all the vertices are incident to the same face.
The embedding of the outerplanar graph in an outerplanar drawing is called
an outerplanar embedding. Trees are connected acyclic graphs and they are a
subclass of the outerplanar graphs. The degree of a vertex is the number of
its neighbors. A leaf is a vertex of a tree with degree 1. A path is a tree in
which every vertex, other than the leaves, has degree 2. A caterpillar is a tree
in which the removal of all the leaves and their incident edges yields a path.
A star (double-star) is a caterpillar with only one vertex (two vertices), called
center (centers), of degree greater than one.

Let G1 = (V1, E1) and G2 = (V2, E2) be two n-vertex planar graphs with a
bijective mapping γ : V1 → V2 between their vertices. A geometric simultaneous
embedding is a pair of straight-line drawings Γ1 and Γ2 of G1 and of G2 such
that: (i) each of Γ1 and Γ2 is planar, and (ii) each vertex v2 = γ(v1), with
v1 ∈ V1 and v2 ∈ V2, is mapped in Γ2 to the same point where v1 is mapped in
Γ1.
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3 Simultaneous Embedding with Disjoint Edges
and with Fixed Embedding

In this section we consider the problem of constructing geometric simultaneous
embeddings of graphs that do not share common edges and of graphs that
have fixed combinatorial embeddings, deriving some negative and some positive
results, described in Section 3.1 and in Section 3.2, respectively.

3.1 Negative Results

First, we deal with planar graphs and paths not sharing edges. The strategy for
proving the existence of a planar graph and a path that do not share common
edges and that do not admit any geometric simultaneous embedding is as follows.
First, we show a planar graph G∗ and a path P ∗ that do not share common
edges and that do not admit any geometric simultaneous embedding if the plane
embedding E∗ of G∗ is fixed. Second, we show a planar graph G and a path P
such that in every planar drawing of G there is a subgraph G∗

i of G isomorphic
to G∗ which has plane embedding E∗ and such that the subgraph of P induced
by the vertices of G∗

i is isomorphic to P ∗. A similar strategy is used later in
order to prove the existence of an outerplanar graph and a path that do not
allow for a geometric simultaneous embedding with fixed embedding.

Let G∗ be the triconnected planar graph on nine vertices v1, v2, . . ., v9 shown
in Fig. 1(a). Since G∗ is triconnected, it has the same faces in each of its planar
embeddings. Let F ∗ denote the triangular face ∆v1v3v9 and let P ∗ be the path
(v1, v2, v3, v4, v5, v6, v7, v8, v9).

v3

v8

v6

v4v2

v7

v5

v1v9

v2

v4

v3

v9
v1

T*

F*

v3

v2

l
v9

v1v4

T*

F*

(a) (b) (c)

Figure 1: (a) Triconnected planar graph G∗ drawn with solid edges and path P ∗ drawn
with dashed edges; (b) Embedding vertex v4 inside T ∗ creates a crossing between the
subpath of P ∗ connecting v1 and v3 and the subpath of P ∗ connecting v4 and v9; (c)
Embedding vertex v4 outside T ∗ creates a crossing between edges (v1, v2) and (v3, v4) of
P ∗.

Lemma 1 There does not exist a geometric simultaneous embedding of G∗ and
P ∗ in which the external face of G∗ is F ∗.

Proof: Note that all vertices of G∗, other than v1, v3 and v9, are contained
inside F ∗ as F ∗ is the external face of G∗. Consider the triangle T ∗ formed by
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the edges (v1, v2), (v2, v3) of P ∗, and by the edge (v1, v3) of G∗. Since vertex v9
is incident to F ∗, it must lie outside T ∗. Let l be the line passing through v2 and
v3; l separates the plane in two open half-planes, one containing v9, called the
exterior part of l, and one not containing v9, called the interior part of l. We
show that every placement of v4 leads to a crossing in the drawing of the path if
the planarity of the drawing of G∗ is preserved. If v4 is placed inside T ∗ then the
subpath of P ∗ composed of the edges (v1, v2) and (v2, v3) crosses the subpath of
P ∗ connecting v4, that lies inside T ∗, and v9, that lies outside T ∗; see Fig. 1(b).
Suppose v4 is placed outside T ∗. Since vertex v4 lies inside triangle ∆v1v3v5 and
vertex v2 lies inside triangle ∆v3v5v9, the clockwise order of the edges around
v3, i.e. the clockwise order of the edges (v3, v1), (v3, v5), (v3, v9) of G∗ and
of the edges (v3, v4), (v3, v2) of P ∗, is (v3, v1), (v3, v4), (v3, v5), (v3, v2), (v3, v9).
Therefore v4 is in the interior part of l and hence edge (v1, v2) crosses edge
(v3, v4) in P ∗; see Fig. 1(c). 2

G* G*

u2

u1u3

v23v13

v21v11

1 2

v19 v29

Figure 2: Triconnected planar graph G drawn with solid edges and path P drawn with
dashed edges.

Theorem 1 There exist a planar graph G, a path P , and a mapping between
their vertices such that: (i) G and P do not share edges, and (ii) G and P have
no geometric simultaneous embedding.

Proof: We will construct graph G and path P out of two copies of G∗ and P ∗

described above. In particular, let G∗
1 and G∗

2 be two copies of the planar graph
G∗. G∗

1 and G∗
2 have nine vertices each, and we denote by vj

i the vertex of G∗
j

that corresponds to the vertex vi in G∗, where j = 1, 2 and i = 1, . . . , 9.
Let G be the graph composed of G∗

1 and G∗
2 together with three additional

vertices u1, u2, and u3 and eight additional edges (u1, u2), (u1, u3), (u2, u3),
(u1, v

2
1), (u2, v

1
3), (u2, v

2
3), (u3, v

1
9), and (v1

1 , v
2
9); see Fig. 2. Since G is planar
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and triconnected by construction, it has the same faces in each of its planar
drawings.

Let P be the path (u1, v
1
9 , v

1
8 , v

1
7 , v

1
6 , v

1
5 , v

1
4 , v

1
3 , v

1
2 , v

1
1 , u2, v

2
9 , v

2
8 , v

2
7 , v

2
6 , v

2
5 , v

2
4 ,

v2
3 , v

2
2 , v

2
1 , u3). It is easy to verify that G and P do not share edges. Note that

the subpaths of P induced by the vertices of G∗
1 and by the vertices of G∗

2 play
the same role that path P ∗ plays for graph G∗ in Lemma 1.

v3
v5

v2

v7 v1

v4

v6

v3

v5

v2

v7 v1

v4

v6

(a) (b)

v24
v26

v23

v22v27

v21v
1
7v12

v15

v13

v16
v14 v11

v25

O*1 O*2v23

v27

v13

v11

v17 v21

(c) (d)

Figure 3: (a) Outerplanar graph O∗, drawn with solid edges, and path P ∗, drawn with
dashed edges. (b) Embedding E∗ of O∗. (c) Outerplanar graph O, drawn with solid edges,
and path P , drawn with dashed edges. (d) Embedding E of O.

We now show that every plane drawing Γ of G determines a non-planar
drawing of P . Let F ∗

1 and F ∗
2 denote cycles (v1

1 , v
1
3 , v

1
9) and (v2

1 , v
2
3 , v

2
9), respec-

tively. Consider the plane embedding EG of G obtained by choosing ∆u1u2u3

as external face; see Fig. 2. Choosing any face external to F ∗
1 in EG as external

face of Γ leaves G∗
1 embedded with external face F ∗

1 . Choosing any face external
to F ∗

2 in EG as external face of Γ leaves G∗
2 embedded with external face F ∗

2 .
Since each face of G is external to either F ∗

1 or F ∗
2 in EG, we can apply Lemma 1

and conclude that there does not exist a simultaneous embedding of G and P .2

Next, we show that there exist an outerplanar graph and a path that do not
share edges and that admit no simultaneous embedding in which the outerplanar
graph has a fixed combinatorial embedding. Let O∗ be the outerplanar graph
shown in Fig. 3(a) and let E∗ be the plane embedding of O∗ shown in Fig. 3(b).
Further, let P ∗ be the dashed path in Fig. 3(a). Note that O∗ and P ∗ do not
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share edges. Using techniques similar to the ones in the proof of Lemma 1, it is
possible to show that there exists no geometric simultaneous embedding of O∗

and P ∗ in which the plane embedding of O∗ is E∗.
Out of two copies O∗

1 and O∗
2 of O∗, with plane embeddings E∗1 and E∗2

corresponding to the plane embedding E∗ of O∗, we construct an outerplanar
graph O (see Fig. 3(c)) with a fixed combinatorial embedding E (see Fig. 3(d)).
Further, we construct a path P such that O and P do not share edges and
that the subpaths of P induced by the vertices of O∗

1 (of O∗
2) play for O∗

1 (resp.
for O∗

2) the same role that path P ∗ plays for graph O∗. By using arguments
similar to the ones in the proof of Theorem 1, it is possible to show that every
plane drawing of O with combinatorial embedding E determines a non-planar
drawing of P . In fact, in every plane drawing ofO with combinatorial embedding
E , either O∗

1 has plane embedding E∗1 or O∗
2 has plane embedding E∗2 , hence

implying that the subpath of P induced by the vertices of O∗
1 or the subpath of

P induced by the vertices of O∗
2 is self-intersecting. Thus, we have the following

result:

Theorem 2 There exist an outerplanar graph O, a combinatorial embedding E
of O, a path P , and a mapping between their vertices such that: (i) O and P do
not share edges, and (ii) O and P have no geometric simultaneous embedding
in which the combinatorial embedding of O is E.

Finally, we deal with pairs of caterpillars with fixed embeddings. Recall that
in the standard setting of geometric simultaneous embedding we can always
simultaneously embed pairs of caterpillars. This is no longer true if we insist on
preserving the given combinatorial embedding of the caterpillars:

1 2 3 4 5 6 7 8
9

10
11

12
13
14

15

16
17 18

r
x

1

2

3 4

5

6 7

8

9 10

11

12

13

14

1516

17

18

r x

(a) (b)

Figure 4: Caterpillars C1 (a) and C2 (b) with fixed embeddings.

Theorem 3 There exist two caterpillars C1 and C2 with fixed embeddings E1
and E2, and a mapping γ between their vertices such that:

1. C1 and C2 do not share edges, and

2. C1 and C2 do not admit a geometric simultaneous embedding with combi-
natorial embeddings E1 and E2, respectively.
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Proof:
Let C1 and C2 be the two caterpillars with embeddings E1 and E2 shown

Fig. 4(a)-(b). Let γ(x) = x be the bijective mapping between their vertices and
note that C1 and C2 do not share edges. We show that there does not exist a
geometric simultaneous embedding of C1 and C2 in which C1 and C2 respect
the given embeddings E1 and E2.

Construct any straight-line drawing Γ1 of C1. The placement of the vertices
of C1 in Γ1 also defines a drawing Γ2 of C2, in which the combinatorial embed-
ding of C2 is supposed to be E2. The combinatorial embedding E1 of C1 forces
the vertices 1, 2, . . . , 18 to appear in this order around r in Γ1. Consider the
subtrees of C1 induced by the vertices r, 1, 2, . . . , 6, by the vertices r, 7, 8, . . . , 12,
and by the vertices r, 13, 14, . . . , 18. Since such subtrees appear consecutively
around r, then at least one of them is drawn in a wedge rooted at r with angle
less than π. Let T be such a subtree and let k, k+ 1, . . . , k+ 5 be the vertices of
T , with k = 1, 7 or 13. Without loss of generality, let r be the uppermost point
of this wedge. It follows that vertices k, k + 1, . . . , k + 5 have y-coordinate less
than the one of r.

Denote by Q the polygon composed of the edges (r, k) and (r, k + 5) of C1

and of the edges (k, k + 2), (k + 2, k + 3), and (k + 3, k + 5) of C2. Note that
vertices k+1 and k+4 are either both inside or both outside Q. In fact, placing
one of them inside and the other outside Q is not consistent with the embedding
constraints of E2; see Fig. 5(a).

k+1

k k+2

k+3

k+4
k+5

r

k+1
k

k+2

k+3

k+4
k+5

r

k+1

k k+2

k+3

k+4

k+5

r

(a) (b) (c)

Figure 5: (a) A placement of the vertices of T not respecting the embedding constraints
of E2. The polygon Q is drawn with dotted segments, the edges of C1 (of C2) are drawn
as solid (dashed) segments; (b) Placing vertices k + 1 and k + 4 inside Q leads to an
intersection between edges (k+1, k+3) and (k+2, k+4) of T ; (c) Placing vertices k+1
and k + 4 outside Q leads to an intersection between edge (k + 2, k + 4) and one out of
the edges (k + 1, k + 3) or (k + 3, k + 5) of T .

If both vertices k + 1 and k + 4 are placed inside Q, then the embedding
constraints of E1 and E2 and the fact that r is the vertex with greatest y-
coordinate among the vertices of T imply that edge (k + 2, k + 4) crosses edge
(r, k+3) and that edge (k+1, k+3) crosses edge (r, k+2). It follows that there
is an intersection between edges (k+ 2, k+ 4) and (k+ 1, k+ 3), both belonging
to T ; see Fig. 5(b). Similarly, if both vertices k+ 1 and k+ 4 are placed outside
Q, then, by the embedding constraints of E1 and E2, vertex k+2 is placed inside
the polygon formed by the edges (r, k + 1), (r, k + 5) of C1 and by the edges
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(k + 1, k + 3), (k + 3, k + 5) of C2, otherwise edge (k + 1, k + 3) would cross
edge (k, k+ 2). Hence, edge (k+ 2, k+ 4) crosses such a polygon either in edge
(k+ 1, k+ 3) or in edge (k+ 3, k+ 5) and this concludes the proof; see Fig. 5(c).

2

3.2 Positive Results

First, we show that a star and a path always admit a simultaneous embedding,
even if the star has a fixed combinatorial embedding. Let P be an n-vertex path
and let S be an n-vertex star with fixed combinatorial embedding E and center
c. Notice that every cyclic ordering of the edges incident to each vertex of a tree
provides a planar embedding of the tree. Note also that S and P share at least
one and at most two edges. Let P = (a1, a2, . . . , al, c, b1, b2, . . . , bm), where one
among the sequences (a1, a2, . . . , al) and (b1, b2, . . . , bm) could be empty. We
show that P and S have a simultaneous embedding in which the combinatorial
embedding of S is E . Draw S with c as the leftmost point and all of the edges
in an order around c consistent with E and so that edge (c, b1), if it exists, is
the uppermost edge of S. It is easy to ensure that:

• the x-coordinate of a vertex bi is greater than the x-coordinate of a vertex
aj , with 1 ≤ i ≤ m and 1 ≤ j ≤ l,

• that the x-coordinate of a vertex bi is greater than the x-coordinate of a
vertex bj , with 1 ≤ j < i ≤ m, and

• that the x-coordinate of a vertex ai is greater than the x-coordinate of a
vertex aj , with 1 ≤ i < j ≤ l.

The resulting drawing of S is clearly planar; see Fig. 6(a). Further, path P
is not self-intersecting as it is realized by two x-monotone curves that lie on
disjoint x-intervals and that are joined by an edge that is higher than every
other edge of P . This yields the following result:

Theorem 4 Any n-vertex star and any n-vertex path admit a geometric simul-
taneous embedding in which the star has a prescribed combinatorial embedding.

Next, we show that a double-star and a path not sharing edges have a simul-
taneous embedding even if the combinatorial embedding of the double-star is
fixed in advance. Let P be an n-vertex path and let D be an n-vertex double-star
with combinatorial embedding E and with centers c1 and c2. Suppose that D
and P do not share edges. Let P = (a1, a2, . . . , al, c1, b1, b2, . . . , bm, c2, d1, d2, . . . , dp).
Note that the sequences (a1, a2, . . . , al) and (d1, d2, . . . , dp) could be empty. In
fact, sequence (a1, a2, . . . , al) is empty if one of the end-vertices of P is mapped
to c1. Analogously, sequence (d1, d2, . . . , dp) is empty if one of the end-vertices
of P is mapped to c2. On the other hand, sequence (b1, b2, . . . , bm) has at least
two elements, i.e. m ≥ 2. In fact, if the sequence is empty then P and D share
edge (c1, c2); if m = 1 then P and D share either edge (c1, b1) or edge (b1, c2),
depending on whether b1 is a neighbor of c1 or of c2 in D, respectively. Observe
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Figure 6: (a) Simultaneous embedding of a star and a path; (b) Simultaneous embedding
of a double-star and a path not sharing edges.

also that b1 is a neighbor of c2 and bm is a neighbor of c1 in D, otherwise D and
P would share edge (b1, c1) or edge (bm, c2), respectively; see Fig. 6(b). The
edges incident to c1 (incident to c2), except for (c1, c2), are grouped into two
bundles B1(c1) and B2(c1) (resp. B1(c2) and B2(c2)). B1(c1) is made up of the
edges starting from (c1, bm) until, but not including, (c1, c2) in the clockwise
order of the edges incident to c1. B2(c1) is made up of the edges starting from
(c1, c2) until, but not including, (c1, bm) in the clockwise order of the edges in-
cident to c1. The other two bundles B1(c2) and B2(c2) are defined analogously.
P is divided into three subpaths: a subpath P1 = (c1, al, al−1, . . . , a2, a1), a
subpath P2 = (c1, b1, b2, . . . , bm, c2), and a subpath P3 = (c2, d1, d2, . . . , dp).

Draw (c1, c2) as a horizontal line segment, with c1 on the left. B1(c1) and
B2(c1) (B1(c2) and B2(c2)) are drawn inside wedges centered at c1 (resp. cen-
tered at c2) and directed rightward (resp. directed leftward), with B1(c1) above
(c1, c2) and B2(c1) below (c1, c2) (resp. with B1(c2) above (c2, c1) and B2(c2)
below (c2, c1)). Such wedges are disjoint and have the further property that
there exists an interval [x1, x2] of the x-axis that is common to all the wedges,
where [x1, x2] is a sub-interval of the x-extension of the edge (c1, c2). Draw each
edge inside the wedge of its bundle, respecting E and so that the following rules
are observed:

• the x-coordinate of a vertex bi is greater than the x-coordinate of a vertex
aj , with 1 ≤ i ≤ m and 1 ≤ j ≤ l;

• the x-coordinate of a vertex di is greater than the x-coordinate of a vertex
bj , with 1 ≤ i ≤ p and 1 ≤ j ≤ m;

• the x-coordinate of a vertex ai is greater than the x-coordinate of a vertex
aj , with 1 ≤ i < j ≤ l;

• the x-coordinate of a vertex bi is greater than the x-coordinate of a vertex
bj , with 1 ≤ j < i ≤ m; and



JGAA, 13(3) 447–465 (2009) 459

• the x-coordinate of a vertex di is greater than the x-coordinate of a vertex
dj , with 1 ≤ i < j ≤ p.

Note that each vertex has an x-coordinate in the open interval (x1, x2). Further,
edge (c1, bm) (edge (c2, b1)) of D is drawn so high (resp. so low) that edge
(c2, bm) (resp (c1, b1)) of P does not create crossings with the other edges of
the path. The absence of crossings in the drawing of D follows from the fact
that its edges are drawn inside disjoint regions of the plane. The absence of
crossings in the drawing of P follows from: (i) the absence of crossings in the
drawings of its subpaths, which in turn follows from the strictly increasing or
decreasing x-coordinates of its vertices; and (ii) from the fact that the subpaths
occupy disjoint regions, except for edges (c1, b1) and (c2, bm) which do not create
crossings, as already discussed. Thus, we have the following result:

Theorem 5 Any n-vertex double-star and any n-vertex path not sharing edges
admit a geometric simultaneous embedding in which the double-star has a pre-
scribed combinatorial embedding.

4 Near-Simultaneous Embedding

In this section we study the variation of geometric simultaneous embedding in
which vertices that represent the same entity in different graphs are allowed to
be placed at different points. The relaxation of the constraint that forces vertices
to be placed exactly at the same point should allow us to near-simultaneously
embed larger classes of graphs. However, in order to preserve the viewer’s
“mental map” corresponding vertices should be placed as close as possible. This
turns out to be impossible for general planar graphs, as Theorem 6 below shows.

Define the displacement of a vertex v between two drawings Γ1 and Γ2 as the
distance between the location of v in Γ1 and the location of v in Γ2. We show
that there exist two n-vertex planar graphsG1 andG2 with a bijection γ between
their vertices such that for any two planar straight-line grid drawings Γ1 and
Γ2 of G1 and G2, respectively, there exists a vertex v that has a displacement
Ω(n) between Γ1 and Γ2.

A nested triangles graph G is a triconnected planar graph that admits a
plane embedding E where a sequence c1, c2, . . . , cn/3 of vertex-disjoint 3-cycles
can be found such that ci contains ci+1 in its interior, for any 1 ≤ i < n/3.
Denote by F (G) the external face of a nested triangles graph G in such a plane
embedding E .

Let G1 and G2 be two nested triangles graphs, each on n vertices; see Fig. 7.
Suppose the mapping γ between the vertices in V (G1) and the vertices in V (G2)
is the one shown in Fig. 7. Formally, the mapping can be defined by the following
procedure: embedG1 andG2 with external faces F (G1) and F (G2), respectively.
Starting from G1, for i = 1, . . . , n/3, remove from the current graph the three
vertices of the external face and label them 3i, 3i−1, and 3i−2. Then, starting
from G2, for i = 1, . . . , n/3, remove from the current graph the three vertices
of the external face and label them as follows: If i is odd the three vertices get
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Figure 7: (a) Nested triangles graph G1; (b) Nested triangles graph G2.

labels 3(i+1)
2 , 3(i+1)

2 − 1, and 3(i+1)
2 − 2; if i is even the three vertices get labels

n+3i
2 , n+3i

2 −1, and n+3i
2 −2. Considering a near-simultaneous embedding of G1

and G2 leads to the following:

Theorem 6 There exist two planar graphs G1 and G2 such that, in any pair of
of planar straight-line grid drawings Γ1 of G1 and Γ2 of G2, a vertex representing
the same entity in G1 and G2 has displacement Ω(n) between Γ1 and Γ2.

Proof: Let G be a nested triangles graph that admits a plane embedding E
where a sequence c1, c2, . . . , ct of vertex-disjoint 3-cycles can be found such that
ci contains ci+1 in its interior, for any 1 ≤ i < t. A nested triangles graph is
triconnected, hence the only degree of freedom for obtaining a plane embedding
of such a graph is given by the choice of its external face. Choosing any external
face f for G leads to a plane embedding in which two sequences of nested 3-
cycles T1(G) and T2(G) can be found, one with t1 and the other with t2 3-cycles,
with 0 ≤ t1, t2 ≤ t and with t1 + t2 = t. In fact, choosing the face delimited by
c1 as external face for G leads to a plane embedding in which ci contains ci+1

in its interior, for 1 ≤ i < t. Analogously, choosing the face delimited by ct as
external face for G leads to a plane embedding in which ci+1 contains ci in its
interior, for 1 ≤ i < t. Finally, choosing any face that is between two cycles
ck and ck+1 in E as external face for G leads to a plane embedding in which
ci contains ci+1 in its interior, for k + 1 ≤ i < t, and ci+1 contains ci in its
interior, for 1 ≤ i < k. In any plane embedding of G with external face f , the
two sequences of nested 3-cycles T1(G) and T2(G) cover disjoint portions of the
plane. It is easy to see that there exist indices i and j, with i, j ∈ {1, 2}, such
that Ti(G1) and Tj(G2) share a linear number of vertices.

In a grid drawing of a nested triangles graph in which the external face is
chosen to be a triangular face, if two vertices v1 and v2 belong to two different
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3-cycles that are separated by t 3-cycles in the nested structure, then the x-
coordinate or the y-coordinate of the two vertices differs by at least t units.
Consider the sub-drawing of Γ2 corresponding to the subgraph T ∗ of Tj(G2)
made of k = an+bmost deeply nested 3-cycles of Tj(G2), with a and b constants.
Note that such a subgraph has a fixed plane embedding with outer face O.
Choose a and b so that the vertices incident to O belong also to Ti(G1). Now
consider the three most deeply nested 3-cycles c∗1, c∗2, and c∗3 of T ∗, such that c∗1
is nested inside c∗2 that is nested inside c∗3. We now have two cases to consider:

• If there is a vertex v of c∗1, of c∗2, or of c∗3 that does not belong to Ti(G1),
then it will be embedded outside T ∗ in Γ1. Since T ∗ is made of Ω(n)
nested 3-cycles, v is mapped in Γ2 into a point at distance Ω(n) from the
point where v is mapped in Γ1.

• Otherwise every vertex of c∗1, c∗2, and c∗3 belongs to Ti(G1). Note that the
labels of the vertices of c∗1 (of c∗2) differ from the labels of the vertices of
c∗2 (resp. of c∗3) by at least n

2 − 5 units and that in Ti(G1) there are Ω(n)
3-cycles separating c∗1 and c∗2. This implies that either the position of the
vertices of c∗1, or the position of the vertices of c∗2, or the position of the
vertices of c∗3 in Γ1 and in Γ2 is at distance Ω(n). 2

The lower bound in Theorem 6 concerning the distance between two consecu-
tive placements of a vertex in two different drawings is easily matched by an up-
per bound obtained by independently drawing each planar graph in O(n)×O(n)
area: Each vertex is displaced by at most the length of the diagonal of the draw-
ing’s bounding box. Clearly, such a diagonal has length O(n).

The above result shows that we cannot hope to guarantee near-simultaneous
embeddings for arbitrary pairs of planar graphs. However, near-simultaneous
embeddings of graphs can still lead to interesting theoretical results as well as
practical layout algorithms and heuristics. We next present several observations
and simple results:

• Different optimization criteria. Earlier we defined the goal of near-simulta-
neous embedding as the minimization of the maximum displacement of one
of the vertices of the graphs. However, several other goals could be pur-
sued. It is not difficult to modify the proof of Theorem 6 in order to prove
that a linear number of vertices has linear displacement among consecutive
drawings, hence it does not seem useful to consider global optimization
criteria such as the sum of the displacement of the vertices (that would
be quadratic, in the worst case). Nevertheless, it might be useful to find
other optimization functions that capture mental map preservation and
for which good theoretical bounds can be proved.

• Restriction to sub-classes of planar graphs. It would be worthwhile to
address the near-simultaneous embedding problem for certain subclasses
of planar graphs. In fact, the lower bound of Theorem 6 strongly relies
on the nested structures of cycles in the considered graphs. For several
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subclasses of planar graphs, e.g. for trees and outerplanar graphs, no
such a nesting can be forced, hence it is may be possible to find better
theoretical bounds on the maximum displacement of the vertices among
consecutive drawings.

• Restriction to similar graphs. In practice, consecutive graphs arising from
dynamic processes are similar. Intuitively, the concept of similarity has to
take into account the topology of the graph with respect to the labeling
of the vertices. The notion of similarity could be formalized in several
different ways. For example, if any two vertices are at a graph-theoretical
distance d in a certain graph of a sequence, in the next graph the two ver-
tices should be at distance at least d−k and at most d+k, for some positive
constant k. Drawing a sequence of consecutive paths by simply placing
each vertex v of a path P at point (δ(v), 0), where δ(v) is the position of
the vertex in the path, guarantees that, if the paths in the sequence are
similar, the displacement of each vertex is at most k. Concerning trees, an
analogous definition of similarity guarantees that near-simultaneous em-
beddings can be found. Two rooted ordered trees T1 and T2 are similar if
each vertex v that has depth d in T1 has depth at least d− k and at most
d+ k in T2 and if a tree traversal (e.g., pre-order, in-order, post-order or
breadth-first-search) has vertex v in position δ(v) in T1 and in position in
the range (δ(v)−k, δ(v)+k) in T2, for some positive constant k. Then, we
can draw each tree by placing each vertex v at point (δ(v), dT (v)), where
dT (v) is the depth of v in the rooted tree T , guaranteeing planar drawings
with constant displacement.

5 Conclusions and Future Work

In this paper we have considered several variations of the simultaneous graph
embedding problem. In particular, we studied the case in which no edges are
shared by the input graphs, the case in which the input graphs have fixed
embeddings, and the case in which vertices are allowed to be placed at nearby
points in different drawings.

In the case of geometric simultaneous embedding without common edges,
we provided a negative result that indicates that assuming the input graphs
to not share edges does not yield to much larger classes of graphs always ad-
mitting a geometric simultaneous embedding. Further, we believe that there
exist two trees not sharing common edges that have no geometric simultaneous
embedding. This would extend the result in [12] where an example of two trees
sharing edges and not admitting any simultaneous embedding is shown. We
now describe two trees that do not share edges and that we conjecture to have
no simultaneous embedding. Consider the two isomorphic rooted trees T1(h, k)
and T2(h, k) shown in Fig. 8 and whose topology is described below. Let γ
be the mapping between their vertices also shown in Fig. 8 and defined below.
Notice that T1(h, k) and T2(h, k) do not have any edges in common.
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Figure 8: Trees T1(3, 3) and T2(3, 3) with the mapping γ between their vertices. T1(3, 3)
has solid edges and T2(3, 3) has dashed edges.

• the root of T1(h, k) (of T2(h, k)) has k children;

• each vertex of T1(h, k) (of T2(h, k)) at distance i from the root, with
1 ≤ i < h, has a number of children equal to the number of vertices at
distance i from the root in T1(h, k) (resp. in T2(h, k)) minus one;

• exactly one vertex of T1(h, k) (of T2(h, k)) at distance h from the root has
one child;

• each child of the root of T1(h, k) is mapped to a distinct child of the root
of T2(h, k);

• for each pair of vertices v1 of T1(h, k) and v2 of T2(h, k), v2 6= γ(v1), that
are at distance i from the root of their own tree, there exists a child of v1
that is mapped to a child of v2;

• the only vertex of T1(h, k) (of T2(h, k)) that is at distance h+ 1 from the
root is mapped to the root of T2(h, k) (resp. to the root of T1(h, k)).

Conjecture 1 For sufficiently large h and k, T1(h, k) and T2(h, k) do not admit
a geometric simultaneous embedding with mapping γ between their vertices.

For the problem of drawing graphs simultaneously with fixed embedding,
we provided more negative results than in the usual setting for geometric si-
multaneous embedding, while providing only two positive results strengthening
analogous ones already known for geometric simultaneous embedding. We be-
lieve that studying the problem of constructing simultaneous embeddings of a
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tree and a path in which the tree has a fixed combinatorial embedding could be
useful for the same problem in the non-fixed embedding setting.

The time complexity of testing whether two graphs not sharing edges or
having fixed embeddings admit a geometric simultaneous embedding is not yet
known, even though it was recently shown that testing whether two graphs
admit a geometric simultaneous embedding is NP-hard [9].

Concerning the near-simultaneous embedding problem, we provided two n-
vertex planar graphs and a bijective mapping of their vertices such that, in
any pair of planar straight-line grid drawings of the graphs, there exist corre-
sponding vertices that must have linear displacement. In Section 4 we discussed
several research directions for near-simultaneous embedding and several related
problems. We would like to emphasize here a problem which seems to us partic-
ularly intriguing. Let G1 and G2 be two n-vertex graphs and let γ be a bijective
mapping among the vertices of G1 and G2. Suppose that, if two vertices u and
v of G1 are at graph-theoretic distance d in G1, then vertices γ(u) and γ(v) are
at graph-theoretic distance at least d − k1 and at most d + k1 in G2, for some
constant k1. Does a pair of straight-line grid drawings of G1 and G2 exist such
that, for every vertex u of G1, the displacement of u from γ(u) is at most k2,
for some constant k2 depending only on k1?
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