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Abstract

Motivated by applications of social network analysis and of Web search
clustering engines, we describe an algorithm and a system for the display
and the visual analysis of two graphs G1 and G2 such that each Gi is de-
fined on a different data set with its own primary relationships and there
are secondary relationships between the vertices of G1 and those of G2.
Our main goal is to compute a drawing of G1 and G2 that makes clearly
visible the relations between the two graphs by avoiding their crossings,
and that also takes into account some other important aesthetic require-
ments like number of bends, area, and aspect ratio. Application examples
and experiments on the system performances are also presented.
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1 Introduction

The visual analysis of complex data sets is one of the most natural applications
of graph drawing technologies (see, e.g., [11, 15, 20, 24, 25] for some recent
works). A typical application scenario consists of a set of data (nodes) and one
or more relationships among these data (each relationship is a set of edges);
therefore one is given one or more graphs on the same set of nodes. Both each
graph must be visualized in a readable way and possible similarities among the
different graphs must be easily detected by looking at the different drawings.
This scenario has, for example, motivated a rich body of papers and systems
about simultaneous graphs embeddings and visualizations of evolving graphs
(see, e.g., [4, 10, 12, 13, 14]).

Recently, Collins and Carpendale [5] proposed a new research direction de-
voted to the visual comparison and analysis of heterogeneous data sets. The
input consists of n sets of data D1, D2, . . . , Dn, such that for each Di a distinct
set of primary relationships (i.e., a distinct graph) is defined; also, there are sec-
ondary relationships which model semantic connections between data belonging
to different sets. The visualization consists of a set of n drawings (one for each
graph) on top of which the edges that represent the secondary relationships
are displayed. Collins and Carpendale present a system, called VisLink, where
each graph is drawn on a distinct plane and the secondary relationships are
links between these planes (see Fig. 1(a) for a schematic illustration). The work
by Collins and Carpendale extends a previous work by Schneiderman and Aris
where multi-plane views with inter-plane edges are used to visualize different
semantic substrates of a graph [21](see Fig. 1(b) for an illustration).

(a) (b)

Figure 1: Schematic illustrations of a visualization (a) adopted by VisLink, (b) using
different semantic substrates of a network. In both the visualizations the drawing on
each plane has been computed without taking into account the relationships with the
other. This may cause many crossings between inter-sets relationships.

Motivated by applications of social network analysis and of Web search clus-
tering engines, we elaborate on the concepts of Collins and Carpendale by study-
ing the following problem: We are given two graphs G1 and G2 and a function
that defines a set of secondary relationships by mapping some of the vertices of
G1 to some other vertices of G2; we aim at visually analyzing and interacting
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both with G1, G2 and with their secondary relationships. We observe that the
systems described in [5, 21] follow the common approach of drawing each graph
independently of each other. As a result, the secondary edges may be difficult
to read as they can have many crossings. Our main goal is to design a system
where the two drawings are computed by taking into account the edge-crossing
minimization of the secondary edges. We focus on one-to-many relationships
between G1 and G2, i.e., vertices of G1 are associated with disjoint subsets of
vertices of G2. It may be worth noticing that a one-to-many relationship implies
a two-level clustering of the vertices of G2 such that no two clusters share any
vertex.

The main contributions of the paper are the following:

� We introduce the concept of one-to-many matched graphs and define draw-
ing conventions for these graphs in a strong and in a weak model. Both
drawings require that the secondary relationships between the graphs do
not cross each other (Sect. 3).

� We describe a system that computes strong and weak one-to-many matched
drawings of the input graphs by also taking into account the optimization
of important aesthetic requirements. Furthermore, the system provides
the user with several interaction functionalities that make it possible to
analyze the drawings at different levels of details by collapsing/expanding
clusters and by filtering information with the definition of node/edge
thresholds (Sect. 4). Our drawing approach combines orthogonal draw-
ings in the topology driven approach with circular drawing algorithms,
and adopts an edge bundling technique to reduce the visual complexity
introduced by some links. This technique may be of independent inter-
est since it can be used to draw two-level clustered graphs where no two
clusters overlap.

� We show the effectiveness of the system by presenting two application
examples, one concerned with social network analysis and the other in the
context of Web search clustering engines (Sect. 5). An experimental study
on the system performances is also presented, which gives more indications
about strength and limits of our approach (Sect. 6).

We finally remark that the problem of drawing two matched planar graphs
G1 and G2 with one-to-one secondary relationships between them have been
originally studied in [9], where it is required that the drawing of each Gi is planar
and that the secondary edges are represented as non-intersecting horizontal
segments.

2 Basic Terminology

We assume familiarity with basic concepts of graph theory [17]. In the following
we recall some terminology of graph drawing and planarity used throughout the
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paper (refer to [7, 18] for more details). Let G = (V,E) be a graph. A drawing
of G is a geometric representation of G in the plane such that each vertex v ∈ V
is drawn as a geometric shape pv (e.g., a point, a circle, a polygon) and each
edge (u, v) ∈ E is drawn as a simple Jordan curve connecting pu and pv. We
denote by Γ(G) a drawing of G.

A drawing Γ(G) is planar if there is no edge crossing, no intersection between
vertices, and no intersection between an edge (u, v) and a vertex w distinct from
u and v. A graph is planar if it admits a planar drawing. A planar drawing
Γ(G) of G partitions the plane into connected regions, called faces. Exactly one
face is an infinite region, and it is called the external face; the other faces are
said to be internal. The boundary of an internal (external) face is the circular
clockwise (counterclockwise) sequence of vertices and edges delimiting it. The
set of face boundaries of Γ(G) is called a planar embedding of G. Note that, for a
planar graph G there are many infinite planar drawings of G that determine the
same planar embedding. Therefore, a planar embedding of G can be described
just in terms of face boundaries, without referring to any specific drawing of
G. Also observe that a planar embedding of a graph fixes the clockwise order
of the edges incident around each vertex. We denote by Ψ a planar embedding
of a graph G. An embedded planar graph is a graph along with a given planar
embedding. If G is an embedded planar graph with embedding Ψ, we say that
Γ(G) is a planar drawing of G that preserves Ψ if the face boundaries of Γ(G)
are the same as in Ψ.

A drawing Γ(G) is an orthogonal drawing if each edge is drawn as a chain of
horizontal and vertical segments. A bend in Γ(G) is a point of an edge shared
by a horizontal and a vertical segment of the edge. A drawing Γ(G) is a circular
drawing if there is a circle passing through all vertices and each edge is drawn
as a straight-line segment. Figure 2 shows an orthogonal drawing and a circular
drawing of the same graph G. In the remainder of the paper, if G = (V,E) is
a graph and V ′ ⊆ V we denote by G(V ′) the subgraph of G induced by the
vertices of V ′.
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Figure 2: (a) A planar graph G. (b) An orthogonal drawing of G. (c) A circular
drawing of G.
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3 One-To-Many Matched Graphs and Drawings

Let G1 = (V1, E1) and G2 = (V2, E2) be two distinct graphs. We say that
〈G1, G2〉 is a pair of one-to-many matched graphs if: (i) Each vertex u of G1

is associated with a subset M(u) = {v1, v2, . . . , vk} of vertices of G2, that we
call the cluster of u in G2; (ii) the set of clusters {M(u) ⊆ V2 : u ∈ V1} is a
partition of V2, i.e.,

⋃
u∈V1

M(u) = V2 and for each pair u, v of distinct vertices
of V1, we have M(u) ∩M(v) = ∅.

Let 〈G1, G2〉 be a pair of one-to-many matched graphs, and let Γ(G1), Γ(G2)
be drawings of G1 and G2, respectively. We say that 〈Γ(G1),Γ(G2)〉 is a one-
to-many matched drawing if the following properties hold:

� (P1) The bounding boxes of Γ(G1) and Γ(G2) do not intersect.

� (P2) For each vertex u of G1, cluster M(u) in Γ(G2) is bounded by a
rectangular region R(u) such that: (i) G(M(u)) is completely contained
in R(u); (ii) each vertex v ∈ V2 \M(u) is outside R(u); (iii) each edge of
G2 intersects the boundary of R(u) at most once.

� (P3) For each vertex u ofG1, there exists a simple curve `(u) that connects
the geometric shape pu representing u in Γ(G1) to the boundary of R(u)
in Γ(G2), in such a way that for each pair u, v of distinct vertices of V1,
we have `(u) ∩ `(v) = ∅.

In the paper, simple curves `(u) are referred to as matching connections.
Property (P3) guarantees that there is no intersection between distinct match-
ing connections. A one-to-many matched drawing is said to be strong if the
centers of the vertices of Γ(G1) have distinct y-coordinates and regions R(u)
are vertically ordered in Γ(G2) according to the positions of the corresponding
vertices in Γ(G1). More formally, if u1, u2 ∈ V1 and pu1

is above pu2
in Γ(G1),

then R(u1) is completely above R(u2) in Γ(G2). In the paper, a one-to-many
matched drawing that is not strong will be referred to as a weak one-to-many
matched drawing. Figure 3 shows two examples of one-to-many matched draw-
ings for the same pair of graphs. The one in Fig. 3(b) is a strong one-to-many
matched drawing. Note that in the strong model it is always possible to draw
each pair l(u), l(v) of matching connections such that l(u) is above l(v) if R(u)
is above R(v). In the remainder we always compute drawings with matching
connections that have this property.

4 The System MOM

In this section we present a system for the display and the visual analysis of
one-to-many matched drawings. We call our system MOM1. Let 〈G1, G2〉 be
a pair of one-to-many matched graphs to be visualized. MOM displays the
drawing of G1 to the left of the drawing of G2, according to the following main
criteria:

1MOM stands for Matched One-to-Many graphs
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Figure 3: (a) A weak one-to-many matched drawing of a pair of matched graphs. (b)
A strong one-to-many matched drawing for the same pair of graphs.

� (C1) It assumes that a drawing Γ(G1) is given as part of the input or
that it can be computed using some classical graph drawing algorithm.

� (C2) It concentrates on the computation of Γ(G2), while trying to opti-
mize a certain number of aesthetic criteria, other than guaranteeing that
〈Γ(G1),Γ(G2)〉 is a one-to-many matched drawing.

� (C3) Once Γ(G2) has been computed, it draws the matching connections
and provides the user with a set of interaction functionalities for the visual
analysis of the resulting drawing.
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Criterion (C1) is motivated by several application scenarios that we had
in mind during the design of the system. In these applications G1 is often a
graph whose entities represent geographic locations and therefore their position
is either fixed or strongly constrained (examples are given in Sect. 5). About
(C2), we focus on well recognized aesthetic criteria like number of crossings,
number of bends, drawing area. Since the optimization of these criteria typically
leads to an NP-hard problem, we propose some heuristics based on engineered
versions of popular graph drawing algorithms, which are able to deal with the
constraints of a one-to-many matched drawing. As an additional aesthetic crite-
rion we require that 〈Γ(G1),Γ(G2)〉 is computed in such a way that the matching
connections can be always drawn without intersecting the edges of G2. When
G2 is a dense graph, Γ(G2) may have a high visual complexity, which makes it
difficult to read the drawing at a whole, independent of the drawing strategy
applied. This is the motivation for (C3).

4.1 Drawing Algorithm

Our drawing strategy for Γ(G2) combines different drawing conventions. We
use orthogonal drawings for the layout of the rectangular regions R(u) and
their connections. Circular drawings are used to represent G(M(u)) inside R(u).
Finally, in order to simplify the visual complexity, we adopt a bundling operation
for the edges connecting a vertex inside a region R(u) to vertices outside R(u);
to avoid ambiguity, we use a “confluent-like” representation for these edges, as
explained later. The algorithms used for the different drawing conventions have
been engineered in order to deal with a certain number of constraints. In the
following we describe in detail the steps performed by our drawing algorithm.
We denote by Vi and Ei the set of vertices and edges of Gi, respectively (i ∈
{1, 2}).

Step 1: Planarization. The goal of this step is to compute a suitable planar
embedding of the graph consisting of “cluster vertices” and their interconnec-
tions, possibly replacing edge crossings with dummy vertices. More precisely,
let u1, u2, . . . , un be the vertices of G1 in the top-to-bottom order2 they appear
in Γ(G1), and let G′

2 be the graph obtained from G2 by collapsing each cluster
M(ui) into a single vertex v(ui) (1 ≤ i ≤ n), called a cluster vertex. In G′

2

edges connecting vertices in the same cluster M(u) disappear, while an edge
connecting a vertex in M(ui) to a vertex in M(uj) (i 6= j) is transformed to
a corresponding edge between v(ui) and v(uj). We aim at computing a planar
embedding Ψ of G′

2 that satisfies the following two conditions:

� (E1) Cluster vertices v(u1), v(u2), . . . , v(un) appear counterclockwise in
this order on the external face of Ψ.

� (E2) If v ∈ M(ui) in G2 and if e1, . . . , ek are edges of G2 incident to v,
then the edges corresponding to e1, . . . , ek in G′

2 appear consecutively (not
necessarily in this order) around v(ui) in Ψ.

2If ui and uj have the same y-coordinate, they are ordered from right to left.
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Condition (E1) will guarantee Property (P3), i.e., the possibility of routing
the matching connections without crossings among them; it also avoids crossings
between matching edges and the edges of G2. Condition (E2) makes it possible
to simplify the links between the outside and the inside of each region R(ui)
in the final drawing and to bundle these links as it will be explained in Step 3.
To force (E2) we further transform G′

2 by attaching to v(ui) a vertex v′ for
each vertex v ∈ M(ui) connected to vertices outside M(ui), and by replacing
the edges e1, . . . , ek that are incident to v with corresponding edges e′1, . . . , e

′
k

connected to v′. Vertex v′ is called the image of v.
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Figure 4: (a) A graph G2. (b) The graph G′
2 used in Step 1 plus the wheel gadget

(bold node and dashed bold edges) adopted to guarantee E1; the wheel gadget is
removed at the end of Step 1.

On G′
2 we apply a standard planarization algorithm based on first extracting

a maximal planar subgraph and then on iteratively reinserting the discarded
edges by computing shortest paths in the dual graph and by replacing edge
crossings with dummy vertices [7]. To force (E1), we use a “wheel gadget” of
uncrossable edges that will be removed at the end of the planarization phase.
Figure 4 shows an example of a graph G′

2 and the wheel gadget used to guarantee
(E1).

Notice that, quadratic and linear-time algorithms for planarity testing and
edge reinsertion within the above described embedding constraints have been
also proposed in [1, 16]. Our planarization phase takes O(|E2|(c+ |V2|) log(c+
|V2|)) time, where c is the number of edge crossings in the final embedding of
G′

2. Namely, we spend quadratic time to extract a maximal planar subgraph,
and we apply the O(n log n)-time Dijkstra algorithm to compute shortest paths
in the dual graph, where n is the number of vertices of the planar graph. We
execute this algorithm O(|E2|) times, and each time dummy vertices are added
to the planar structure to replace crossings.

Step 2: Orthogonalization and Compaction. Once a planar embedding Ψ
of G′

2 (with possible cross vertices) has been found, an orthogonal drawing of G′
2
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that preserves Ψ is computed. The basic idea is to use an orthogonal drawing
algorithm that deals with arbitrary vertex degree and that allows for vertex
size customization. Indeed, we want v(ui) to be drawn as a box big enough to
host all vertices of M(ui). To this aim, the system uses the network flow based
drawing algorithm described in [6], which represents a good heuristic both in
terms of bend minimization and in terms of area drawing compaction.

More precisely, denote by B(v(ui)) the box representing vertex v(ui). We
will draw B(v(ui)) as a square of a certain size ri. In the final drawing we place
a circle of radius ρi inside B(v(ui)) and equi-distribute along its perimeter the
vertices of M(ui). To determine ρi, we fix a minimum distance δ we want to
guarantee between any two vertices of M(ui) and we set ρi = δ · |M(ui)|/2π.
We choose ri to be larger enough than ρi so that it is possible to route the edges
connecting vertices inside B(v(ui)) with the outside. Each square B(v(ui)) will
correspond to region R(ui) in the final drawing. Also, in order to guarantee
the properties of a one-to-many matched drawing, we add a certain number of
constraints as described below.

If one wants to compute a strong one-to-many matched drawing, then all
vertices v(u1), v(u2), . . . , v(un) are temporarily connected in this order to form
a simple cycle C that becomes the new boundary for the external face. Then the
following angle and bend constraints on the vertices and edges of C are imposed:
Each edge of C connecting v(ui) to v(ui+1) (1 ≤ i ≤ n − 1) is constrained to
be straight-line in the drawing, while the edge of C connecting v(un) to v(u1)
is constrained to turn always in the left direction while moving from v(un) to
v(u1). Each angle formed at a vertex v(ui) on the external face is set to be
of 180 degrees. These constraints guarantee that v(u1), v(u2), . . . , v(un) are en-
countered from top-to-bottom in the final drawing and that they are all visible
from the left. Once a drawing has been computed the edges of C are removed.
If one wants to compute a (not necessarily strong) one-to-many matched draw-
ing, then we still construct cycle C, but we only impose the constraint that
the edges of C turn in the left direction or go straight while moving along C
counterclockwise. Finally, in order to correctly perform the next step (i.e., the
edge bundling operation), we also require that for each image vertex v′ attached
to a vertex v(ui), there is no edge incident to v′ from the same direction of edge
(v(ui), v

′).
All the orthogonalization constraints described above are translated into

constraints on the flow network of the algorithm in [6]. The orthogonalization
and compaction phases take O((|V1||V2| + c)2 log(|V1||V2| + c)) time, where c
is still the number of cross vertices in the embedding Ψ. This is because the
flow techniques used to compute an orthogonal drawing of a planar graph with
vertices of size zero (i.e., represented as points) requires O(n2 log n) if n is the
number of vertices of the graph [23]. The algorithm used for handling vertices
of size greater than zero has the same complexity, but in order to model these
vertices it adds a number of dummy vertices that is proportional to the maxi-
mum size of a vertex. Since we have O(|V1|) vertices of size greater than zero
(i.e., the cluster vertices) and since their maximum size is O(|V2|), the bound
follows.
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Step 3: Edge Bundling. This step removes each image vertex v′ and creates
in its place a “confluent-like” structure for the edges incident to v′. Namely, let
v be the vertex of the original graph that has v′ as its image and let M(ui) be
the cluster that contains v. Let e′1, . . . , e

′
k be the edges incident to v′ other than

edge (v′, v(ui)). We want v′ to be no longer present in the final drawing and the
edges e′1, . . . , e

′
k to be replaced by the edges e1, e2, . . . , ek that were originally

connected to v. To simplify the final drawing however, we bundle the edges
e1, e2, . . . , ek from v to v′; this edge bundle follows the drawing of e from the
boundary of R(ui) to v′ and then it divides in k branches at v′ using splines, as
shown in Fig. 5(a).
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Figure 5: (a) Illustration of Step 3. The image vertex v′ is removed and its incident
edges are replaced by a “confluent-like” structure. The dashed curve is the part of
edge bundle that will be drawn in Step 4. (b) Illustration of Step 4. The black vertices
inside R(ui) denote the vertices whose relative circular ordering is fixed according to
their corresponding external connections.

It is important to remark that the edge bundling operation guarantees that
for each vertex v inside a region R(ui) there will be at most one link (a bun-
dle of edges) incident to v from the outside of R(ui). Since these links must
be routed around the circular drawing representing G(M(ui)), this property
strongly simplifies the visual complexity introduced by these connections. The
edge bundling step takes O(|E2|) time.

Step 4: Circular Drawing Computation. At the end of the previous step,
we have a partial drawing of G2 such that for each cluster vertex v(ui) there
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is a corresponding rectangular region R(ui) and some edges incident to the
boundary of R(ui) at certain points p1, p2, . . . , pk. To complete the drawing
of G2 we construct a circular drawing for each G(M(ui)), and then connect
pj to its corresponding vertex vj of M(ui) (1 ≤ j ≤ k). See Fig. 5(b) for an
illustration.

In order to avoid crossings between links (pj , vj), we force the circular order
of vertices vj to be consistent with the circular order of points p1, p2, . . . , pk
around R(ui), i.e., if p1, p2, . . . , pk occur clockwise in this order around R(ui)
then we force v1, v2, . . . , vk to occur clockwise in this order in the circular
drawing. Conversely, all vertices of M(ui) distinct from vj (1 ≤ j ≤ k)
can be placed everywhere in the circular ordering (these vertices are not con-
nected to vertices outside R(ui)). In other words, if Vfix = {v1, v2, . . . , vk} and
Vfree = M(ui) \ Vfix, we want to find a “good” circular order for the vertices
of M(ui) such that the relative order of the vertices of Vfix is fixed; our goal is
the minimization of the number of edge crossings, which is however an NP-hard
problem [19]. To solve it, we designed a variation of the heuristic described by
Baur and Brandes [2], which has been experimentally shown to produce better
results in terms of crossing reduction than previous heuristics for computing
circular drawings, and that has been successfully adopted for the layout of two-
level networks that are similar to the clustered structure of G2 [3]. We also
recall that faster but less effective circular drawing algorithms in terms of edge
crossings have been described in [22].

The heuristic by Baur and Brandes computes an ordering of the vertices
on a straight line `, assuming that all edges are drawn on the same half-plane
determined by `. In terms of edge crossings this model is equivalent to place the
vertices on a circle and to draw the edges as straight-line segments. The first
vertex to be placed on ` is chosen randomly. At the generic step the next vertex
to be placed is chosen as the one having the minimum number of unplaced
neighbors in the graph, and it is placed on ` either before or after all vertices
already placed, depending on which choice causes the smallest number of edge
crossings. If there are more than one vertex with the (same) minimum number
of unplaced neighbors, the one that has the maximum number of neighbors
already placed is selected. At the end of this placement greedy heuristic, a post-
processing step, called circular sifting is applied to further reduce the number
of edge crossings if possible. The idea is to iteratively swapping a vertex with
its successor vertex in the linear order on ` and recording the change in crossing
count; the vertex is then placed in the position that corresponds to its local
optimum. Denoted by n and m the number of vertices and the number of
edges of the input graph, respectively, the placement greedy heuristic can be
performed in O((n+m) log n) time, while repositioning each vertex once in the
circular sifting phase can be done in O(nm) time (see [2]).

Our variation of the algorithm in [2] works as follows. The placement greedy
heuristic performs analogously to the one described above, but it assumes that
the vertices of Vfix are already placed on ` in a preassigned order; therefore
the placement decisions are restricted to the vertices of Vfree. The circular
sifting phase is modified so that swaps between vertices both belonging to Vfix
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are not allowed. Once the circular ordering of the vertices of M(ui) has been
computed, the algorithm equi-distributes these vertices on a circle inside R(ui)
and rotates this circle in order to reduce the total length of the connections
(pj , vj) (1 ≤ j ≤ k), which are routed as polygonal chains of vertical and
horizontal segments. The circular drawing computation over all cluster vertices
takes O(|V1|((|V2|+ |E2|) log |V2|+ |V2||E2|)) time (recall that |V1| corresponds
to the number of cluster vertices).

Step 5: Drawing of Matching Edges. This step is simply performed by
routing the matching edges as polygonal chains from the location of a vertex
ui of Γ(G1) to the boundary of the corresponding region R(ui) in Γ(G2). Since
the circular ordering of the regions on the external face of Γ(G2) is consistent
with the top-down ordering of the corresponding vertices in Γ(G1), this can be
done without crossing between matching edges. Also, in a strong one-to-many
matched drawing, each matching edge can be routed with at most two bends.

Time Complexity. The next theorem summarizes the discussion about the
drawing algorithm implemented in MOM. To simplify the time complexity of
this algorithm, the statement of the theorem assumes that |V1| is bounded by a
constant. This appears as a reasonable assumption if |V1| � |V2|.

Theorem 1 Let 〈G1, G2〉 be a pair of one-to-many matched graphs such that
G1 = (V1, E1) and G2 = (V2, E2). Let Γ(G1) be any drawing of G1. There
exists a polynomial-time algorithm that computes a one-to-many matched draw-
ing 〈Γ(G1),Γ(G2)〉 (either in the strong or in the weak model) with the addi-
tional property that the matching edges can be drawn without intersecting any
vertex and edge of Γ(G2). Also, if |V1| is bounded by a constant, and de-
noted by N the number N = |V2| + c, where c is the number of inter-cluster
edge crossings in Γ(G2), then the time complexity of the drawing algorithm is:
O((|E2|N +N2) logN).

Proof: Consider the drawing algorithm described in the previous sections.
From the assumption that |V1| = O(1), the algorithm time complexity is dom-
inated by Step 1 (Planarization) and Step 2 (Orthogonalization and Com-
paction). The complexity of Step 1 is O(|E2|(|V2| + c) log(|V2| + c)), while
the complexity of Step 2 can be re-written as O((|V2|+ c)2 log(|V2|+ c)). 2

4.2 Interaction Functionalities

In order to facilitate the visual analysis of the computed one-to-many matched
drawings, we equipped our system with a certain number of interaction func-
tionalities, other than conventional zooming and translation primitives. We
briefly describe in the following the main actions that the user can perform on
the drawing.

Cluster Expansion/Contraction: By default, all cluster regionsR(u) in Γ(G2)
are expanded, i.e., the whole subgraph inside each R(u) is displayed by
the system. In order to compact the drawing and/or to hide some details,
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the user can decide to contract a certain number of clusters by simply
clicking on them. A cluster contraction redraws the cluster as a small
box and hides its content. Every cluster can be expanded or contracted
an infinite number of times without any restriction. After a cluster ex-
pansion/contraction, the drawing is automatically re-compacted by the
system, but the orthogonal shape of the drawing remains unchanged, so
to avoid the user mental map to be lost. Contracting clusters can be use-
ful to get an overview of the inter-cluster relations before analyzing the
intra-cluster ones.

Cluster Filtering: If the user is interested in focusing on some of the clusters,
she can select them and hide the remaining clusters and their connec-
tions. After such an operation, the user can also decide to re-compact
the remaining part of the drawing to save space if possible. When the
drawing of Γ(G2) has many clusters and/or many inter-cluster links, the
cluster filtering primitive can help to explore the graph structure portion
by portion.

Edge Filtering: Our system allows the representation of edge weighted graphs.
This means that a weight can be assigned to each edge of G1 and of
G2. When a graph is too dense, the user can sparsify the links by set-
ting an edge visibility threshold. All links having the weight below the
given threshold are not shown by the system. Again, the drawing is re-
compacted if required.

Edge/Vertex Highlighting: Moving the mouse over a certain vertex or clus-
ter region, the user can decide to highlight all edges incident to that vertex
or to that cluster region. A tooltip with information about the selected
vertex is also displayed. This helps to get local information on the draw-
ing. Furthermore, moving the mouse over an edge, a tooltip that displays
the labels of its end-vertices is shown. This helps when just a portion of
the selected edge fits in the current view.

4.3 Implementation Notes

The user interface of the MOM system has been implemented in Java, using
JDK 1.5. The same language has been also used to implement the modified
circular drawing algorithm. For the implementation of planarization and or-
thogonalization algorithms we used the GDToolkit library [1]. Since this library
is written in C++, we used the JNI (Java Native Interface) technology to call
native GDToolkit methods inside the Java code of MOM.

5 Application Examples

One-to-many matched graphs occur in several applications contexts. Here we
briefly present two examples, one on social network analysis and the other in
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the field of Web search clustering engines. The drawings of Fig. 6, 7 and 8 were
computed using MOM.

The first example focuses on the co-authorship network of the 15th Inter-
national Symposium on Graph Drawing, GD 2007. In this example, G1 is the
graph having European countries as vertices and edges between countries that
cooperated in co-authoring some papers. Each edge has a weight equal to the
number of papers resulting from the cooperation of the connected countries. The
drawing Γ(G1) is a simple straight-line drawing, where each vertex is placed at
a fixed location on a geographic map. Graph G2 represents authors and their
cooperations in the articles. Figure 6 shows a one-to-many matched drawing
in the strong model. The drawing gives an overview of the network structure,
which reveals the number of contributing authors for each country and a relevant
level of cooperation among the different countries. Looking inside a country, it
is possible to see its different sub-communities. For example, it is easy to rec-
ognize two sub-communities in Greece, in Italy, and in Czech Republic, several
communities in Germany, and one big community in Spain. Selecting an au-
thor in a country, all her connections with other authors are highlighted by the
system. In the figure, author “Kaufmann” inside Germany is selected, and the
system highlights (in bold red color) his connections with other authors, three
in Greece and one in Italy. Moving the mouse over one of the bold red edges,
a tooltip that reports the labels of its end-vertices is displayed. Figure 7 shows
an example of edge and vertex filtering on the previous drawing, which makes
it easier to focus on specific relationships. Namely, the edges of Γ(G1) has been
filtered so that only those edges with a weight greater than 1 are shown. The
vertices of Γ(G2) have been filtered in such a way that only the countries having
some incident links in Γ(G1) are shown (i.e., Germany, Italy, and The Nether-
lands). Then, cluster Germany has been contracted to focus on the interplay
between Italy and The Netherlands. After the vertex filtering and contraction
operations, Γ(G2) is recomputed so to become more compact without destroy-
ing the user’s mental map. In the figure, the connections of author “Meijer” are
highlighted in bold red.

The second example shows an interesting integration of an on-line service of
the Italian Yellow Pages3 with recent Web search clustering engine technologies.
More precisely, the Italian Yellow Pages has an on-line service that allows users
to search for events in a desired geographic area. In our example, we queried
the event “concert” in the north of Italy. The service returns a list of results
that match the query, every result coming with a brief summary containing
additional information on the event. A the same time, it presents a geographic
map that displays the location of each event. We passed the results to a clus-
tering engine [8] that is able to group them into distinct thematic categories,
each category having a label and a relevance rank automatically computed by
the system. Figure 8 shows as G1 the graph having a vertex for each region
involved by our query (in this case G1 has no edge), while G2 is the graph whose
vertices are the concerts returned by the Italian Yellow Pages and such that two

3http://www.visualpaginegialle.it/
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Figure 6: A one-to-many matched drawing showing the European co-authorship net-
work of GD 2007.

concerts are connected by an edge if they belong to the same thematic category.
The figure shows only the edges induces by the two most relevant categories.
In the figure, cluster “Emilia Romagna” is selected and all its incident links are
highlighted using the red color. It is interesting to observe that 90% of the links
involves such a region, which means that “Emilia Romagna” hosts most of the
concerts related to the first two thematic categories.

6 System Performances

We have tested our system in order to measure its performances. Our main
goal was to measure the running time and some important aesthetic require-
ments, like number of crossings, number of bends, drawing area, and aspect ratio
(width/height). We compared the algorithm for strong one-to-many matched
drawings against the algorithm for weak one-to-many matched drawings, so to
understand the trade-off between the results of the two algorithms. Indeed, a
strong drawing greatly helps in the readability of the matching between G1 and
G2, but we expect that a strong drawing has worse values for some aesthetics
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Figure 7: The same one-to-many matched graphs of Fig. 6 after some edge and vertex
filtering.

(e.g., aspect ratio and number of bends) than a weak drawing.

The focus is on the drawing of G2, because we are assuming that a drawing
Γ(G1) of G1 is given as part of the input or that it is computed with some
classical drawing algorithm. Therefore, for the experiments we used a test
suite of instances of G2, with given number of cluster vertices. We generated
240 graphs in total, 5 graphs for each sample. A sample is obtained by fixing
number of vertices, number of clusters, and density (number of edges/number
of vertices). The number of vertices is a value in the set {100, 400, 700, 1000},
the number of clusters is a value in {5, 10, 15, 20}, and the density is a value
in {1.0, 1.5, 2.0}. Each graph was generated at random, by assuming that 10%
of the edges are inter-cluster edges and that 90% of the edges are intra-cluster
edges. The experiments have been executed under the Windows 2003 server
OS, on an Intel Pentium IV with 3.0GHz and 2GB of RAM.

The charts of the experimental results are shown in Figures 9, 10, and 11.
Those about running time, drawing area, number of bends, and aspect ratio,
report the average values for the two drawing algorithms as a function of the
number of vertices, over all number of cluster values. We used a different chart
for each measure and for each density value. Conversely, the number of crossings
is independent of the drawing algorithm (the planarization step is applied before
imposing the constraints for strong or weak one-to-many matched drawings),
and therefore only one curve is shown in the charts.

As for the running time, the algorithm for strong drawings is slightly slower
than the algorithm for weak drawings (in the average, it requires about 10%
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Figure 8: A one-to-many matched drawing in the contexts of Web clustering engines.

more time). In general, both types of computations take a few seconds for graphs
up to 400 vertices and low density values. Graphs with the highest density and
700 vertices are computed in a few minutes, while the computations may require
up to 30 minutes for the hardest instances of our test suite, i.e., graphs with
1000 vertices and density 2.0.

Concerning the area and the aspect ratio, since in a strong one-to-many
matched drawing every two cluster regions are constrained to stay one below
the other, strong drawings have a worst aspect ratio but smaller area than weak
drawings which have typically aspect ratio close to 1.

About the number of bends, strong drawings present in the average 11−12%
bends more than weak drawings, which are caused by their greater number of
constraints. Finally, as already observed, the number of crossings is independent
of the two drawing algorithms, and as expected it rapidly increases with the
graph density.
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7 Conclusions and Open Problems

We presented a new system for the visual analysis of one-to-many matched
graphs, i.e., graphs having secondary one-to-many relationships between their
vertices. The system computes a visualization of the two graphs such that
secondary relationships do not cross each other, and other important aesthetic
requirements are taken into account. Furthermore, the system provides the user
with several interaction functionalities for the visual analysis of the drawing. We
also described the results of an experimental analysis that measures the system
performances, both in terms of running time and in terms of drawing quality.

Our drawing approach combines orthogonal drawings in the topology driven
approach with circular drawing algorithms, and adopts an edge bundling tech-
nique to reduce the visual complexity introduced by some links. In the near
future we plan to explore other visualization paradigms for the studied problem.
For example, to speed-up the system on larger instances it could be interesting
to design an algorithm that combines the well-know Sugiyama algorithm with
circular drawings.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Experimental comparison of the strong and weak one-to-many matched
drawing algorithms: Running time ((a), (c), (e)) and Area ((b), (d), (f)).
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Experimental comparison of the strong and weak one-to-many matched
drawing algorithms: Number of bends ((a), (c), (e)) and Aspect Ratio ((b), (d), (f)).
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(a)

(b)

(c)

Figure 11: Experimental results of both the strong and weak one-to-many matched
drawing algorithms: Crossings.
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