Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 14, no. 2, pp. 385-390 (2010)

A Linear-Time Approximation for Rotation
Distance

Sean Cleary[{f| Katherine St. John[if|

[Department of Mathematics
City College of New York, City University of New York, New York, NY 10031
E[Department of Mathematics & Computer Science
Lehman College & the Graduate Center, City University of New York, Bronx,
NY 10468
BlThe Graduate Center
City University of New York, 365 Fifth Avenue, New York, NY 10016

Abstract

Rotation distance between rooted binary trees measures the number of
simple operations it takes to transform one tree into another. There are
no known polynomial-time algorithms for computing rotation distance.
In this short note, we give an efficient, linear-time approximation algo-
rithm, which estimates the rotation distance, within a provable factor of
2, between ordered rooted binary trees.

Submitted: Reviewed: Revised: Accepted:
July 2009 August 2009 August 2010 August 2010
Final: Published:

August 2010 November 2010
Article type: Communicated by:
Concise paper T. Warnow

Research supported by Grants NSF #0811002 to Cleary and NSF #0513660 and #0920920

to St. John.

E-mail addresses: |cleary@sci.ccny.cuny.edu| (Sean Cleary) |stjohn@lehman.cuny.edu (Katherine

St. John)

mailto:cleary@sci.ccny.cuny.edu
mailto:stjohn@lehman.cuny.edu

386 Cleary & St. John A Linear-Time Approximation for Rotation Distance

1 Introduction

Binary search trees are a fundamental data structure for storing and retrieving
information [4]. Roughly, a binary search tree is a rooted binary tree where
the nodes are ordered “left to right.” The potential efficiency of storing and re-
trieving information in binary search trees depends on their height and balance.
Rotations provide a simple mechanism for “balancing” binary search trees while
preserving their underlying order (see Figure . There has been a great deal of
work on estimating, bounding, and computing rotation distances. By rotating
to right caterpillar trees, Culik and Wood [5] gave an immediate upper bound of
2n — 2 for the distance between two trees with n interior nodes. In elegant work
using methods of hyperbolic volume, Sleator, Tarjan, and Thurston [12] showed
not only that 2n — 6 is an upper bound for n > 11, but furthermore that for all
very large n, that bound is realized. In remarkable recent work, Dehornoy [7]
gave concrete examples illustrating that the lower bound is at least 2n — O(y/n)
for all n. There are no known polynomial-time algorithms for computing rota-
tion distance, though there are polynomial-time estimation algorithms of Pallo
[10], Pallo and Baril [I], and Rogers [1I]. Baril and Pallo [I] use computational
experimental evidence to show that a large fraction of their estimates are within
a factor of 2 of the rotation distance. The problem has been recently shown to
be fixed-parameter tractable in the parameter, k, the distance [3]. Li and Zhang
[9] give a polynomial time approximation algorithm with approximation ratio
depending on the shape of the tree, but strictly less than 2E| While Li and
Zhang give an outline of the algorithm and do not analyze the time complexity,
it can be easily shown that the running time is bounded by O(n?) where n is
the number of leaves in the original trees and adjacency matrices are used to
store the triangulated polygons used in the algorithm.

In this short note, we give a linear time approximation algorithm with an
approximation ratio of 2, improving the running time at the very modest ex-
pense of the approximation ratio. This is accomplished by showing the distance
between the trees is bounded below by n—e—1 and above by 2(n —e —1) where
n is the number of internal nodes and e is the number of edges in common in the
reduced trees. The number of common edges is equivalent to Robinson-Foulds
distance, widely used in phylogenetic settings, which Day [6] calculates in linear
time.

2 Background

We consider ordered, rooted binary trees with n interior nodes and where each
interior node has two children. Such trees are commonly called extended binary
trees [§]. In the following, tree refers to such a tree with an ordering on the
leaves, mode refers to an interior node, and leaf refers to a non-interior node.

ITheir exact ratio is stated for the equivalent diagonal flip distance for triangulated poly-
gons. It bounded by the maximum number of diagonals, d, allowed at any vertex of the

. 2
polygons, and is 2 — A= (dF6)+1°

JGAA, 14(2) 385-390 (2010) 387

Figure 1: A (right) rotation at a node consists of rotating the right child of the left
child of the node to the right child of the node. A left rotation is defined similarly by
moving the left child of the right child of the node to the left child of the node. The
circled node in the middle tree has been rotated right to yield the tree on the right,
and similarly rotated left to yield the tree on the left.

Our trees will have n + 1 leaves numbered in left-to-right order from 1 to n+ 1.
The size of a tree will be the number of internal nodes it contains. Each internal
edge in a tree separates the leaves into two connected sets upon removal, and a
pair of edges e in S and e in T form a common edge pair if their removal in
their respective trees, S and T, gives the same partitions on the leaves. In that
case, we say that S and T have a common edge.

Right rotation at a node of a rooted binary tree is defined as a simple change
to T as in Figure[l] taking the middle tree to the right-hand one. Left rotation at
a node is the natural inverse operation. The rotation distance dr(S,T) between
two rooted binary trees S and T with the same number of leaves is the minimum
number of rotations needed to transform S to T

The specific instance of the rotation distance problem we address is:

ROTATION DISTANCE:
INPUT: Two rooted ordered trees, S and T on n internal nodes,
QUESTION: Calculate the rotation distance between them, dr(S,T).

Finding a sequence of rotations which accomplish the transformation gives
only an upper bound. The general difficulty of computing rotation distance
comes from the lower bound.

3 Approximation Algorithm

The number of edges that differ between the two trees provides a useful bound
on their rotation distance. We first give sharp bounds from which the approxi-
mation result follows easily.

388 Cleary & St. John A Linear-Time Approximation for Rotation Distance

Theorem 1 Let S and T be two distinct ordered rooted trees with the same
number of leaves. Let n be the number of internal nodes and e the number of
common edges for S and T. Then,

n—e—1<dr(S,T)<2(n—e—1)

Proof: The lower bound follows from two simple observations. First, if we
use a single rotation to transform T; to 75, all but one of the internal edges in
each tree is common with the other tree. Second, every internal edge of S that
is not common with an internal edge of T needs a rotation (possibly more than
one) to transform it to an edge in common in 7. The number of internal edges
occurring only in S is n — e — 1 and, thus, is also a simple lower bound.

For the upper bound, we use two facts from past work on rotation distance.
We first let (S1,7T1), (S2,T2), .., (Set1,Tet1) be the resulting tree pairs from
removing the e edges S and T have in common, where we insert placeholder
leaves to preserve the extended binary tree property. Let n; be the size of tree
S; for i =1,2,...,e+ 1. The first is the observation of Sleator et al. [12] used
before: the rotation distance of the original tree pair (S,T) with a common edge
is the sum of the rotation distances of the two tree pairs “above” and “below”
the common edge. Extending this to e edges in common between S and T', we
have

e+1 e+1
dr(S,T) = d(S;,T}) <Y 2n;—2=2n-2(c+1)=2(n—e—1)
i=1 i=1
The inequality follows from the initial bound of 2n — 2 on rotation distance
between trees with n internal nodes of Culik and Wood [5].

Thus, n —e—1<dgr(S,T) <2(n—e—1). O

We note that using the sharper bound of 2n — 6 for n > 12 from Sleator,
Tarjan and Thurston [12] together with the table of distances for n < 12 can
improve this further.

These reduction rules and counting the number of common edges can be
carried out in linear-time [2} [6]. The efficiency comes from representing internal
nodes in constant (versus linear) space: namely, in an ordered tree, the left-most
and right-most children of any node uniquely identifies the node. This yields
the corollary:

Corollary 1 Let S and T be ordered rooted trees with n internal nodes. A
2-approximation of their rotation distance can be calculated in linear time.

Proof: Let S and T be two distinct ordered rooted n-leaf trees. Let n be the
number of internal nodes and e the number of edges in common for S and 7.
Then, by Theorem [T} n —e — 1 < dgr(S,T) < 2(n — e — 1). Since this is within
a linear factor 2 from both bounds, we have the desired approximation. O

We note that this algorithm is easily adapted to give a sequence of rotations
which realize the upper bound of the approximation, again in linear time. The
specific problem is as follows:

JGAA, 14(2) 385-390 (2010) 389

ROTATION DISTANCE REALIZATION:
INpPUT: Two rooted ordered trees, S and T on n internal nodes,
OUuTPUT: A sequence of rotations which converts S to T .

The approximation algorithm uses the Culik-Wood bound on potentially
several pieces. On each piece, the 2n—2 bound comes from rotating each internal
node which is not on the right side of the tree to obtain a right caterpillar, and
then rotating the caterpillar to obtain the desired tree. This can be accomplished
simply in linear time.

The algorithm is as follows:

Step 1: Find the e common edges in S and T using the linear-time algorithms
of Day [6] as described in Bonet et al. [2]. Each common edge disconnects S
and T, resulting in two families of trees {S;} and {T;}, with the sizes |S;| = |T;],
and with d(S,T) = > d(S;,T;).

Step 2: For each subtree pair (S;,7T;), use the method of Culik and Wood
[B] to rotate from S; to T; through the all-right tree of the appropriate size.
That is, for each non-right internal edge in 5;, rotate to reduce the number of
non-right internal edges by one until the all-right tree is obtained. Perform the
corresponding steps in reverse to obtain T; from the all-right tree.

390 Cleary & St. John A Linear-Time Approzimation for Rotation Distance

References

[1]

[6]

J.-L. Baril and J.-M. Pallo. Efficient lower and upper bounds of the
diagonal-flip distance between triangulations. Information Processing Let-
ters, 100(4):131-136, 2006.

M. L. Bonet, K. St. John, R. Mahindru, and N. Amenta. Approximating
subtree distances between phylogenies. Journal of Computational Biology,
13(8):1419-1434 (electronic), 2006.

S. Cleary and K. S. John. Rotation distance is fixed parameter tractable.
Information Processing Letters, 109:918-922, 2009.

T. Corman, C. Leiserson, and R. Rivest. Introduction to Algorithms.
McGraw-Hill, 1990.

K. Culik IT and D. Wood. A note on some tree similarity measures. Infor-
mation Processing Letters, 15(1):39-42, 1982.

W. H. E. Day. Optimal algorithms for comparing trees with labeled leaves.
Journal of Classification, 2:7-28, 1985.

P. Dehornoy. On the rotation distance between binary trees. Preprint,
arXiv:math.CO/0901.2557.

D. E. Knuth. The Art of Computer Programming. Volume 8. Addison-
Wesley, Reading, Mass, 1973. Sorting and searching.

M. Li and L. Zhang. Better approximation of diagonal-flip transformation
and rotation transformation. In COCOON ’98: Proceedings of the 4th
Annual International Conference on Computing and Combinatorics, pages
85-94, London, UK, 1998. Springer-Verlag.

J. Pallo. An efficient upper bound of the rotation distance of binary trees.
Information Processing Letters, 73(3-4):87-92, 2000.

R. Rogers. On finding shortest paths in the rotation graph of binary trees.
In Proceedings of the Southeastern International Conference on Combina-
torics, Graph Theory, and Computing, volume 137, pages 77-95, 1999.

D. D. Sleator, R. E. Tarjan, and W. P. Thurston. Rotation distance, trian-
gulations, and hyperbolic geometry. Journal of the American Mathematical
Society, 1(3):647-681, 1988.

	Introduction
	Background
	Approximation Algorithm

