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Abstract

An upward drawing of a rooted tree T is a planar straight-line drawing

of T where the vertices of T are placed on a set of horizontal lines, called

layers, such that for each vertex u of T , no child of u is placed on a layer

vertically above the layer on which u has been placed. In this paper we

give a linear-time algorithm to obtain an upward drawing of a given rooted

tree T on the minimum number of layers. Moreover, if the given tree T

is not rooted, we can select a vertex r of T in linear time such that an

upward drawing of T rooted at r would require the minimum number of

layers among all the upward drawings of T with any of its vertices as the

root. We also extend our results on a rooted tree to give an algorithm for

an upward drawing of a rooted ordered tree. To the best of our knowledge,

there is no previous algorithm for obtaining an upward drawing of a tree

on the minimum number of layers.
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1 Introduction

An upward drawing of a rooted tree T is a planar straight-line drawing of T
where the vertices of T are placed on a set of horizontal lines, called layers, such
that for each vertex u of T , no child of u is placed on a layer vertically above
the layer on which u has been placed. For example, Figures 1(b)–(e) illustrate
four different planar straight-line drawings Γ1, Γ2, Γ3 and Γ4 of the rooted tree
Ta of Figure 1(a) with the root vertex a. Among these, Γ1 is not an upward
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Figure 1: (a) A rooted tree Ta with the root vertex a, (b) a planar straight-line
drawing of Ta, which is not upward, (c)–(e) upward drawings of Ta.

drawing of Ta since the vertices c and g are children of the vertex b although
they are placed on a layer above the layer on which b is placed in Γ. However
Γ2, Γ3 and Γ4 are all upward drawings of Ta. Several works are found on strict
upward drawings of G, where each vertex of T is placed on a layer strictly above
all of its children [4, 8, 16]. However we are not considering such a strict model
in this paper; our definition of upward drawing is consistent with that of [9, 14].

A minimum-layer upward drawing of a rooted tree T is an upward drawing of
T that occupies the minimum number of layers among all the upward drawings
of T . For example, as illustrated in Figure 1, the upward drawings Γ2, Γ3 and
Γ4 of Ta occupy five, four and three layers respectively. One can easily verify
that there is no upward drawing of Ta on less than three layers. Therefore Γ4

is a minimum-layer upward drawing of Ta.
An upward drawing of an unrooted tree T is an upward drawing of a rooted

tree obtained by making any of the vertices of T the root. A minimum-layer
upward drawing of an unrooted tree T is an upward drawing of T that requires
the minimum number of layers among all the upward drawings of T rooted at
any of its vertices. For example, Figure 2(a) illustrates an unrooted tree T
and we obtain a rooted tree Ta from T with the root vertex a as illustrated in
Figure 2(b). Figure 2(c) illustrates an upward drawing of Ta on three layers.
Although T does not admit any upward drawing on less than three layers with
the root vertex a, if we take the vertex b as the root of T to obtain another
rooted tree Tb, Tb admits an upward drawing Γb on two layers as illustrated
in Figure 2(e). One can also verify that there is no upward drawing of T on
less than two layers rooted at any of its vertices. Thus Γb is a minimum-layer
upward drawing of T .

There are some previously known results that provide upper bounds on the
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Figure 2: (a) An unrooted tree T , (b) a rooted tree Ta obtained from T with the
root vertex a, (c) a minimum-layer upward drawing of Ta, (d) another rooted
tree Tb obtained from T with the root vertex b, (e) a minimum-layer upward
drawing of Tb and T .

area in upward drawings of trees [8, 9, 14] but none of these algorithms focused
on minimizing the number of layers in the drawing. However, there are some
papers that addressed this issue for “layered drawings” of trees [15, 17]. A
layered drawing of a tree T is a planar straight-line drawing of T such that
the vertices are drawn on a set of layers. Thus an upward drawing of a rooted
tree T is a layered drawing of T with the additional constraint that no vertex
u of T is placed on a layer vertically above the layer on which the parent of u
is placed. Layered drawings have important applications in VLSI layouts [12],
DNA-mapping [18], information visualization [5, 11] etc. In some application
areas such as in the “standard cell” technology for VLSI layout design, it is often
desirable to draw a tree on the minimum number of layers. However, there is no
known algorithm to obtain a layered drawing of a tree on the minimum number
of layers. Linear-time algorithms are known [2, 6] for determining whether a
tree admits a layered drawing on at most two layers. Felsner et al. [6] gave a
necessary condition for a tree to admit a layered drawing on k layers for k > 2.
For a tree T with pathwidth h, Suderman gave a linear-time algorithm to draw
T on ⌈3h/2⌉ layers but this bound is not tight [15]. Moreover, none of these
known algorithms focuses on producing upward drawings of trees although some
applications like organization charts, software class hierarchies, phylogenetic
evolutions, programming language parsing etc. require upward drawings of
rooted trees [7]. In this paper, we give a linear-time algorithm for obtaining a
minimum-layer upward drawing of a rooted tree T . In case T is not rooted, our
algorithm can select a vertex r of T so that a minimum-layer upward drawing of
T rooted at r gives a minimum-layer upward drawing of the unrooted tree T . We
also extend the result on a rooted tree to give an algorithm for minimum-layer
upward drawing of a rooted ordered tree, where a given left-to-right ordering of
the children for each vertex of the tree is preserved in the drawing.

Apart from minimizing the number of layers in an upward drawing of a
rooted tree T , our results presented in this paper are also significant regarding
the area bounds for upward drawings of T . We have shown that our drawing
algorithm produces an upward drawing of T with an area bound of O(n log n).
This bound matches previous ones [3, 7, 13]. Although there is an algorithm
which gives an O(n log log n) area upward drawings of trees, the algorithm works
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only on trees with bounded degrees [14].
The rest of this paper is organized as follows. In Section 2, we give some

preliminary definitions and present a brief outline of our algorithm. Section 3
gives a linear-time algorithm for obtaining a minimum-layer upward drawing
of a rooted tree. In Section 4 we give our algorithm to obtain a minimum-
layer upward drawing of an unrooted tree. In Section 5, we give an algorithm
to obtain a minimum-layer upward drawing of a rooted ordered tree. Finally,
Section 6 is a conclusion. A preliminary version of this paper has been presented
previously [1].

2 Preliminaries

In this section, we give some definitions and present an outline of our algorithm.
Let G = (V,E) be a simple graph with the vertex set V and the edge set E.

A subgraph of G is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. Let
(u, v) denote an edge of G joining two vertices u and v of G. The edge (u, v)
is said to be incident to the two vertices u and v of G. A vertex u of G is a
neighbor of another vertex v of G (and vice versa) if G has an edge (u, v). The
degree of a vertex v in G is the number of neighbors of v in G. Let v be a vertex
in G. We denote by G− v the graph obtained by deleting from G, the vertex v
and all its incident edges in G. A path P in G is a sequence v0, v1, . . ., vn of
vertices of G such that G contains an edge (vi−1, vi) for each i, (1 ≤ i ≤ n) and
each vertex vi, (0 ≤ i ≤ n) is distinct. Such a path P is also called a v0, vn-path
of G. The vertices v0 and vn of the path P are called the end-vertices of P .

A graph G is connected if there exists a u, v-path in G for every pair of
vertices u and v of G. A component in a graph G is a maximal connected
subgraph of G. A tree is a graph which contains exactly one u, v-path for every
pair of vertices u and v of G. A tree T is called a rooted tree if a vertex r of
T is designated as the root of T ; otherwise, T is called an unrooted tree. In
this paper, we use the notation Tr to denote the rooted tree obtained from an
unrooted tree T by considering a vertex r as the root of T . Let u and v be two
vertices of a rooted tree Tr. If the r, v-path in Tr contains u, then u is called an
ancestor of v and v is called a descendant of u. u is the parent of v and v is a
child of u if u immediately precedes v in the r, v-path in Tr. A vertex u of Tr is
called a leaf of Tr if u has no children in Tr. Otherwise, u is called a non-leaf
vertex of Tr. A subtree of Tr rooted at a vertex u is the rooted tree obtained
from the subgraph of Tr induced by the descendants of u such that u is the root.
In the remainder of this paper, we use the notation T r

u to denote the subtree of
Tr rooted at u. A rooted tree Tr is called a rooted ordered tree if for each vertex
u in Tr, there is a fixed left-to-right ordering of the children of u in T . Let Tr

be a rooted ordered tree and u be a vertex of Tr. Then the leftmost (rightmost)
child of u in Tr is one that comes first (last) in the left-to-right ordering of the
children of u in Tr.

An upward drawing of a rooted tree Tr is a planar straight-line drawing of
Tr where the vertices of Tr are placed on a set of horizontal lines, called layers
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and for each vertex u of Tr, no child of u is placed on a layer vertically above
the layer on which u has been placed. If Tr is a rooted ordered tree, then in
an upward drawing of Tr, there is an additional constraint that for each vertex
u of Tr, a given left-to-right ordering of the children of u in Tr is preserved in
the drawing. A planar straight-line drawing Γ of an unrooted tree T is called
an upward drawing of T if there is some vertex r in T such that Γ is an upward
drawing of Tr. An upward drawing Γ of a rooted or an unrooted tree T is also
called a k-layer upward drawing of T if the number of layers in Γ is equal to k.
A k-layer upward drawing of T is called a minimum-layer upward drawing of T
if any upward drawing of T requires at least k layers.

We now give an outline of our algorithm for finding a minimum-layer upward
drawing of a tree. We first consider the scenario where the given tree is a
rooted tree Tr with the root vertex r as illustrated in Figure 3(b). In order to
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Figure 3: (a) An unrooted tree T and a vertex r of T , (b) line-labelings of all
the vertices in Tr, (c) a minimum-layer upward drawing of Tr, (d) line-labelings
Lu(u) of u in Tu for all the vertices u of T , and (e) a minimum-layer upward
drawing of T .

compute the minimum number of layers required for an upward drawing of Tr,
we first perform a bottom-up traversal of Tr during which we label every vertex
u of Tr with an integer, called the “line-labeling” of u in Tr, that represents
the minimum number of layers required for any upward drawing of T r

u . (See
Figure 3(b)). Let k be the line-labeling of r in Tr. Then k is the minimum
number of layers required for any upward drawing of Tr. In the next step, we
obtain a k-layer upward drawing of Tr in linear time. (See Figure 3(c)).

We now consider the case where the given tree T is not a rooted tree as
illustrated in Figure 3(a). In this case we first select a vertex w of T such that
an upward drawing of Tw would require the minimum number of layers among
all the upward drawings of T rooted at any vertex of T . For this purpose, we
first consider T to be rooted at an arbitrary vertex r to obtain a rooted tree
Tr and compute the line-labelings of all the vertices in Tr in the same way as
described above. (See Figure 3(b).) After this, we perform a top-down traversal
of Tr, during which, for every vertex u of T , we compute the line-labeling of u
in Tu. The value of these line-labelings are illustrated in Figure 3(d). Let w be
a vertex such that the line-labeling of w in Tw is the minimum among all the
line-labelings of u in Tu for all the vertices u of T . We then obtain a minimum-
layer upward drawing of Tw as illustrated in Figure 3(e). Our algorithm for
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obtaining a minimum-layer upward drawing of a rooted ordered tree is similar
to the one for a rooted tree.

3 Upward Drawings of Rooted Trees

In this section, we give an algorithm to obtain a minimum-layer upward drawing
of a rooted tree.

Let Tr be a rooted tree with root vertex r and let the height of Tr be h. It is
trivial to see that the minimum number of layers required for a strictly upward
drawing of Tr is h + 1 where the strict upwardness restricts the placement of
each vertex of Tr on a layer strictly above all its children. However if we relax
the definition of upwardness to allow any child of a vertex v of Tr to be placed
on the same layer as v, then an upward drawing of Tr requires fewer number of
layers than h + 1. We therefore define a new parameter called “line-labeling”
to represent the minimum number of layers in an upward drawing of Tr. Before
proceeding further, we have the following observations.

Let Tr have three child subtrees such that the minimum number of layers
required for each of these subtrees is equal to k as illustrated in Figure 4(a).
Then Tr requires at least k + 1 layers for any upward drawing since it is not
possible to place all the three child subtrees along with the vertex r on the same
k layers and add the edges from r to the roots of these subtrees while keeping
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Figure 4: Illustration for the number of layers required for an upward drawing.

planarity. On the other hand if Tr has exactly two subtrees that require at
least k layers for any upward drawing, then Tr may have an upward drawing
on k layers as illustrated in Figure 4(b). However it is interesting to note that
both the left and the right side of r on the topmost layer is occupied in such a
drawing. Thus such a rooted tree is in a sense “saturated”. Finally consider a
rooted tree Tr with a child subtree that is “saturated” on k layers as illustrated
in Figure 4(c). Then it is obvious to see that any upward drawing of Tr requires
at least k + 1 layers. We bring these observations into consideration while we
define the notion of “line-labelings of the vertices in a rooted tree Tr” in the
following.

Let u be a vertex of Tr. Then the line-labeling of a vertex u in Tr, which we
have denoted by Lr(u) in the remainder of this paper, is defined as follows.

(a) If u is a leaf of Tr, then Lr(u) = 1.
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Figure 5: Definition of the line-labeling Lr(u).

(b) If u is a non-leaf vertex of Tr with children u1, u2, . . ., up and k is the max-
imum among the values Lr(u1), Lr(u2), . . ., Lr(up), then Lr(u) is defined
according to (i)–(iii) as follows.

(i) If u has at least one child ui in Tr such that Lr(ui) = k and ui has
at least two children, each of which has line-labeling k in Tr, then
Lr(u) = k+1. We call a child ui of u in Tr a saturated child of u if ui

has at least two children with the same line-labeling as ui in Tr.

(ii) If u has no saturated child with line-labeling k in Tr but has three or
more children with line-labeling k in Tr, then Lr(u) = k + 1.

(iii) Otherwise, Lr(u) = k. (Note that in this case, u has at most two
children with line-labeling k in Tr and neither of them is a saturated
child.)

Figure 5 illustrates different cases of this definition. The definition above
implies that a saturated child of u with line-labeling k in Tr has exactly two
children with line-labeling k in Tr. Furthermore, the following two facts hold
directly from the definition above.

Fact 1 Let Tr be a rooted tree with the root vertex r and let u be a vertex in
Tr. Assume that T r

u is the subtree of Tr rooted at u. Then the line-labeling of u
in Tr is the same as the line-labeling of u in T r

u .



252 M. J. Alam et al. Minimum-Layer Upward Drawings of Trees

Fact 2 Let Tr be a rooted tree with the root vertex r and let u and v be two
vertices of Tr such that v is a descendant of u in Tr. Then Lr(u) ≥ Lr(v).

We now have the following lemma, which shows that the line-labeling Lr(r)
of the root vertex r in a rooted tree Tr gives a lower bound on the number of
layers in an upward drawing of Tr.

Lemma 1 Let Tr be a rooted tree with the root vertex r. Then any upward
drawing of Tr requires at least Lr(r) layers.

Proof: Let n denote the number of vertices in Tr. We prove this claim by
induction on n. The claim is obvious for n = 1 since any drawing of a single-
vertex tree requires at least one layer as illustrated in Figure 6(a) and Lr(r) = 1
by definition. We thus assume that n > 1 and the claim is true for any rooted
tree with less than n vertices. We now prove the claim for the rooted tree Tr

with n vertices.
Let k be the maximum value among the line-labelings of all the children

of r in Tr. We first assume that r has a saturated child u in Tr with line-
labeling k; that is, Lr(u) = k and u has two children x and y in Tr such that
Lr(x) = Lr(y) = k. According to the definition, in this case, Lr(r) = k+1 and
we claim that any upward drawing of Tr requires at least k + 1 layers. Assume
for a contradiction that Tr has a k-layer upward drawing Γ. Let Γx and Γy

be the upward drawings of T r
x and T r

y respectively, contained in Γ. According
to Fact 1, the line-labelings of x and y in T u

x and T u
y respectively, are also

k. Therefore, from the induction hypothesis, at least k layers are required for
any upward drawing of T u

x and T u
y . Therefore each of the drawings Γx and Γy

occupies all k layers in Γ. These two drawings restrict the placement of the
vertex u in Γ between x and y on the topmost of these k layers of Γ. Then r
cannot be placed on any of these k layers in Γ while retaining the upwardness of
the drawing, which is a contradiction. (See Figure 6(b).) Hence, at least k + 1
layers are required for any upward drawing of Tr.
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Figure 6: Any upward drawing of Tr requires at least Lr(r) number of layers.

We next assume that r has no saturated child with line-labeling k in Tr. If r
has three (or more) children in Tr with line-labeling k in Tr, then Lr(r) = k+1
according to the definition and we again claim that any upward drawing of Tr

requires at least k + 1 layers. Assume for a contradiction that Tr has a k-layer
upward drawing Γ. Let x, y and z be three children of u in Tu such that Lr(x) =
Lr(y) = Lr(z) = k. Let Γx, Γy and Γz be the upward drawings of T r

x , T
r
y and T r

z
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respectively, contained in Γ. According to Fact 1, the line-labelings of x, y and z
in T r

x , T
r
y and T r

z respectively, are also k and hence by the induction hypothesis,
each of Γx, Γy and Γz occupies all the k layers in Γ. Then as illustrated in
Figure 6(c), we cannot place u on any of these k layers and draw the edges
from u to x, y and z using straight-line segments and keeping planarity, which
is a contradiction. Therefore, at least k+1 layers are necessary for any upward
drawing of Tr in this case also.

We finally assume that r has at most two children in Tr with line-labeling k
in Tr and none of these children of r is a saturated child of r with line-labeling
k in Tr. Then according to our definition, Lr(r) = k. Let x be a child of
r in Tr with line-labeling k in Tr and let T r

x be the subtree of Tr rooted at
x. According to Fact 1, the line-labeling of x in T r

x is also k and hence by
the induction hypothesis, any upward drawing of T r

x requires at least k layers.
Therefore any upward drawing of Tr also requires at least k layers since T r

x is a
subtree of Tr as illustrated in Figure 6(d). �

Lemma 1 implies that any upward drawing of Tr requires at least k layers,
where Lr(r) = k. We now constructively prove that there is also a k-layer
upward drawing of Tr. Before proceeding further, we need to define the notion
of “skeleton subgraph”.

Let Tr be a rooted tree and let Lr(r) = k. Then the skeleton subgraph of
Tr is defined as the subgraph of Tr induced by the vertices of Tr with line-
labeling k in Tr and is denoted by skel(Tr) in the remainder of this paper. The
skeleton subgraph of Tr in Figure 8(a) is shown in Figure 8(b). We now have
the following lemma.

Lemma 2 Let Tr be a rooted tree with the root vertex r. Then the skeleton
subgraph skel(Tr) of Tr is a path.

Proof: We first prove the claim that skel(Tr) is a connected subgraph of the
tree Tr and hence is a tree. To prove the claim, it is sufficient to show that for
each vertex u in the skeleton subgraph skel(Tr), there is a path from r to u in
skel(Tr). Let u be a vertex in skel(Tr) with Lr(r) = k. Then Lr(u) = k by the
definition of the skeleton subgraph. Let w be any vertex on the r, u-path in Tr

as illustrated in Figure 7(a). Then w is an ancestor of the vertex u in Tr and
by Fact 2, Lr(w) ≥ Lr(u) = k. Since the root vertex r is the ancestor of all the
vertices in Tr, by Fact 2, L(r) = k ≥ Lr(w). Therefore Lr(w) = k and hence
the vertex w is also in skel(Tr). Since every vertex on the r, u-path in Tr is also
in skel(Tr), there is a path from r to u in skel(Tr).

We now prove that the degree of a vertex in the skeleton subgraph skel(Tr)
of Tr is at most two. Assume for a contradiction that there is a vertex w
with degree at least three in skel(Tr). Let x, y and z be three neighbors of
w in skel(Tr). Then, by the definition of skeleton subgraph, Lr(x) = Lr(y) =
Lr(z) = Lr(w) = k; where L(r) = k. If all the three vertices x, y and z are
children of w in Tr as illustrated in Figure 7(b), then the line-labeling of at least
three children of w in Tr is k and hence the line-labeling of w in Tr is k + 1,
which is a contradiction. We thus assume that w does not have three children
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Figure 7: (a) The connectivity of skel(Tr), and (b)–(c) The maximum degree
of a vertex in skel(Tr) is two.

with line-labeling k in Tr. Then exactly one of the three vertices x, y and z
of w is the parent of w and the other two are children of w in Tr. We may
assume that z is the parent of w in Tr as illustrated in Figure 7(c). Then w is a
saturated child of z with line-labeling k in Tr and the line-labeling of z in Tr is
k + 1, which is also a contradiction. Hence, there is no such vertex with degree
three or more in skel(Tr) and skel(Tr) is a path. �

We are now ready to prove the following lemma on an upward drawing of
the rooted tree Tr.

Lemma 3 Let Tr be a rooted tree with the root vertex r and let Lr(r) = k be
the line-labeling of r in Tr. Then there is a k-layer upward drawing of Tr.

Proof: The proof is by induction on k. We first assume that k = 1. In this
case for every vertex u of Tr, Lr(u) = 1 and the skeleton subgraph of Tr is the
tree Tr itself. By Lemma 2 Tr is a path and hence Tr can be drawn on a single
layer. We thus assume that k > 1 and there is a k′-layer upward drawing of any
rooted tree where the root of the tree has line-labeling k′ < k in the tree. We
now construct a k-layer upward drawing of Tr.

We first draw the skeleton subgraph skel(Tr) of Tr. By Lemma 2, the
skeleton subgraph skel(Tr) is a path. Let us assume that the vertices of the
path are v1, v2, . . ., vf in this order. We draw the skeleton subgraph skel(Tr) on
the topmost layer such that the x-coordinate of vi is one plus the x coordinate
of vi−1 for each 2 ≤ i ≤ f as illustrated in Figure 8(c). Deleting the skeleton
subgraph leaves Tr with several components, each of which is a rooted tree T ′

with the root having line-labeling less than k in T ′. For each of these rooted
trees T ′, there is an edge between the root of T ′ and exactly one of the vertices
in skel(Tr). We call such a tree T ′ a vi-tree if there is an edge between the root
of T ′ and the vertex vi in skel(Tr). From the induction hypothesis, each of these
trees has a k′-layer upward drawing where k′ < k. We place the drawings of
these trees on the bottommost k− 1 layers in such a way that the x-coordinate
of the leftmost vertex in the drawing of the leftmost vi-tree is one plus the
x-coordinate of the rightmost vertex in the drawing of the rightmost vi−1-tree
for 2 ≤ i ≤ f as illustrated in Figure 8(d). Then, it is possible to join the
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Figure 8: (a) Line-labelings of all the vertices in Tr, (b) the skeleton subgraph
skel(Tr) of Tr, and (c)–(e) construction of a k-layer upward drawing Tr.

edges from the vertices of skel(Tr) to the root of these trees without violating
planarity as illustrated in Figure 8(e). Thus, we can obtain a k-layer upward
drawing of Tr. �

The constructive proof of Lemma 3 immediately gives an algorithm for a
k-layer upward drawing of a rooted tree Tr where Lr(r) = k. For the remainder
of this paper, we call this algorithm Draw-Rooted. We now analyze the area
requirement of the upward drawing of a rooted tree Tr obtained by Algorithm
Draw-Rooted. For this purpose, we establish a relationship between the line-
labeling of r in Tr and the number of vertices of Tr in the following lemma.

Lemma 4 Let Tr be a rooted tree with the root vertex r and let the line-labeling
of r in Tr be Lr(r) = k ≥ 2. Then Tr has at least 2k vertices.

Proof: The proof is by induction on k. We first assume that k = 2. The claim
is true in this case, namely, Tr has at least 22 = 4 vertices, since if Tr had three
or less number of vertices, then Tr would have been a path and the line-labeling
of r in Tr would be one, which is a contradiction. We thus assume that k > 2
and that any rooted tree T ′ has at least 2k

′

vertices where the line-labeling of
the root of T ′ is k′ < k.

The skeleton subgraph skel(Tr) of Tr is a path according to Lemma 2. An
end-vertex r′ of skel(Tr) has line-labeling Lr(r

′) = k in Tr but each of its
children has line-labeling less than k. Therefore, the vertex r′ either has at least
a saturated child with line-labeling k − 1 in Tr or has at least three children
with line-labeling k − 1 in Tr.

Let us first assume that r′ has a saturated child u with line-labeling Lr(u) =
k−1 in Tr. Let x and y be the two children of u in Tr such that Lr(x) = Lr(y) =
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k−1. Let T r
x and T r

y be the subtrees of Tr rooted at x and y respectively. Then
by Fact 1, the line-labelings of x and y in T r

x and T r
y respectively are also k− 1.

Thus from the induction hypothesis, both these subtrees have at least 2k−1

vertices. Then, the number of vertices in Tr > 2k−1 + 2k−1 = 2k .
We thus assume that r′ does not have any saturated child with line-labeling

k − 1 in Tr. Then r′ has at least three children x, y and z in Tr such that
Lr(x) = Lr(y) = Lr(z) = k−1. Let T r

x , T
r
y and T r

z be the subtrees of Tr rooted
at x, y and z respectively. By Fact 1, the line-labelings of x, y and z in T r

x ,
T r
y and T r

z respectively are also k − 1. Then from the induction hypothesis,

all these subtrees have at least 2k−1 vertices. Thus, the number of vertices in
Tr > 2k−1 + 2k−1 + 2k−1 > 2k.

Hence, for both these cases, Tr has at least 2k vertices. �

An immediate consequence of the above lemma is that the line-labeling of
the root vertex r of an rooted tree Tr with n vertices is Lr(r) = O(log n). We
now have the following theorem.

Theorem 1 Let Tr be a rooted tree with n vertices. Then Algorithm Draw-

Rooted finds a minimum-layer upward drawing of Tr on a grid of area O(n logn)
in O(n) time.

Proof: Let k be the line-labeling of r in Tr. Then Algorithm Draw-Rooted

gives a k-layer upward drawing of Tr. By Lemma 1, k also represents the
minimum number of layers required for any upward drawing of Tr. The drawing
obtained by AlgorithmDraw-Rooted is thus a minimum-layer upward drawing
of Tr. Furthermore, Lemma 4 implies that k = O(log n).Therefore the height
of the drawing is O(log n). Clearly the width of the drawing is O(n). The
area of the drawing is thus O(n log n). Finally, it is easy to see that Algorithm
Draw-Rooted can be implemented in O(n) time. �

4 Upward Drawings of Unrooted Trees

In the previous section, we gave a linear-time algorithm to obtain a minimum-
layer upward drawing of a rooted tree. In this section, we present a similar
result for an unrooted tree.

Let T be an unrooted tree with n vertices. A k-layer upward drawing of
T is called a minimum-layer upward drawing of T if for each vertex r of T , a
minimum-layer upward drawing of Tr requires at least k layers. There are n
different rooted trees obtained from T by taking each of its n vertices as the
root. A naive approach for obtaining a minimum-layer upward drawing of T
would thus compute the minimum-layer upward drawing for all the n rooted
trees obtained from T and find the drawing which takes the minimum number
of layers among all these drawings. This approach takes O(n2) time. In this
section we give an elegant algorithm to obtain a minimum-layer upward drawing
of an unrooted tree T in O(n) time.
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We now define the “line-labeling” of a tree T . The line-labeling of a tree T ,
which we have denoted by LT in the remainder of this paper, is the minimum
value among the line-labelings Lu(u) of u in Tu for each of the vertices u of T ,
that is, LT = min

u∈V
Lu(u), where V is the set of vertices in T . It is easy to see

that the line-labeling of an unrooted tree T represents the minimum number
of layers required for an upward drawing of T . Let r be a vertex of T such
that Lr(r) = LT . Then a minimum-layer upward drawing of Tr obtained by
Algorithm Draw-Rooted is a minimum-layer upward drawing of T . In the
remainder of this section, we thus give an algorithm for computing the line-
labeling LT of T and finding a vertex r of T such that Lr(r) = LT .

The idea of our algorithm is as follows. Let u be a vertex of T and let the
degree of u in T be deg(u) = d. Let u1, u2, . . ., ud be the neighbors of u in T .
Given that the line-labelings Lu(u1), Lu(u2), . . ., Lu(ud) of the vertices u1, u2,
. . ., ud in Tu are known, one can compute all the line-labelings Lu1

(u), Lu2
(u),

. . ., Lud
(u) of u in Tu1

, Tu2
, . . ., Tud

respectively, in O(d) time. We prove this
claim in Lemma 6 but before that we first have the following lemma.

Lemma 5 Let u be a vertex of a tree T such that u1, u2, . . ., ud are the neigh-
bors of u in T and k is the maximum value among the line-labelings Lu(u1),
Lu(u2), . . ., Lu(ud) of the vertices u1, u2, . . ., ud in Tu. Then for each of the
neighbors um of u in T , the line-labeling of u in Tum

is Lum
(u) = k + 1 if one

of the following conditions holds:

(i) u has at least two saturated children with line-labeling k in Tu;

(ii) u has at least four children with line-labeling k in Tu.

Proof: We only prove for the case (i), since the proof in the other case is similar.
Let ui and uj be the two saturated children of u with line-labeling k in Tu as
illustrated in Figure 9(a). Note that all the neighbors of u in T are children of u
in Tu. Also note that for any neighbor um of u in T , um becomes the parent of
u in Tum

and the rest of the neighbors of u in T remain the children of u in Tum
.

Since the line-labeling of a vertex in a rooted tree is computed in a bottom-up
fashion, the line-labelings of all the neighbors of u remain the same in Tu and
Tum

except for the vertex um. Therefore, u has at least two saturated children
ui and uj with line-labeling k in Tum

for any neighbors of u in T other than ui

and uj as illustrated in Figure 9(b). Again, u has at least one saturated child uj

with line-labeling k in Tui
as illustrated in Figure 9(c). Similarly, u has at least

one saturated child ui with line-labeling k in Tuj
. Thus in all these scenarios,

the line-labeling of u in the corresponding rooted tree is k + 1. �

Lemma 6 Let u be a vertex of a tree T with degree deg(u) = d in T and let
u1, u2, . . ., ud be the neighbors of u in T . Given that the line-labelings Lu(u1),
Lu(u2), . . ., Lu(ud) of the vertices u1, u2, . . ., ud in Tu are known, one can
compute all the line-labelings Lu1

(u), Lu2
(u), . . ., Lud

(u) of u in Tu1
, Tu2

, . . .,
Tud

respectively, in O(d) time.
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Figure 9: (a) u has at least two saturated children with line-labeling k in Tu,
and (b)–(c) u has at least one saturated child with line-labeling k in Tum

for
each of its neighbor um in T .

Proof: If u has at least two saturated children with line-labeling k in Tu or has
at least four children with line-labeling k in Tu, then for any neighbors um of u
in T , the line-labeling of u in Tum

can be computed in constant time according
to the Lemma 5. We thus assume that u has at most three children with line-
labeling k in Tu and at most one of them is a saturated child. Note that all the
neighbors of u in T are children of u in Tu. Also note that for any neighbor um

of u in T , um becomes the parent of u in Tum
and the rest of the neighbors of

u in T remain the children of u in Tum
. Since the line-labeling of a vertex in

a rooted tree is computed in a bottom-up fashion, the line-labelings of all the
neighbors of u remain the same in Tu and Tum

except for the vertex um.
We first consider the situation when none of the children of u in Tu is a

saturated child. In this situation, we have the following three cases to consider.
Case 1. u has three children with line-labeling k in Tu.

Let ui, uj and uk be the three children of u with line-labeling k in Tu as
illustrated in Figure 10(a). In this case, for each of the neighbors um of u in T

(a) (b) (c)
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Figure 10: (a) u has three children ui, uj and uk with line-labeling k in Tu, (b)
the line-labeling of u is k+ 1 in Tum

for each neighbor um of u in T other than
ui, uj and uk, and (c) u is a saturated child of uk with line-labeling k in Tuk

.

other than ui, uj and uk, u has three children with line-labeling k in Tum
and
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as such, Lum
(u) = k + 1 as illustrated in Figure 10(b). Again as illustrated in

Figure 10(c), u has two children ui and uj having line-labeling k in Tuk
and

hence u is a saturated child of uk with line-labeling k in Tuk
. Similarly, u is a

saturated child of ui and uj with line-labeling k in Tui
and Tuj

respectively.
Case 2. u has two children with line-labeling k in Tu.

Let ui and uj be the two children of u with line-labeling k in Tu. In this
case, from the same line of reasoning, Lum

(u) = k for each neighbor um of u in
T (See Figure 11(a)). However as illustrated in Figure 11(b), for each neighbor

(b) (c)(a)
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kkk

Figure 11: (a) u has two children ui and uj with line-labeling k in Tu, (b) u is
a saturated child of um with line-labeling k in Tum

for each neighbor um of u in
T other than ui and uj , and (c) the line-labeling of u in Tuj

is Luj
(u) = k.

um of u other than ui and uj, u has two children with line-labeling k in Tum

and hence u is a saturated child of um in Tum
for these vertices.

Case 3. u has only a single child with line-labeling k in Tu.
Let ui be the child of u with line-labeling k in Tu as illustrated in Fig-

ure 12(a). From the same line of reasoning, for each neighbor um of u in T
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u
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um

um

< k

k

k
k

Figure 12: (a) u has only a single child ui with line-labeling k in Tu, and (b)
the line-labeling of u in Tum

is k for each neighbor um of u in T other than ui.

other than ui, Lum
(u) = k as illustrated in Figure 12(b). However, the value

of Lui
(u) cannot be deduced in constant time and must be computed from the

values of the line-labelings of all the neighbors of u other than ui in Tui
or in

Tu. (Note that the values are equal in both the rooted trees.) This computation
takes O(d) time.
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We finally consider the situation when u has exactly one saturated child
ui with line-labeling k in Tu as illustrated in Figure 13(a). In this case, for
every neighbor um of u in T other than ui, u has one saturated child with line-
labeling k in Tum

and hence the line-labeling of u in Tum
is k+1 as illustrated in

Figure 13(b). However, the value of Lui
(u) cannot be deduced in constant time

and must be computed from the values of the line-labelings of all the neighbors
of u other than ui in Tui

or in Tu. (Again note that the values are equal in both
the rooted trees.) This computation also takes O(d) time.

(a) (b)

u

u

ui

ui

um

um

k

k≤ k

k + 1

Figure 13: (a) u has a saturated child ui with line-labeling k in Tu, and (b) the
line-labeling of u in Tum

is k + 1 for each neighbor um of u in T other than ui.

Thus in all the cases, we can compute in O(d) time, the values of the line-
labelings of u in all the rooted trees each with one of its neighbors in T as the
root. �

We now have the following theorem.

Theorem 2 Let T be an unrooted tree. One can obtain a minimum-layer up-
ward drawing of T in linear time.

Proof: From the definition, it is clear that the line-labeling of T represents the
minimum number of layers required for an upward drawing of T . Let r be a
vertex of T such that Lr(r) = LT . Then a minimum-layer upward drawing of Tr

is a minimum-layer upward drawing of T . Therefore, to construct an algorithm
for minimum-layer upward drawing of T , we first compute the line-labeling of
T . The main idea of this computation is to compute the line-labeling Lu(u)
of each vertex u of T in Tu by two traversals of T . For an arbitrarily chosen
vertex r of T , we first consider the rooted tree Tr and compute the line-labeling
Lr(u) of each vertex u in Tr by a bottom-up computation in Tr according to
the definition given in Section 3. Clearly, this traversal takes only linear time.
In the next step, for each vertex u of T , we compute the line-labeling Lu(u) of
u in Tu by a top-down traversal of Tr as described below. During this top-down
traversal of Tr, we maintain the invariance: while traversing a vertex u of T , the
line-labeling of each of its neighbors in Tu is known. Note that this invariance is
true at the start of the top-down traversal when we traverse the root r of Tr. We
now consider the scenario when we traverse a vertex u of T . We can compute
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the line-labeling of u in Tu in O(deg(u)) time by the definition of Section 3 since
for each neighbor v of u in T , the line-labeling Lu(v) of v in Tu is known. Again
for all the neighbors v of u in T , we can compute the line-labeling Lv(u) of u in
Tv from the line-labeling of the neighbors of u in Tu in O(deg(u)) time by the
algorithm described in Lemma 6. This fact maintains the invariance for each
child v of u in Tr. We can thus compute the line-labeling Lu(u) of each vertex
u of T in Tu in the top-down traversal of Tr. This top-down traversal takes∑

u∈V

deg(u) = O(n) time.

We then compute the line-labeling LT of T by computing the minimum
value among all the line-labelings Lu(u) of u in Tu and find a vertex r of T such
that Lr(r) = LT . We finally obtain a minimum-layer upward drawing of Tr by
Algorithm Draw-Rooted and this is also a minimum-layer upward drawing of
T . Since each step of the algorithm takes linear time, the overall complexity of
the algorithm is linear. �

5 Upward Drawings of Rooted Ordered Trees

The drawing we have proposed for a rooted tree in Section 3 does not preserve
a given left-to-right ordering of the children of the vertices in the tree. However,
if the given rooted tree Tr is ordered, then in an upward drawing of Tr, there
is an additional constraint that a given left-to-right ordering of the children of
each vertex of Tr is preserved in the drawing [10]. For example, Figure 14(a)
illustrates a rooted tree Ta with the root vertex a and a minimum-layer upward
drawing of Ta occupies only two layer as illustrated in Figure 14(b) where the
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Figure 14: (a) A rooted tree Ta, (b) a minimum-layer upward drawing of Ta

where the ordering is not considered, (c) a minimum-layer upward drawing of
Ta preserving the order.

ordering of the children of the vertices are not considered. If we consider that Ta

is a rooted ordered tree with the root vertex a where the ordering of the children
of each vertex is given in the drawing of Figure 14(a), then there is no upward
drawing of Ta on two layers. Figure 14(c) illustrates an upward drawing of the
rooted tree Ta, which occupies three layers. In this section, we adapt Algorithm
Draw-Rooted in Section 3 to obtain a minimum-layer upward drawing of a
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rooted ordered tree.
Let Tr be a rooted ordered tree with the root vertex r. A path in Tr is called

a left-left path in Tr if each vertex of the path is the leftmost child of its parent
in Tr except for the ancestor of all the vertices. Similarly we define a right-right
path in Tr. In order to compute a minimum-layer upward drawing of Tr, we
introduce another term called the “Ordered line-labelings of the vertices in Tr”.
Let u be a vertex of Tr. Then the ordered line-labeling of u in Tr, which we
have denoted by L′

r(u) in the remainder of this paper, is defined as follows.

(c)(a) (b)
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Figure 15: Definition of the ordered line-labeling Lr(u).

(a) If u is a leaf of Tr, then L′

r(u) = 1.

(b) If u is a non-leaf vertex of Tr with children u1, u2, . . ., up and k is the max-
imum among the values L′

r(u1), L
′

r(u2), . . ., L
′

r(up), then L′

r(u) is defined
according to (i)–(iv) as follows.

(i) If u has at least one child ui in Tr such that L′

r(ui) = k and ui has
at least two children, each of which has ordered line-labeling k in Tr,
then L′

r(u) = k + 1. We call a child ui of u in Tr a saturated child of
u if ui has at least two children with the same ordered line-labeling as
ui in Tr.

(ii) If u has no saturated child with ordered line-labeling k in Tr but
has three or more children with ordered line-labeling k in Tr, then
Lr(u) = k + 1.

(iii) If u has exactly one child ui with ordered line-labeling k in Tr where
ui is not a saturated child of u in Tr and P is the path induced by the
vertices with ordered line-labeling k in T r

ui
, then L′

r(u) = k if either ui

is the leftmost child of u and P is a left-left path or ui is the rightmost
child of u and P is a right-right path in Tr; otherwise L′

r(u) = k + 1.

(iv) If u has exactly two children ui and uj with ordered line-labeling k in
Tr where neither of them is a saturated child of u in Tr and ui comes
before uj in the left-to-right ordering of the children of u in Tr, then,
L′

r(u) is defined as follows.
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A. If ui and uj are the leftmost and the rightmost children of u in
Tu, the path induced by the vertices with ordered line-labeling k
in T r

ui
is a left-left path in Tr and the path induced by the vertices

with ordered line-labeling k in T r
uj

is a right-right path in Tr, then
Lr(u) = k.

B. Otherwise L′

r(u) = k + 1.

Figure 15 illustrates different cases of this definition. The definition above
implies that a saturated child of u with ordered line-labeling k in Tr has exactly
two children with ordered line-labeling k in Tr. We call a vertex u of Tr with
Lr(u) = k in Tr a left-sided vertex in Tr if the path induced by all the vertices
with ordered line-labeling k in T r

u is a left-left path in Tr. Similarly, we define
a right-sided vertex in Tr.

We now have the following lemma, which implies that for a rooted ordered
tree Tr, L′

r(r) gives a lower bound on the number of layers in any upward
drawing of Tr. The proof of this lemma follows the same line of reasoning as in
the proof of Lemma 1.

Lemma 7 Let Tr be a rooted ordered tree with the vertex r as the root. Then
any upward drawing of Tr requires at least L′

r(r) layers.

We also have the following lemma, which implies that there is also an upward
drawing of a rooted ordered tree Tr where the number of layers attains this lower
bound.

Lemma 8 Let Tr be a rooted ordered tree with root vertex r. Then there is a
k-layer upward drawing Γ of Tr where L′

r(r) = k such that if r is a left-sided
(right-sided) vertex in Tr, then there is no vertex or edge to right (left) of r on
the topmost layer in Γ.

Proof: Let n be the number of vertices in Tr. We prove this lemma by induction
on n. The claim is obvious for n = 1 since a tree with a single vertex r can be
drawn on a single layer with no other vertex or edge occupying the left or right
side of r and by definition L′

r(r) = 1. We thus assume that n > 1 and for any
rooted tree T ′ with less than n vertices, there is a k′-layer upward drawing of T ′

where k′ is the line-labeling of the root in T ′. We now obtain a k-layer upward
drawing of Tr with n vertices.

(b) (c)(a)
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T r
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T r
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ulul urur

kkk
layerslayerslayers

Figure 16: Constructing a k-layer upward drawing of Tr.
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Since L′

r(r) = k, according to definition, r has at most two children ul and
ur with ordered line-labeling k in Tr and for the rest of the children u of r,
L′

r(u) < k. Furthermore, if ul comes before ur in the left-to-right ordering of
the children of r, then ul must be a left-sided vertex and the leftmost child
of r and ur must be a right-sided vertex and the rightmost child of u in Tr.
Since ordered line-labeling is computed in a bottom-up manner, ordered line-
labeling of ul (ur) in T r

ul
(T r

ur
) is also k. According to the induction hypothesis,

there are k-layer upward drawings Γl and Γr of T r
ul

and T r
ur

respectively such
that the right of ul and the left of ur are not occupied in these drawings. To
obtain a k-layer upward drawing of Tr, we first place the drawing Γl to the
left of the drawing Γr on these k layers. We then place the vertex r on the
topmost layer between these two drawings and join the two edges (r, ul) and
(r, ur) as illustrated in Figure 16(a). For each of the remaining children u of
r in Tr, ordered line-labeling of u in T r

u < k and according to the induction
hypothesis, there is a k′-layer upward drawing Γu of T r

u where k′ < k. We now
place these drawings Γu of T r

u for each of the remaining children u of r in Tr on
the bottommost k − 1 layers in the order of the given left-to-right ordering of
the children of r in Tr and join all of them with r by an edge without disturbing
planarity. We thus obtain a k-layer upward drawing of Tr.

Note that if r does not have two children with ordered line-labeling k in Tr,
then Γl or Γr or both may be empty. More precisely, if r is a left-sided vertex,
then the drawing Γr is empty and as such the right side of r on the topmost layer
is not occupied by any vertex or edge in the drawing as illustrated in Figure
16(b). Similar arguments can also be given if r is a right sided vertex. (See
Figure 16(c).) �

The constructive proof of the above lemma gives an algorithm to obtain a
k-layer upward drawing of a rooted ordered tree Tr where Lr(r) = k. According
to Lemma 7, k also represents the minimum number of layers for any upward
drawing of Tr. We thus have the following theorem, whose proof is straight-
forward from Lemma 7 and Lemma 8.

Theorem 3 Let Tr be a rooted ordered tree with the root vertex r. Then one
can obtain a minimum-layer upward drawing of Tr in linear time.

In this section we have addressed the problem of minimum-layer upward
drawings of a rooted ordered tree. We have also given linear-time algorithms to
solve this problem for both a rooted tree and an unrooted tree in the previous
two sections where the circular ordering of the neighbors of the vertices of the
tree is not given as input. Thus it remains to address the problem for an
unrooted tree where the circular ordering of the neighbors of each vertex of the
tree is given as input. However, it is not very difficult to show that a minimum-
layer upward drawing of an unrooted ordered tree can be obtained in linear time
using an approach similar to the one presented in Section 4.
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6 Conclusion

In this paper, we gave a linear-time algorithm to obtain a minimum-layer upward
drawing of a rooted tree T . If T is not a rooted tree, we also gave a linear-time
algorithm to select a vertex r of T such that a minimum-layer upward drawing
of Tr results in a minimum-layer upward drawing of T . Our algorithm achieves
the best area-bound known so far for upward drawing of rooted trees. We also
extended the result for rooted ordered trees. It remains our future work to
obtain planar straight-line drawings of trees that are not necessarily upward
but nevertheless require the minimum number of layers.

Almost all the previous results on layered drawings of trees are based on
the “pathwidth” of trees. We studied layered drawings of trees through a new
parameter called the “line-labeling” of trees. It remains an open problem to
find a relationship between these two parameters of a tree. However, Felsner et
al. [6] showed that if a planar graph G has a planar straight-line drawing on k
layers, then the pathwidth of G is at most k. Thus the pathwidth of a tree T
gives a lower bound on the value of the line-labeling of T .
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