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Abstract

Given a graph G = (V, E), we say that a vertex subset S ⊆ V covers a
vertex v ∈ V if the edge-connectivity between S and v is at least a given
integer k, and also say that S covers an edge vw ∈ E if v and w are both
covered. We propose the multi-commodity source location problem, which
is such that given a vertex- and edge-weighted graph G, p players each
select q vertices, and obtain a profit that is the total over all players of
the weight of each player’s covered vertices and edges. However, vertices
selected by one player cannot be selected by the other players. The goal
is to maximize the total profits of all players. We show that the price of
greed, which indicates the ratio of the total profit of cooperating players to
that of selfish players based on an ordered strategy, is tightly bounded by
min{p, q}. Also when k = 2, we obtain tight bounds for vertex-unweighted
trees when sources are located on the leaves.
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1 Introduction

Given an undirected graph G = (V,E) with vertex set V , edge set E and an
edge capacity function, the edge-connectivity between S ⊆ V and v ∈ V is the
minimum total capacity of a set of edges such that v is disconnected from S by
removal of these edges. For a given integer k, where k ≥ 1, we say that a set
S ⊆ V of vertices (called sources) covers v ∈ V if the edge-connectivity between
S and v is at least k. The source location problem is to find a minimum-size
source set S ⊆ V covering all vertices in V . This problem has been studied
widely [2, 3, 6, 7, 8, 10, 13, 15], and such problems are important in the design
of networks resistant to the failure of edges.

In real networks, there are multiple service providers, and they locate servers
in networks in order to supply services. Thus we propose the multi-commodity
source location problem. In this problem, a network N = (G = (V,E), w, c) and
positive integers k, p and q are given, where G is an undirected connected graph
with |V | ≥ pq, c : E → Z+ is an edge capacity function, w : V ∪ E → R+

is a vertex- and edge-weight function, and p is the number of players. Here
Z+ (resp., R+) denotes the set of non-negative integers (resp., real numbers).
Players 1, 2, . . . , p each locate q sources on vertices of G. However, if a player
locates a source on a vertex, then it is unavailable for the other players to locate
a source on. Let player i’s profit be the total weight of vertices and edges covered
by the sources located by player i, where a source set S covers an edge e = vw
if both v and w are covered by S. The goal of this problem is to maximize the
sum of the profits of all players. When p = 1, the problem is the same as the
maximum-cover source-location problem [13]. This problem is NP-hard [14],
but it can be solved in polynomial time when k ≤ 3 [13, 12, 14].

In recent years, game theory has attracted attention in certain fields of
computer science. In various real problems, e.g., routing, network design and
scheduling, the selfish actions of agents are obstacles to the optimization of
social welfare. Such phenomena are modeled as games, and the influence of
selfish actions of players has been extensively analysed [1, 5, 11]. In this paper,
we consider the influence of selfish actions of providers on network reliability.
Generally the quality of service of newcomers is influenced by the actions of
preceding providers. For example, the location of servers becomes restricted
and consequently their profits may be smaller. We analyze the phenomenon by
means of a selfish model in the multi-commodity source location problem. In
our model, each player plays just once, in a fixed order, i.e., the “game” consists
of a single round.

The selfish model is such that players 1, 2, . . . , p in this order locate q sources
on vertices of G so as to maximize their own profits. Note that as described
previously, player i cannot locate sources on the vertices on which one of players
1, . . . , i − 1 has already located sources. We compare the social welfare of this
model to that of the case where all players cooperate, that is, optimal solutions
of the problem. Figure 1 shows an example when k = 2, p = 3 and q = 3. The
numbers beside vertices and edges denote their weights, and the edge capacities
are uniformly one. Selfish player 1 locates sources to maximize his/her profit
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Figure 1: An example of behaviours of selfish and optimal players when k = 2,
p = 3 and q = 3.

(see Fig. 1(a)). The source set {a, i, j} of player 1 covers vertices a, b, c, d, h, i, j
and he/she gets profit 29. Selfish player 2 then locates sources on vertices not
already occupied such that his/her own profit is maximum in this situation. The
source set {c, g, h} of player 2 covers vertices a, b, c, d, g, h and his/her profit is
25. Then, selfish player 3 does similarly and gets profit 6 since his/her source
set {b, e, f} covers vertices a, b, c, d, e, f . The total profit is 29 + 25 + 6 = 60.
In contrast, optimal players 1, 2 and 3 locate their sources as in Fig. 1(b), so
that the players share as many covered vertices and edges as possible. Optimal
players 1, 2 and 3 obtain profits 28, 27 and 25, respectively, and the total is 80.

As a measure of the influence of the selfish behaviour based on the ordering of
players, we propose the price of greed, which represents the ratio of the maximum
total profit of the cooperating players to the worst, i.e., minimum, total profit
of the selfish players. Formally, let the price of greed for the multi-commodity
source location problem be

POGk(N, p, q) =
the optimal total profit

the worst selfish total profit
.

The price of greed of the example in Fig. 1 is POG2(N, 3, 3) = (28 + 27 +
25)/(29 + 25 + 6) = 4/3.

A well-known similar measure, the price of anarchy is the ratio of the worst
cost of Nash equilibria of selfish players to the optimal cost [11]. The locations
of sources derived by our selfish model are Nash equilibria, since no player
can gain profit by changing their locations. However, the locations are only a
component of all Nash equilibria, and we analyze the influence of the greedy
behaviour based on the ordered strategy in our model. Thus we introduce the
new measure. Note also that for POG we deal with profits whereas for the price
of anarchy we consider costs. Thus, for POG we have the optimal profit in the
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numerator (the selfish profit in the denominator) whereas in the price of anarchy
the optimal cost is in the denominator (the selfish cost is in the numerator). Our
choice is such that the “price” of “selfish behaviour” is greater than one, and in
most of our results will be an integer.

Our Results Our goal is to analyze the maximum value of the price of greed
POGk(p, q) = maxN POGk(N, p, q). When k = 1, it is clear that POG1(p, q) =
1 for any p, q ≥ 1, since all vertices and all edges are covered, wherever the
sources are located. Hence we assume k ≥ 2.

Our main results are stated in the following two theorems which give tight
bounds on the price of greed. The first of these, for general k and arbitrary
networks N , is proved in Sect. 2.

Theorem 1 POGk(p, q) = min{p, q} for any k ≥ 2, p ≥ 1 and q ≥ 1.

Furthermore, we consider the case where k = 2 and the input graph G is re-
stricted to a vertex-unweighted tree where sources are located only on the leaves;
as in the general case, each edge has capacity at least 1 and weight at least 0.
This vertex-unweighted tree case is equivalent to the problem in which p play-
ers find the p subtrees induced by q leaves of the input tree such that the total
edge-weight of these p subtrees is a maximum. Maximum edge-weight trees have
many applications, e.g., communication networks [4, 9]. This is a special case
of the original problem. However, POG2(p, q) is less than that for the vertex-
and edge-weighted case by at most one. Note that if q = 1, then any optimal
and selfish player obtains no profit and hence we assume q ≥ 2.

Theorem 2 For vertex-unweighted trees and any p ≥ 1, POG2(p, 2) = min{p, 2}
and POG2(p, q) = min{p, q − 1} for q ≥ 3 when sources are located only on the
leaves.

Moreover, we also consider the case where sources are located on any vertex.
Tight bounds POG2(p, q) = min{p, q − 1} for q ≥ 3 and POG2(2, 2) = 4

3 are
obtained in this case. However, when q = 2 and p ≥ 3, POG2(p, 2) may be
smaller than that of the case of locating sources only on leaves.

2 Analysis of POGk(p, q) for the General Case

In this section we consider the case of an arbitrary network N and any number
k for the edge-connectivity.

Theorem 1 POGk(p, q) = min{p, q} for any k ≥ 2, p ≥ 1 and q ≥ 1.

Clearly, when p = 1 or q = 1, POGk(N, p, q) = 1 for any network N . We
will now assume that p ≥ 2 and q ≥ 2.

We begin by showing the upper bound in Lemma 2. Given a network N ,
let Wi (1 ≤ i ≤ p) be the profit of optimal player i. We assume without
loss of generality that W1 ≥ W2 ≥ · · · ≥ Wp. Let W ′

i (1 ≤ i ≤ p) be the
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Figure 2: An instance of POGk(N, p, q) = min{p, q}.

profit of selfish player i in the worst case, i.e., where the total profit is the
least. From the definition, W ′

1 ≥ W ′
2 ≥ · · · ≥ W ′

p holds, and POGk(N, p, q) =
(
∑p

i=1 Wi)/(
∑p

i=1 W ′
i ). Let Si (1 ≤ i ≤ p) be the set of sources located by

optimal player i and S′i (1 ≤ i ≤ p) be the set of sources located by selfish player
i. For a source set S ⊆ V , let wk(S) denote the total weight of vertices and
edges covered by S. Note that wk(Si) = Wi and wk(S′i) = W ′

i for i ∈ {1, . . . , p}.
Lemma 2 relies on the following lemma.

Lemma 1 For any i (1 ≤ i ≤ bp−1
q c+ 1), we have W ′

i ≥W(i−1)q+1.

Proof: When i = 1, the inequality W ′
1 ≥W1 evidently holds. Then we consider

i ≥ 2. Since |
⋃i−1

j=1 S′j | = (i− 1)q, at least one, Sr say, of S1, . . . , S(i−1)q+1 has
no common source with any of S′1, . . . , S

′
i−1. The profit W ′

i of selfish player i is
the largest profit when he/she locates sources on vertices in V \

⋃i−1
j=1 S′j . From

the above discussion, we obtain W ′
i ≥Wr ≥W(i−1)q+1. 2

Lemma 2 For any k ≥ 2, p ≥ 1 and q ≥ 1, we have POGk(p, q) ≤ min{p, q}.

Proof: From W ′
1 ≥Wi for any i, it is clear that POGk(N, p, q) ≤ (

∑p
i=1 Wi)/W ′

1

≤ p for any N , p ≥ 1 and q ≥ 1. Then we show POGk(p, q) ≤ q for
q < p as follows. From Lemma 1, for i ∈ {1, . . . , bp−1

q c + 1}, we have qW ′
i ≥

W(i−1)q+1 + · · · + Wiq (where we take Wv = 0 when v > p), and hence
q
∑p

i=1 W ′
i ≥

∑p
i=1 Wi. Therefore, we have POGk(p, q) ≤ q for q < p. 2

Proof of Theorem 1: We prove that the upper bound is tight by showing an
instance (N, k, p, q) in Fig. 2 that has POGk(N, p, q) = min{p, q} where p ≥ 2
and q ≥ 2. Let |X| = min{p, q}− 1 and |Y | = pq−min{p, q}− 1. The weight of
u is 1, the other vertices and all edges have weight 0, and the capacities of all
edges are dk/2e. In this case, a vertex is covered when it is on a path between
sources. If selfish player 1 obtains profit 1 by locating sources on X ∪ {u} (i.e.,
min{p, q} sources) and q − min{p, q} ones on Y ∪ {v}, then the other selfish
players obtain no profits. Hence the worst total selfish profit is 1. On the other
hand, each of the optimal players 1, . . . , min{p, q} obtains profit 1 by locating
one source on X ∪ {u} and q − 1 sources on Y ∪ {v}. Then the other optimal
players cannot obtain any profit. Hence the optimal total profit is min{p, q}.
Therefore, this instance has POGk(N, p, q) = min{p, q}. This completes the
proof of Theorem 1. 2
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3 Analysis of POG2(p, q) for Vertex-Unweighted
Trees

3.1 The Case of Locating Sources Only on Leaves

In this section, we deal with the case of k = 2, vertex-unweighted trees with
every edge of capacity 1 and weight at least 0, and where the players locate
sources only on the leaves of the tree. Locating sources on leaves does not make
the problem weak, since the case where sources can be located on any vertex can
be reduced to this case by adding a leaf l to every non-leaf vertex v and letting
the weight of the edge lv be 0. This problem is equivalent to the problem of
finding p subtrees induced by q leaves of the input tree such that the p subtrees
have maximum total edge-weight, and it is a basic and important problem in
network optimization problems [13].

Theorem 2 For vertex-unweighted trees and any p ≥ 1, POG2(p, 2) = min{p, 2}
and POG2(p, q) = min{p, q − 1} for q ≥ 3 when sources are located only on the
leaves.

Proof: The upper bounds for the cases q = 2 and q ≥ 3 are established in
Lemma 4; Lemma 5 shows that these bounds are tight. 2

Before proving Lemma 4, we prove the following useful lemma. Recall that
w2(s, v) is the total weight of edges in the the path from s to v.

Lemma 3 Let S0 = {s1, s2, . . . , sq} ⊆ V where q ≥ 3, v0 ∈ V \S0, and S a set
of sources. For j = 1, 2, . . . , q, let Sj = (S0 ∪ {v0}) \ {sj}. If

(a) S satisfies w2(Sj) ≤ w2(S) for any j ∈ {1, . . . , q}, and
(b) there exists t ∈ {1, . . . , q} such that w2(St) ≤ w2(S0),

then
∑q

j=1 w2(sj , v0) ≤ (q − 1)w2(S).

Proof: Let Pj be the set of edges on the path between sj and v0 for j ∈
{1, . . . , q}. Let X =

⋂q
j=1 Pj be the set of edges contained in all of P1, . . . , Pq,

and let Y =
⋃

1≤j<`≤q(Pj ∩P`) \X be the set of edges contained in at least two
of P1, . . . , Pq and not contained in X (see Fig. 3). Let x (resp., y) be the total
weight of the edges in X (resp., Y ). Moreover, let aj be the total weight of the
edges in Pj \ (X ∪ Y ) (see Fig. 3). We abbreviate

∑q
j=1 aj by A.

From the definition, the following inequality holds.

q∑
j=1

w2(sj , v0) ≤ qx + (q − 1)y +
q∑

j=1

aj = qx + (q − 1)y + A . (1)

From condition (a) in Lemma 3, for any j ∈ {1, . . . , q},

w2(Sj) = x + y +
∑

1≤i≤q:i6=j

ai

= x + y + A− aj ≤ w2(S) . (2)
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Summing (2) for all j 6= t with 1 ≤ j ≤ q, where t satisfies the condition (b),
yields

(q − 1)(x + y + A)− (A− at) ≤ (q − 1)w2(S) .

From (b), x ≤ at, since w2(St) = x + y + A− at ≤ y + A = w2(S0). Thus,

qx + (q − 1)y + (q − 2)A ≤ (q − 1)w2(S) . (3)

The proof can then be completed, as

q∑
j=1

w2(sj , v0) ≤ qx + (q − 1)y + A (from (1))

≤ (q − 1)w2(S)− (q − 3)A (from (3))
≤ (q − 1)w2(S) . (since q ≥ 3)

2

Lemma 4 For vertex-unweighted trees and any p ≥ 1, POG2(p, 2) ≤ min{p, 2}
and POG2(p, q) ≤ min{p, q − 1} for q ≥ 3.

Proof: From Lemma 2, POG2(p, q) ≤ min{p, q} for any p ≥ 1 and q ≥ 2. It
therefore remains to show POG2(p, q) ≤ q − 1 for p ≥ q ≥ 3 in the following
part. Let v0 be a source in the set

⋃p
i=1 Si of sources located by all optimal

players; suppose without loss of generality that v0 ∈ St for some t: 1 ≤ t ≤ p.
Since for any subset X ⊆ V of at least 3 elements, it holds that w2(X) ≤
w2(X \ {xj}) + w2(xi, xj) for any two distinct elements xi, xj of X, we have

Wt = w2(St) ≤
∑

s∈St\{v0}

w2(s, v0) ,

and for 1 ≤ i ≤ p and i 6= t

Wi = w2(Si) ≤ w2(Si ∪ {v0}) ≤
∑
s∈Si

w2(s, v0) .v0ys3 a7s5s4s2s1 s7s6xa1a2 a5a4 a6a3
Figure 3: The edges on the dotted line are in X and those on the bold lines are
in Y .
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If we sum each side of the inequalities, then for any v0 ∈
⋃p

i=1 Si,

p∑
i=1

Wi ≤
∑

s∈(⋃p
i=1 Si)\{v0}

w2(s, v0) . (4)

In the rest of the proof, we consider two cases (i)
⋃p

i=1 S′i =
⋃p

i=1 Si and (ii)⋃p
i=1 S′i 6=

⋃p
i=1 Si.

Case (i):
⋃p

i=1 S′i =
⋃p

i=1 Si. Pick v0 ∈ S′p. Since v0 ∈
⋃p

i=1 S′i, then v0 ∈⋃p
i=1 Si.

For i ∈ {1, . . . , p − 1}, let S0 := S′i and S := S′i (= S0), and let Sj :=
(S0 ∪ {v0}) \ {sj} for each sj ∈ S0 with j ∈ {1, . . . , q}. Then |S0| ≥ 3 from
the assumption, and v0 6∈ S0, since S0 = S′i for i ∈ {1, . . . , p− 1} and v0 ∈ S′p.
For S0, v0, and S, conditions (a) and (b) of Lemma 3 hold. Because w2(Sj) ≤
w2(S) = W ′

i (= w2(S′i)) for any j ∈ {1, . . . , q} (i.e., (a) holds) from v0 ∈ S′p
and the behaviour of selfish player i for 1 ≤ i ≤ p− 1; moreover, condition (b)
clearly holds, since (a) implies (b) in the case of S = S0. Then, from Lemma 3,
for each i ∈ {1, . . . , p− 1},∑

s′∈S′
i

w2(s′, v0) ≤ (q − 1)w2(S′i) = (q − 1)W ′
i . (5)

Inequality (5) holds for each i with 1 ≤ i ≤ p − 1. On the other hand, for any
s′ ∈ S′p, w2(s′, v0) ≤W ′

p, since v0 ∈ S′p. Hence∑
s′∈S′

p\{v0}

w2(s′, v0) ≤ (q − 1)W ′
p . (6)

Consequently, if we sum up (5) for 1 ≤ i ≤ p− 1 and (6), we get

∑
s′∈(⋃p

i=1 S′
i)\{v0}

w2(s′, v0) ≤ (q − 1)
p∑

i=1

W ′
i . (7)

Since
⋃p

i=1 S′i =
⋃p

i=1 Si, the left side of (7) is equal to the right side of (4), so

p∑
i=1

Wi ≤
∑

s∈(⋃p
i=1 Si)\{v0}

w2(s, v0)

=
∑

s′∈(⋃p
i=1 S′

i)\{v0}

w2(s′, v0)

≤ (q − 1)
p∑

i=1

W ′
i .

Therefore, POG2(p, q) ≤ q − 1, for any p, q with p ≥ q ≥ 3.
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y1y2y3 888 11 21 1 1555 z1 z2 z3 = v0z40

Figure 4: An example of Case (i).

Figure 4 shows an example. When each of 3 players locates 3 sources,
source sets S1 = {x1, y1, z1}, S2 = {x2, y2, z2} and S3 = {x3, y3, z3} are op-
timal whereas the sets S′1 = {x1, x2, x3}, S′2 = {y1, y2, y3} and S′3 = {z1, z2, z3}
are the selfish source sets. Hence

⋃3
i=1 S′i =

⋃3
i=1 Si. We select an arbitrary

source v0 in S′3, and let v0 = z3 (Fig. 4).
For the set S′1 and vertex v0, let S0 := S′1; then, |S0| ≥ 3 and v0 6∈ S0, since

v0 ∈ S′3. Let S := S′1 (i.e., S = S0 = S′1) and Sj := (S0 ∪ {v0}) \ {xj} for
xj ∈ S0 with j ∈ {1, 2, 3}. Then w2(Sj) ≤ w2(S) = w2(S0) (= w2(S′1)) for each
j ∈ {1, 2, 3} clearly. Hence conditions (a) and (b) of Lemma 3 hold. Similarly,
for the set S′2 and vertex v0, conditions (a) and (b) hold. In fact,

32 =
3∑

i=1

w2(xi, v0) ≤ 2w2(S′1) = 48 , and

27 =
3∑

i=1

w2(yi, v0) ≤ 2w2(S′2) = 30 .

On the other hand, since z1, z2, v0 ∈ S′3, w2(z1, v0) ≤ w2(S′3) and w2(z2, v0) ≤
w2(S′3). Hence

4 = w2(z1, v0) + w2(z2, v0) ≤ 2w2(S′3) = 6 .

Thus from (4),

W1 + W2 + W3 ≤
3∑

i=1

(w2(xi, v0) + w2(yi, v0)) +
2∑

i=1

w2(zi, v0)

≤ 2(w2(S′1) + w2(S′2) + w2(S′3)) = 2(W ′
1 + W ′

2 + W ′
3) .

Case (ii):
⋃p

i=1 S′i 6=
⋃p

i=1 Si. In this case, there exist selfish source sets S′i
with S′i 6⊆

⋃p
j=1 Sj . Let S′`(1), S

′
`(2), . . . , S

′
`(h) with `(1) < `(2) < · · · < `(h) be

such source sets.
For each S′`(i) with 1 ≤ i ≤ h, we make a new source set S′′`(i) ⊆

⋃p
j=1 Sj

with |S′′`(i)| = q in the following way. Let T`(i) = S′`(i) ∩ (
⋃p

j=1 Sj) be a source
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x1 x2 x3
y1y2y3 888 11 21 1 1554 z1 z2 z3 = v0 z51y4 2 z41

Figure 5: An example of Case (ii).

set that consists of the sources contained not only in S′`(i) but also contained
in some of the optimal sources S1, . . . , Sp. For T`(1), we select r (= q − |T`(1)|)
sources s1, . . . , sr from

⋃p
i=1 Si \

⋃p
i=1 S′i and let S′′`(1) = T`(1) ∪ {s1, . . . , sr};

the vertices s1, . . . , sr are selected so as to maximize the total weight W ′′
`(1) :=

w2(S′′`(1)) of edges covered by S′′`(1). Similarly, S′′`(2) is constructed by augmenting
T`(2) with q − |T`(2)| more sources from not-yet-selected vertices in

⋃p
i=1 Si \⋃p

i=1 S′i so as to maximize the total weight W ′′
`(2) := w2(S′′`(2)). By repeating

the above operations, S′′`(1), . . . , S
′′
`(h) are obtained. Note that W ′′

`(i) ≤W ′
`(i) for

i ∈ {1, . . . , h}, from the behaviour of selfish players.
We show an example of selecting S′′`(i) in Fig. 5, where p = 3 and q = 3. Op-

timal source sets are S1 = {x1, y1, z1}, S2 = {x2, y2, z2} and S3 = {x3, y3, z3},
while S′1 = {x1, x2, x3}, S′2 = {y1, y2, z4} and S′3 = {y3, y4, z5} are selfish source
sets. Since S′2 6⊆

⋃3
i=1 Si and S′3 6⊆

⋃3
i=1 Si, `(1) = 2 and `(2) = 3. Moreover,

T`(1) = S′2 ∩ (
⋃3

i=1 Si) = {y1, y2} and T`(2) = S′3 ∩ (
⋃3

i=1 Si) = {y3}. Next, we
construct S′′2 and S′′3 . For each source v in

⋃3
i=1 Si \

⋃3
i=1 S′i = {z1, z2, z3},

we add it to T`(1) = {y1, y2}, trying to maximize w2(y1, y2, v). The max-
imum is obtained for v = z1, and so S′′2 = {y1, y2, z1}. Similarly, we se-
lect not-yet-selected sources z2 and z3, and let S′′3 = {y3, z2, z3}. Clearly,
w2(S′′2 ) ≤ w2(S′2) and w2(S′′3 ) ≤ w2(S′3). Moreover, we select an arbitrary
source v0 ∈ {z2, z3} (= S′′3 \ T`(2)), e.g., let v0 = z3 in Fig. 5.

Let S′′`(i) = {s′′`(i),1, . . . , s
′′
`(i),q} for i ∈ {1, . . . , h} and let v0 ∈ S′′`(h) \ T`(h)

be a source of selfish player `(h) which is selected in the above operation. Note
that v0 ∈

⋃p
i=1 Si.

Next, we apply Lemma 3 to S′′`(i), v0 and S′i for i ∈ {1, . . . , h− 1} as follows.
Let S0 := S′′`(i) for i ∈ {1, . . . , h − 1}, then |S0| = q ≥ 3 from the assumption,
and v0 6∈ S0, since v0 ∈ S′′`(h). Let S := S′i (i.e., w2(S) = W ′

`(i)). Moreover,
for each j ∈ {1, . . . , q}, let Sj := (S0 ∪ {v0}) \ {s′′`(i),j} for s′′`(i),j ∈ S0 (= S′′`(i))
with i ∈ {1, . . . , h − 1}. Now we verify that condition (a) of Lemma 3 holds.
Because the source set S′i (= S) has the maximum profit W ′

i (= w2(S)) among
sets of q sources located on vertices in V \(

⋃
1≤r≤i−1 S′r). Thus, w2(Sj) ≤ w2(S)
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for any j ∈ {1, . . . , q}. Moreover, condition (b) also holds. If there exists no
t ∈ {1, . . . , q} such that w2(St) ≤ w2(S0) (= w2(S′′`(i))), then w2(Sj) > w2(S′′`(i))
for each j ∈ {1, . . . , q}, and hence it contradicts the definition of S′′`(i), since we
should have selected v0 instead of s′′`(i),j in the above operation. Therefore, from
Lemma 3, for q ≥ 3,

q∑
j=1

w2(s′′`(i),j , v0) ≤ (q − 1)W ′
`(i) . (8)

On the other hand, for any s′′ ∈ S′′`(h), w2(s′′, v0) ≤ W ′′
`(h) since v0 ∈ S′′`(h).

Hence ∑
s′′∈S′′

`(h)\{v0}

w2(s′′, v0) ≤ (q − 1)W ′′
`(h) ≤ (q − 1)W ′

`(h) . (9)

In addition, we consider the selfish source sets S′i other than S′`(1), S
′
`(2), . . . , S

′
`(h).

For each such S′i, inequality (5) holds, i.e.,∑
s′∈S′

i

w2(s′, v0) ≤ (q − 1)W ′
i . (10)

Let S′ =
⋃p

i=1 S′i \
⋃h

i=1 S′`(i), and S′′ =
⋃h

i=1 S′′`(i). Now S′ ∪ S′′ is equal to
the union

⋃p
i=1 Si of the optimal source sets. Thus, the summation of the left

side of inequalities (8), (9) and (10) is equal to the right side of (4), i.e.,

p∑
i=1

Wi ≤
∑

s∈(⋃p
i=1 Si)\{v0}

w2(s, v0)

=
∑

s′′∈S′′\{v0}

w2(s′′, v0) +
∑

s′∈S′

w2(s′, v0)

=
h−1∑
i=1

q∑
j=1

w2(s′′`(i),j , v0) +
∑

s′′∈S′′
`(h)\{v0}

w2(s′′, v0) +
∑

s′∈S′

w2(s′, v0)

≤ (q − 1)
p∑

i=1

W ′
i .

Therefore, POG2(p, q) ≤ q − 1, for any p, q with p ≥ q ≥ 3. 2

Next, we prove that the upper bounds in Lemma 4 are tight by showing the
following lemma.

Lemma 5 For vertex-unweighted trees and any p ≥ 1, POG2(p, 2) ≥ min{p, 2}
and POG2(p, q) ≥ min{p, q − 1} for any q ≥ 3.
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Figure 6: An instance of POG2(N, p, 2) = min{p, 2}.

Proof: This is proved by showing an instance (N, k, p, q) that has POG2(N, p, 2) =
min{p, 2} and POG2(N, p, q) = min{p, q − 1} for q ≥ 3.

When p = 1, clearly POG2(N, 1, q) = 1 for any network N and q ≥ 2.
In the case of q > p ≥ 2, consider the previously shown Fig. 2, but assume

that the weight of the edge uv is 1 and the weights of the other edges are 0. Let
|X| = p, |Y | = pq − p. Selfish player 1 may locate p sources on X and q − p
sources on Y , and obtain profit 1. Then the other selfish players cannot obtain
any profit. Each of the optimal players 1, 2, . . . , p obtains profit 1 by locating
one source on X and q − 1 sources on Y , and so the total optimal profit is p.
This network N has POG2(N, p, q) = p = min{p, q − 1}.

For p ≥ q ≥ 3, in Fig. 2 again let the weight of the edge uv be 1 and
that of the other edges be 0. Let |X| = q − 1 and |Y | = pq − q + 1. Selfish
player 1 may locate q−1 sources on X and one source on Y , and obtain profit 1,
while the other selfish players obtain no profits. Each of the optimal players
1, 2, . . . , q − 1 (≤ p) obtains profit 1 by locating one source on X and q − 1
sources on Y , and the other optimal players obtain no profit. The total optimal
profit is q−1, and so this network N has POG2(N, p, q) = q−1 = min{p, q−1}.

For the remaining case, p ≥ 2 and q = 2, we show that POG2(N, p, 2) = 2
for the network N in Fig. 6. The numbers beside edges denote their weights,
and |Y | = 2p − 2. Selfish player 1 may locate two sources on X and obtains
profit 2, while the other selfish players obtain no profits. On the other hand,
optimal players 1 and 2 each obtain profit 2, by locating one source on X and
the other one on Y . The other optimal players obtain no profits. Hence the
least selfish total profit and the optimal one are 2 and 4, respectively. Hence
POG2(N, p, 2) = 2 for this network N . Therefore POG2(N, p, 2) = min{p, 2}
for p ≥ 2 and q = 2. This completes the proof of the lemma. 2

Note that even if we do not assume that sources are located only on the
leaves, there exist instances equivalent to those for p ≥ q ≥ 3 and for q > p ≥ 2
in the proof of Lemma 5 by removing an arbitrary leaf from X and also one
from Y .

3.2 The Case of Locating Sources on Any Vertex

In this section, we assume that players can locate sources on any vertex. This
problem is weaker than the case of locating only on leaves in Sect. 3.1, since this
case can be reduced to the case in Sect. 3.1 by adding a leaf to every non-leaf
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vertex as we discussed above. However the reverse is not always clear. In fact,
when q = p = 2, we show that an upper bound is lower.

When q = 1, no player obtains profits. Moreover, when p = 1, POG2(1, q) =
1 for q ≥ 2 clearly. Hence we assume q ≥ 2 and p ≥ 2. We show the upper and
lower bounds for this case in the following theorem.

Theorem 3 When k = 2 and sources can be located on any vertex in vertex-
unweighted trees, POG2(p, q) is as follows.

(I) POG2(p, q) = min{p, q − 1} for q ≥ 3,

(II) POG2(2, 2) = 4
3 ,

(III) 2− 1
p ≤ POG2(p, 2) ≤ 2 for odd p ≥ 3, and

(IV) 2− 1
p−1 ≤ POG2(p, 2) ≤ 2 for even p ≥ 4.

First, we show the lower bounds of the price of greed for this case in the
following lemma.

Lemma 6 When sources can be located on any vertex in vertex-unweighted
trees,

(1) POG2(p, q) ≥ min{p, q − 1} for q ≥ 3,

(2) POG2(2, 2) ≥ 4
3 .

(3) POG2(p, 2) ≥ 2− 1
p for odd p ≥ 3, and

(4) POG2(p, 2) ≥ 2− 1
p−1 for even p ≥ 4.

Proof: We prove the lower bounds by showing an instance (N, k, p, q).

(1) There exist instances equivalent to those for p ≥ q ≥ 3 and for q > p ≥ 2
in the proof of Lemma 5, by removing an arbitrary leaf from X and also
one from Y in Fig. 2. Thus POG2(p, q) ≥ min{p, q − 1} for q ≥ 3.

(2) We show an instance with POG2(N, 2, 2) = 4
3 in Fig. 7. The numbers

beside edges denote their weights. Let |X| = 2 and |Y | = 2. (Fig. 7 is
used in cases (3) and (4) also, and the tree is illustrated as having many
leaves.) Optimal players 1 and 2 obtain profit 2 by locating one source
on X and the other on Y ∪ {v}, respectively. Hence the total profit is
4. On the other hand, if selfish player 1 locates two sources on X and
obtains profit 2, then selfish player 2 obtains profit 1 by locating two
sources on u and v. The total profit is 3. Therefore, this instance has
POG2(N, 2, 2) = 4

3 .
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Figure 7: An instance giving the lower bounds for p = 2.

(3) For odd p ≥ 3 let |X| = p−1 and |Y | be sufficiently large in Fig. 7. Optimal
player i with i ∈ {1, . . . , p−1} locates one source on X and the other source
on Y , and obtains profit 2. Optimal player p obtains profit 1 by locating
two sources on u and v. Hence the total profit is 2(p − 1) + 1 = 2p − 1.
On the other hand, if selfish player i with i ∈ {1, . . . , p−1

2 } locates two
sources on X and obtains profit 2, then selfish player p+1

2 obtains profit 1
by locating two sources on u and v. Note that p−1

2 and p+1
2 are positive

integers, since p ≥ 3 is odd. The other selfish players cannot obtain profit.
Hence the total profit is 2(p−1

2 ) + 1 = p. Therefore, this instance has
POG2(N, p, 2) = 2p−1

p = 2− 1
p for odd p ≥ 3.

(4) For even p ≥ 4, let |X| = p − 2 and |Y | be sufficiently large in Fig. 7.
Optimal and selfish players locate sources similarly to (3). Then it is
shown that this instance has POG2(p, 2) = 2− 1

p−1 for even p ≥ 4. 2

The following lemma shows that the lower bound in Lemma 6 is tight for
q = p = 2.

Lemma 7 When k = 2 and sources are located on any vertex in vertex-unweighted
trees, POG2(2, 2) ≤ 4

3 .

Proof: First, if S′1 ∩ S1 = ∅, then W ′
2 ≥ W1, since selfish player 2 optimally

locates sources on the vertices other than the two vertices in S′1. In this case,
POG2(N, 2, 2) = 1, since W ′

1 ≥W ′
2 ≥W1 ≥W2. Moreover, if S′1 ∩S2 = ∅, then

W ′
2 ≥ W2 for similar reasons. By considering W ′

1 ≥ W1, POG2(N, 2, 2) = 1 in
this case as well. Thus we assume that S′1∩S1 6= ∅ and S′1∩S2 6= ∅. Concretely,
let S′1 = {s1, s2}, S1 = {s1, s3}, and S2 = {s2, s4}.

Now we consider the case in which W1 +W2 > W ′
1 +W ′

2. Then the two paths
between the two vertices in S1 and those in S2 have common edges, since if the
two paths have no common edges, then the two source sets {s1, s2} and {s3, s4}
cover the same edges as S1 and S2, and hence this contradicts the optimality
of S1 and S2 or W1 + W2 = W ′

1 + W ′
2 holds. The common edges induce a

path P . Let u1 ∈ V (P ) be the endpoint of P that is the nearest to s1 (see
Figs. 8(a) and (b)), and let u′1 ∈ V (P ) be the endpoint of P that is the nearest
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to s2. If u1 6= u′1 (see Fig. 8(a)), then W1 + W2 = W ′
1 + w2(s3, s4) and because

W ′
2 ≥ w2(s3, s4), we get W1 +w2 ≤W ′

1 +W ′
2, a contradiction. Thus we consider

the case of u1 = u′1 (see Fig. 8(b)).
Let u2 ∈ V (P ) be the other endpoint of P . Figure 8(c) denotes the positional

relation of the vertices s1, s2, u1 and u2. Let a, b, . . . , e in Fig. 8 denote the
weights of paths, e.g., the weight of the path from s1 to u1 is a, where the weight
of a path means the total weight of the edges in the path. From the definitions
of u1 and u2, the sources s3 and s4 are located on two of the three vertices u2,
v1 and v2 in Fig. 8(c).s1s4 s2s3u1 (a) s1s2 u1 = u01(b)u01 ab c eds1s2 u2u1(c)s4s3 v2v1

Figure 8: Proof of Lemma 7.

Since S′1 = {s1, s2}, W ′
1 = a+ b. The path between s1 and s2 has the largest

weight of all the paths. Hence, from the paths s1v2 and s2v2, we have a ≥ c + e
and b ≥ c + e, respectively. Thus,

W ′
1 = a + b ≥ 2(c + e)

c + e ≤ 1
2
W ′

1. (11)

Additionally, since selfish player 2 optimally locates sources on the vertices other
than s1 and s2,

W ′
2 ≥ c + d (12)

and W ′
2 ≥ c + e. (13)

Since s3 and s4 are located on two of the three vertices u2, v1, and v2,

W1 + W2 ≤ a + b + 2c + d + e.

From W ′
1 = a + b and (12),

W1 + W2 ≤ W ′
1 + W ′

2 + c + e

= W ′
1 + W ′

2 +
2
3

(c + e) +
1
3

(c + e)

≤ W ′
1 + W ′

2 +
1
3
W ′

1 +
1
3
W ′

2 (from (11) and (13))

=
4
3

(W ′
1 + W ′

2).

Therefore, POG2(2, 2) ≤ 4
3 . 2



70 H. Ito et al. Source Location and Price of Greed

Now Theorem 3 follows.

Proof of Theorem 3: The lower bounds for cases (I), (II), (III) and (IV) are
immediate from Lemma 6. We show the upper bound for each case.

(I) For q ≥ 3, the upper bound POG2(p, q) ≤ min{p, q − 1} in Lemma 4 is
available, since this problem is contained in the case in Sect. 3.1. Hence
the tight bound POG2(p, q) = min{p, q − 1} for q ≥ 3 is obtained.

(II) For q = p = 2, the upper bound is immediate from Lemma 7. The tight
bound POG2(2, 2) = 4

3 is obtained in this case.

(III) For p = 2 and p ≥ 3, the upper bound POG2(p, 2) ≤ 2 is immediate from
Lemma 2. Consequently, 2− 1

p ≤ POG2(p, 2) ≤ 2 for odd p ≥ 3.

(IV) Similarly to case (III), the upper bound POG2(p, 2) ≤ 2 in Lemma 2 is
available. Hence 2− 1

p−1 ≤ POG2(p, 2) ≤ 2 for even p ≥ 4. 2

4 Conclusions and Future Work

In this paper, we presented a new problem, the multi-commodity source location
problem and analyzed the value of the price of greed. We showed the tight bound
POGk(p, q) = min{p, q} in the general case for any k ≥ 2, p ≥ 1 and q ≥ 1.
In addition, for a vertex-unweighted tree and k = 2, we showed POG2(p, q) =
min{p, q−1} for q ≥ 3, and POG2(p, 2) = min{p, 2} for any p ≥ 1 if the players
locate sources only on the leaves.

Without the assumption that sources are located only on leaves, we also
show that POG2(p, q) for q ≥ 3 is tightly bounded by min{p, q − 1}, which
is the same as that under the assumption. However, POG2(p, 2) for q = 2 is
distinct. In fact, for q = p = 2 we obtain the tight bound POG2(2, 2) = 4/3.
In addition, for general p, we can only give lower bounds POG2(p, 2) ≥ 2− 1/p
for odd p ≥ 3 and POG2(p, 2) ≥ 2− 1/(p− 1) for even p ≥ 4, while the upper
bound for p ≥ 3 and q = 2 is 2. We conjecture these lower bounds are tight.

Further work is to analyze the value of the price of greed and the behaviours
of selfish players when each player in turn locates sources one at a time. It would
also be interesting to consider the problem when all players simultaneously
locate sources, with possibly several players choosing the same vertices. The
profit of vertices and edges covered by several players’ sources would be divided
among those players in some appropriate way.
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