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Abstract

A straight-line grid drawing of a planar graph G is a drawing of G on
an integer grid such that each vertex is drawn as a grid point and each
edge is drawn as a straight-line segment without edge crossings. It is well
known that a planar graph of n vertices admits a straight-line grid drawing
on a grid of area O(n2). A lower bound of Ω(n2) on the area-requirement
for straight-line grid drawings of certain planar graphs are also known. In
this paper, we introduce a fairly large class of planar graphs which admits
a straight-line grid drawing on a grid of area O(n). We give a linear-
time algorithm to find such a drawing. Our new class of planar graphs,
which we call “doughnut graphs,” is a subclass of 5-connected planar
graphs. We show several interesting properties of “doughnut graphs”
in this paper. One can easily observe that any spanning subgraph of a
“doughnut graph” also admits a straight-line grid drawing with linear
area. But the recognition of a spanning subgraph of a “doughnut graph”
seems to be a non-trivial problem, since the recognition of a spanning
subgraph of a given graph is an NP-complete problem in general. We
establish a necessary and sufficient condition for a 4-connected planar
graph G to be a spanning subgraph of a “doughnut graph.” We also give
a linear-time algorithm to augment a 4-connected planar graph G to a
“doughnut graph” if G satisfies the necessary and sufficient condition.
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1 Introduction

Recently automatic aesthetic drawings of graphs have created intense interest
due to their broad applications in computer networks, VLSI layout, information
visualization etc., and as a consequence a number of drawing styles have come
out [4, 11, 14, 16]. A classical and widely studied drawing style is the “straight-
line drawing” of a planar graph. A straight-line drawing of a planar graph G is
a drawing of G such that each vertex is drawn as a point and each edge is drawn
as a straight-line segment without edge crossings. A straight-line grid drawing
of a planar graph G is a straight-line drawing of G on an integer grid such that
each vertex is drawn as a grid point as shown in Figure 1(b).
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Figure 1: (a) A planar graph G, (b) a straight-line grid drawing of G with area
O(n2), (c) a doughnut embedding of G and (d) a straight-line grid drawing of
G with area O(n).

Wagner [19], Fary [6] and Stein [18] independently proved that every planar
graph G has a straight-line drawing. Their proofs immediately yield polynomial-
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time algorithms to find a straight-line drawing of a given plane graph. However,
the area of a rectangle enclosing a drawing on an integer grid obtained by these
algorithms is not bounded by any polynomial of the number n of vertices inG. In
fact, to obtain a drawing of area bounded by a polynomial remained as an open
problem for long time. In 1990, de Fraysseix et al. [3] and Schnyder [17] showed
by two different methods that every planar graph of n ≥ 3 vertices has a straight-
line drawing on an integer grid of size (2n− 4)× (n− 2) and (n− 2)× (n− 2),
respectively. Figure 1(b) illustrates a straight-line grid drawing of the graph G
in Figure 1(a) with area O(n2). A natural question arises: what is the minimum
size of a grid required for a straight-line drawing? de Fraysseix et al. showed
that, for each n ≥ 3, there exists a plane graph of n vertices, for example nested
triangles, which needs a grid size of at least b2(n − 1)/3c × b2(n − 1)/3c for
any grid drawing [2, 3]. Recently Frati and Patrignani showed that n2/9 +
Ω(n) area is necessary for any planar straight-line drawing of a nested triangles
graph [7]. (Note that a plane graph is a planar graph with a given embedding.)
It has been conjectured that every plane graph of n vertices has a grid drawing
on a d2n/3e × d2n/3e grid, but it is still an open problem. For some restricted
classes of graphs, more compact straight-line grid drawings are known. For
example, a 4-connected plane graph G having at least four vertices on the outer
face has a straight-line grid drawing with area (dn/2e− 1)× (bn/2c) [15]. Garg
and Rusu showed that an n-node binary tree has a planar straight-line grid
drawing with area O(n) [9]. Although trees admit straight-line grid drawings
with linear area, it is generally thought that triangulations may require a grid
of quadratic size. Hence finding nontrivial classes of planar graphs of n vertices
richer than trees that admit straight-line grid drawings with area o(n2) is posted
as an open problem in [1]. Garg and Rusu showed that an outerplanar graph
with n vertices and maximum degree d has a planar straight-line drawing with
area O(dn1.48) [10]. Recently Di Battista and Frati showed that a “balanced”
outerplanar graph of n vertices has a straight-line grid drawing with area O(n)
and a general outerplanar graph of n vertices has a straight-line grid drawing
with area O(n1.48) [5].

In this paper, we introduce a new class of planar graphs which has a straight-
line grid drawing on a grid of area O(n). We give a linear-time algorithm to
find such a drawing. Our new class of planar graphs is a subclass of 5-connected
planar graphs, and we call the class “doughnut graphs” since a graph in this
class has a doughnut-like embedding as illustrated in Figure 1(c). In an em-
bedding of a “doughnut graph” of n vertices, there are two vertex-disjoint faces
each having exactly n/4 vertices and each of all the other faces has exactly three
vertices. Figure 1(a) illustrates a “doughnut graph” of 16 vertices where each of
the two faces F1 and F2 contains four vertices and each of all other faces contains
exactly three vertices. Figure 1(c) illustrates a doughnut-like embedding of G
where F1 is embedded as the outer face and F2 is embedded as an inner face. A
straight-line grid drawing of G with area O(n) is illustrated in Figure 1(d). The
outerplanarity of a “doughnut graph” is 3. Thus “doughnut graphs” introduce
a subclass of 3-outerplanar graphs that admits straight-line grid drawing with
linear area. One can easily observe that any spanning subgraph of a “dough-
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nut graph” also admits a straight-line grid drawing with linear area. But the
recognition of a spanning subgraph of a given graph is an NP-complete problem
in general. We establish a necessary and sufficient condition for a 4-connected
planar graph to be a spanning subgraph of a “doughnut graph.” We also pro-
vide a linear-time algorithm to augment a 4-connected graph G to a “doughnut
graph” if G satisfies the necessary and sufficient condition. This gives us a new
class of graphs which is a subclass of 4-connected planar graphs that admits
straight-line grid drawings with linear area.

The remainder of the paper is organized as follows. In Section 2, we give
some definitions. Section 3 provides some properties of the class of “doughnut
graphs.” Section 4 deals with straight-line grid drawings of “doughnut graphs.”
Section 5 provides the characterization for a 4-connected planar graph to be
a spanning subgraph of a “doughnut graph.” Finally Section 6 concludes the
paper. Early versions of this paper have been presented at [12] and [13].

2 Preliminaries

In this section we give some definitions.
Let G = (V,E) be a connected simple graph with vertex set V and edge set

E. Throughout the paper, we denote by n the number of vertices in G, that is,
n = |V |, and denote by m the number of edges in G, that is, m=|E|. An edge
joining vertices u and v is denoted by (u, v). The degree of a vertex v, denoted
by d(v), is the number of edges incident to v in G. G is called r-regular if every
vertex of G has degree r. We call a vertex v a neighbor of a vertex u in G if G has
an edge (u, v). The connectivity κ(G) of a graph G is the minimum number of
vertices whose removal results in a disconnected graph or a single-vertex graph
K1. G is called k-connected if κ(G) ≥ k. We call a vertex of G a cut-vertex of G
if its removal results in a disconnected or single-vertex graph. For W ⊆ V , we
denote by G−W the graph obtained from G by deleting all vertices in W and
all edges incident to them. A cut-set of G is a set S ⊆ V (G) such that G − S
has more than one component or G− S is a single vertex graph. A path in G is
an ordered list of distinct vertices v1, v2, ..., vq ∈ V such that (vi−1, vi) ∈ E for
all 2 ≤ i ≤ q. Vertices v1 and vq are end-vertices of the path v1, v2, ..., vq. Two
paths are vertex-disjoint if they do not share any common vertex except their
end vertices. The length of a path is the number of edges on the path. We call
a path P an even path if the number of edges on P is even. We call a path P
an odd path if the number of edges on P is odd.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding. A plane graph G divides
the plane into connected regions called faces. A bounded region is called an
inner face and the unbounded region is called the outer face. For a face F in
G we denote by V (F ) the set of vertices of G on the boundary of face F . Two
faces F1 and F2 are vertex-disjoint if V (F1)

⋂
V (F2) = ∅. Let F be a face in

a plane graph G with n ≥ 3. If the boundary of F has exactly three vertices
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then we call F a triangulated face. One can divide a face F of p (p ≥ 3) vertices
into p− 2 triangulated faces by adding p− 3 extra edges. The operation above
is called triangulating a face. If every face of a graph is triangulated, then the
graph is called a triangulated plane graph. We can obtain a triangulated plane
graph G′ from a non-triangulated plane graph G by triangulating all faces of G.

A maximal planar graph is one to which no edge can be added without losing
planarity. Thus the boundary of every face of G is a triangle in any embedding
of a maximal planar graph G with n ≥ 3, and hence an embedding of a maximal
planar graph is often called a triangulated plane graph. It can be derived from
Euler’s formula for planar graphs that if G is a maximal planar graph with n
vertices and m edges then m = 3n− 6, for more details see [16]. We call a face
a quadrangle face if the face has exactly four vertices.

For any 3-connected planar graph the following fact holds.

Fact 1 Let G be a 3-connected planar graph and let Γ and Γ′ be any two planar
embeddings of G. Then any facial cycle of Γ is a facial cycle of Γ′ and vice
versa.

Let G be a 5-connected planar graph, let Γ be any planar embedding of G
and let p be an integer such that p ≥ 4. We call G a p-doughnut graph if the
following conditions (d1) and (d2) hold:

(d1) Γ has two vertex-disjoint faces each of which has exactly p vertices, and
all the other faces of Γ has exactly three vertices; and

(d2) G has the minimum number of vertices satisfying condition (d1).

In general, we call a p-doughnut graph for p ≥ 4 a doughnut graph. Since
a doughnut graph is a 5-connected planar graph, Fact 1 implies that the de-
composition of a doughnut graph into its facial cycles is unique. Throughout
the paper we often mention faces of a doughnut graph G without mentioning
its planar embedding where the description of the faces is valid for any planar
embedding of G.

3 Properties of Doughnut Graphs

In this section we will show some properties of a p-doughnut graph. We have
the following lemma on the number of vertices of a graph satisfying condition
(d1).

Lemma 2 Let G be a 5-connected planar graph, let Γ be any planar embedding
of G, and let p be an integer such that p ≥ 4. Assume that Γ has two vertex-
disjoint faces each of which has exactly p vertices, and all the other faces of Γ
has exactly three vertices. Then G has at least 4p vertices.

Proof: Let F1 and F2 be the two faces of Γ each of which contains exactly p
vertices. Let x be the number of vertices in G which are neither on F1 nor on
F2. Then G has x+ 2p vertices.
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We calculate the number of edges in G as follows. Faces F1 and F2 of Γ
are not triangulated since p ≥ 4. If we triangulate F1 and F2 of Γ then the
resulting graph G′ is a maximal planar graph. Using Euler’s formula, G′ has
exactly 3(x+ 2p)− 6 = 3x+ 6p− 6 edges. To triangulate each of F1 and F2, we
need to add p− 3 edges and hence the number of edges in G is exactly

(3x+ 6p− 6)− 2(p− 3) = 3x+ 4p. (1)

Since G is 5-connected, using the degree-sum formula, we get 2(3x+ 4p) ≥
5(x+ 2p). This relation implies

x ≥ 2p. (2)

Therefore G has at least 4p vertices. Q.E .D.

Lemma 2 implies that a p-doughnut graph has 4p or more vertices. We now
show that 4p vertices are sufficient to construct a p-doughnut graph as in the
following lemma.

Lemma 3 For an integer p, p ≥ 4, one can construct a p-doughnut graph G
with 4p vertices.

To prove Lemma 3 we first construct a planar embedding Γ of G with 4p
vertices by the construction Construct-Doughnut given below and then show
that G is a p-doughnut graph.

Construct-Doughnut. Let C1, C2, C3 be three vertex-disjoint cycles such
that C1 contains p vertices, C2 contains 2p vertices and C3 contains p vertices.
Let x1, x2, ..., xp be the vertices on C1, y1, y2, ..., yp be the vertices on C3, and
z1, z2, .., z2p be the vertices on C2. Let R1, R2 and R3 be three concentric circles
on a plane with radius r1, r2 and r3, respectively, such that r1 > r2 > r3. We
embed C1, C2 and C3 on R1, R2 and R3 respectively, as follows. We put the
vertices x1, x2...xp of C1 on R1 in clockwise order such that x1 is put on the
leftmost position among the vertices x1, x2, ..., xp. Similarly, we put vertices
z1, z2, ..., z2p of C2 on R2 and y1, y2, ..., yp of C3 on R3. We add edges between
the vertices on C1 and C2, and between the vertices on C2 and C3 as follows.
We have two cases to consider.

Case 1: k is even in zk.
In this case, we add two edges (zk, xk/2), (zk, xi) between C2 and C1, and

one edge (zk, yi) between C2 and C3 where i = 1 if k = 2p, and i = k/2 + 1
otherwise.

Case 2: k is odd in zk.
In this case, we add two edges (zk, ydk/2e), (zk, yi) between C2 and C3,

and one edge (zk, xdk/2e) between C1 and C2 where i = 1 if k = 2p − 1, and
i = dk/2e+ 1 otherwise.

We thus constructed a planar embedding Γ of G. Figure 2 illustrates the
construction above for the case of p = 4. �

We have the following lemma on the construction Construct-Doughnut.
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Figure 2: Illustration for the construction of a planar embedding Γ of a p-
doughnut graph G for p = 4; (a) embedding of the three cycles C1, C2 and C3

on three concentric circles, (b) addition of edges for the case where k is even in
zk and (c) Γ.

Lemma 4 Let Γ be the plane graph of 4p vertices obtained by the construction
Construct-Doughnut. Then Γ has exactly two vertex-disjoint faces F1 and
F2 each of which has exactly p vertices, and the rest of the faces are triangulated.

Proof: The construction of Γ implies that cycle C1 is the boundary of the outer
face F1 of Γ and cycle C3 is the boundary of an inner face F2. Each of F1 and F2

has exactly p vertices. Clearly the two faces F1 and F2 of Γ are vertex-disjoint.
Thus it is remained to show that the rest of the faces of Γ are triangulated. The
rest of the faces can be divided into two groups; (i) faces having vertices on
both the cycles C1 and C2, and (ii) faces having the vertices on both the cycles
C2 and C3.

We only prove that each face in group (i) is triangulated, since the proof for
group (ii) is similar.

From our construction each vertex zi with even i has exactly two neighbors
on C1, and the two neighbors of zi on C1 are consecutive. Hence we get a
triangulated face for each zi with even i which contains zi and the two neighbors
of zi on C1.

We now show that the remaining faces in group (i) are triangulated. Clearly
each of the remaining faces in group (i) must contain a vertex zi with odd i
since a vertex on a face in group (i) is either on C1 or on C2 and a vertex on
C2 has at most two neighbors on C1. Let zi, zi+1 and zi+2 be three consecutive
vertices on C2 with even i. Then zi and zi+2 has a common neighbor x on C1.
One can observe from our construction that x is also the only neighbor of zi+1

on C1. Then exactly two faces in group (i) contain zi+1 and the two faces are
triangulated. This implies that for each zi on C2 with odd i there are exactly
two faces in group (i) which contain zi, and the two faces are triangulated.

Q.E .D.
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We are ready to prove Lemma 3.
Proof of Lemma 3

We construct a planar embedding Γ of a graph G with 4p vertices by the
construction Construct-Doughnut and show that G is a p-doughnut graph.
To prove this claim we need to prove that G satisfies the following properties
(a)–(c):

(a) the graph G is a 5-connected planar graph;

(b) any planar embedding Γ′ of G has exactly two vertex-disjoint faces each
of which has exactly p vertices, and all the other faces are triangulated;
and

(c) G has the minimum number of vertices satisfying (a) and (b).

(a) G is a planar graph since it has a planar embedding Γ as illustrated in
Figure 2(c). To prove that G is 5-connected, we show that the size of any cut-set
of G is 5 or more. We first show that G is 5-regular. From the construction,
one can easily see that each of the vertex of C2 has exactly three neighbors in
V (C1) ∪ V (C3). Hence the degree of each vertex of C2 is exactly 5. We only
prove that the degree of each vertex of C1 is exactly 5 since the proof is similar
for the vertices of C3. Each even index vertex v of C2 has two neighbors on C1

and the two neighbors of v are consecutive on C1 by construction. Each vertex
u of C1 has at most two even index neighbors on C2, since C2 has p even index
vertices, C1 has p vertices, and Γ is a planar embedding. Assume that a vertex
u of C1 has two even index neighbors yi and yi+2 on C2. Since Γ is a planar
embedding yi+1 can have only one neighbor on C1 which is u. Thus a vertex u
on C1 has at most three neighbors on C2. Since there are exactly 3p edges each
of which has one end point on C1 and the other on C2, and a vertex on C1 has
at most three neighbors on C2, each vertex of C1 has exactly three neighbors on
C2. Hence the degree of a vertex on C1 is 5. Therefore G is 5-regular. We next
show that the size of any cut-set of G is 5 or more. Assume for a contradiction
that G has a cut-set of less than five vertices. In such a case, G would have
a vertex of degree less than five, a contradiction. (Note that G is 5-regular,
the vertices of G lie on three vertex disjoint cycles C1, C2 and C3, none of the
vertices of C1 has a neighbor on C3, each of the faces of G is triangulated except
faces F1 and F2.)

(b) By Lemma 4, G has a planar embedding Γ such that Γ has exactly two
vertex-disjoint faces F1 and F2 each of which has exactly p vertices, and the rest
of the faces are triangulated. Since G is 5-connected, Fact 1 implies that any
planar embedding Γ′ of G has exactly two vertex-disjoint faces each of which
has exactly p vertices, and all the other faces are triangulated.

(c) We have constructed the graph G with 4p vertices and proofs for (a)
and (b) imply that G satisfies properties (a) and (b). G is a 5-connected planar
graph and hence satisfies condition (d1) of the definition of a p-doughnut graph.
By Lemma 2, 4p is the minimum number of vertices of such a graph. Q.E .D.
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Condition (d2) of the definition of a p-doughnut graph and Lemmas 2 and
3 imply that a p-doughnut graph G has exactly 4p vertices. Then the value of x
in Eq. (2) is 2p in G. By Eq. (1), G has exactly 3x+ 4p = 10p edges. Since G is
5-connected, every vertex has degree 5 or more. Then the degree-sum formula
implies that every vertex of G has degree exactly 5. Thus the following theorem
holds.

Theorem 1 Let G be a p-doughnut graph. Then G is 5-regular and has exactly
4p vertices.

For a cycle C in a plane graph G, we denote by G(C) the plane subgraph
of G inside C excluding C. Let C1, C2 and C3 be three vertex-disjoint cycles
in a planar graph G such that V (C1) ∪ V (C2) ∪ V (C3)=V (G). Then we call a
planar embedding Γ of G a doughnut embedding of G if C1 is the outer face and
C3 is an inner face of Γ, G(C1) contains C2 and G(C2) contains C3. We call
C1 the outer cycle, C2 the middle cycle and C3 the inner cycle of Γ. We next
show that a p-doughnut graph has a doughnut embedding. To prove the claim
we need the following lemmas.

Lemma 5 Let G be a p-doughnut graph. Let F1 and F2 be the two faces of
G each of which contains exactly p vertices. Then G − {V (F1) ∪ V (F2)} is
connected and contains a cycle.

Proof: Since G is 5-connected, G′ = G−{V (F1)∪ V (F2)} is connected; other-
wise, G would have a cut-set of 4 vertices - two of them are on F1 and the other
two are on F2, a contradiction. Clearly G′ has exactly 2p vertices. Since G is
5-regular and has exactly 4p vertices by Theorem 1, one can observe following
the degree-sum formula that G′ contains at least 2p edges; if there is no edge
between a vertex of F1 and a vertex of F2 in G then G′ contains exactly 2p
edges, otherwise G′ contains more than 2p edges. Since G′ is connected, has 2p
vertices and has at least 2p edges, G′ must have a cycle. Q.E .D.

Lemma 6 Let G be a p-doughnut graph. Let F1 and F2 be the two faces of G
each of which contains exactly p vertices. Let Γ be a planar embedding of G such
that F1 is embedded as the outer face. Let C be a cycle in G−{V (F1)∪V (F2)}.
Then G(C) in Γ contains F2.

Proof: Assume that G(C) does not contain F2 in Γ. Since F1 is embedded
as the outer face of Γ, F2 will be an inner face of Γ as illustrated in Figure 3.
Then there would be edge crossings in Γ among the edges from the vertices on
C to the vertices on F1 and F2 as illustrated in Figure 3, a contradiction to the
assumption that Γ is a planar embedding of G. (Note that G is 5-connected,
5-regular and has 10p edges.) Therefore G(C) contains F2. Q.E .D.

Lemma 7 Let G be a p-doughnut graph. Let F1 and F2 be the two faces of G
each of which contains exactly p vertices. Then the following (a) - (c) hold.

(a) There is no edge between a vertex of F1 and a vertex of F2.
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C’
F2

F
1

Figure 3: An embedding Γ′ of G where F1 is embedded as the outer face and
G(C ′) does not contain F2.

(b) G−{V (F1)∪V (F2)} contains exactly 2p edges and has exactly one cycle.

(c) All the vertices of G− {V (F1) ∪ V (F2)} are contained in a single cycle.

Proof: (a) Let Γ be a planar embedding of G such that F1 is embedded as the
outer face. Let C be a cycle in G−{V (F1)∪V (F2)}. Since G(C) contains F2 by
Lemma 6, there is no edge between a vertex of F1 and a vertex of F2; otherwise,
an edge between a vertex of F1 and a vertex of F2 would cross an edge on C, a
contradiction to the assumption that Γ is a planar embedding of G.

(b) Since there is no edge between a vertex of F1 and a vertex of F2 by
Lemma 7(a), G − {V (F1) ∪ V (F2)} contains exactly 2p edges as mentioned in
the proof of Lemma 5. Since G−{V (F1)∪V (F2)} is connected, contains exactly
2p vertices and has exactly 2p edges, G−{V (F1)∪V (F2)} contains exactly one
cycle.

(c) Let Γ be a planar embedding of G such that F1 is embedded as the outer
face. Let C be a cycle in G − {V (F1) ∪ V (F2)}. By Lemma 7(b), C is the
only cycle in G− {V (F1) ∪ V (F2)}. Assume that the cycle C does not contain
all the vertices of G − {V (F1) ∪ V (F2)}. Then there is at least a vertex in
G− {V (F1) ∪ V (F2)} whose degree is one in G− {V (F1) ∪ V (F2)}. Let v be a
vertex of degree one in G−{V (F1)∪V (F2)}. We may assume that the vertex v
is outside of the cycle C in Γ since the proof is similar if v is inside of the cycle
C. Then the four neighbors of v must be on F1, since G − {V (F1) ∪ V (F2)}
contains exactly one cycle by Lemma 7(b), the vertex v is outside of the cycle
C, and G(C) contains F2 by Lemma 6. Then either G would not be 5-regular or
Γ would not be a planar embedding of G, a contradiction. Hence all the vertices
of G− {V (F1) ∪ V (F2)} are contained in cycle C. Q.E .D.

We now prove the following theorem.

Theorem 2 A p-doughnut graph always has a doughnut embedding.
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Proof: Let F1 and F2 be two faces of G each of which contains exactly p
vertices. Let Γ be a planar embedding of G such that F1 is embedded as the
outer face. By Lemma 7(c), all the vertices of G−{V (F1)∪V (F2)} are contained
in a single cycle C. By Lemma 6, G(C) contains F2. Then in Γ, G(F1) contains
C and G(C) contains F2, and hence Γ is a doughnut embedding. Q.E .D.

A 1-outerplanar graph is an embedded planar graph where all vertices are
on the outer face. It is also called 1-outerplane graph. An embedded graph is a
k-outerplane (k > 1) if the embedded graph obtained by removing all vertices
of the outer face is a (k − 1)-outerplane graph. A graph is k-outerplanar if
it admits a k-outerplanar embedding. A planar graph G has outerplanarity k
(k > 0) if it is k-outerplanar and it is not j-outerplanar for 0 < j < k.

In the rest of this section, we show that the outerplanarity of a p-doughnut
graph G is 3. Since none of the faces of G contains all vertices of G, G does not
admit 1-outerplanar embedding. We thus need to show that G does not admit
a 2-outerplanar embedding. We have the following fact.

Fact 8 A graph G having outerplanarity 2 has a cut-set of four or less vertices.

Proof: Deletion of all vertices on the outer face from a 2-outerplane graph
leaves a 1-outerplane graph. Since all vertices of a 1-outerplane graph are on
the outer face, a 1-outerplane graph has a cut-set of at most two vertices. Then
one can observe that a graph G having outerplanarity 2 has a cut-set of four or
less vertices. Q.E .D.

Since G is 5-connected graph, G has no cut-set of four or less vertices. Hence
by Fact 8 the graph G has outerplanarity greater than 2. Thus the following
lemma holds.

Lemma 9 Let G be a p-doughnut graph for p ≥ 4. Then G is neither a 1-
outerplanar graph nor a 2-outerplanar graph.

We now prove the following theorem.

Theorem 3 The outerplanarity of a p-doughnut graph G is 3.

Proof: A doughnut embedding of G immediately implies that G has a 3-
outerplanar embedding. By Lemma 9, G is neither a 1-outerplanar graph nor
a 2-outerplanar graph. Therefore the outerplanarity of a p-doughnut graph is
3. Q.E .D.

4 Drawings of Doughnut Graphs

In this section we give a linear-time algorithm for finding a straight-line grid
drawing of a doughnut graph on a grid of linear area.

Let G be a p-doughnut graph. Then G has a doughnut embedding by The-
orem 2. Let Γ be a doughnut embedding of G as illustrated in Figure 4(a). Let
C1, C2 and C3 be the outer cycle, the middle cycle and the inner cycle of Γ,
respectively. We have the following facts.
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Fact 10 Let G be a p-doughnut graph and let Γ be a doughnut embedding of G.
Let C1, C2 and C3 be the outer cycle, the middle cycle and the inner cycle of
Γ, respectively. For any two consecutive vertices zi, zi+1 on C2, one of zi, zi+1

has exactly one neighbor on C1 and the other has exactly two neighbors on C1.

Fact 11 Let G be a p-doughnut graph and let Γ be a doughnut embedding of G.
Let C1, C2 and C3 be the outer cycle, the middle cycle and the inner cycle of Γ,
respectively. Let zi be a vertex of C2, then either the following (a) or (b) holds.

(a) zi has exactly one neighbor on C1 and exactly two neighbors on C3.

(b) zi has exactly one neighbor on C3 and exactly two neighbors on C1.

Before describing our algorithm we need some definitions. Let zi be a vertex
of C2 such that zi has two neighbors on C1. Let x and x′ be the two neighbors
of zi on C1 such that x′ is the counter clockwise next vertex to x on C1. We call
x the left neighbor of zi on C1 and x′ the right neighbor of zi on C1. Similarly
we define the left neighbor and the right neighbor of zi on C3 if a vertex zi on
C2 has two neighbors on C3. We are now ready to describe our algorithm.

We embed C1, C2 and C3 on three nested rectangles R1, R2 and R3, respec-
tively on a grid as illustrated in Figure 4(b). We draw rectangle R1 on grid with
four corners on grid point (0, 0), (p+ 1, 0), (p+ 1, 5) and (0, 5). Similarly the
four corners of R2 are (1, 1), (p, 1), (p, 4), (1, 4) and the four corners of R3 are
(2, 2), (p− 1, 2), (p− 1, 3), (2, 3).

We first embed C2 on R2 as follows. Let z1, z2, ..., z2p be the vertices on
C2 in counter clockwise order such that z1 has exactly one neighbor on C1. We
put z1 on (1, 1), zp on (p, 1), zp+1 on (p, 4) and z2p on (1, 4). We put the other
vertices of C2 on grid points of R2 preserving the relative positions of vertices
of C2.

We next put vertices of C1 on R1 as follows. Let x1 be the neighbor of z1
on C1 and let x1, x2, ..., xp be the vertices of C1 in counter clockwise order.
We put x1 on (0, 0) and xp on (0, 5). Since z1 has exactly one neighbor on
C1, by Fact 10, z2p has exactly two neighbors on C1. Since z1 and z2p are on a
triangulated face of G having vertices on both C1 and C2, x1 is a neighbor of
z2p. One can easily observe that xp is the other neighbor of z2p on C1. Clearly
the edges (x1, z1), (x1, z2p), (xp, z2p) can be drawn as straight-line segments
without edge crossings as illustrated in Figure 4(b). We next put neighbors of
zp and zp+1. Let xi be the neighbor of zp on C1 if zp has exactly one neighbor on
C1, otherwise let xi be the left neighbor of zp on C1. We put xi on (p+1, 0) and
xi+1 on (p+1, 5). In case of zp has exactly one neighbor on C1, by Fact 10, zp+1

has two neighbors on C1, and xi and xi+1 are the two neighbors of zp+1 on C1.
Clearly the edges (zp, xi), (zp+1, xi) and (zp+1, xi+1) can be drawn as straight-
line segments without edge crossings, as illustrated in Figure 4(b). In case of zp

has exactly two neighbors xi and xi+1 on C1, the edges between neighbors of zp

and zp+1 on C1 can be drawn without edge crossings as illustrated in Figure 5.
We put the other vertices of C1 on grid points of R1 arbitrarily preserving their
relative positions on C1.
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Figure 4: (a) A doughnut embedding of a p-doughnut graph of G, (b) edges
between four corner vertices of R1 and R2 are drawn as straight-line segments,
(c) edges between vertices on R1 and R2 are drawn, (d) edges between four
corner vertices of R2 and R3 are drawn as straight-line segments, and (e) a
straight-line grid drawing of G.
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Figure 5: Illustration for the case where zp has two neighbors on C1.

One can observe that all the edges of G connecting vertices in {z2, z3, ...,
zp−1} to vertices in {x2, x3, .., xi−1}, and connecting vertices in {zp+2, zp+2,
..., z2p−1} to vertices in {xi+2, xi+3, .., xp−1} can be drawn as straight-line
segments without edge crossings. See Figure 4(c).

We finally put the vertices of C3 on R3 as follows. Since z1 has exactly one
neighbor on C1, by Fact 11(a), z1 has exactly two neighbors on C3. Then, by
Fact 11(b), z2p has exactly one neighbor on C3. Let y1, y2, ..., yp be the vertices
on C3 in counter clockwise order such that y1 is the right neighbor of z1. Then
yp is the left neighbor of z1. We put y1 on (2, 2) and yp on (2, 3). Clearly the
edges (y1, z1), (yp, z2p), (yp, z1) can be drawn as straight-line segments without
edge crossings, as illustrated in Figure 4(d). We next put neighbors of zp and
zp+1 on C3 as we have put the neighbors of zp and zp+1 on C1 at the other
two corners of R3 in a counter clockwise order as illustrated in Figure 4(d). We
put the other vertices of C3 on grid points of R3 arbitrarily preserving their
relative positions on C3. It is not difficult to show that edges from the vertices
on C2 to the vertices on C3 can be drawn as straight-line segments without
edge crossings. Figure 4(e) illustrates the complete straight-line grid drawing of
a p-doughnut graph.

The area requirement of the straight-line grid drawing of a p-doughnut graph
G is equal to the area of rectangle R1 and the area of R1 is = (p + 1) × 5 =
(n/4 + 1)× 5 = O(n), where n is the number of vertices in G. Thus we have a
straight-line grid drawing of a p-doughnut graph on a grid of linear area. Clearly
the algorithm takes linear time. Thus the following theorem holds.

Theorem 4 A doughnut graph G of n vertices has a straight-line grid drawing
on a grid of area O(n). Furthermore, the drawing of G can be found in linear
time.
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5 Spanning Subgraphs of Doughnut Graphs

In Section 4, we have seen that a doughnut graph admits a straight-line grid
drawing with linear area. One can easily observe that a spanning subgraph
of a doughnut graph also admits a straight-line grid drawing with linear area.
Figure 6(b) illustrates a straight-line grid drawing with linear area of a graph
G′ in Figure 6(a) where G′ is a spanning subgraph of a doughnut graph G in
Figure 1(a). Using a transformation from the “subgraph isomorphism” prob-
lem [8], one can easily prove that the recognition of a spanning subgraph of a
given graph is an NP-complete problem in general. Hence the recognition of a
spanning subgraph of a doughnut graph seems to be a non-trivial problem. We
thus restrict ourselves only to 4-connected planar graphs. In this section, we
give a necessary and sufficient condition for a 4-connected planar graph to be a
spanning subgraph of a doughnut graph as in the following theorem.
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Figure 6: (a) A spanning subgraph G′ of G in Figure 1(a), and (b) a straight-line
grid drawing of G′ with area O(n).

Theorem 5 Let G be a 4-connected planar graph with 4p vertices where p > 4
and let ∆(G) ≤ 5. Let Γ be a planar embedding of G. Assume that Γ has exactly
two vertex disjoint faces F1 and F2 each of which has exactly p vertices. Then
G is a spanning subgraph of a p-doughnut graph if and only if the following
conditions (a)− (e) hold.

(a) G has no edge (x, y) such that x ∈ V (F1) and y ∈ V (F2).

(b) Every face f of Γ has at least one vertex v ∈ {V (F1) ∪ V (F2)}.

(c) For any vertex x /∈ {V (F1) ∪ V (F2)}, the total number of neighbors of x
on faces F1 and F2 are at most three.

(d) Every face f of Γ except the faces F1 and F2 has either three or four
vertices.

(e) For any x-y path P such that V (P ) ∩ {V (F1) ∪ V (F2)} = ∅ and x has
exactly two neighbors on face F1(F2). Then the following conditions hold.

(i) If P is even, then the vertex y has at most two neighbors on face F1(F2)
and at most one neighbor on face F2(F1).
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(ii) If P is odd, then the vertex y has at most one neighbor on face F1(F2)
and at most two neighbors on face F2(F1).

Fact 1 implies that the decomposition of a 4-connected planar graph G into
its facial cycles is unique. Throughout the section we thus often mention faces
of G without mentioning its planar embedding where the description of the
faces is valid for any planar embedding of G, since κ(G) ≥ 4 for every graph G
considered in this section.

Before proving the necessity of Theorem 5, we have the following fact.

Fact 12 Let G be a 4-connected planar graph with 4p vertices where p > 4 and
let ∆(G) ≤ 5. Assume that G has exactly two vertex disjoint faces F1 and F2

each of which has exactly p vertices. If G is a spanning subgraph of a doughnut
graph then G can be augmented to a 5-connected 5-regular graph G′ through
triangulation of all the non-triangulated faces of G except the faces F1 and F2.

One can easily observe that the following fact holds from the construction
Construct-Doughnut given in Section 3.

Fact 13 Let G be a doughnut graph, and let P be any x-y path such that V (P )∩
{V (F1)∪V (F2)} = ∅ and x has exactly two neighbors on face F1(F2). Then the
following conditions (i) and (ii) hold.

(i) If P is even, then the vertex y has exactly two neighbors on face F1(F2)
and exactly one neighbor on face F2(F1).

(ii) If P is odd, then the vertex y has exactly one neighbor on face F1(F2)
and exactly two neighbors on face F2(F1).

We are ready to prove the necessity of Theorem 5.
Proof for the Necessity of Theorem 5

Assume that G is a spanning subgraph of a p-doughnut graph. Then by
Theorem 1 G has 4p vertices. Clearly ∆(G) ≤ 5 and G satisfies the conditions
(a), (b) and (c), otherwise G would not be a spanning subgraph of a doughnut
graph. The necessity of condition (e) is obvious by Fact 13. Hence it is sufficient
to prove the necessity of condition (d) only.

(d) G does not have any face of two or less vertices since G is a 4-connected
planar graph. Then every face of G has three or more vertices. We now show
that G has no face of more than four vertices. Assume for a contradiction that
G has a face f of q vertices such that q > 4. Then f can be triangulated
by adding q − 3 extra edges. These extra edges increase the degrees of q − 2
vertices, and the sum of the degrees will be increased by 2(q − 3). Using the
pigeonhole principle, one can easily observe that there is a vertex among the
q(> 4) vertices whose degree will be raised by at least 2 after a triangulation
of f . Then G′ would have a vertex of degree six or more where G′ is a graph
obtained after triangulation of f . Hence we cannot augment G to a 5-regular
graph through triangulation of all the non-triangulated faces of G other than
the faces F1 and F2. Therefore G cannot be a spanning subgraph of a doughnut
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graph by Fact 12, a contradiction. Hence each face f of G except F1 and F2

has either three or four vertices. Q.E .D.

In the remaining of this section we give a constructive proof for the sufficiency
of Theorem 5. Assume that G satisfies the conditions in Theorem 5. We have
the following lemma.

Lemma 14 Let G be a 4-connected planar graph satisfying the conditions in
Theorem 5. Assume that all the faces of G except F1 and F2 are triangulated.
Then G is a doughnut graph.

Proof: To prove the claim, we have to prove that (i) G is 5-connected, (ii) G
has two vertex disjoint faces each of which has exactly p, p > 4, vertices, and
all the other faces of G has exactly three vertices, and (iii) G has the minimum
number of vertices satisfying the properties (i) and (ii).

(i) We first prove that G is a 5-regular graph. Every face of G except F1 and
F2 is a triangle. Furthermore each of F1 and F2 has exactly p, p > 4, vertices.
Then G has 3(4p)−6−2(p−3) = 10p edges. Since none of the vertices of G has
degree more than five and G has exactly 10p edges, each vertex of G has degree
exactly five. We next prove that the vertices of G lie on three vertex-disjoint
cycles C1, C2 and C3 such that cycles C1, C2, C3 contain exactly p, 2p and p
vertices, respectively. We take an embedding Γ of G such that F1 is embedded
as the outer face and F2 is embedded as an inner face. We take the contour
of face F1 as cycle C1 and contour of face F2 as cycle C3. Then each of C1

and C2 contains exactly p, p > 4, vertices. Since G satisfies conditions (a), (b)
and (c) in Theorem 5 and all the faces of G except F1 and F2 are triangulated,
the rest 2p vertices of G form a cycle in Γ. We take this cycle as C2. G(C2)
contains C3 since G satisfies condition (b) in Theorem 5. Clearly C1, C2 and C3

are vertex-disjoint and cycles C1, C2, C3 contain exactly p, 2p and p vertices,
respectively. We finally prove that G is 5-connected. Assume for a contradiction
that G has a cut-set of less than five vertices. In such a case G would have a
vertex of degree less than five, a contradiction.

(ii) The proof of this part is obvious since G has two vertex disjoint faces
each of which has exactly p vertices and all the other faces of G has exactly
three vertices.

(iii) The number of vertices of G is 4p. Using Lemma 2, we can easily prove
that the minimum number of vertices required to construct a graph G that
satisfies the properties (i) and (ii) is 4p.

Q.E .D.

We thus assume that G has a non-triangulated face f except faces F1 and
F2. By condition (d) in Theorem 5, f is a quadrangle face. It is sufficient to
show that we can augment the graph G to a doughnut graph by triangulat-
ing each of the quadrangle faces of G. However, we cannot augment G to a
doughnut graph by triangulating each quadrangle face arbitrarily. For exam-
ple, the graph G in Figure 7(a) satisfies all the conditions in Theorem 5 and it
has exactly one quadrangle face f1(a, b, c, d). If we triangulate f1 by adding an
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edge (a, c) as illustrated in Figure 7(b), the resulting graph G′ would not be a
doughnut graph since a doughnut graph does not have an edge (a, c) such that
a ∈ V (F1) and c ∈ V (F2). But if we triangulate f1 by adding an edge (b, d) as
illustrated in Figure 7(c), the resulting graph G′ is a doughnut graph. Hence
every triangulation of a quadrangle face is not always valid to augment G to a
doughnut graph. We call a triangulation of a quadrangle face f of G a valid
triangulation if the resulting graph G′ obtained after the triangulation of f does
not contradict any condition in Theorem 5. We call a vertex v on the contour of
a quadrangle face f a good vertex if v is one of the end vertex of an edge which
is added for a valid triangulation of f .
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Figure 7: (a) f1(a, b, c, d) is a quadrangle face, (b) the triangulation of f1 by
adding the edge (a, c) and (c) the triangulation of f1 by adding the edge (b, d).

We call a quadrangle face f of G an α-face if f contains at least one vertex
from each of the faces F1 and F2. Otherwise, we call a quadrangle face f of G
a β-face. In Figure 8, f1(a, b, c, d) is an α-face whereas f2(p, q, r, s) is a β-face.
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Figure 8: f1(a, b, c, d) is an α-face and f2(p, q, r, s) is a β-face.

In a valid triangulation of an α-face f of G no edge is added between any two
vertices x, y ∈ V (f) such that x ∈ V (F1) and y ∈ V (F2). Hence the following
fact holds on an α-face f .

Fact 15 Let G be a 4-connected planar graph satisfying the conditions in The-
orem 5. Let f be an α-face in G. Then f admits a unique valid triangulation
and the triangulation is obtained by adding an edge between two vertices those
are not on F1 and F2.
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Faces f1(a, b, c, d) and f2(p, q, r, s) in Figure 9(a) are two α-faces and Figure 9(b)
illustrates the valid triangulations of f1 and f2. Vertices b and d of f1 and
vertices q and s of f2 are good vertices.
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Figure 9: (a) f1(a, b, c, d) and f2(p, q, r, s) are two α-faces, and (b) valid trian-
gulations of f1 and f2.

We call a β-face a β1-face if the face contains exactly one vertex either from
F1 or from F2. Otherwise we call a β-face a β2-face. In Figure 10, f1(a, b, c, d)
is a β1-face whereas f2(p, q, r, s) is a β2-face. We call a vertex v on the contour
of a β1-face f a middle vertex of f if the vertex is in the middle position among
the three consecutive vertices other than the vertex on F1 or F2. In Figure 10,
vertex c of f1 and vertex r of f2 are the middle vertices of f1 and f2, respectively.
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Figure 10: f1(a, b, c, d) is a β1-face and f2(p, q, r, s) is a β2-face.

In a valid triangulation of a β1-face f of G no edge is added between any
two vertices x, y ∈ V (f) such that x, y /∈ V (F1) ∪ V (F2). Hence the following
fact holds on a β1-face f .

Fact 16 Let G be a 4-connected planar graph satisfying the conditions in The-
orem 5. Let f be a β1-face of G. Then f admits a unique valid triangulation
and the triangulation is obtained by adding an edge between the vertex on F1 or
F2 and the middle vertex.

Faces f1(a, b, c, d) and f2(p, q, r, s) in Figure 11(a) are two β1-faces and Fig-
ure 11(b) illustrates the valid triangulations of f1 and f2. Vertices a and c of
f1 and vertices p and r of f2 are good vertices.
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Figure 11: (a) f1(a, b, c, d) and f2(p, q, r, s) are two β1-faces, and (b) valid tri-
angulations of f1 and f2.

In a valid triangulation of a β2-face f of G no edge is added between any
two vertices x, y ∈ V (f) where x ∈ V (F1)(V (F2)), y /∈ {V (F1) ∪ V (F1)} and
G has either (i) an even q-y path P such that q has exactly two neighbors on
F2(F1) and V (P )∩ {V (F1)∪ V (F2)} = ∅, or (ii) an odd q-y path P such that q
has exactly two neighbors on F1(F2) and V (P ) ∩ {V (F1) ∪ V (F2)} = ∅. Hence
the following fact holds on a β2-face f .

Fact 17 Let G be a 4-connected planar graph satisfying the conditions in The-
orem 5. Let f be a β2-face of G. Then f admits a unique valid triangulation
and the triangulation is obtained by adding an edge between a vertex on face F1

or F2 and a vertex z /∈ V (F1) ∪ V (F2).

Face f1(a, b, c, d) in the graph in Figure 12(a) is a β2-face and the graph has
an even u-d path P such that u has exactly two neighbors g and h on F2, and
V (P )∩ {V (F1)∪ V (F2)} = ∅. Figure 12(c) illustrates the valid triangulation of
f1. Vertices a and c are the good vertices of f1. Face f2(l,m, n, o) in the graph
in Figure 12(b) is a β2-face and the graph has an odd v-o path P such that v
has exactly two neighbors s and t on F1, and V (P ) ∩ {V (F1) ∪ V (F2)} = ∅.
Figure 12(d) illustrates the valid triangulation of f2. Vertices l and n are the
good vertices of f2.

Before giving a proof for the sufficiency of Theorem 5 we need to prove the
following Lemmas 18 and 19.

Lemma 18 Let G be a 4-connected planar graph satisfying the conditions in
Theorem 5. Then any quadrangle face f of G admits a unique valid triangulation
such that after triangulation d(v) ≤ 5 holds for any vertex v in the resulting
graph.

Proof: By Facts 15, 16 and 17, f admits a unique valid triangulation. Since
a valid triangulation increases the degree of a good vertex by one, it is sufficient
to show that each good vertex of f has degree less than five in G. Assume for
a contradiction that a good vertex v has degree more than four in G. Then one
can observe that G would violate a condition in Theorem 5. Q.E .D.
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Figure 12: Illustration for valid triangulation of β2-face; (a) a β2 face f1(a, b, c, d)
in a graph satisfying condition (i), (b) a β2 face f2(l,m, n, o) in a graph satisfying
condition(ii), (c) the valid triangulation of f1 and (d) the valid triangulation of
f2.

Lemma 19 Let G be a 4-connected planar graph satisfying the conditions in
Theorem 5. Also assume that G has quadrangle faces. Then no two quadrangle
faces f1 and f2 have a common vertex which is a good vertex for both the faces
f1 and f2.

Proof: Assume that u is a common vertex between two quadrangle faces f1
and f2. If u is neither a good vertex of f1 nor a good vertex of f2, then we
have done. We thus assume that u is a good vertex of f1 or f2. Without loss of
generality, we assume that u is a good vertex of f1. Then u is not a good vertex
of f2, otherwise u would not be a common vertex of f1 and f2, a contradiction.

Q.E .D.

Proof for the Sufficiency of Theorem 5
Assume that the graph G satisfies all the conditions in Theorem 5. If all the

faces of G except F1 and F2 are triangulated, then G is a doughnut graph by
Lemma 14. Otherwise, we triangulate each quadrangle face of G, using its valid
triangulation. Let G′ be the resulting graph. Lemmas 18 and 19 imply that
d(v) ≤ 5 for each vertex v in G′. Then the graph G′ satisfies the conditions in
Theorem 5, since G satisfies the conditions in Theorem 5, G′ is obtained from
G using valid triangulations of quadrangle faces and d(v) ≤ 5 for each vertex v
in G′. Hence G′ is a doughnut graph by Lemma 14. Therefore G is a spanning
subgraph of a doughnut graph. Q.E .D.

We now have the following lemma.

Lemma 20 Let G be a 4-connected planar graph satisfying the conditions in
Theorem 5. Then G can be augmented to a doughnut graph in linear time.

Proof: We first embed G such that F1 is embedded as the outer face and
F2 is embedded as an inner face. We then triangulate each of the quadrangle
faces of G using its valid triangulation if G has quadrangle faces. Let G′ be
the resulting graph. As shown in the sufficiency proof of Theorem 5, G′ is a
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doughnut graph. One can easily find all quadrangle faces of G and perform their
valid triangulations in linear time, hence G′ can be obtained in linear time.

Q.E .D.

In Theorem 5 we have given a necessary and sufficient condition for a 4-
connected planar graph to be a spanning subgraph of a doughnut graph. As
described in the proof of Lemma 20, we have provided a linear-time algorithm
to augment a 4-connected planar graph G to a doughnut graph if G satisfies
the conditions in Theorem 5. We have thus identified a subclass of 4-connected
planar graphs that admits straight-line grid drawings with linear area as stated
in the following theorem.

Theorem 6 Let G be a 4-connected planar graph satisfying the conditions in
Theorem 5. Then G admits a straight-line grid drawing on a grid of area O(n).
Furthermore, the drawing of G can be found in linear time.

Proof: Using the method described in the proof of Lemma 20, we augment G
to a doughnut graph G′ by adding dummy edges (if required) in linear time. By
Theorem 4, G′ admits a straight-line grid drawing on a grid of area O(n). We
finally obtain a drawing of G from the drawing of G′ by deleting the dummy
edges (if any) from the drawing of G′. By Lemma 20, G can be augmented to a
doughnut graph in linear time and by Theorem 4, a straight-line grid drawing
of a doughnut graph can be found in linear time. Moreover, the dummy edges
can also be deleted from the drawing of a doughnut graph in linear time. Hence
the drawing of G can be found in linear time. Q.E .D.

6 Conclusion

In this paper we introduced a new class of planar graphs, called doughnut
graphs, which is a subclass of 5-connected planar graphs. A graph in this
class has a straight-line grid drawing on a grid of linear area, and the drawing
can be found in linear time. We showed that the outerplanarity of a doughnut
graph is 3. Thus we identified a subclass of 3-outerplanar graphs that admits
straight-line grid drawing with linear area. One can easily observe that any
spanning subgraph of a doughnut graph also admits straight-line grid drawing
with linear area. However, the recognition of a spanning subgraph of a dough-
nut graph seems to be a non-trivial problem. We established a necessary and
sufficient condition for a 4-connected planar graph G to be a spanning sub-
graph of a doughnut graph. We also gave a linear-time algorithm to augment
a 4-connected planar graph G to a doughnut graph if G satisfies the necessary
and sufficient condition. By introducing the necessary and sufficient condition,
in fact, we have identified a subclass of 4-connected planar graphs that admits
straight-line grid drawings with linear area. Finding other nontrivial classes of
planar graphs that admit straight-line grid drawings on grids of linear area is
also left as an open problem.
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