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Cubic graphs have bounded slope parameter
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Abstract

We show that every finite connected graph G with maximum degree
three and with at least one vertex of degree smaller than three has a
straight-line drawing in the plane satisfying the following conditions. No
three vertices are collinear, and a pair of vertices form an edge in G if
and only if the segment connecting them is parallel to one of the sides
of a previously fixed regular pentagon. It is also proved that every finite
graph with maximum degree three permits a straight-line drawing with
the above properties using at most seven different edge slopes.
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1 Introduction

A drawing of a graph G is a representation of its vertices by distinct points in the
plane and its edges by continuous arcs connecting the corresponding endpoints,
not passing through any other point corresponding to a vertex. In a straight-
line drawing [8], the edges are represented by (possibly crossing) segments. If
it leads to no confusion, we make no notational or terminological distinction
between the vertices (edges) of G and the points (arcs) representing them.

The thickness of a graph G is the smallest number of its planar subgraphs
whose union is G [14]. It is one of the several widely known graph parameters
that measures how far is G from being planar. The geometric thickness of G
is the smallest number of crossing-free subgraphs of a straight-line drawing of
G, whose union is G [11]. The slope number of G is the minimum number of
distinct edge slopes in a straight-line drawing of G [16]. It follows directly from
the definitions that the thickness of any graph is at most as large as its geometric
thickness, which, in turn, cannot exceed its slope number. For many interesting
results about these parameters, consult [3, 6, 4, 5, 7, 9, 12, 15].

The slope parameter of a graph was defined by Ambrus, Barát, and P. Hajnal
[1], as follows. By abusing the usual terminology, we say that the slope of a line
` in the xy-plane is the smallest angle α ∈ [0, π) such that ` can be rotated into
a position parallel to the x-axis by a clockwise turn through α. Given a set P
of points in the plane and a set Σ of slopes, define G(P,Σ) as the graph on the
vertex set P , in which two vertices p, q ∈ P are connected by an edge if and
only if the slope of the line pq belongs to Σ. The slope parameter s(G) of G is
the size of the smallest set Σ of slopes such that G is isomorphic to G(P,Σ) for
a suitable set of points P in the plane. This definition was motivated by the
fact that all connections (edges) in an electrical circuit (graph) G can be easily
realized by the overlay of s(G) finely striped electrically conductive layers.

The slope parameter, s(G), is closely related to the three other graph param-
eters mentioned before. For instance, for triangle-free graphs, s(G) is at least
as large as the slope number of G, the largest of the three quantities above.
Indeed, in the drawing realizing the slope parameter, there are no three points
on a line, so this drawing proves that the slope number is smaller or equal to
the slope parameter.

On the other hand, it sharply differs from them in the sense that the slope
parameter of a complete graph on n vertices is one, while the thickness, the
geometric thickness, and the slope number of Kn tend to infinity as n → ∞.
Jamison [10] proved that the slope number of Kn is n.

Any graph G of maximum degree two splits into vertex-disjoint cycles, paths,
and possibly isolated vertices. Hence, for such graphs we have s(G) ≤ 3. In
contrast, as was shown by Barát et al. [2], for any d ≥ 5, there exist graphs of
maximum degree d, whose slope parameters are arbitrarily large.

A graph is said to be cubic if the degree of each of its vertices is at most
three. A cubic graph is subcubic if each of its connected components has a vertex
of degree smaller than three.

The aim of this note is to prove the following result.
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Theorem 1. Every cubic graph has slope parameter at most seven.

This theorem is not likely to be tight. The best lower bound we are aware
of is four. This bound is attained, for example, for the 8-vertex subcubic graph
that can be obtained from the graph formed by the edges of a 3-dimensional
cube by deleting one of its edges.

We will refer to the angles iπ/5, 0 ≤ i ≤ 4, as the five basic slopes. In
Section 2, we prove the following statement, which constitutes the first step of
the proof of Theorem 1.

Theorem 2. Every subcubic graph has slope parameter at most five. Moreover,
this can be realized by a straight-line drawing such that no three vertices are on
a line and each edge has one of the five basic slopes.

Using the fact that in the drawing guaranteed by Theorem 2 no three vertices
are collinear, we can also conclude that the slope number of every subcubic graph
is at most five. In [12], however, it was shown that this number is at most four
and for cubic graphs it is at most five. This was improved for connected cubic
graphs in [13] to four.

2 Proof of Theorem 2

The proof is by induction on the number of vertices of the graph. Clearly, the
statement holds for graphs with fewer than three vertices. Let n be fixed and
suppose that we have already established the statement for graphs with fewer
than n vertices. Let G be a subcubic graph of n vertices. We can assume
that G is connected, otherwise we can draw each of its connected components
separately and translate the resulting drawings through suitable vectors so that
no two points in distinct components determine a line of basic slope.

To obtain a straight-line drawing of G, we have to find proper locations for
its vertices. At each inductive step, we start with a drawing of a subgraph of
G satisfying the conditions of Theorem 2 and extend it by adding a vertex. At
a given stage of the procedure, for any vertex v that has already been added,
consider the (basic) slopes of all edges adjacent to v that have already been
drawn, and let sl(v) denote the set of integers 0 ≤ i < 5 for which iπ/5 is such
a slope. That is, at the beginning sl(v) is undefined, then it gets defined, and
later it may change (expand). Analogously, for any edge uv of G, denote by
sl(uv) the integer 0 ≤ i < 5 for which the slope of uv is iπ/5.

Case 1: G has a vertex of degree one. Assume without loss of generality, that
v is a vertex of degree one, and let w denote its only neighbor. Deleting v from
G, the degree of w in the resulting graph G′ is at most two. Therefore, by the
induction hypothesis, G′ has a drawing meeting the requirements. As w has
degree at most two, there is a basic slope σ such that no other vertex of G′ lies
on the line ` of slope σ that passes through w. Draw all five lines of basic slopes
through each vertex of G′. These lines intersect ` in finitely many points. We
can place v at any other point of `, to obtain a proper drawing of G.

From now on, assume that G has no vertex of degree one.
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Case 2: G has no cycle that passes through a vertex of degree two. Since G
is subcubic, it contains a vertex w of degree two such that G is the union of
two graphs, G1 and G2, having only vertex w in common. Both G1 and G2 are
subcubic and have fewer than n vertices, so by the induction hypothesis both of
them have a drawing satisfying the conditions. Translate the drawing of G2 so
that the points representing w in the two drawings coincide. Since w has degree
one in both G1 and G2, by a possible rotation of G2 about w through an angle
that is a multiple of π/5, we can achieve that the two edges adjacent to w are
not parallel. By scaling G2 from w, if necessary, we can also achieve that the
slope of no segment between a vertex of G1 \w and a vertex of G2 \w is a basic
slope. Thus, the resulting drawing of G meets the requirements.

Case 3: G has a cycle passing through a vertex of degree two. If G itself is a
cycle, we can easily draw it. If it is not the case, let C be a shortest cycle which
contains a vertex of degree two. Let u0, u1, . . . , uk denote the vertices of C, in
this cyclic order, such that u0 has degree two and u1 has degree three. The
indices are understood mod k + 1, that is, for instance, uk+1 = u0. It follows
from the minimality of C that ui and uj are not connected by an edge of G
whenever |i− j| > 1.

Since G \ C is subcubic, by assumption, it admits a straight-line drawing
satisfying the conditions. Each ui has at most one neighbor in G \ C. Denote
this neighbor by ti, if it exists. For every i for which ti exists, we place ui on
a line passing through ti. We place the ui’s one by one, “very far” from G \ C,
starting with u1. Finally, we arrive at u0, which has no neighbor in G \ C, so
that it can be placed at the intersection of two lines of basic slope, through
u1 and uk, respectively. We have to argue that our method does not create
“unnecessary” edges, that is, we never place two independent vertices in such
a way that the slope of the segment connecting them is a basic slope. In what
follows, we make this argument precise.

u u
u

i−1

u

i−1

u

ui−1

u

ui−1

i

i i

i

Figure 1: The four possible locations of ui.

We determine the locations of the vertices u0, u1, . . . , uk using the following
Procedure(G,C, u0, u1, x), where G is the input subcubic graph, C is a short-
est cycle passing through a vertex of degree two, u0, that has a degree three
neighbor, u1, and x is a real parameter. Note that Procedure(G,C, u0, u1, x)
is a nondeterministic algorithm, as we have more than one choice at certain
steps. (However, it is very easy to make it deterministic.)
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Procedure(G,C, u0, u1, x)

• Step 0. Since G\C is subcubic, it has a representation with the five basic
slopes. Take such a representation, scaled and translated in such a way
that t1 (which exists since the degree of u1 is three) is at the origin, and
all other vertices are within unit distance from it.

For any i, 2 ≤ i ≤ k, for which ui does not have a neighbor in G \ C, let
ti be any unoccupied point closer to the origin than 1, such that the slope
of none of the lines connecting ti to t1, t2, . . . ti−1 or to any other already
embedded point of G \ C is a basic slope.

For any point p and for any 0 ≤ i ≤ 4, let `i(p) denote the line with ith
basic slope, iπ/5, passing through p. Let `i stand for `i(O), where O denotes
the origin.

We will place u1, . . . , uk recursively, so that uj is placed on `i(tj), for a
suitable i. Once uj has been placed on some `i(tj), define ind(uj), the index
of uj , to be i. (The indices are taken mod 5. Thus, for example, |i − i′| ≥ 2
is equivalent to saying that i 6= i′ and i 6= i′ ± 1 mod 5.) Start with u1. The
degree of t1 in G \ C is at most two, so that at the beginning the set sl(t1)
(defined in the first paragraph of this section) has at most two elements. Let
l /∈ sl(t1). Direct the line `l(t1) arbitrarily, and place u1 on it at distance x from
t1 in the positive direction. (According to this rule, if x < 0, then u1 is placed
on `l(t1) at distance |x| from t1 in the negative direction.)

Suppose that u1, u2, . . ., ui−1 have been already placed and that ui−1 lies
on the line `l(ti−1), that is, we have ind(ui−1) = l.

• Step i. We place ui at one of the following four locations (see Figure 1):

(1) the intersection of `l+1(ti) and `l+2(ui−1);
(2) the intersection of `l+2(ti) and `l+3(ui−1);
(3) the intersection of `l−1(ti) and `l−2(ui−1);
(4) the intersection of `l−2(ti) and `l−3(ui−1).

Choose from the above four possibilities so that the edge uiti is not parallel
to any other edge already drawn and adjacent to ti, i.e., before adding the
edge uiti to the drawing, sl(ti) did not include sl(uiti).

It follows directly from (1)–(4) that sl(ui−1) ⊂ {l, l− 1, l+ 1 mod 5}, while
sl(uiui−1) ⊂ {l− 2, l+ 2 mod 5}, that is, before adding the edge uiui−1 to the
drawing, we had sl(uiui−1) /∈ sl(ui−1). Avoiding for uiti the slopes of the edges
already incident to ti, leaves available two of the choices (1), (2), (3), (4).

Let u′i−1 be the translation of ui−1 by the vector
−−−→
ti−1O, and similarly, let u′i

be the translation of ui by the vector ~tiO. That is, Ou′i−1ui−1ti−1 and Ou′iuiti
are parallelograms. We have

Oui−1 − 1 < Ou′i−1 < Oui−1 + 1,

Oui − 1 < Ou′i < Oui + 1,
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and

2 cos
(π

5

)
Ou′i−1 = Ou′i.

Therefore, for any possible location of ui, we have

1.6Oui−1−4 < 2 cos
(π

5

)
Oui−1−4 < Oui < 2 cos

(π
5

)
Oui−1+4 < 1.7Oui−1+4.

Suppose that |x| ≥ 50. Clearly, |x| − 1 < Ou1, and by the previous calculations
it is easy to show by induction that |x| − 1 < Oui for all i ≤ k. Therefore,
1.5Oui−1 < 1.6Oui−1 − 4 so we obtain

1.5Oui−1 < Oui. (1)

We have to verify that the above procedure does not produce “unnecessary”
edges, that is, the following statement is true.

Claim 1. Suppose that |x| ≥ 50.
(i) The slope of uiuj is not a basic slope, for any j < i− 1.
(ii) The slope of uiv is not a basic slope, for any v ∈ V (G \ C), v 6= ti.

Proof. (i) Suppose that the slope of uiuj is a basic slope for some j < i−1. By
repeated application of inequality (1), we obtain that Oui > 1.5i−jOuj > 2Ouj .
On the other hand, if uiuj has a basic slope, then easy geometric calculations
show that Oui < 2 cos

(
π
5

)
Ouj + 4 < 2Ouj , a contradiction.

(ii) Suppose for simplicity that tiui has slope 0, i.e., it is horizontal. By the
construction, no vertex v of G \C determines a horizontal segment with ti, but
all of them are within distance 2 from ti. As Oui > x−1, segment vui is almost,
but not exactly horizontal. That is, we have 0 < |∠tiuiv| < π/5, contradiction.
�

Suppose that Step 0, Step 1, . . . , Step k have already been completed.
It remains to determine the position of u0. We need some preparation. The
notation |x| ≥ 2 mod 5 means that x = 2 or x = 3 mod 5.

Claim 2. There exist two integers 0 ≤ α, β < 5 with |α− β| ≥ 2 mod 5 such
that starting the Procedure with ind(u1) = α and with ind(u1) = β, we can
continue so that ind(u2) is the same in both cases.

Proof. Suppose that the degrees of t1 and t2 in G\C are two, that is, there are
two forbidden lines for both u1 and u2. In the other cases, when the degree of
t1 or the degree of t2 is less than two, or when t1 = t2, the proof is similar, but
simpler. We can place u1 on `l(t1) for any l /∈ sl(t1). Therefore, we have three
choices, two of which, `α(t1) and `β(t1), are not consecutive, so that |α−β| ≥ 2
mod 5.

The vertex u2 cannot be placed on `m(t2) for any m ∈ sl(t2), so there are
three possible lines for u2: `x(t2), `y(t2), `z(t2), say. For any fixed location of
u1, we can place u2 on four possible lines, so on at least two of the lines `x(t2),
`y(t2), and `z(t2). Therefore, at least one of them, say `x(t2), can be used for
both locations of u1. �
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Claim 3. We can place the vertices u1, u2, . . . , uk using the Procedure so
that |ind(u1)− ind(uk)| ≥ 2 mod 5.

Proof. By Claim 2, there are two placements of the vertices of C \{u0, uk}, de-
noted by u1, u2, . . . , uk−1 and by u′1, u

′
2, . . . , u

′
k−1 such that |ind(u1)−ind(u′1)| ≥

2 mod 5, and ind(ui) = ind(u′i) for all i ≥ 2. That is, we can start placing
the vertices on two non-neighboring lines so that from the second step of the
Procedure we use the same lines. We show that we can place uk so that
u1 and uk, or u′1 and uk are on non-neighboring lines. Having placed uk−1
(or u′k−1), we have four choices for ind(uk). Two of them can be ruled out
by the condition ind(uk) /∈ sl(tk). We still have two choices. Since u1 and
u′1 are on non-neighboring lines, there is only one line which is a neighbor of
both of them. Therefore, we still have at least one choice for ind(uk) such that
|ind(u1)− ind(uk)| ≥ 2 or |ind(u′1)− ind(uk)| ≥ 2. �

ku

u1

l

l i−1

i+1

Figure 2: `i+1(u1), does not separate the vertices of G \ C from uk, `i−1(u1)
does.

• Step k + 1. Let i = ind(u1), j = ind(uk), and assume, by Claim 3, that
|i − j| ≥ 2 mod 5. Consider the lines `i−1(u1) and `i+1(u1). One of
them, `i+1(u1), say, does not separate the vertices of G \ C from uk, the
other one does. See Fig. 2.

Place u0 at the intersection of `i+1(u1) and `i(uk).

u1 1

u uk+1uk+1u
ku

uk

uk+1uuk

u
u1 u1

uk
uk+1

u0

0

0 0

Figure 3: The four possible locations of u0.

Claim 4. Suppose that |x| ≥ 50.
(i) The slope of u0uj is not a basic slope, for any 1 < j < k.
(ii) The slope of u0v is not a basic slope, for any v ∈ V (G \ C).
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Proof. (i) Denote by uk+1 the intersection of `i+1(O) and `i(uk). Suppose
that the slope of u0uj is a basic slope for some 1 < j < k. As in the proof
of Claim 1, by repeated application of inequality 1, we obtain that Ouk+1 >
1.5k+1−jOuj > 2Ouj . On the other hand, by an easy geometric argument, if
the slope of u0uj is a basic slope, then Ouk+1 < 2 cos

(
π
5

)
Ouj + 4 < 2Ouj , a

contradiction, provided that |x| ≥ 50.
(ii) For any vertex v ∈ G \ C, the slope of the segment u0v is strictly

between iπ/5 and (i+ 1)π/5, therefore, it is not a basic slope. See Figure 3.
This concludes the proof of the claim and hence Theorem 2. �

3 Proof of Theorem 1

First we note that if G is connected, then Theorem 1 is an easy corollary to
Theorem 2. Indeed, delete any vertex, and then put it back using two extra
directions. If G is not connected, the only problem that may arise is that these
extra directions can differ for different components. We will define a family of
drawings for each component Gi of G, depending on parameters εi, and then
choose the values of these parameters in such a way that the extra directions
will coincide.

Suppose that G is a cubic graph. If a connected component is not 3-regular
then, by Theorem 2, it can be drawn using the five basic slopes. If a connected
component is a complete graph K4 on four vertices, then it can also be drawn
using the basic slopes. For the sake of simplicity, suppose that we do not have
such components, i. e. each connected component G1, . . . , Gm of G is 3-regular
and none of them is isomorphic to K4.

First we concentrate on G1. Let C be a shortest cycle in G1. We distinguish
two cases.

Case 1: C is not a triangle. Denote by u0, . . . , uk the vertices of C, and let t0
be the neighbor of u0 not belonging to C. Delete the edge u0t0, and let Ḡ be
the resulting graph.
Case 2: C is a triangle. Every vertex of C has precisely one neighbor that does
not belong to C. If all these neighbors coincide, then G1 is a complete graph on
four vertices, contradicting our assumption. So one vertex of C, u0, say, has a
neighbor t0 which does not belong to C and which is not adjacent to the other
two vertices, u1 and u2, of C. Delete the edge u0t0, and let Ḡ be the resulting
graph.

Observe that in both cases, uk and t0 are not connected in G1. Indeed,
suppose for a contradiction that they are connected. In the first case, G1 would
contain the triangle u0ukt0, contradicting the minimality of C. In the second
case, the choice of u0 would be violated.

There will be exactly two edges with extra directions, u0uk and u0t0. The
slope of u0uk will be very close to a basic slope and the slope of u0t0 will be
decided at the end, but we will show that almost any choice will do.

For any nonnegative ε and real x, ModifiedProcedure(Ḡ, C, u0, u1, x, ε)
is defined as follows. Let Steps 0, 1, . . . , k be identical to the corresponding
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Steps of Procedure(Ḡ, C, u0, u1, x).

• Step k+ 1. If there is a segment, determined by the vertices of G \C, of
slope iπ/5 + ε or iπ/5− ε, for any 0 ≤ i < 5, then Stop. In this case, we
say that ε is 1-bad for Ḡ.

Otherwise, when ε is 1-good, let i = ind(u1) and j = ind(uk). We can
assume by Claim 3 that |i − j| ≥ 2 mod 5. Consider the lines `i−1(u1)
and `i+1(u1). One of them does not separate the vertices of G \ C from
uk, the other one does.

If `i−1(u1) separates G \ C from uk, then place u0 at the intersection of
`i+1(u1) and the line through uk with slope iπ/5 + ε. If `i+1(u1) separates
G \ C from uk, then place u0 at the intersection of `i−1(u1) and the line
through uk with slope iπ/5− ε.

Since Steps 0, 1, . . . , k are identical in Procedure(Ḡ, C, u0, u1, x) and in
ModifiedProcedure(Ḡ, C, u0, u1, x, ε), Claims 1, 2, and 3 also hold for the
ModifiedProcedure.

Moreover, it is easy to see that an analogue of Claim 4 also holds with an
identical proof, provided that ε is sufficiently small: 0 < ε < 1/100.

Claim 4’. Suppose that |x| ≥ 50 and 0 < ε < 1/100.
(i) The slope of u0uj is not a basic slope, for any 1 < j < k.
(ii) The slope of u0v is not a basic slope, for any v ∈ V (Ḡ \ C). �

Perform ModifiedProcedure(Ḡ, C, u0, u1, x, ε) for a fixed ε, and observe
how the drawing changes as x varies. For any vertex ui of C, let ui(x) denote
the position of ui, as a function of x. For every i, the function ui(x) is linear,
that is, ui moves along a line as x varies.

Claim 5. With finitely many exceptions, for every value of x, Modified-
Procedure(Ḡ, C, u0, u1, x, ε) produces a proper drawing of Ḡ, provided that ε
is 1-good.

Proof. Claims 1, 2, 3, and 4’ imply Claim 5 for |x| ≥ 50. Let u and v be two
vertices of Ḡ. Since u(x) and v(x) are linear functions, their difference, ~uv(x),
is also linear.

If uv is an edge of Ḡ, then the direction of ~uv(x) is the same for all |x| ≥ 50.
Therefore, it is the same for all values of x, with the possible exception of one
value, for which ~uv(x) = 0 holds.

If uv is not an edge of Ḡ, then the slope of ~uv(x) is not a basic slope for any
|x| ≥ 50. Therefore, with the exception of at most five values of x, the slope of
~uv(x) is never a basic slope, nor does ~uv(x) = 0 hold. �

Take a closer look at the relative position of the endpoints of the missing
edge, u0(x) and t0(x). Since t0 ∈ Ḡ \ C, t0 = t0(x) is the same for all values
of x. The position of u0 = u0(x) is a linear function of x. Let ` be the line
determined by the function u0(x). If ` passes through t0, then we say that ε
is 2-bad for Ḡ. If ε is 1-good and it is not 2-bad for Ḡ, then we say that it is
2-good for Ḡ. If ε is 2-good, then by varying x we can achieve almost any slope
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for the edge t0u0. This will turn out to be crucially important, because we want
to attain that these slopes coincide in all components.

Claim 6. Suppose that the values ε 6= δ, 0 < ε, δ < 1/100, are 1-good for Ḡ.
Then at least one of them is 2-good for Ḡ.

Proof. Suppose, for simplicity, that ind(u1) = 0, ind(uk) = 2, and that u1
and uk are in the right half-plane (of the vertical line through the origin).
The other cases can be settled analogously. To distinguish between Modified-
Procedure(Ḡ, C, u0, u1, x, ε) and ModifiedProcedure(Ḡ, C, u0, u1, x, δ), let
uε0(x) denote the position of u0 obtained by the first procedure and uδ0(x) its
position obtained by the second. Let `ε and `δ denote the lines determined by
the functions uε0(x) and uδ0(x). Suppose that x is very large. Since, by (1), we
have uk(x)O > 1.5u1(x)O, both uε0(x) and uδ0(x) are on the line `1(u1(x)), very
far in the positive direction. Therefore, both of them are above the line `π/10.
On the other hand, if x < 0 is very small (i.e., if |x| is very big), both uε0(x) and
uδ0(x) lie below the line `π/10. It follows that the slopes of `ε and `δ are larger
than π/10, but smaller than π/5.

Suppose that neither ε nor δ is 2-good. Then both `ε and `δ pass through
t0. That is, for a suitable value of x, we have uε0(x) = t0. We distinguish two
cases.
Case 1: uε0(x) = t0 = uk(x). Then, as x varies, the line determined by uk(x)
coincides with `2(t0). Consequently, t0 and uk are connected in G1, a contra-
diction.
Case 2: uε0(x) = t0 6= uk(x). In order to get a contradiction, we try to
determine the position of uδ0(x). If we consider Step k + 1 in Modified-
Procedure(Ḡ, C, u0, u1, x, ε) and in ModifiedProcedure(Ḡ, C, u0, u1, x, δ),
we can conclude that u1(x) lies on `1(uε0) = `1(t0), uδ0(x) lies on `1(u1(x)),
therefore, uδ0(x) lies on `1(t0). On the other hand, uδ0(x) lies on `δ, and, by
assumption, `δ passes through t0. However, we have shown that `δ and `1(t0)
have different slopes, therefore, uδ0(x) must be at their intersection point, so we
have uδ0(x) = uε0(x) = t0.

Considering again Step k + 1 in ModifiedProcedure(Ḡ, C, u0, u1, x, ε)
and in ModifiedProcedure(Ḡ, C, u0, u1, x, δ), we can conclude that the point
uδ0(x) = t0 = uε0(x) belongs to both `ε(uk(x)) and `δ(uk(x)). This contradicts
our assumption that uk(x) is different from uδ0(x) = t0 = uε0(x). �

By Claim 5, for every ε < 1/100 and with finitely many exceptions for every
value of x, ModifiedProcedure(Ḡ, C, u0, u1, x, ε) produces a proper drawing
of Ḡ. When we want to add the edge u0t0, the slope of u0(x)t0 may coincide with
the slope of u(x)u′(x), for some u, u′ ∈ Ḡ. The following statement guarantees
that this does not happen “too often”. We use α(~u) to denote the slope of a
vector ~u.

Claim 7. Let ~u(x) and ~v(x): R → R2 be two linear functions, and let `(u)
and `(v) denote the lines determined by ~u(x) and ~v(x). Suppose that for some
x1 < x2 < x3, the vectors ~u,~v do not vanish and that their slopes coincide, that
is, α(~u(x1)) = α(~v(x1)), α(~u(x2)) = α(~v(x2)), and α(~u(x3)) = α(~v(x3)). Then
`(u) and `(v) must be parallel.
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Figure 4: `(u) and `(v) must be parallel.

Proof. If `(u) passes through the origin, then for every value of x, ~u(x) has the
same slope. In particular, α(~v(x1)) = α(~v(x2)) = α(~v(x3)). Therefore, `(v) also
passes through the origin and is parallel to `(u). (In fact, we have `(u) = `(v).)
We can argue analogously if `(u) passes through the origin. Thus, in what
follows, we can assume that neither `(u) nor `(v) passes through the origin.

Suppose that α(~u(x1)) = α(~v(x1)), α(~u(x2)) = α(~v(x2)), and α(~u(x3)) =
α(~v(x3)). For any x, define ~w(x) as the intersection point of `(v) and the line
connecting the origin to ~u(x), provided that they intersect. Clearly, ~v(x) = ~w(x)
for x = x1, x2, x3, and ~u(x) and ~w(x) have the same slope for every x. The
transformation ~u(x) → ~w(x) is a projective transformation from `(u) to `(v),
therefore, it preserves the cross ratio of any four points. That is, for any x, we
have

(~u(x1), ~u(x2); ~u(x3), ~u(x)) = (~w(x1), ~w(x2); ~w(x3), ~w(x)) .

Since both ~u(x) and ~v(x) are linear functions, we also have

(~u(x1), ~u(x2); ~u(x3), ~u(x)) = (~v(x1), ~v(x2);~v(x3), ~v(x)) .

Hence, we can conclude that ~v(x) = ~w(x) for all x. However, this is impossible,
unless `(u) and `(v) are parallel. Indeed, suppose that `(u) and `(v) are not
parallel, and set x in such a way that ~u(x) is parallel to `(v). Then ~w(x) cannot
have the same slope as ~u(x), a contradiction. �

Suppose that ε is 2-good and let us fix it. As above, let uε0(x) be the position
of u0 obtained by ModifiedProcedure(Ḡ, C, u0, u1, x, ε), and let `ε be the line
determined by uε0(x).

Suppose also that there exist two independent vertices of Ḡ, u, u′ 6= u0, such
that the line determined by ~uu′(x) is parallel to `ε. Then we say that ε is 3-bad
for Ḡ. If ε is 2-good and it is not 3-bad for Ḡ, then we say that it is 3-good for
Ḡ.

It is easy to see that, for any 0 < ε, δ < 1/100, `ε and `δ are not parallel,
therefore, for any fixed u, u′, there is at most one value of ε for which the line
determined by ~uu′(x) is parallel to `ε. Thus, with finitely many exceptions, all
values 0 < ε < 1/100 are 3-good.

Summarizing, we have obtained the following.
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Claim 8. Suppose that ε is 3-good for Ḡ. With finitely many exceptions,
for every value of x, ModifiedProcedure(Ḡ, C, u0, u1, x, ε) gives a proper
drawing of G1. �

Now we are in a position to complete the proof of Theorem 1. Proceed with
each of the components as described above for G1. For any fixed i, let ui0v

i
0 be

the edge deleted from Gi, and denote the resulting graphs by Ḡ1, . . . , Ḡm. Let
0 < ε < 1/100 be fixed in such a way that ε is 3-good for all graphs Ḡ1, . . . , Ḡm.
This can be achieved, in view of the fact that there are only finitely many values
of ε which are not 3-good. Perform ModifiedProcedure(Ḡi, Ci, ui0, u

i
1, x

i, ε).
Now the line `i determined by all possible locations of ui0 does not pass through
ti0.

Notice that when ModifiedProcedure(Ḡi, Ci, ui0, u
i
1, x

i, ε) is executed,
apart from edges with basic slopes, we use an edge with slope rπ/5 ± ε, for
some integer r mod 5. By using rotations through π/5 and a reflection, if nec-
essary, we can achieve that each component Ḡi is drawn using the basic slopes
and one edge of slope ε.

It remains to set the values of xi and draw the missing edges ui0v
i
0. Since the

line `i determined by the possible locations of ui0 does not pass through ti0, by
varying the value of xi, we can attain any slope for the missing edge ti0u

i
0, except

for the slope of `i. By Claim 8, with finitely many exceptions, all values of xi

produce a proper drawing of Gi. Therefore, we can choose x1, . . . , xm so that all
segments ti0u

i
0 have the same slope and every component Gi is properly drawn

using the same seven slopes. Translating the resulting drawings through suitable
vectors gives a proper drawing of G, this completes the proof of Theorem 1.

4 Concluding Remarks

In the proof of Theorem 1, the slopes we use depend on the graph G. However,
the proof shows that one can simultaneously embed all cubic graphs using only
seven fixed slopes.

It is unnecessary to use |x| ≥ 50, in every step, we could pick any x, with
finitely many exceptions.

It seems to be only a technical problem that we needed two extra directions
in the proof of Theorem 1. We believe that one extra direction would suffice.

The most interesting problem that remains open is to decide whether the
number of slopes needed for graphs of maximum degree four is bounded.

Another not much investigated question is to estimate the complexity of
computing the slope parameter of a graph. A related problem is to decide
under what conditions a graph can be drawn on a polynomial sized grid using
a fix number of slopes. Is it possible to draw all cubic graphs?
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