

Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 13, no. 2, pp. 153–177 (2009)

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area

Md. Rezaul Karim^{1,2} Md. Saidur Rahman¹

¹Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh.

²Department of Computer Science and Engineering, University of Dhaka, Dhaka-1000, Bangladesh.

Abstract

A straight-line grid drawing of a planar graph G is a drawing of G on an integer grid such that each vertex is drawn as a grid point and each edge is drawn as a straight-line segment without edge crossings. It is well known that a planar graph of *n* vertices admits a straight-line grid drawing on a grid of area $O(n^2)$. A lower bound of $\Omega(n^2)$ on the area-requirement for straight-line grid drawings of certain planar graphs are also known. In this paper, we introduce a fairly large class of planar graphs which admits a straight-line grid drawing on a grid of area O(n). We give a lineartime algorithm to find such a drawing. Our new class of planar graphs, which we call "doughnut graphs," is a subclass of 5-connected planar graphs. We show several interesting properties of "doughnut graphs" in this paper. One can easily observe that any spanning subgraph of a "doughnut graph" also admits a straight-line grid drawing with linear area. But the recognition of a spanning subgraph of a "doughnut graph" seems to be a non-trivial problem, since the recognition of a spanning subgraph of a given graph is an NP-complete problem in general. We establish a necessary and sufficient condition for a 4-connected planar graph G to be a spanning subgraph of a "doughnut graph." We also give a linear-time algorithm to augment a 4-connected planar graph G to a "doughnut graph" if G satisfies the necessary and sufficient condition.

Submitt April 20		Revised: February 2009	Accepted: April 2009	
	Final: April 2009	Published: June 2009		
	Article type: Regular paper		Communicated by: Petra Mutzel	

E-mail addresses: rkarim@univdhaka.edu (Md. Rezaul Karim) saidurrahman@cse.buet.ac.bd (Md. Saidur Rahman)

1 Introduction

Recently automatic aesthetic drawings of graphs have created intense interest due to their broad applications in computer networks, VLSI layout, information visualization etc., and as a consequence a number of drawing styles have come out [4, 11, 14, 16]. A classical and widely studied drawing style is the "straight-line drawing" of a planar graph. A *straight-line drawing* of a planar graph G is a drawing of G such that each vertex is drawn as a point and each edge is drawing of a planar graph G is a straight-line drawing of G on an integer grid drawing of a planar graph G is a straight-line drawing of G on an integer grid such that each vertex is drawn as a grid point as shown in Figure 1(b).

Figure 1: (a) A planar graph G, (b) a straight-line grid drawing of G with area $O(n^2)$, (c) a doughnut embedding of G and (d) a straight-line grid drawing of G with area O(n).

Wagner [19], Fary [6] and Stein [18] independently proved that every planar graph G has a straight-line drawing. Their proofs immediately yield polynomial-

time algorithms to find a straight-line drawing of a given plane graph. However, the area of a rectangle enclosing a drawing on an integer grid obtained by these algorithms is not bounded by any polynomial of the number n of vertices in G. In fact, to obtain a drawing of area bounded by a polynomial remained as an open problem for long time. In 1990, de Fraysseix et al. [3] and Schnyder [17] showed by two different methods that every planar graph of $n \geq 3$ vertices has a straightline drawing on an integer grid of size $(2n-4) \times (n-2)$ and $(n-2) \times (n-2)$, respectively. Figure 1(b) illustrates a straight-line grid drawing of the graph Gin Figure 1(a) with area $O(n^2)$. A natural question arises: what is the minimum size of a grid required for a straight-line drawing? de Fraysseix *et al.* showed that, for each n > 3, there exists a plane graph of n vertices, for example nested triangles, which needs a grid size of at least $|2(n-1)/3| \times |2(n-1)/3|$ for any grid drawing [2, 3]. Recently Frati and Patrignani showed that $n^2/9$ + $\Omega(n)$ area is necessary for any planar straight-line drawing of a nested triangles graph [7]. (Note that a plane graph is a planar graph with a given embedding.) It has been conjectured that every plane graph of n vertices has a grid drawing on a $\lfloor 2n/3 \rfloor \times \lfloor 2n/3 \rfloor$ grid, but it is still an open problem. For some restricted classes of graphs, more compact straight-line grid drawings are known. For example, a 4-connected plane graph G having at least four vertices on the outer face has a straight-line grid drawing with area $(\lceil n/2 \rceil - 1) \times (\lceil n/2 \rceil)$ [15]. Garg and Rusu showed that an n-node binary tree has a planar straight-line grid drawing with area O(n) [9]. Although trees admit straight-line grid drawings with linear area, it is generally thought that triangulations may require a grid of quadratic size. Hence finding nontrivial classes of planar graphs of n vertices richer than trees that admit straight-line grid drawings with area $o(n^2)$ is posted as an open problem in [1]. Garg and Rusu showed that an outerplanar graph with n vertices and maximum degree d has a planar straight-line drawing with area $O(dn^{1.48})$ [10]. Recently Di Battista and Frati showed that a "balanced" outerplanar graph of n vertices has a straight-line grid drawing with area O(n)and a general outerplanar graph of n vertices has a straight-line grid drawing with area $O(n^{1.48})$ [5].

In this paper, we introduce a new class of planar graphs which has a straightline grid drawing on a grid of area O(n). We give a linear-time algorithm to find such a drawing. Our new class of planar graphs is a subclass of 5-connected planar graphs, and we call the class "doughnut graphs" since a graph in this class has a doughnut-like embedding as illustrated in Figure 1(c). In an embedding of a "doughnut graph" of n vertices, there are two vertex-disjoint faces each having exactly n/4 vertices and each of all the other faces has exactly three vertices. Figure 1(a) illustrates a "doughnut graph" of 16 vertices where each of the two faces F_1 and F_2 contains four vertices and each of all other faces contains exactly three vertices. Figure 1(c) illustrates a doughnut-like embedding of Gwhere F_1 is embedded as the outer face and F_2 is embedded as an inner face. A straight-line grid drawing of G with area O(n) is illustrated in Figure 1(d). The outerplanarity of a "doughnut graph" is 3. Thus "doughnut graphs" introduce a subclass of 3-outerplanar graphs that admits straight-line grid drawing with linear area. One can easily observe that any spanning subgraph of a "doughnut graph" also admits a straight-line grid drawing with linear area. But the recognition of a spanning subgraph of a given graph is an NP-complete problem in general. We establish a necessary and sufficient condition for a 4-connected planar graph to be a spanning subgraph of a "doughnut graph." We also provide a linear-time algorithm to augment a 4-connected graph G to a "doughnut graph" if G satisfies the necessary and sufficient condition. This gives us a new class of graphs which is a subclass of 4-connected planar graphs that admits straight-line grid drawings with linear area.

The remainder of the paper is organized as follows. In Section 2, we give some definitions. Section 3 provides some properties of the class of "doughnut graphs." Section 4 deals with straight-line grid drawings of "doughnut graphs." Section 5 provides the characterization for a 4-connected planar graph to be a spanning subgraph of a "doughnut graph." Finally Section 6 concludes the paper. Early versions of this paper have been presented at [12] and [13].

2 Preliminaries

In this section we give some definitions.

Let G = (V, E) be a connected simple graph with vertex set V and edge set E. Throughout the paper, we denote by n the number of vertices in G, that is, n = |V|, and denote by m the number of edges in G, that is, m = |E|. An edge joining vertices u and v is denoted by (u, v). The degree of a vertex v, denoted by d(v), is the number of edges incident to v in G. G is called r-regular if every vertex of G has degree r. We call a vertex v a *neighbor* of a vertex u in G if G has an edge (u, v). The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or a single-vertex graph K_1 . G is called k-connected if $\kappa(G) \geq k$. We call a vertex of G a cut-vertex of G if its removal results in a disconnected or single-vertex graph. For $W \subseteq V$, we denote by G - W the graph obtained from G by deleting all vertices in W and all edges incident to them. A *cut-set* of G is a set $S \subseteq V(G)$ such that G - Shas more than one component or G - S is a single vertex graph. A path in G is an ordered list of distinct vertices $v_1, v_2, ..., v_q \in V$ such that $(v_{i-1}, v_i) \in E$ for all $2 \leq i \leq q$. Vertices v_1 and v_q are end-vertices of the path $v_1, v_2, ..., v_q$. Two paths are *vertex-disjoint* if they do not share any common vertex except their end vertices. The *length* of a path is the number of edges on the path. We call a path P an *even path* if the number of edges on P is even. We call a path Pan *odd path* if the number of edges on P is odd.

A graph is *planar* if it can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which they are both incident. A *plane graph* is a planar graph with a fixed embedding. A plane graph G divides the plane into connected regions called *faces*. A bounded region is called an *inner face* and the unbounded region is called the *outer face*. For a face F in G we denote by V(F) the set of vertices of G on the boundary of face F. Two faces F_1 and F_2 are *vertex-disjoint* if $V(F_1) \cap V(F_2) = \emptyset$. Let F be a face in a plane graph G with $n \geq 3$. If the boundary of F has exactly three vertices then we call F a triangulated face. One can divide a face F of p ($p \ge 3$) vertices into p-2 triangulated faces by adding p-3 extra edges. The operation above is called triangulating a face. If every face of a graph is triangulated, then the graph is called a triangulated plane graph. We can obtain a triangulated plane graph G' from a non-triangulated plane graph G by triangulating all faces of G.

A maximal planar graph is one to which no edge can be added without losing planarity. Thus the boundary of every face of G is a triangle in any embedding of a maximal planar graph G with $n \geq 3$, and hence an embedding of a maximal planar graph is often called a triangulated plane graph. It can be derived from Euler's formula for planar graphs that if G is a maximal planar graph with n vertices and m edges then m = 3n - 6, for more details see [16]. We call a face a quadrangle face if the face has exactly four vertices.

For any 3-connected planar graph the following fact holds.

Fact 1 Let G be a 3-connected planar graph and let Γ and Γ' be any two planar embeddings of G. Then any facial cycle of Γ is a facial cycle of Γ' and vice versa.

Let G be a 5-connected planar graph, let Γ be any planar embedding of G and let p be an integer such that $p \geq 4$. We call G a p-doughnut graph if the following conditions (d_1) and (d_2) hold:

- (d₁) Γ has two vertex-disjoint faces each of which has exactly p vertices, and all the other faces of Γ has exactly three vertices; and
- (d_2) G has the minimum number of vertices satisfying condition (d_1) .

In general, we call a *p*-doughnut graph for $p \ge 4$ a *doughnut graph*. Since a doughnut graph is a 5-connected planar graph, Fact 1 implies that the decomposition of a doughnut graph into its facial cycles is unique. Throughout the paper we often mention faces of a doughnut graph G without mentioning its planar embedding where the description of the faces is valid for any planar embedding of G.

3 Properties of Doughnut Graphs

In this section we will show some properties of a *p*-doughnut graph. We have the following lemma on the number of vertices of a graph satisfying condition (d_1) .

Lemma 2 Let G be a 5-connected planar graph, let Γ be any planar embedding of G, and let p be an integer such that $p \ge 4$. Assume that Γ has two vertexdisjoint faces each of which has exactly p vertices, and all the other faces of Γ has exactly three vertices. Then G has at least 4p vertices.

Proof: Let F_1 and F_2 be the two faces of Γ each of which contains exactly p vertices. Let x be the number of vertices in G which are neither on F_1 nor on F_2 . Then G has x + 2p vertices.

158 Karim and Rahman Straight-Line Grid Drawings on Linear Area

We calculate the number of edges in G as follows. Faces F_1 and F_2 of Γ are not triangulated since $p \geq 4$. If we triangulate F_1 and F_2 of Γ then the resulting graph G' is a maximal planar graph. Using Euler's formula, G' has exactly 3(x+2p)-6=3x+6p-6 edges. To triangulate each of F_1 and F_2 , we need to add p-3 edges and hence the number of edges in G is exactly

$$(3x+6p-6) - 2(p-3) = 3x+4p.$$
(1)

Since G is 5-connected, using the degree-sum formula, we get $2(3x + 4p) \ge 5(x + 2p)$. This relation implies

$$x \geq 2p. \tag{2}$$

Q.E.D.

Therefore G has at least 4p vertices.

Lemma 2 implies that a p-doughnut graph has 4p or more vertices. We now show that 4p vertices are sufficient to construct a p-doughnut graph as in the following lemma.

Lemma 3 For an integer $p, p \ge 4$, one can construct a p-doughnut graph G with 4p vertices.

To prove Lemma 3 we first construct a planar embedding Γ of G with 4p vertices by the construction **Construct-Doughnut** given below and then show that G is a p-doughnut graph.

Construct-Doughnut. Let C_1, C_2, C_3 be three vertex-disjoint cycles such that C_1 contains p vertices, C_2 contains 2p vertices and C_3 contains p vertices. Let $x_1, x_2, ..., x_p$ be the vertices on $C_1, y_1, y_2, ..., y_p$ be the vertices on C_3 , and $z_1, z_2, ..., z_{2p}$ be the vertices on C_2 . Let R_1, R_2 and R_3 be three concentric circles on a plane with radius r_1, r_2 and r_3 , respectively, such that $r_1 > r_2 > r_3$. We embed C_1, C_2 and C_3 on R_1, R_2 and R_3 respectively, as follows. We put the vertices $x_1, x_2...x_p$ of C_1 on R_1 in clockwise order such that x_1 is put on the leftmost position among the vertices $x_1, x_2, ..., x_p$. Similarly, we put vertices $z_1, z_2, ..., z_{2p}$ of C_2 on R_2 and $y_1, y_2, ..., y_p$ of C_3 on R_3 . We add edges between the vertices on C_1 and C_2 , and between the vertices on C_2 and C_3 as follows. We have two cases to consider.

Case 1: k is even in z_k .

In this case, we add two edges $(z_k, x_{k/2})$, (z_k, x_i) between C_2 and C_1 , and one edge (z_k, y_i) between C_2 and C_3 where i = 1 if k = 2p, and i = k/2 + 1otherwise.

Case 2: k is odd in z_k .

In this case, we add two edges $(z_k, y_{\lceil k/2 \rceil})$, (z_k, y_i) between C_2 and C_3 , and one edge $(z_k, x_{\lceil k/2 \rceil})$ between C_1 and C_2 where i = 1 if k = 2p - 1, and $i = \lceil k/2 \rceil + 1$ otherwise.

We thus constructed a planar embedding Γ of G. Figure 2 illustrates the construction above for the case of p = 4.

We have the following lemma on the construction **Construct-Doughnut**.

Figure 2: Illustration for the construction of a planar embedding Γ of a *p*-doughnut graph *G* for p = 4; (a) embedding of the three cycles C_1 , C_2 and C_3 on three concentric circles, (b) addition of edges for the case where *k* is even in z_k and (c) Γ .

Lemma 4 Let Γ be the plane graph of 4p vertices obtained by the construction **Construct-Doughnut**. Then Γ has exactly two vertex-disjoint faces F_1 and F_2 each of which has exactly p vertices, and the rest of the faces are triangulated.

Proof: The construction of Γ implies that cycle C_1 is the boundary of the outer face F_1 of Γ and cycle C_3 is the boundary of an inner face F_2 . Each of F_1 and F_2 has exactly p vertices. Clearly the two faces F_1 and F_2 of Γ are vertex-disjoint. Thus it is remained to show that the rest of the faces of Γ are triangulated. The rest of the faces can be divided into two groups; (i) faces having vertices on both the cycles C_1 and C_2 , and (ii) faces having the vertices on both the cycles C_2 and C_3 .

We only prove that each face in group (i) is triangulated, since the proof for group (ii) is similar.

From our construction each vertex z_i with even *i* has exactly two neighbors on C_1 , and the two neighbors of z_i on C_1 are consecutive. Hence we get a triangulated face for each z_i with even *i* which contains z_i and the two neighbors of z_i on C_1 .

We now show that the remaining faces in group (i) are triangulated. Clearly each of the remaining faces in group (i) must contain a vertex z_i with odd isince a vertex on a face in group (i) is either on C_1 or on C_2 and a vertex on C_2 has at most two neighbors on C_1 . Let z_i, z_{i+1} and z_{i+2} be three consecutive vertices on C_2 with even i. Then z_i and z_{i+2} has a common neighbor x on C_1 . One can observe from our construction that x is also the only neighbor of z_{i+1} on C_1 . Then exactly two faces in group (i) contain z_{i+1} and the two faces are triangulated. This implies that for each z_i on C_2 with odd i there are exactly two faces in group (i) which contain z_i , and the two faces are triangulated.

Q.E.D.

We are ready to prove Lemma 3.

Proof of Lemma 3

We construct a planar embedding Γ of a graph G with 4p vertices by the construction **Construct-Doughnut** and show that G is a p-doughnut graph. To prove this claim we need to prove that G satisfies the following properties (a)-(c):

- (a) the graph G is a 5-connected planar graph;
- (b) any planar embedding Γ' of G has exactly two vertex-disjoint faces each of which has exactly p vertices, and all the other faces are triangulated; and
- (c) G has the minimum number of vertices satisfying (a) and (b).

(a) G is a planar graph since it has a planar embedding Γ as illustrated in Figure 2(c). To prove that G is 5-connected, we show that the size of any cut-set of G is 5 or more. We first show that G is 5-regular. From the construction, one can easily see that each of the vertex of C_2 has exactly three neighbors in $V(C_1) \cup V(C_3)$. Hence the degree of each vertex of C_2 is exactly 5. We only prove that the degree of each vertex of C_1 is exactly 5 since the proof is similar for the vertices of C_3 . Each even index vertex v of C_2 has two neighbors on C_1 and the two neighbors of v are consecutive on C_1 by construction. Each vertex u of C_1 has at most two even index neighbors on C_2 , since C_2 has p even index vertices, C_1 has p vertices, and Γ is a planar embedding. Assume that a vertex u of C_1 has two even index neighbors y_i and y_{i+2} on C_2 . Since Γ is a planar embedding y_{i+1} can have only one neighbor on C_1 which is u. Thus a vertex u on C_1 has at most three neighbors on C_2 . Since there are exactly 3p edges each of which has one end point on C_1 and the other on C_2 , and a vertex on C_1 has at most three neighbors on C_2 , each vertex of C_1 has exactly three neighbors on C_2 . Hence the degree of a vertex on C_1 is 5. Therefore G is 5-regular. We next show that the size of any cut-set of G is 5 or more. Assume for a contradiction that G has a cut-set of less than five vertices. In such a case, G would have a vertex of degree less than five, a contradiction. (Note that G is 5-regular, the vertices of G lie on three vertex disjoint cycles C_1 , C_2 and C_3 , none of the vertices of C_1 has a neighbor on C_3 , each of the faces of G is triangulated except faces F_1 and F_2 .)

(b) By Lemma 4, G has a planar embedding Γ such that Γ has exactly two vertex-disjoint faces F_1 and F_2 each of which has exactly p vertices, and the rest of the faces are triangulated. Since G is 5-connected, Fact 1 implies that any planar embedding Γ' of G has exactly two vertex-disjoint faces each of which has exactly p vertices, and all the other faces are triangulated.

(c) We have constructed the graph G with 4p vertices and proofs for (a) and (b) imply that G satisfies properties (a) and (b). G is a 5-connected planar graph and hence satisfies condition (d_1) of the definition of a p-doughnut graph. By Lemma 2, 4p is the minimum number of vertices of such a graph. $\mathcal{Q.E.D.}$

Condition (d_2) of the definition of a *p*-doughnut graph and Lemmas 2 and 3 imply that a *p*-doughnut graph *G* has exactly 4p vertices. Then the value of *x* in Eq. (2) is 2p in *G*. By Eq. (1), *G* has exactly 3x + 4p = 10p edges. Since *G* is 5-connected, every vertex has degree 5 or more. Then the degree-sum formula implies that every vertex of *G* has degree exactly 5. Thus the following theorem holds.

Theorem 1 Let G be a p-doughnut graph. Then G is 5-regular and has exactly 4p vertices.

For a cycle C in a plane graph G, we denote by G(C) the plane subgraph of G inside C excluding C. Let C_1 , C_2 and C_3 be three vertex-disjoint cycles in a planar graph G such that $V(C_1) \cup V(C_2) \cup V(C_3) = V(G)$. Then we call a planar embedding Γ of G a *doughnut embedding* of G if C_1 is the outer face and C_3 is an inner face of Γ , $G(C_1)$ contains C_2 and $G(C_2)$ contains C_3 . We call C_1 the *outer cycle*, C_2 the *middle cycle* and C_3 the *inner cycle* of Γ . We next show that a *p*-doughnut graph has a doughnut embedding. To prove the claim we need the following lemmas.

Lemma 5 Let G be a p-doughnut graph. Let F_1 and F_2 be the two faces of G each of which contains exactly p vertices. Then $G - \{V(F_1) \cup V(F_2)\}$ is connected and contains a cycle.

Proof: Since G is 5-connected, $G' = G - \{V(F_1) \cup V(F_2)\}$ is connected; otherwise, G would have a cut-set of 4 vertices - two of them are on F_1 and the other two are on F_2 , a contradiction. Clearly G' has exactly 2p vertices. Since G is 5-regular and has exactly 4p vertices by Theorem 1, one can observe following the degree-sum formula that G' contains at least 2p edges; if there is no edge between a vertex of F_1 and a vertex of F_2 in G then G' contains exactly 2p vertices and has at least 2p edges, G' must have a cycle. $Q.\mathcal{E.D.}$

Lemma 6 Let G be a p-doughnut graph. Let F_1 and F_2 be the two faces of G each of which contains exactly p vertices. Let Γ be a planar embedding of G such that F_1 is embedded as the outer face. Let C be a cycle in $G - \{V(F_1) \cup V(F_2)\}$. Then G(C) in Γ contains F_2 .

Proof: Assume that G(C) does not contain F_2 in Γ . Since F_1 is embedded as the outer face of Γ , F_2 will be an inner face of Γ as illustrated in Figure 3. Then there would be edge crossings in Γ among the edges from the vertices on C to the vertices on F_1 and F_2 as illustrated in Figure 3, a contradiction to the assumption that Γ is a planar embedding of G. (Note that G is 5-connected, 5-regular and has 10p edges.) Therefore G(C) contains F_2 . Q.E.D.

Lemma 7 Let G be a p-doughnut graph. Let F_1 and F_2 be the two faces of G each of which contains exactly p vertices. Then the following (a) - (c) hold.

(a) There is no edge between a vertex of F_1 and a vertex of F_2 .

Figure 3: An embedding Γ' of G where F_1 is embedded as the outer face and G(C') does not contain F_2 .

- (b) $G \{V(F_1) \cup V(F_2)\}$ contains exactly 2p edges and has exactly one cycle.
- (c) All the vertices of $G \{V(F_1) \cup V(F_2)\}$ are contained in a single cycle.

Proof: (a) Let Γ be a planar embedding of G such that F_1 is embedded as the outer face. Let C be a cycle in $G - \{V(F_1) \cup V(F_2)\}$. Since G(C) contains F_2 by Lemma 6, there is no edge between a vertex of F_1 and a vertex of F_2 ; otherwise, an edge between a vertex of F_1 and a vertex of F_2 would cross an edge on C, a contradiction to the assumption that Γ is a planar embedding of G.

(b) Since there is no edge between a vertex of F_1 and a vertex of F_2 by Lemma 7(a), $G - \{V(F_1) \cup V(F_2)\}$ contains exactly 2p edges as mentioned in the proof of Lemma 5. Since $G - \{V(F_1) \cup V(F_2)\}$ is connected, contains exactly 2p vertices and has exactly 2p edges, $G - \{V(F_1) \cup V(F_2)\}$ contains exactly one cycle.

(c) Let Γ be a planar embedding of G such that F_1 is embedded as the outer face. Let C be a cycle in $G - \{V(F_1) \cup V(F_2)\}$. By Lemma 7(b), C is the only cycle in $G - \{V(F_1) \cup V(F_2)\}$. Assume that the cycle C does not contain all the vertices of $G - \{V(F_1) \cup V(F_2)\}$. Then there is at least a vertex in $G - \{V(F_1) \cup V(F_2)\}$ whose degree is one in $G - \{V(F_1) \cup V(F_2)\}$. Let v be a vertex of degree one in $G - \{V(F_1) \cup V(F_2)\}$. We may assume that the vertex vis outside of the cycle C in Γ since the proof is similar if v is inside of the cycle C. Then the four neighbors of v must be on F_1 , since $G - \{V(F_1) \cup V(F_2)\}$ contains exactly one cycle by Lemma 7(b), the vertex v is outside of the cycle C, and G(C) contains F_2 by Lemma 6. Then either G would not be 5-regular or Γ would not be a planar embedding of G, a contradiction. Hence all the vertices of $G - \{V(F_1) \cup V(F_2)\}$ are contained in cycle C.

We now prove the following theorem.

Theorem 2 A p-doughnut graph always has a doughnut embedding.

Proof: Let F_1 and F_2 be two faces of G each of which contains exactly p vertices. Let Γ be a planar embedding of G such that F_1 is embedded as the outer face. By Lemma 7(c), all the vertices of $G - \{V(F_1) \cup V(F_2)\}$ are contained in a single cycle C. By Lemma 6, G(C) contains F_2 . Then in Γ , $G(F_1)$ contains C and G(C) contains F_2 , and hence Γ is a doughnut embedding. $\mathcal{Q.E.D.}$

A 1-outerplanar graph is an embedded planar graph where all vertices are on the outer face. It is also called 1-outerplane graph. An embedded graph is a *k*-outerplane (k > 1) if the embedded graph obtained by removing all vertices of the outer face is a (k - 1)-outerplane graph. A graph is *k*-outerplanar if it admits a *k*-outerplanar embedding. A planar graph *G* has outerplanarity *k* (k > 0) if it is *k*-outerplanar and it is not *j*-outerplanar for 0 < j < k.

In the rest of this section, we show that the outerplanarity of a p-doughnut graph G is 3. Since none of the faces of G contains all vertices of G, G does not admit 1-outerplanar embedding. We thus need to show that G does not admit a 2-outerplanar embedding. We have the following fact.

Fact 8 A graph G having outerplanarity 2 has a cut-set of four or less vertices.

Proof: Deletion of all vertices on the outer face from a 2-outerplane graph leaves a 1-outerplane graph. Since all vertices of a 1-outerplane graph are on the outer face, a 1-outerplane graph has a cut-set of at most two vertices. Then one can observe that a graph G having outerplanarity 2 has a cut-set of four or less vertices. Q.E.D.

Since G is 5-connected graph, G has no cut-set of four or less vertices. Hence by Fact 8 the graph G has outerplanarity greater than 2. Thus the following lemma holds.

Lemma 9 Let G be a p-doughnut graph for $p \ge 4$. Then G is neither a 1-outerplanar graph nor a 2-outerplanar graph.

We now prove the following theorem.

Theorem 3 The outerplanarity of a p-doughnut graph G is 3.

Proof: A doughnut embedding of G immediately implies that G has a 3-outerplanar embedding. By Lemma 9, G is neither a 1-outerplanar graph nor a 2-outerplanar graph. Therefore the outerplanarity of a p-doughnut graph is 3. $\mathcal{Q.E.D.}$

4 Drawings of Doughnut Graphs

In this section we give a linear-time algorithm for finding a straight-line grid drawing of a doughnut graph on a grid of linear area.

Let G be a p-doughnut graph. Then G has a doughnut embedding by Theorem 2. Let Γ be a doughnut embedding of G as illustrated in Figure 4(a). Let C_1 , C_2 and C_3 be the outer cycle, the middle cycle and the inner cycle of Γ , respectively. We have the following facts. **Fact 10** Let G be a p-doughnut graph and let Γ be a doughnut embedding of G. Let C_1 , C_2 and C_3 be the outer cycle, the middle cycle and the inner cycle of Γ , respectively. For any two consecutive vertices z_i , z_{i+1} on C_2 , one of z_i , z_{i+1} has exactly one neighbor on C_1 and the other has exactly two neighbors on C_1 .

Fact 11 Let G be a p-doughnut graph and let Γ be a doughnut embedding of G. Let C_1 , C_2 and C_3 be the outer cycle, the middle cycle and the inner cycle of Γ , respectively. Let z_i be a vertex of C_2 , then either the following (a) or (b) holds.

- (a) z_i has exactly one neighbor on C_1 and exactly two neighbors on C_3 .
- (b) z_i has exactly one neighbor on C_3 and exactly two neighbors on C_1 .

Before describing our algorithm we need some definitions. Let z_i be a vertex of C_2 such that z_i has two neighbors on C_1 . Let x and x' be the two neighbors of z_i on C_1 such that x' is the counter clockwise next vertex to x on C_1 . We call x the *left neighbor* of z_i on C_1 and x' the *right neighbor* of z_i on C_1 . Similarly we define the left neighbor and the right neighbor of z_i on C_3 if a vertex z_i on C_2 has two neighbors on C_3 . We are now ready to describe our algorithm.

We embed C_1 , C_2 and C_3 on three nested rectangles R_1 , R_2 and R_3 , respectively on a grid as illustrated in Figure 4(b). We draw rectangle R_1 on grid with four corners on grid point (0, 0), (p + 1, 0), (p + 1, 5) and (0, 5). Similarly the four corners of R_2 are (1, 1), (p, 1), (p, 4), (1, 4) and the four corners of R_3 are (2, 2), (p - 1, 2), (p - 1, 3), (2, 3).

We first embed C_2 on R_2 as follows. Let $z_1, z_2, ..., z_{2p}$ be the vertices on C_2 in counter clockwise order such that z_1 has exactly one neighbor on C_1 . We put z_1 on $(1, 1), z_p$ on $(p, 1), z_{p+1}$ on (p, 4) and z_{2p} on (1, 4). We put the other vertices of C_2 on grid points of R_2 preserving the relative positions of vertices of C_2 .

We next put vertices of C_1 on R_1 as follows. Let x_1 be the neighbor of z_1 on C_1 and let $x_1, x_2, ..., x_p$ be the vertices of C_1 in counter clockwise order. We put x_1 on (0, 0) and x_p on (0, 5). Since z_1 has exactly one neighbor on C_1 , by Fact 10, z_{2p} has exactly two neighbors on C_1 . Since z_1 and z_{2p} are on a triangulated face of G having vertices on both C_1 and C_2 , x_1 is a neighbor of z_{2p} . One can easily observe that x_p is the other neighbor of z_{2p} on C_1 . Clearly the edges $(x_1, z_1), (x_1, z_{2p}), (x_p, z_{2p})$ can be drawn as straight-line segments without edge crossings as illustrated in Figure 4(b). We next put neighbors of z_p and z_{p+1} . Let x_i be the neighbor of z_p on C_1 if z_p has exactly one neighbor on C_1 , otherwise let x_i be the left neighbor of z_p on C_1 . We put x_i on (p+1, 0) and x_{i+1} on (p+1, 5). In case of z_p has exactly one neighbor on C_1 , by Fact 10, z_{p+1} has two neighbors on C_1 , and x_i and x_{i+1} are the two neighbors of z_{p+1} on C_1 . Clearly the edges (z_p, x_i) , (z_{p+1}, x_i) and (z_{p+1}, x_{i+1}) can be drawn as straightline segments without edge crossings, as illustrated in Figure 4(b). In case of z_p has exactly two neighbors x_i and x_{i+1} on C_1 , the edges between neighbors of z_p and z_{p+1} on C_1 can be drawn without edge crossings as illustrated in Figure 5. We put the other vertices of C_1 on grid points of R_1 arbitrarily preserving their relative positions on C_1 .

Figure 4: (a) A doughnut embedding of a *p*-doughnut graph of G, (b) edges between four corner vertices of R_1 and R_2 are drawn as straight-line segments, (c) edges between vertices on R_1 and R_2 are drawn, (d) edges between four corner vertices of R_2 and R_3 are drawn as straight-line segments, and (e) a straight-line grid drawing of G.

Figure 5: Illustration for the case where z_p has two neighbors on C_1 .

One can observe that all the edges of G connecting vertices in $\{z_2, z_3, ..., z_{p-1}\}$ to vertices in $\{x_2, x_3, ..., x_{i-1}\}$, and connecting vertices in $\{z_{p+2}, z_{p+2}, ..., z_{2p-1}\}$ to vertices in $\{x_{i+2}, x_{i+3}, ..., x_{p-1}\}$ can be drawn as straight-line segments without edge crossings. See Figure 4(c).

We finally put the vertices of C_3 on R_3 as follows. Since z_1 has exactly one neighbor on C_1 , by Fact 11(a), z_1 has exactly two neighbors on C_3 . Then, by Fact 11(b), z_{2p} has exactly one neighbor on C_3 . Let $y_1, y_2, ..., y_p$ be the vertices on C_3 in counter clockwise order such that y_1 is the right neighbor of z_1 . Then y_p is the left neighbor of z_1 . We put y_1 on (2, 2) and y_p on (2, 3). Clearly the edges $(y_1, z_1), (y_p, z_{2p}), (y_p, z_1)$ can be drawn as straight-line segments without edge crossings, as illustrated in Figure 4(d). We next put neighbors of z_p and z_{p+1} on C_3 as we have put the neighbors of z_p and z_{p+1} on C_1 at the other two corners of R_3 in a counter clockwise order as illustrated in Figure 4(d). We put the other vertices of C_3 on grid points of R_3 arbitrarily preserving their relative positions on C_3 . It is not difficult to show that edges from the vertices on C_2 to the vertices on C_3 can be drawn as straight-line segments without edge crossings. Figure 4(e) illustrates the complete straight-line grid drawing of a *p*-doughnut graph.

The area requirement of the straight-line grid drawing of a *p*-doughnut graph G is equal to the area of rectangle R_1 and the area of R_1 is $= (p+1) \times 5 = (n/4+1) \times 5 = O(n)$, where *n* is the number of vertices in *G*. Thus we have a straight-line grid drawing of a *p*-doughnut graph on a grid of linear area. Clearly the algorithm takes linear time. Thus the following theorem holds.

Theorem 4 A doughnut graph G of n vertices has a straight-line grid drawing on a grid of area O(n). Furthermore, the drawing of G can be found in linear time.

5 Spanning Subgraphs of Doughnut Graphs

In Section 4, we have seen that a doughnut graph admits a straight-line grid drawing with linear area. One can easily observe that a spanning subgraph of a doughnut graph also admits a straight-line grid drawing with linear area. Figure 6(b) illustrates a straight-line grid drawing with linear area of a graph G' in Figure 6(a) where G' is a spanning subgraph of a doughnut graph G in Figure 1(a). Using a transformation from the "subgraph isomorphism" problem [8], one can easily prove that the recognition of a spanning subgraph of a given graph is an NP-complete problem in general. Hence the recognition of a spanning subgraph of a doughnut graph seems to be a non-trivial problem. We thus restrict ourselves only to 4-connected planar graphs. In this section, we give a necessary and sufficient condition for a 4-connected planar graph to be a spanning subgraph of a doughnut graph as in the following theorem.

Figure 6: (a) A spanning subgraph G' of G in Figure 1(a), and (b) a straight-line grid drawing of G' with area O(n).

Theorem 5 Let G be a 4-connected planar graph with 4p vertices where p > 4and let $\Delta(G) \leq 5$. Let Γ be a planar embedding of G. Assume that Γ has exactly two vertex disjoint faces F_1 and F_2 each of which has exactly p vertices. Then G is a spanning subgraph of a p-doughnut graph if and only if the following conditions (a) - (e) hold.

- (a) G has no edge (x, y) such that $x \in V(F_1)$ and $y \in V(F_2)$.
- (b) Every face f of Γ has at least one vertex $v \in \{V(F_1) \cup V(F_2)\}$.
- (c) For any vertex $x \notin \{V(F_1) \cup V(F_2)\}$, the total number of neighbors of x on faces F_1 and F_2 are at most three.
- (d) Every face f of Γ except the faces F_1 and F_2 has either three or four vertices.
- (e) For any x-y path P such that $V(P) \cap \{V(F_1) \cup V(F_2)\} = \emptyset$ and x has exactly two neighbors on face $F_1(F_2)$. Then the following conditions hold.

(i) If P is even, then the vertex y has at most two neighbors on face $F_1(F_2)$ and at most one neighbor on face $F_2(F_1)$. (ii) If P is odd, then the vertex y has at most one neighbor on face $F_1(F_2)$ and at most two neighbors on face $F_2(F_1)$.

Fact 1 implies that the decomposition of a 4-connected planar graph G into its facial cycles is unique. Throughout the section we thus often mention faces of G without mentioning its planar embedding where the description of the faces is valid for any planar embedding of G, since $\kappa(G) \ge 4$ for every graph Gconsidered in this section.

Before proving the necessity of Theorem 5, we have the following fact.

Fact 12 Let G be a 4-connected planar graph with 4p vertices where p > 4 and let $\Delta(G) \leq 5$. Assume that G has exactly two vertex disjoint faces F_1 and F_2 each of which has exactly p vertices. If G is a spanning subgraph of a doughnut graph then G can be augmented to a 5-connected 5-regular graph G' through triangulation of all the non-triangulated faces of G except the faces F_1 and F_2 .

One can easily observe that the following fact holds from the construction **Construct-Doughnut** given in Section 3.

Fact 13 Let G be a doughnut graph, and let P be any x-y path such that $V(P) \cap \{V(F_1) \cup V(F_2)\} = \emptyset$ and x has exactly two neighbors on face $F_1(F_2)$. Then the following conditions (i) and (ii) hold.

(i) If P is even, then the vertex y has exactly two neighbors on face $F_1(F_2)$ and exactly one neighbor on face $F_2(F_1)$.

(ii) If P is odd, then the vertex y has exactly one neighbor on face $F_1(F_2)$ and exactly two neighbors on face $F_2(F_1)$.

We are ready to prove the necessity of Theorem 5.

Proof for the Necessity of Theorem 5

Assume that G is a spanning subgraph of a p-doughnut graph. Then by Theorem 1 G has 4p vertices. Clearly $\Delta(G) \leq 5$ and G satisfies the conditions (a), (b) and (c), otherwise G would not be a spanning subgraph of a doughnut graph. The necessity of condition (e) is obvious by Fact 13. Hence it is sufficient to prove the necessity of condition (d) only.

(d) G does not have any face of two or less vertices since G is a 4-connected planar graph. Then every face of G has three or more vertices. We now show that G has no face of more than four vertices. Assume for a contradiction that G has a face f of q vertices such that q > 4. Then f can be triangulated by adding q - 3 extra edges. These extra edges increase the degrees of q - 2vertices, and the sum of the degrees will be increased by 2(q - 3). Using the pigeonhole principle, one can easily observe that there is a vertex among the q(> 4) vertices whose degree will be raised by at least 2 after a triangulation of f. Then G' would have a vertex of degree six or more where G' is a graph obtained after triangulation of f. Hence we cannot augment G to a 5-regular graph through triangulation of all the non-triangulated faces of G other than the faces F_1 and F_2 . Therefore G cannot be a spanning subgraph of a doughnut graph by Fact 12, a contradiction. Hence each face f of G except F_1 and F_2 has either three or four vertices. $\mathcal{Q.E.D.}$

In the remaining of this section we give a constructive proof for the sufficiency of Theorem 5. Assume that G satisfies the conditions in Theorem 5. We have the following lemma.

Lemma 14 Let G be a 4-connected planar graph satisfying the conditions in Theorem 5. Assume that all the faces of G except F_1 and F_2 are triangulated. Then G is a doughnut graph.

Proof: To prove the claim, we have to prove that (i) G is 5-connected, (ii) G has two vertex disjoint faces each of which has exactly p, p > 4, vertices, and all the other faces of G has exactly three vertices, and (iii) G has the minimum number of vertices satisfying the properties (i) and (ii).

(i) We first prove that G is a 5-regular graph. Every face of G except F_1 and F_2 is a triangle. Furthermore each of F_1 and F_2 has exactly p, p > 4, vertices. Then G has 3(4p) - 6 - 2(p-3) = 10p edges. Since none of the vertices of G has degree more than five and G has exactly 10p edges, each vertex of G has degree exactly five. We next prove that the vertices of G lie on three vertex-disjoint cycles C_1 , C_2 and C_3 such that cycles C_1 , C_2 , C_3 contain exactly p, 2p and p vertices, respectively. We take an embedding Γ of G such that F_1 is embedded as the outer face and F_2 is embedded as an inner face. We take the contour of face F_1 as cycle C_1 and contour of face F_2 as cycle C_3 . Then each of C_1 and C_2 contains exactly p, p > 4, vertices. Since G satisfies conditions (a), (b) and (c) in Theorem 5 and all the faces of G except F_1 and F_2 are triangulated, the rest 2p vertices of G form a cycle in Γ . We take this cycle as C_2 . $G(C_2)$ contains C_3 since G satisfies condition (b) in Theorem 5. Clearly C_1 , C_2 and C_3 are vertex-disjoint and cycles C_1 , C_2 , C_3 contain exactly p, 2p and p vertices, respectively. We finally prove that G is 5-connected. Assume for a contradiction that G has a cut-set of less than five vertices. In such a case G would have a vertex of degree less than five, a contradiction.

(ii) The proof of this part is obvious since G has two vertex disjoint faces each of which has exactly p vertices and all the other faces of G has exactly three vertices.

(*iii*) The number of vertices of G is 4p. Using Lemma 2, we can easily prove that the minimum number of vertices required to construct a graph G that satisfies the properties (*i*) and (*ii*) is 4p.

Q.E.D.

We thus assume that G has a non-triangulated face f except faces F_1 and F_2 . By condition (d) in Theorem 5, f is a quadrangle face. It is sufficient to show that we can augment the graph G to a doughnut graph by triangulating each of the quadrangle faces of G. However, we cannot augment G to a doughnut graph by triangulating each quadrangle face arbitrarily. For example, the graph G in Figure 7(a) satisfies all the conditions in Theorem 5 and it has exactly one quadrangle face $f_1(a, b, c, d)$. If we triangulate f_1 by adding an

170 Karim and Rahman Straight-Line Grid Drawings on Linear Area

edge (a, c) as illustrated in Figure 7(b), the resulting graph G' would not be a doughnut graph since a doughnut graph does not have an edge (a, c) such that $a \in V(F_1)$ and $c \in V(F_2)$. But if we triangulate f_1 by adding an edge (b, d) as illustrated in Figure 7(c), the resulting graph G' is a doughnut graph. Hence every triangulation of a quadrangle face is not always valid to augment G to a doughnut graph. We call a triangulation of a quadrangle face f of G a valid triangulation if the resulting graph G' obtained after the triangulation of f does not contradict any condition in Theorem 5. We call a vertex v on the contour of a quadrangle face f a good vertex if v is one of the end vertex of an edge which is added for a valid triangulation of f.

Figure 7: (a) $f_1(a, b, c, d)$ is a quadrangle face, (b) the triangulation of f_1 by adding the edge (a, c) and (c) the triangulation of f_1 by adding the edge (b, d).

We call a quadrangle face f of G an α -face if f contains at least one vertex from each of the faces F_1 and F_2 . Otherwise, we call a quadrangle face f of Ga β -face. In Figure 8, $f_1(a, b, c, d)$ is an α -face whereas $f_2(p, q, r, s)$ is a β -face.

Figure 8: $f_1(a, b, c, d)$ is an α -face and $f_2(p, q, r, s)$ is a β -face.

In a valid triangulation of an α -face f of G no edge is added between any two vertices $x, y \in V(f)$ such that $x \in V(F_1)$ and $y \in V(F_2)$. Hence the following fact holds on an α -face f.

Fact 15 Let G be a 4-connected planar graph satisfying the conditions in Theorem 5. Let f be an α -face in G. Then f admits a unique valid triangulation and the triangulation is obtained by adding an edge between two vertices those are not on F_1 and F_2 . Faces $f_1(a, b, c, d)$ and $f_2(p, q, r, s)$ in Figure 9(a) are two α -faces and Figure 9(b) illustrates the valid triangulations of f_1 and f_2 . Vertices b and d of f_1 and vertices q and s of f_2 are good vertices.

Figure 9: (a) $f_1(a, b, c, d)$ and $f_2(p, q, r, s)$ are two α -faces, and (b) valid triangulations of f_1 and f_2 .

We call a β -face a β_1 -face if the face contains exactly one vertex either from F_1 or from F_2 . Otherwise we call a β -face a β_2 -face. In Figure 10, $f_1(a, b, c, d)$ is a β_1 -face whereas $f_2(p, q, r, s)$ is a β_2 -face. We call a vertex v on the contour of a β_1 -face f a middle vertex of f if the vertex is in the middle position among the three consecutive vertices other than the vertex on F_1 or F_2 . In Figure 10, vertex c of f_1 and vertex r of f_2 are the middle vertices of f_1 and f_2 , respectively.

Figure 10: $f_1(a, b, c, d)$ is a β_1 -face and $f_2(p, q, r, s)$ is a β_2 -face.

In a valid triangulation of a β_1 -face f of G no edge is added between any two vertices $x, y \in V(f)$ such that $x, y \notin V(F_1) \cup V(F_2)$. Hence the following fact holds on a β_1 -face f.

Fact 16 Let G be a 4-connected planar graph satisfying the conditions in Theorem 5. Let f be a β_1 -face of G. Then f admits a unique valid triangulation and the triangulation is obtained by adding an edge between the vertex on F_1 or F_2 and the middle vertex.

Faces $f_1(a, b, c, d)$ and $f_2(p, q, r, s)$ in Figure 11(a) are two β_1 -faces and Figure 11(b) illustrates the valid triangulations of f_1 and f_2 . Vertices a and c of f_1 and vertices p and r of f_2 are good vertices.

Figure 11: (a) $f_1(a, b, c, d)$ and $f_2(p, q, r, s)$ are two β_1 -faces, and (b) valid triangulations of f_1 and f_2 .

In a valid triangulation of a β_2 -face f of G no edge is added between any two vertices $x, y \in V(f)$ where $x \in V(F_1)(V(F_2)), y \notin \{V(F_1) \cup V(F_1)\}$ and G has either (i) an even q-y path P such that q has exactly two neighbors on $F_2(F_1)$ and $V(P) \cap \{V(F_1) \cup V(F_2)\} = \emptyset$, or (ii) an odd q-y path P such that qhas exactly two neighbors on $F_1(F_2)$ and $V(P) \cap \{V(F_1) \cup V(F_2)\} = \emptyset$. Hence the following fact holds on a β_2 -face f.

Fact 17 Let G be a 4-connected planar graph satisfying the conditions in Theorem 5. Let f be a β_2 -face of G. Then f admits a unique valid triangulation and the triangulation is obtained by adding an edge between a vertex on face F_1 or F_2 and a vertex $z \notin V(F_1) \cup V(F_2)$.

Face $f_1(a, b, c, d)$ in the graph in Figure 12(a) is a β_2 -face and the graph has an even *u*-*d* path *P* such that *u* has exactly two neighbors *g* and *h* on F_2 , and $V(P) \cap \{V(F_1) \cup V(F_2)\} = \emptyset$. Figure 12(c) illustrates the valid triangulation of f_1 . Vertices *a* and *c* are the good vertices of f_1 . Face $f_2(l, m, n, o)$ in the graph in Figure 12(b) is a β_2 -face and the graph has an odd *v*-*o* path *P* such that *v* has exactly two neighbors *s* and *t* on F_1 , and $V(P) \cap \{V(F_1) \cup V(F_2)\} = \emptyset$. Figure 12(d) illustrates the valid triangulation of f_2 . Vertices *l* and *n* are the good vertices of f_2 .

Before giving a proof for the sufficiency of Theorem 5 we need to prove the following Lemmas 18 and 19.

Lemma 18 Let G be a 4-connected planar graph satisfying the conditions in Theorem 5. Then any quadrangle face f of G admits a unique valid triangulation such that after triangulation $d(v) \leq 5$ holds for any vertex v in the resulting graph.

Proof: By Facts 15, 16 and 17, f admits a unique valid triangulation. Since a valid triangulation increases the degree of a good vertex by one, it is sufficient to show that each good vertex of f has degree less than five in G. Assume for a contradiction that a good vertex v has degree more than four in G. Then one can observe that G would violate a condition in Theorem 5. Q.E.D.

Figure 12: Illustration for valid triangulation of β_2 -face; (a) a β_2 face $f_1(a, b, c, d)$ in a graph satisfying condition (i), (b) a β_2 face $f_2(l, m, n, o)$ in a graph satisfying condition(ii), (c) the valid triangulation of f_1 and (d) the valid triangulation of f_2 .

Lemma 19 Let G be a 4-connected planar graph satisfying the conditions in Theorem 5. Also assume that G has quadrangle faces. Then no two quadrangle faces f_1 and f_2 have a common vertex which is a good vertex for both the faces f_1 and f_2 .

Proof: Assume that u is a common vertex between two quadrangle faces f_1 and f_2 . If u is neither a good vertex of f_1 nor a good vertex of f_2 , then we have done. We thus assume that u is a good vertex of f_1 or f_2 . Without loss of generality, we assume that u is a good vertex of f_1 . Then u is not a good vertex of f_2 , otherwise u would not be a common vertex of f_1 and f_2 , a contradiction. $Q.\mathcal{E.D.}$

Proof for the Sufficiency of Theorem 5

Assume that the graph G satisfies all the conditions in Theorem 5. If all the faces of G except F_1 and F_2 are triangulated, then G is a doughnut graph by Lemma 14. Otherwise, we triangulate each quadrangle face of G, using its valid triangulation. Let G' be the resulting graph. Lemmas 18 and 19 imply that $d(v) \leq 5$ for each vertex v in G'. Then the graph G' satisfies the conditions in Theorem 5, since G satisfies the conditions in Theorem 5, G' is obtained from G using valid triangulations of quadrangle faces and $d(v) \leq 5$ for each vertex v in G'. Hence G' is a doughnut graph by Lemma 14. Therefore G is a spanning subgraph of a doughnut graph. $\mathcal{Q.E.D.}$

We now have the following lemma.

Lemma 20 Let G be a 4-connected planar graph satisfying the conditions in Theorem 5. Then G can be augmented to a doughnut graph in linear time.

Proof: We first embed G such that F_1 is embedded as the outer face and F_2 is embedded as an inner face. We then triangulate each of the quadrangle faces of G using its valid triangulation if G has quadrangle faces. Let G' be the resulting graph. As shown in the sufficiency proof of Theorem 5, G' is a

doughnut graph. One can easily find all quadrangle faces of G and perform their valid triangulations in linear time, hence G' can be obtained in linear time.

Q.E.D.

In Theorem 5 we have given a necessary and sufficient condition for a 4connected planar graph to be a spanning subgraph of a doughnut graph. As described in the proof of Lemma 20, we have provided a linear-time algorithm to augment a 4-connected planar graph G to a doughnut graph if G satisfies the conditions in Theorem 5. We have thus identified a subclass of 4-connected planar graphs that admits straight-line grid drawings with linear area as stated in the following theorem.

Theorem 6 Let G be a 4-connected planar graph satisfying the conditions in Theorem 5. Then G admits a straight-line grid drawing on a grid of area O(n). Furthermore, the drawing of G can be found in linear time.

Proof: Using the method described in the proof of Lemma 20, we augment G to a doughnut graph G' by adding dummy edges (if required) in linear time. By Theorem 4, G' admits a straight-line grid drawing on a grid of area O(n). We finally obtain a drawing of G from the drawing of G' by deleting the dummy edges (if any) from the drawing of G'. By Lemma 20, G can be augmented to a doughnut graph in linear time and by Theorem 4, a straight-line grid drawing of a doughnut graph can be found in linear time. Moreover, the dummy edges can also be deleted from the drawing of a doughnut graph in linear time. $\mathcal{Q.E.D.}$

6 Conclusion

In this paper we introduced a new class of planar graphs, called doughnut graphs, which is a subclass of 5-connected planar graphs. A graph in this class has a straight-line grid drawing on a grid of linear area, and the drawing can be found in linear time. We showed that the outerplanarity of a doughnut graph is 3. Thus we identified a subclass of 3-outerplanar graphs that admits straight-line grid drawing with linear area. One can easily observe that any spanning subgraph of a doughnut graph also admits straight-line grid drawing with linear area. However, the recognition of a spanning subgraph of a doughnut graph seems to be a non-trivial problem. We established a necessary and sufficient condition for a 4-connected planar graph G to be a spanning subgraph of a doughnut graph. We also gave a linear-time algorithm to augment a 4-connected planar graph G to a doughnut graph if G satisfies the necessary and sufficient condition. By introducing the necessary and sufficient condition, in fact, we have identified a subclass of 4-connected planar graphs that admits straight-line grid drawings with linear area. Finding other nontrivial classes of planar graphs that admit straight-line grid drawings on grids of linear area is also left as an open problem.

Acknowledgements

We thank the referees and the corresponding editor for their useful comments which improved the presentation of the paper.

References

- F. Brandenburg, D. Eppstein, M. Goodrich, S. Kobourov, G. Liotta, and P. Mutzel. Selected open problems in graph drawing. In *Proceedings of Graph Drawing 2003*, volume 2912 of *Lect. Notes in Computer Science*, pages 515–539. Springer, 2004.
- [2] M. Chrobak and S. Nakano. Minimum-width grid drawings of a plane graphs. Computational Geometry: Theory and Applications, 11:29–54, 1998.
- [3] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. *Combinatorica*, 10:41–51, 1990.
- [4] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall Inc., Upper Saddle River, New Jersey, 1999.
- [5] G. Di Battista and F. Frati. Small area drawings of outerplanar graphs. In Proceedings of Graph Drawing 2005, volume 3843 of Lect. Notes in Computer Science, pages 89–100. Springer, 2006.
- [6] I. Fary. On straight line representation of planar graphs. Acta Sci. Math. Szeged, 11:229–233, 1948.
- [7] F. Frati and M. Patrignani. A note on minimum-area straight-line drawings of planar graphs. In *Proceedings of Graph Drawing 2007*, volume 4875 of *Lect. Notes in Computer Science*, pages 339–344. Springer, 2007.
- [8] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the theory of NP-completeness. W. H. Freeman and Company, New York, 1979.
- [9] A. Garg and A. Rusu. Straight-line drawings of binary trees with linear area and arbitrary aspect ration. *Journal of Graph Algorithms and Applications*, 8(2):135–160, 2004.
- [10] A. Garg and A. Rusu. Area-efficient planar straight-line drawings of outerplanar graphs. Discrete Applied Mathematics, 155(9):1116–1140, 2007.
- [11] M. Jünger and P. Mutzel, editors. *Graph Drawing Software*. Springer, Berlin, 2004.
- [12] M. R. Karim and M. S. Rahman. Straight-line grid drawings of planar graphs with linear area. In *Proceedings of Asia-Pacific Symposium on Vi*sualisation 2007, pages 109–112. IEEE, 2007.
- [13] M. R. Karim and M. S. Rahman. Four-connected spanning subgraphs of doughnut graphs. In *Proceedings of Workshop on Algorithms and Computation 2008*, volume 4921 of *Lect. Notes in Computer Science*, pages 132–143. Springer, 2008.

- [14] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and Models, volume 2025 of Lect. Notes in Computer Science. Springer, Berlin, 2001.
- [15] K. Miura, S. Nakano, and T. Nishizeki. Grid drawings of four-connected planar graphs. Discrete and Computational Geometry, 26(1):73–78, 2001.
- [16] T. Nishizeki and M. S. Rahman. *Planar Graph Drawing*. World Scientific, Singapore, 2004.
- [17] W. Schnyder. Embedding planar graphs on the grid. In *Proceedings of First* ACM-SIAM Symposium on Discrete Algorithms, pages 138–148, 1990.
- [18] K. S. Stein. Convex maps. In Proceedings of the American Mathematical Society, volume 2, pages 464–466, 1951.
- [19] K. Wagner. Bemerkungen zum Veierfarbenproblem. In Jahresbericht Deutsche Math. Verein., volume 46, pages 26–32, 1936.