
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 14, no. 2, pp. 221–244 (2010)

A Graph Pebbling Algorithm on Weighted

Graphs

Nándor Sieben

Northern Arizona University, Department of Mathematics and Statistics,
Flagstaff AZ 86011-5717, USA

Abstract

A pebbling move on a weighted graph removes some pebbles at a ver-

tex and adds one pebble at an adjacent vertex. The number of pebbles

removed is the weight of the edge connecting the vertices. A vertex is

reachable from a pebble distribution if it is possible to move a pebble to

that vertex using pebbling moves. The pebbling number of a weighted

graph is the smallest number m needed to guarantee that any vertex is

reachable from any pebble distribution of m pebbles. Regular pebbling

problems on unweighted graphs are special cases when the weight on ev-

ery edge is 2. A regular pebbling problem often simplifies to a pebbling

problem on a simpler weighted graph. We present an algorithm to find the

pebbling number of weighted graphs. We use this algorithm together with

graph simplifications to find the regular pebbling number of all connected

graphs with at most nine vertices.

Submitted:

April 2009
Reviewed:

August 2009
Revised:

December 2009

Accepted:

January 2010

Final:

January 2010
Published:

February 2010

Article type:

Regular Paper
Communicated by:

G. Liotta

E-mail address: nandor.sieben@nau.edu (Nándor Sieben)

mailto:nandor.sieben@nau.edu

222 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

1 Introduction

Graph pebbling has its origin in number theory. It is a model for the transporta-
tion of resources. Starting with a pebble distribution on the vertices of a simple
connected graph, a pebbling move removes two pebbles from a vertex and adds
one pebble at an adjacent vertex. We can think of the pebbles as fuel contain-
ers. Then the loss of the pebble during a move is the cost of transportation. A
vertex is called reachable if a pebble can be moved to that vertex using pebbling
moves. The pebbling number of a graph is the minimum number of pebbles that
guarantees that every vertex is reachable. There are many different variations
of pebbling. For a comprehensive list of references for the extensive literature
see the survey papers [9, 10].

One of our goals is to develop an algorithm that finds the pebbling number
in a reasonable amount of computing time. Our approach is similar to the
algorithmic approach of [1]. Of course this goal is only realistic for relatively
small graphs since finding the pebbling number is a ΠP

2 -complete problem [13].
In spite of this difficulty, the implementation of our algorithm is sufficiently fast
to run on a large number of graphs. So it can be used for checking conjectures
and finding interesting examples. We also believe that our theory views pebbling
numbers from a new perspective and so it might become a useful tool in future
research.

The main idea of the algorithm is that if we know all the sufficient distribu-
tions from which a given goal vertex is reachable then we can find the insufficient
distributions from which the goal vertex is not reachable. An insufficient distri-
bution must be smaller than every sufficient distribution. The pebbling number
can be found by finding an insufficient distribution with the most pebbles. The
problem is that there are too many sufficient distributions. Luckily it suffices to
find the barely sufficient distributions from which the goal vertex is no longer
reachable after the removal of any pebble.

Our algorithm works even if the cost of moving a pebble from one vertex to
another varies between different vertices. To take advantage of this, we develop
the basic theory of graph pebbling on weighted graphs used in [7].

The generalization is worth the effort since pebbling on many graphs can be
simplified if we replace the graph by a weighted graph with fewer edges. For
example a tree can be replaced by a weighted graph containing a single edge.
Cut vertices, leaves and ears offer the most fruitful simplifications.

We use these simplifications and our algorithm to calculate the pebbling
number of all connected graphs with at most nine vertices. We present the
spectrum of pebbling numbers in terms of the number of vertices in the graph.

2 Preliminaries

Let G be a simple connected graph. We use the notation V (G) for the vertex
set and E(G) for the edge set. We use the standard notation vu = uv for the
edge {v, u} ∈ E(G). A path of G is a subgraph isomorphic to the path graph Pn

JGAA, 14(2) 221–244 (2010) 223

with n ≥ 1 vertices. A weighted graph Gω is a graph G with a weight function
ω : E(G) → N.

A pebble function on G is a function p : V (G) → Z where p(v) is the
number of pebbles placed at v. A pebble distribution is a nonnegative pebble
function. The size of a pebble distribution p is the total number of pebbles ‖p‖ =
∑

v∈V (G) p(v). The support of the pebble distribution p is the set supp(p) =

{v ∈ V (G) | p(v) > 0}. We are going to use the notation p(v1, . . . , vn, ∗) =
(a1, . . . , an, q(∗)) to indicate that p(vi) = ai for i ∈ {1, . . . , n} and p(w) = q(w)
for all w ∈ V (G) \ {v1, . . . , vn}.

If vu ∈ E(G) then the pebbling move (v�u) on the weighted graph Gω

removes ω(vu) pebbles at vertex v and adds one pebble at vertex u, more
precisely, it replaces the pebble function p with the pebble function

p(v�u)(v, u, ∗) = (p(v) − ω(vu), p(u) + 1, p(∗)).

Note that the resulting pebble function p(v�u) might not be a pebble distribu-
tion even if p is.

The inverse of the pebbling move (v�u) is denoted by (v�u)−1. The inverse
removes a pebble from u and adds two pebbles at v, that is, it creates the new
distribution p(v�u)−1(v, u, ∗) = (p(v) + 2, p(u)− 1, p(∗)). Note that (v�u)−1 is
not a pebbling move.

A pebbling sequence is a finite sequence s = (s1, . . . , sk) of pebbling moves.
The pebble function gotten from the pebble function p after applying the
moves in s is denoted by ps. The concatenation of the pebbling sequences
r = (r1, . . . , rk) and s = (s1, . . . , sl) is denoted by rs = (r1, . . . , rk, s1, . . . , sl).

A pebbling sequence (s1, . . . , sn) is executable from the pebble distribution
p if p(s1,...,si) is nonnegative for all i ∈ {1, . . . , n}. A vertex x of G is t-reachable
from the pebble distribution p if there is an executable pebbling sequence s such
that ps(x) ≥ t. We say x is reachable if it is 1-reachable.

We write πt(Gω, x) for the minimum number m such that x is t-reachable
from every pebble distribution of size m. We use the notation π(Gω , x) for
π1(Gω , x). The t-pebbling number πt(Gω) is max{πt(Gω, x) | x ∈ V (G)}. The
pebbling number π(Gω) is the 1-pebbling number π1(Gω).

If ω(e) = 2 for all e ∈ E(G) then π(Gω) = π(G) is the usual unweighted
pebbling number. So we allow the weight function ω to be defined only on a
subset of V (G) and use the default weight of 2 for edges where ω is undefined.

Changing the order of moves in an executable pebbling sequence smay result
in a sequence r that is no longer executable. On the other hand the ordering of
the moves has no effect on the resulting pebble function, that is, ps = pr. This
motivates the following definition.

Given a multiset S of pebbling moves on the weighted graph (Gω), the
transition digraph T (G,S) is a directed multigraph whose vertex set is V (G),
and each move (v�u) in S is represented by a distinct directed edge (v, u). The
transition digraph of a pebbling sequence s = (s1, . . . , sn) is T (G, s) = T (G,S),
where S = {s1, . . . , sn} is the multiset of moves in s. Let d−

T (G,S) denote the

in-degree and d+
T (G,S) the out-degree in T (G,S). We simply write d− and d+

224 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

if the transition digraph is clear from context. It is easy to see that the pebble
function gotten from p after applying the moves in a multiset S of pebbling
moves in any order satisfies

pS(v) = p(v) + d−
T (G,S)(v)−

∑

{ω(vu) | (v, u) ∈ E(T (G,S))}

for all v ∈ G. For unweighted graphs the formula simplifies to

pS(v) = p(v) + d−
T (G,S)(v)− 2d+

T (G,S)(v).

3 Cycles in the transition digraph

In this section we present a version of the No-Cycle Lemma [6, 13, 14]. If the
pebbling sequence s is executable from a pebble distribution p then we clearly
must have ps ≥ 0. We say that a multiset S of pebbling moves is balanced with
a pebble distribution p at vertex v if pS(v) ≥ 0. The multiset S is balanced with
p if S is balanced with p at all v ∈ V (G), that is, pS ≥ 0. We say that a pebbling
sequence s is balanced with p if the multiset of moves in s is balanced with p.
The balance condition is necessary but not sufficient for a pebbling sequence to
be executable. A multiset of pebbling moves or a pebbling sequence is called
acyclic if the corresponding transition digraph has no directed cycles.

Proposition 3.1 If S is a multiset of pebbling moves on Gω then there is an
acyclic multiset R ⊆ S such that pR ≥ pS for each pebble function p on G.

Proof: Let p be a pebble function on G. Suppose that T (G,S) has a directed
cycle C. Let Q be the multiset of pebbling moves corresponding to the arrows
of C and R = S \Q. Let uv be the first vertex from v along C. Then pR(v) =
pS(v)−1+ω(vuv) ≥ pS(v) for v ∈ V (C) and pR(v) = pS(v) for v ∈ V (G)\V (C).

We can repeat this process until we eliminate all the cycles. We finish in
finitely many steps since every step decreases the number of pebbling moves.�

Definition 3.2 Let S be a multiset of pebbling moves on G. An element
(v�u) ∈ S is called an initial move of S if v has indegree 0 in T (G,S). A
pebbling sequence s is called regular if si is an initial move of S \ {s1, . . . , si−1}
for all i.

It is clear that if the multiset S is balanced with a pebble distribution p and s
is an initial move of S then s is executable from p.

Proposition 3.3 If S is an acyclic multiset then there is a regular sequence s
of the elements of S. If S is also balanced with the pebble function p then s is
executable from p.

Proof: If S is acyclic then we must have an initial move t of S. Then S \ {t}
is still acyclic. So we can recursively find the elements of s = (s1, . . . , sk) by
picking an initial move t of S and then replacing S with S \ {t} at each step.

JGAA, 14(2) 221–244 (2010) 225

Now assume that S is balanced with p. Then Si = S \ {s1, . . . , si−1} is
balanced with p(s1,...,si−1) for all i since (p(s1,...,si−1))Si

= pS ≥ 0. Hence the
initial move si of Si is executable from p(s1,...,si−1), that is, p(s1,...,si) ≥ 0 for all
i. �

The following result is our main tool.

Theorem 3.4 Let p be a pebble distribution on Gω and x ∈ V (G). The follow-
ing are equivalent.

1. Vertex x is reachable from p.

2. There is a multiset S of pebbling moves with pS ≥ 0 and pS(x) ≥ 1.

3. There is an acyclic multiset R of pebbling moves with pR ≥ 0 and pR(x) ≥
1.

4. Vertex x is reachable from p through a regular pebbling sequence.

Proof: If x is reachable from p then there is a sequence s of pebbling moves
such that s is executable from p and ps(x) ≥ 1. If S is the multiset of the moves
of s then pS ≥ 0 and pS(x) ≥ 1 and so (1) implies (2).

By Proposition 3.1, (2) implies (3) and by Proposition 3.3, (3) implies (4).
It is clear that (4) implies (1). �

It is convenient to write the condition pS ≥ 0 and pS(x) ≥ 1 compactly as
pS ≥ 1{x} using the indicator function of the singleton set {x}.

4 Cut vertices

The pebbling number of a graph with a cut vertex often can be calculated using
a simpler graph. This simplification introduces new weights. The following
theorem is the main reason we study weighted graphs.

Proposition 4.1 Let H and K be connected graphs such that V (H)∩ V (K) =
{v} and v is a cut vertex of G = H ∪K. Let ω be a weight function on E(G).
Assume that πt(Kω, v) = at+b for all t. Define a graph G̃ by V (G̃) = V (H)∪̇{u}
and E(G̃) = E(H) ∪ {vu}. Define a weight function on E(G̃) by

ω̃(e) =

{

a if e = vu

ω(e) else
.

If the goal vertex x is in V (H) then π(Gω, x) = π(G̃ω̃ , x) + b.

To simplify notation, we used Kω instead of the more precise Kω|E(K) even
though ω is defined on values outside of E(K).

Proof: The graphs are visualized in Figure 1. First we show that π(Gω , x) ≥
π(G̃ω̃ , x) + b. Let p be a pebble distribution on G̃ with ‖p‖ = π(Gω , x)− b. We

226 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

x
v
•

H K
v
•

a u
•

H
x

Gω G̃ω̃

Figure 1: Simplification using the cut vertex v. If πt(Kω, v) = at + b then
π(Gω , x) = π(G̃ω̃ , x) + b.

create a new distribution q on G consisting of red and green pebbles. The red
pebbles are placed on H exactly the same way as the pebbles in p are placed on
H . The number of green pebbles is p(u)+b. The green pebbles are placed on K
so that the number of pebbles that can be moved to v using only green pebbles
is as small as possible. This minimum number is clearly ⌊ p(u)/a⌋. Note that q
can place both red and green pebbles on v. Then ‖q‖ = π(Gω , x), so there is an
acyclic multiset S of pebbling moves on Gω such that qS ≥ 1{x}. Let SH and
SK contain the moves of S inside H and K respectively so that S = SH ∪̇SK .

We are going to see that moving red pebbles from H to K \ {v} is not
beneficial and so these moves can be eliminated. Since S is acyclic, any maximal
walk in T (K,SK) starting at v is actually a path. Let us remove the pebbling
moves corresponding to such maximal walks from SK until we eliminate all walks
from T (K,SK) starting at v. The choice of these maximal walks is not unique
and they can overlap, so we need to eliminate them one by one in an arbitrary
order. The resulting multiset S′

K ⊆ SK is balanced with q and qSK
(v) ≤ qS′

K
(v).

Executing S′
K from q cannot move more than ⌊ p(u)/a⌋ pebbles to v since S′

K

does not have any effect on the red pebbles. Let R be the multiset containing
the elements of SH together with ⌊‖p(u)‖/a⌋ copies of the move (u�v). Then
it is clear that pR(u) ≥ 0 and pR is not smaller than qS on H , hence pR ≥ 1{x}.
Thus x is reachable form p by Theorem 3.4.

Now we show that π(Gω , x) ≤ π(G̃ω̃ , x)+b. Let p be a pebble distribution on
G with ‖p‖ = π(G̃ω̃ , x)+b. Let c = ‖p|V (K)\{v}‖ be the number of pebbles in this

distribution on V (K)\{v}. We create a new distribution q on G̃ such that q and
p are the same on V (H) and q(u) = max{0, c−b}. Then ‖q‖ ≥ π(G̃ω̃ , x) so there
is an acyclic multiset S of pebbling moves on G̃ω̃ such that qS ≥ 1{x}. There
is a multiset R1 of pebbling moves on K using only the pebbles on V (K) \ {v}
such that pR1

(v) = p(v) + ⌊max{0, c− b}/a⌋. Let R be the multiset containing
the elements of R1 together with the elements of S different from (u�v). Then
pR is not smaller than qS on H and pR is nonnegative on V (K) \ {v}, hence
pR ≥ 1{x}. Thus x is reachable form p. �

Note 4.2 The previous proposition is applicable in many situations since the
function t 7→ πt(G, x) is often linear; for example for trees, complete graphs and
hypercubes. In particular it is linear for cycles [11] where πt(C2n) = t2n and

πt(C2n+1) = 1 + (t− 1)2n + 2
⌊

2n+1

3

⌋

.

JGAA, 14(2) 221–244 (2010) 227

Example 4.3 The simplest nonlinear example is the wheel graph W5 with 5
vertices and 4 spikes. It is easy to see that if x is a degree 3 vertex then

πt(W5, x) =

{

5 if t = 1

4t if t ≥ 2
.

The behavior can be more complicated. If G is the complete graph with 7 vertices
with one missing edge xy then one can verify that

πt(G, x) =

{

2t+ 5 if t ∈ {1, 2}

4t if t ≥ 3
.

5 Simplifications using leaves

Proposition 5.1 Let Gω be a weighted star graph with center x and spikes
xv1, . . . , xvn. Suppose that a = ω(xv1) is the maximum value of ω. Then
πt(Gω , x) = ta+

∑n

i=2(ω(xvi)− 1).

Proof: The maximum number of pebbles we can place on vi so that at most ti
pebbles can be moved from vi to x is (ti + 1)ω(xvi)− 1. So

πt(Gω, x) = max{
n
∑

i=1

((ti + 1)ω(xvi)− 1) | t1 + · · ·+ tn < t}+ 1

= (t− 1 + 1)ω(xv1)− 1 +

n
∑

i=2

((0 + 1)ω(xvi)− 1) + 1

= ta+

n
∑

i=2

(ω(xvi)− 1)

since the maximum is taken when t1 = t− 1 and t2 = · · · = tn = 0. �

The reader can easily verify the following result.

Proposition 5.2 Let x, v1 and v2 be the consecutive vertices of the graph G =
P3 with weight function ω. Then πt(Gω , x) = tω(xv1)ω(v1v2).

The pebbling number of a tree can be found quickly using a maximum path
decomposition [4]. This method could be extended to weighted trees as well.
Another approach that illustrates our simplification process is to use Proposi-
tions 4.1, 5.1 and 5.2 to simplify a weighted tree to a single edge. The process
is shown in the next example.

Example 5.3 Figure 2 shows the stages of the simplification of a tree. First
we let K be the subgraph of G generated by {v3, v4, v5}. Then πt(K, v3) = 4t by

Proposition 5.2 so we replace K by the weighted edge v3u1 to get G
(1)
ω1

. Next we

let K be the subgraph of G
(1)
ω1

generated by {v1, v2, u1}. Then πt(K, v3) = 4t+2

by Proposition 5.1 so we replace K by the weighted edge v3u2 to get G
(2)
ω2

. Finally

we use Proposition 5.2 again to get G
(3)
ω3

.

228 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

76540123v0 RRRR
v1 v3 v4 v5
v2

llll

76540123v0 RRRR
v1 v3

4 u1

v2
llll

G G
(1)
ω1

76540123v0 v3
4 u2 76540123v0

8 u3

G
(2)
ω2

G
(3)
ω3

Figure 2: Simplification of a tree: π(G, v0) = π(G
(1)
ω1

, v0) = π(G
(2)
ω2

, v0) + 2 =

π(G
(3)
ω3

, v0) + 2 = 10. Unlabeled edges have weight 2.

6 Simplification using ears

In this section we use the existence of special paths in our graph to simplify
the calculation of the pebbling number. A thread of a graph is a path whose
vertices all have degree 2.

Definition 6.1 Let x be a goal vertex in G. Let v1, . . . , vn be the consecutive
vertices of a maximal thread T not containing x. There are unique vertices v0
and vn+1 outside of T that are adjacent to v1 and vn respectively. The subgraph
E induced by v0, . . . , vn+1 is called an ear. The vertices of T are called the inner
vertices of E. If v0 = vn+1 then E is called a closed ear. If the vertices of T
are cut vertices then E is called a cut ear. If E is neither a closed ear nor a
cut ear then it is called an open ear.

Note that an ear has at least two edges. Also note that the goal vertex can be
an end vertex of an ear.

6.1 Closed ears

If a closed ear has default weights then it can be replaced by a weighted edge
using Proposition 4.1 and Note 4.2. The simplification is shown in Figure 3. If
the closed ear has 2n vertices then π(Gω , x) = π(G̃ω̃ , x). If the closed ear has

2n+ 1 vertices then π(Gω , x) = π(G̃ω̃, x) + 1− 2n + 2
⌊

2n+1

3

⌋

. The edge weight

is a = 2n in both cases.

6.2 Cut ears

Cut ears can be replaced by weighted edges as well. First we need the following
result.

Lemma 6.2 Let p be a maximum size pebble distribution from which the goal
vertex x is not reachable. Then p has no pebbles on the inner vertices of a cut
ear.

JGAA, 14(2) 221–244 (2010) 229

•
v
•

•
x v

•
a u

•x

Gω G̃ω̃

Figure 3: Substitution for a closed ear. The edge weight a is 2⌊
k

2
⌋ where k is

the number of vertices of the closed ear.

v
• •

u
•x

v
•

a u
•x

Gω G̃ω̃

Figure 4: Substitution for a cut ear. The edge weight is ω̃(vu) = a = 2n−1

where n is the number vertices of the path connecting v to u in G.

Proof: Suppose u is an inner vertex of the cut ear E and p(u) > 0. Let H and
K be the connected components of G \ {u} such that x ∈ H . There is a unique
vertex v ∈ K that is adjacent to u. The size of q = p(v�u)−1 is larger than the
size of p. We show that x is not reachable from q which is a contradiction.

Suppose x is reachable from q, that is, there is an acyclic multiset S of
pebbling moves with qS ≥ 1{x}. If (v�u) ∈ S then with R = S \ {(v�u)} we
have pR = qS ≥ 1{x} which is not possible. So we can assume that (v�u) 6∈ S.
Let R contain those moves of S that do not involve any edge in K. Then
pR(u) ≥ qS(u) + 1, pR(w) = qS(w) for w ∈ V (H) and pR(w) = p(w) for
w ∈ V (K). So pR ≥ 1{x} which is again impossible. �

Proposition 6.3 Let E be a cut ear of Gω with end vertices v and u. Let G̃
be the graph created from G by removing the inner vertices of E and adding the
edge vu. Define ω̃ on E(G̃) by

ω̃(e) =

{

a if e = vu

ω(e) else

where a is the product of the weights of the edges of E. If the goal vertex x is
not an inner vertex of E then π(Gω , x) = π(G̃ω̃ , x).

Proof: Without loss of generality we can assume that x is closer to v than to
u as shown in Figure 4. Let u = v0, v1, . . . , vn+1 = v be the consecutive vertices
of E.

First we show that π(Gω , x) ≤ π(G̃ω̃ , x). For a contradiction, assume that
π(Gω , x) > π(G̃ω̃ , x). Let p be a maximum size pebble distribution on G from

230 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

v
•

•
•
u

x

Figure 5: A graph with an open ear.

76540123v0 __ v1 __ v2 RR v6 v7
v3

v5 __ v4
ll v9 v8

76540123v0 8RRRR
v3

4
u

v5 4
llll

G G̃ω̃

Figure 6: Simplification of G with goal vertex v0 such that π(G, v0) =
π(G̃ω̃ , v0) + 1 = 36. The two cut ears denoted by dashed edges are replaced
by the weighted edges v0v3 and v5v3 in G̃. The closed ear denoted by double
dotted edges is replaced by the weighted edge v3u.

which x is not reachable. By Lemma 6.2, p has no pebbles on the inner ver-
tices of E so the restriction q = p|V (G̃) is a pebble distribution on G̃ with

‖q‖ = ‖p‖ = π(Gω , x) − 1 ≥ π(G̃ω̃ , x). Hence there is a multiset S of pebbling
moves on G̃ω̃ such that qS ≥ 1{x}. Let R be the multiset of pebbling moves
containing the moves in S with each move of the form (u�v) replaced by the
moves (v0�v1), . . . , (vn�vn+1). Then qR ≥ 1{x} which is a contradiction.

Now we show that π(Gω , x) ≥ π(G̃ω̃ , x). Let p be a pebble distribution on
G̃ with size π(Gω , x). Let q be the extension of p to V (G) such that q is zero on
the inner vertices of E. Then ‖q‖ = ‖p‖ = π(Gω , x) and so there is an acyclic
multiset S of pebbling moves such that qS ≥ 1{x}. We create a multiset R of

pebbling moves on G̃ as follows. We start with S. We then search for a directed
path in T (G,S) connecting u to v and we remove all the moves corresponding
to the arrows of this directed path. We do this until there are no more such
directed paths. Then we add as many copies of (u�v) as the number of directed
paths removed. Finally we remove all moves involving inner vertices of E. It is
easy to see that pR ≥ 1{x}. �

6.3 Open ears

Figure 5 depicts an open ear. An open ear cannot be replaced by a single edge
but we can still take advantage of it using squishing as explained in Section 9.

6.4 Examples

Figures 6 and 7 show two examples of simplified graphs using ears. The graph G
is the same in both examples but the ears are different because the goal vertices

JGAA, 14(2) 221–244 (2010) 231

v0 __ v1 __ v2 RR 76540123v6 v7
v3

llll

v5 __ v4
ll v9 v8

v0 8RRRR
76540123v6 v7

v3
llll

v5 4
llll v9 v8

G G̃ω̃

Figure 7: Simplification of G with goal vertex v6 such that π(G, v6) =
π(G̃ω̃ , v6) = 22. The two cut ears denoted by dashed edges are replaced by
the weighted edges v0v3 and v5v3 in G̃. The open ear denoted by dotted edges
remains in G̃.

are different. In both of these examples a further simplification is possible using
leaves and Proposition 5.1. The pebbling number of the graph is π(G) = 36.

The path connecting v3 to v5 can be simplified in two steps using leaves but
we simplified it in one step using a cut ear.

Note that in the second example the end vertices v3 and v6 of the open ear are
adjacent. This possibility is important to keep in mind during the development
of an algorithm to find open ears.

7 Barely sufficient pebble distributions

Let D(G) be the set of pebble distributions on the graph G. For p, q ∈ D(G)
we write p ≤ q if p(v) ≤ q(v) for all v ∈ G. This gives a partial order on D(G).
We write p < q if p ≤ q but p 6= q. It is clear that if a goal vertex is reachable
from p and p ≤ q then the goal vertex is also reachable from q.

Definition 7.1 Let x be a goal vertex of Gω. A pebble distribution p is sufficient
for x if x is reachable from p. The set of sufficient distributions for x is denoted
by S(Gω , x). A pebble distribution p ∈ S(Gω , x) is barely sufficient for x if x is
not reachable from any pebble distribution q satisfying q < p. The set of barely
sufficient distributions for x is denoted by B(Gω, x). The set of insufficient
distributions for x is I(Gω , x) = D(G) \ S(Gω , x). We are going to use the
notation S(x), B(x) and I(x) if G and ω are clear from the context.

We can partition B(x) into the disjoint union B0(x)∪̇ · · · ∪̇Bk(x) where Bi(x)
contains those distributions in B(x) from which x is reachable in i pebbling
moves but x is not reachable in fewer than i moves. Note that the only element
of B0(x) is the pebble distribution 1{x} that contains a single pebble on x.

Example 7.2 Figure 8 shows an example of B(G, x).

The following result is the main reason for our interest in barely sufficient dis-
tributions.

Proposition 7.3 We have p ∈ I(Gω, x) if and only if q 6≤ p for each q ∈
B(Gω, x).

232 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

2
rr

• 1

•
LL

4qq
• •

•
MM

v2pp
x v1

v3
NN

•qq
1 •

•
MM

•
rr

• 2

•
LL

2rr
• •

2

LL

•
rr

• 1

2

LL

•qq
• •

4

MM

G B0(G, x) B1(G, x) B2(G, x) B3(G, x)

Figure 8: The barely sufficient pebble distributions for vertex x. The vertices
denoted by bullets have no pebbles.

Proof: If x is reachable from a pebble distribution p then we can remove pebbles
from p one by one if needed until we get a q ∈ B(Gω, x) that satisfies q ≤ p.
The other direction of the result is obviously true. �

The following example shows how Proposition 7.3 can be used to find the insuf-
ficient distributions.

Example 7.4 In Example 7.2 the maximal elements of I(G, x) are
p(x, v1, v2, v3) = (0, 1, 1, 1), q(x, v1, v2, v3) = (0, 0, 3, 1) and r(x, v1, v2, v3) =
(0, 0, 1, 3). The maximum size is ‖q‖ = 4 = ‖r‖ and so π(G, x) = 5.

Our purpose now is to construct algorithms for finding B(Gω, x) and π(Gω , x).

8 Finding barely sufficient distributions

The following result shows how a superset of B(Gω, x) can be constructed using
recursion starting at B0(Gω, x) = {1{x}}.

Proposition 8.1 If p ∈ Bi+1(Gω , x) then p = qr−1 for some q ∈ Bi(Gω , x) and
pebbling move r.

Proof: Suppose that p ∈ Bi+1(Gω , x). Then there is an executable sequence
s = (s1, . . . , si+1) of pebbling moves such that ps(x) ≥ 1. Then with q = ps1
we clearly have p = qs−1

1

. Vertex x is reachable from q in the i moves of the

sequence (s2, . . . , si+1). If x is reachable from q in j moves then it is reachable
from p in j + 1 moves. So x cannot be reached from q in fewer than i moves,
which means that q ∈ Bi(Gω , x). �

We do not have to use every pebbling move r during the construction of
Bi+1(Gω , x) from Bi(Gω , x), as shown in the next result that essentially is a
simple case of the No-Cycle Lemma.

JGAA, 14(2) 221–244 (2010) 233

Proposition 8.2 Let p ∈ S(Gω , x). If pS ≥ 1{x} and (v�u) ∈ S then q =
p(u�v)−1 6∈ B(Gω, x).

Proof: Let q̃(u, v, ∗) = (q(u) − 1, q(v) − 1, q(∗)) and R = S \ {(v�u)}. Then
q̃ < q and

q̃R(u, v, ∗) = (q̃S(u)− 1, q̃S(v) + 2, q̃S(∗))

= (qS(u)− 2, qS(v) + 1, qS(∗))

= (pS(u), pS(v), pS(∗)) = pS(u, v, ∗)

which means q̃R = pS ≥ 1{x}. So q is not barely sufficient. �

An important interpretation of this result is that every distribution in B(Gω, x)
can be obtained as pT where p = 1{x} and T is a multiset of inverse pebbling
moves such that (v�u)−1 and (u�v)−1 are not in T together for any u and
v. Keeping track of the directions of the inverse pebbling moves speeds up the
calculation of finding B(Gω, x). It also helps to eliminate moves that cannot be
initial moves. If we avoid moves that are not initial moves then we automatically
avoid cycles in the transition digraph.

Given a graph G, let
−→
G be the directed graph whose vertex set is V (G) and

whose arrow set contains two arrows (u, v) and (v, u) for every edge uv ∈ E(G).

Algorithm 8.3 The algorithm shown in Figure 9 finds the set of barely suffi-
cient distributions.

The heart of the algorithm is Proposition 8.1. We apply inverse pebbling moves
to transfer pebbles in barely sufficient distributions in hope of finding new barely
sufficient distributions. We use triples of the form (p,E,W) that satisfy the
following conditions:

1. x is reachable from p;

2. if (v, u) 6∈ E then p(v�u)−1 is not barely sufficient;

3. if v ∈ W then (v�u) is not an initial move of p(v�u)−1 .

The role of E is to keep track of the direction of the pebble flow so that we
can avoid the back and forth transfer as explained in Proposition 8.2. The
role of W is to avoid pebbling sequences that are not regular as explained in
Theorem 3.4(4). Now we give the detailed explanation of the algorithm:

• lines 1–2: We fill the queue Q of barely sufficient distribution candidates

with B0(Gω , x). We set E = E(
−→
G) since the pebbles can flow in any

direction. We set W = ∅ since no vertex is ruled out as the starting vertex
of an initial move.

• line 3: This loop takes an element (p,E,W) of Q and applies a possible
inverse pebbling move to create a new distribution q. If p ∈ Bi(x) then q

234 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

Input: Gω, x
Output: B(Gω, x)

1 (p,E,W) := (1{x}, E(
−→
G), ∅) //(distribution, transfers, forbidden

vertices)
2 Q.pushBack((p,E,W)) //growing queue of distributions
3 foreach (p,E,W) ∈ Q do

4 for u ∈ supp(p) do //u has a pebble
5 for (v, u) ∈ E and v 6∈ W do //allowed transfer from v to u
6 q := p(v�u)−1 //candidate distribution

7 F := E \ {(u, v)} //backward transfer no longer allowed
8 X := W ∪ {u} //transfer from u no longer allowed

9 for (q̃, F̃ , X̃) ∈ Q do

10 if q̃ < q then //candidate too large?
11 break //candidate fails

12 if q̃ = q then //candidate already in queue?

13 F̃ := F̃ ∩ F //fewer allowed edges for q̃

14 X̃ := X̃ ∩X //not initial in any way
15 break

16 if q̃ > q then //q̃ is not barely sufficient?

17 Q.remove((q̃, F̃ , X̃)) //remove q̃ from queue

18 if did not break then

19 Q.pushBack((q, F,X)) //candidate works

//modification (see Note 9.3)

20 B(Gω, x) := {p | (p,E,W) ∈ Q}

Figure 9: Algorithm to find the set B(Gω, x) of barely sufficient distri-
butions.

JGAA, 14(2) 221–244 (2010) 235

is a candidate for Bi+1(x). A successful candidate q is used to create an
appropriate new triple (q, F,X). The new triple is then added at the end
of Q. The loop goes through the elements of Q in order, starting from
the beginning of the queue until it reaches the end of the growing queue.
The loop ends eventually since we know that there are only finitely many
barely sufficient distributions.

• line 4: We find a vertex u that has at least one pebble. We plan to remove
a pebble from this vertex and add two pebbles to an adjacent vertex v.

• line 5: We only want to apply (v�u)−1 if (u�v)−1 was not used before
and if (v�u) is an initial move. This restriction helps avoiding cycles in
the transition digraph.

• line 6: We apply the inverse pebbling move (v�u)−1 to create the new
barely sufficient candidate q.

• line 7: According to Proposition 8.2, we do not want to apply (u�v)−1

since we already used (v�u)−1.

• line 8: Any move of the form (u�w) is not an initial move since we already
have a move of the form (v�u).

• line 9: The loop checks the newly created candidate against the other
distributions in the queue.

• lines 10–11: We already put a smaller candidate in the queue so the new
candidate cannot be barely sufficient.

• line 12: The new candidate q is already in the queue. It is likely that it
was created using different inverse pebbling moves. We do not add this
candidate to the queue twice. Still, we can update the information about
this distribution in the queue by updating F̃ and X̃ .

• line 13: We can reduce the possible inverse pebbling moves using Propo-
sition 8.2. A distribution is not barely sufficient if the goal vertex is
reachable from this distribution using any pebbling sequence that is not
acyclic. So we do not need to consider any inverse move that produces
such a distribution.

• line 14: It is possible that a move is initial in one set of pebbling moves
but not in another set. We only want to declare a move not initial if it
is not initial in every possible set of pebbling moves that reaches the goal
vertex. So we only keep a vertex v in X̃ if (v�u) is not a possible initial
move in the new triple (q, F,X) either.

• lines 16–17: If the new candidate is smaller than a distribution q̃ in the
queue then q̃ cannot be barely sufficient. Therefore we remove it from the
queue.

236 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

1 • •

5

'&%$!"#• oo 2 •

5

_ _ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _ _

'&%$!"#• • 5

5

ff

'&%$!"#• oo '&%$!"#1 oo 2

5

'&%$!"#• 2 // '&%$!"#4

5

ff

'&%$!"#• oo '&%$!"#• oo 4

5

p(0)

p(11)

p(21)

p(31)

p(12)

p(22)

(v1�x)

BB��������
(v2�x)

\\99999999

(v2�v1)

II�������

(v1�v2)

UU,,,,,,,

oo_ _ _ _ _ _ _ _

(v2�v1)

NN������� ||

�
�

�
�

�
~

}
|

{
z

z

1. {p(0)} 5. p(22) tested but is larger than p(21)

2. {p(0), p(11)} 6. p(31) tested, it is smaller than p(12)

3. {p(0), p(11), p(12)} 7. {p(0), p(11), p(21)}
4. {p(0), p(11), p(12), p(21)} 8. {p(0), p(11), p(21), p(31)}

Figure 10: Demonstration of Algorithm 8.3. The distributions in solid frames
belong to B(Gω, x). Distribution p(22) in a dotted frame is never in the queue.
A solid arrow from q to p is drawn with label (v�u) if q = p(v�u)−1 . A dashed
arrow from q to p is drawn if q ≥ p and so q 6∈ B(Gω, x). The circled vertices
belong to W . The table shows how the set of distributions in queue Q changes
during the execution of the algorithm.

JGAA, 14(2) 221–244 (2010) 237

• lines 18–19: The new candidate is added to the queue.

Example 8.4 Let x be the goal vertex and v1 and v2 be the other vertices of the
complete graph G = K3 and let ω(xv2) = 5. Figure 10 shows how Algorithm 8.3
finds B(Gω, x) = {p(0), p(11), p(21), p(31)}. Note that p(12) is added to the queue
and only removed later when p(31) is found. This late recognition of the fact that
p(12) is not barely sufficient is the reason why the algorithm needs to test p(22)

as a candidate.

9 Squished distributions

In this section we prove a version of the Squishing Lemma of [2] using open
ears. A pebble distribution is squished on a thread P if all the pebbles on P
are placed on a single vertex of P or on two adjacent vertices of P . A pebble
distribution can be made squished on a thread as shown in the proof of the next
result.

Lemma 9.1 (Squishing) If vertex x is not reachable from a pebble distribution
p with size n, then there is a pebble distribution of size n that is squished on
each unweighted open ear and from which x is still not reachable.

Proof: Let E be an unweighted open ear with consecutive vertices v0, . . . , vn.
Suppose that the pebble distribution p is not squished on E. Let i be the
smallest and j be the largest index for which p(vi) > 0 and p(vj) > 0. Note
that we must have j − i ≥ 2. Define a new pebble distribution q by applying a
squishing move that moves one pebble from vi to vk and another pebble from
vj to vk for some k satisfying i < k < j.

Suppose x is reachable from q, that is, there is an acyclic multiset S of
pebbling moves such that qS ≥ 1{x}. Pick a maximal directed path of T (G,S)
with consecutive vertices vk = w0, w1, . . . , wl all in the set {vi, vi+1, . . . , vj}. Let
D be the set of moves corresponding to the arrows of this directed path, that is,
D = {(w0�w1), . . . , (wl−1�wl)} and let R = S \D. We need to consider three
cases depending on whether wl = vk, wl ∈ {vi, vj} or wl 6∈ {vk, vi, vj}. It is easy
to see that in all three cases we must have pR ≥ 1{x} which is a contradiction.

Applying squishing moves repeatedly on E makes the pebble distribution
squished on E. This procedure keeps the goal vertex x unreachable. A squishing
move on E might remove a pebble from another open ear but it cannot add a
pebble to it. So if the distribution is squished on an open ear then it remains
squished after the application of a squishing move on E. So the desired pebble
distribution can be reached by applying all the available squishing moves on all
unweighted ears in any order. �

The set Is(Gω , x) of squished insufficient distributions is the set of those ele-
ments of I(Gω , x) that are squished on all open ears of G. The set Bs(Gω , x) of
squished barely sufficient distributions is the set of those elements of B(Gω, x)
that are squished on all open ears of G.

238 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

Proposition 9.2 Let p be squished. We have p ∈ Is(Gω, x) if and only if q 6≤ p
for each q ∈ Bs(Gω , x).

Proof: The result follows from Proposition 7.3. �

Note 9.3 We can find Bs(Gω , x) by a slight modification of Algorithm 8.3. On
line 20 we remove (p,E,W) from Q if p is not squished. This must be done at
the end, since we may not be able to find all the squished distributions if we only
considered squished distributions during the algorithm.

Corollary 9.4 π(Gω , x) = max{‖p‖ : p ∈ Is(Gω , x)} + 1.

Proof: The result follows from the Squishing Lemma using π(Gω , x) =
max{‖p‖ : p ∈ I(Gω , x)} + 1. �

10 Finding insufficient distributions

Now we present an algorithm for finding Is(x). Let p̄ be the pebble distribution
defined by p̄(v) = max{q(v) | q ∈ Bs(x)} for all v ∈ V (G). It is easy to see
that p̄(v) = 2dist(v,x) for all v where dist(v, x) is the weighted distance between
v and x. It is clear that if p ∈ Is(x) then p ≤ p̄. The idea of the algorithm
is to decrease the number of pebbles at certain vertices of p̄ until it becomes
insufficient.

Algorithm 10.1 The algorithm shown in Figure 11 finds π(Gω , x) using
Bs(Gω , x).

The algorithm uses Proposition 9.2 and Corollary 9.4. We wish to maximize
the size of a squished distribution p subject to the constraint that for each q
in Bs(Gω , x), some vertex v satisfies p(v) < q(v). The input Bs(Gω , x) is the
output of the modified Algorithm 8.3 as explained in Note 9.3. It contains all the
squished barely sufficient distributions. Now we give the detailed explanation
of the algorithm:

• lines 1–2: We find the upper bound p̄ for I(Gω , x). Every insufficient dis-
tribution can be constructed from p̄ by decreasing the number of pebbles
on some vertices.

• line 3: Distribution p̄ might not be squished. So instead of using p̄ we can
use a new distribution p by removing all the pebbles from p̄ at a few ver-
tices until the distribution becomes squished. Every squished insufficient
distribution can be constructed from one such p by decreasing the number
of pebbles on some vertices. We use the temporary ordered queue P to
keep candidates for such squished p’s.

• line 4: We are not done until there are candidates in P .

• line 5: Take a candidate p from P .

JGAA, 14(2) 221–244 (2010) 239

Input: C := Bs(Gω, x)
Output: π(Gω , x)

1 for v ∈ V (G) do
2 p̄(v) := max{q(v) | q ∈ C} //p̄ is an upper bound for Is(Gω , x)

3 P .pushBack(p̄) //ordered queue of not yet squished candidates
4 while P not empty do //more candidates to try
5 P .popBack(p) //work with candidate p
6 if p squished then

7 Q.insert((p, 1)) //ordered queue of squished candidates
8 continue //nothing more to do with p

9 for v ∈ V (G) do //try to improve p
10 q := p //modify p
11 q(v) := 0 //this might make it squished
12 P .insert(q) //add improved candidate to the queue

13 M := 0 //size of best insufficient distribution so far
14 while Q not empty do //more candidates to try
15 Q.popBack((p, i)) //C[1] 6≤ p, . . . , C[i− 1] 6≤ p
16 if ‖p‖ ≤ M then //too few pebbles?
17 continue //candidate has no hope to be better

18 while i ≤ |C| and C[i] 6≤ p do //find first i such that C[i] ≤ p
19 i := i+ 1 //not found yet

20 if i > |C| then //no such i, candidate is insufficient
21 M := ‖p‖ //p is the best insufficient distribution so far
22 continue //nothing more to do with p

23 for v ∈ V (G) do //find ways to satisfy C[i] 6≤ q
24 q := p //modify p
25 q(v) := C[i](v)− 1 //enforce C[i] 6≤ q
26 if q(v) ≥ 0 then //nonnegative number of pebbles on v?
27 Q.insert((q, i+ 1)) //add improved candidate to the

queue

28 π(Gω , x) := M + 1

Figure 11: Algorithm to find the distribution with the most pebbles
that is insufficient for the goal vertex.

240 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

• lines 6–7: If p is squished then we insert (p, 1) in the ordered queue Q.
This new queue contains candidates for insufficient distributions. The
insert operation uses binary search to locate the right position. It only
adds the new element to the queue at this position if it is not there already.

• line 9: We try to improve p by removing all pebbles at vertex v.

• line 10: Distribution q is going to be the hopefully improved version of p.

• line 11: We remove all the pebbles at vertex v.

• line 12: We insert the new candidate q into P .

• line 13: The variable M is initialized; it will equal the maximum size
max{‖p‖ : p ∈ Is(Gω , x)} of an insufficient distribution.

• lines 14: We are finding M using Proposition 9.2 and Corollary 9.4. Queue
Q contains pairs of the form (p, i). Such a p always satisfies q 6≤ p if q
is any one of the first i − 1 elements of Bs(Gω , x). In each iteration we
replace (p, i) ∈ Q by possibly several new elements in the queue of the
form (q, i+ 1).

• line 15: Take a candidate p from Q. We know that C[1] 6≤ p, . . . , C[i−1] 6≤
p.

• lines 16–17: Distribution p can be discarded if it has no more than M peb-
bles. We already have an insufficient distribution containing M pebbles
so p only has a chance for improvement if it has more than M pebbles.

• line 18–19: The loop finds the first index i for which C[i] ≤ p or quits if
no such i exists.

• line 20–21: If i > |C| then p is our best performing insufficient distribution
so far.

• line 23: We need to remove some pebbles form p to enforce that C[i] 6≤ p.
We try to do this at each vertex.

• line 24–25: We build a new distribution q by decreasing the number of
pebbles at vertex v just enough to have C[i] 6≤ q.

• lines 26–27: If the new q is actually a distribution then we insert (q, i+1)
into Q.

• line 28: The pebbling number is calculated according to Corollary 9.4.

It is important to keep our queues sorted and to use binary search at the
insert operations. Without this the algorithm becomes too slow to be practical.

JGAA, 14(2) 221–244 (2010) 241

1. Q = {(〈1, 2, 4〉, 1)} 5. 〈0, 1, 1〉 is insufficient, M = ‖〈0, 1, 1〉‖
2. Q = {(〈0, 2, 4〉, 2)} 6. Q = {(〈0, 0, 4〉, 4)}
3. Q = {(〈0, 1, 4〉, 3)} 7. Q = {(〈0, 0, 3〉, 5)}
4. Q = {(〈0, 0, 4〉, 4), (〈0, 1, 1〉, 4)} 8. 〈0, 0, 3〉 is insufficient, M = ‖〈0, 0, 3〉‖

Figure 12: Demonstration of Algorithm 10.1 for Example 10.2.

Example 10.2 Now we finish the work started in Example 8.4 for the graph
G = K3 by showing how Algorithm 10.1 finds π(Gω , x). We are going to use
the temporary notation 〈a, b, c〉 for the pebble distribution p(x, v1, v2) = (a, b, c).
All the pebble distributions in B(Gω, x) are squished and so Bs(Gω, x) =
{〈1, 0, 0〉, 〈0, 2, 0〉, 〈0, 1, 2〉, 〈0, 0, 4〉}. The distribution p̄ = 〈1, 2, 4〉 is also
squished so Q = {(〈1, 2, 4〉, 1)} has only one element at the beginning. Fig-
ure 12 shows how queue Q changes during the execution of the algorithm. We
conclude that π(Gω , x) = M + 1 = 4. It is easy to see that π(Gω , v1) = 3 and
π(Gω , v2) = 4 and so π(Gω) = 4.

11 Test results

We tested our algorithms by calculating the pebbling number of every connected
graph with fewer than 10 vertices. We used Nauty [12] to generate these graphs
and their automorphism groups. We simplified each graph as follows. For each
goal vertex we replaced each closed ear and cut ear with a weighted edge as
described in Subsections 6.1 and 6.2. Then we recursively used available leaves
to simplify the graph as much as possible as described in Section 5. Then we ran
Algorithms 8.3 and 10.1 to find the pebbling number of the simplified graph.

The automorphism group helped us reducing the number of goal vertices to
representatives of orbits. It is well known that the hardest to reach goal vertex
in a tree is a leaf, so in trees we only picked leaf vertices for the goal vertex.

The algorithms were coded in C++ using the Standard Template Library.
The code was compiled with the gnu compiler. It took about a day on a 3 GHz
Unix machine to finish the calculations. The calculation for graphs with fewer
than 9 vertices took less than 10 minutes. Table 1 shows the frequency of the
pebbling numbers. The result confirms the existence of gaps in the spectrum of
pebbling numbers described in [3]. We checked our results on many graphs with
known pebbling numbers such as paths, complete graphs, cycles, some trees,
the Lemke graph, and the Petersen graph. The pebbling numbers are available
on the author’s web page.

242 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

|V (G)| = 1

1 1

|V (G)| = 2

2 1

|V (G)| = 3

3 1

4 1

|V (G)| = 4

4 3

5 2

8 1

|V (G)| = 5

5 10

6 5

8 2

9 3

16 1

|V (G)| = 6

6 45

7 15

8 13

9 16

10 13

11 1

16 4

17 4

32 1

|V (G)| = 7

7 322

8 113

9 125

10 129

11 68

12 4

16 23

17 35

18 22

19 2

32 4

33 5

64 1

|V (G)| = 8

8 4494

9 1658

10 1870

11 1425

12 478

13 26

14 1

16 190

17 341

18 333

19 148

20 15

32 36

33 52

34 34

35 3

64 6

65 6

128 1

|V (G)| = 9

9 126646

10 43935

11 41222

12 22756

13 4975

14 208

15 6

16 2505

17 5293

18 5992

19 4070

20 1310

21 137

22 5

23 8

32 318

33 626

34 579

35 261

36 33

39 1

64 50

65 79

66 47

67 4

128 6

129 7

256 1

Table 1: The frequency of pebbling numbers for graphs with less than 10 ver-
tices. The data is grouped by the number |V (G)| of vertices in the graph. Each
data row contains a possible pebbling number followed by the frequency of this
pebbling number.

JGAA, 14(2) 221–244 (2010) 243

12 Further questions

1. We do not have any example where t 7→ πt(G, x) is not linear for t ≥ 3.
Is it true that t 7→ πt(G, x) is always linear for t ≥ t0 for some t0? What
properties of the graph can be used to find t0? Note that the coefficient
of t in such a linear function should be the fractional pebbling number of
[8].

2. Is it possible that the goal vertex x that maximizes π(G, x) is an interior
vertex of a cut ear of G? The answer seems to be no and it may depend
on the first question. We could use this result to speed up our calculation
of π(G) since we would have to test fewer goal vertices.

3. Is it possible to take advantage of open ears in a better way? Can we
simplify a graph with an open ear so that it has fewer vertices? This
simplification might help tremendously if it is compatible with ear decom-
position. It might be possible to reduce a graph completely if we know πt

for all graphs with fewer vertices.

4. Perhaps adding extra weighted edges could speed up Algorithm 8.3 in
certain cases. For example in an open ear, we could connect the end
vertices to the interior vertices with appropriate weights depending on the
distance.

5. What general results are there about the pebbling number of weighted
graphs? In particular, Graham conjectures that π(G�H) ≤ π(G)π(H).
Can we extend this conjecture for weighted graphs? The p-pebbling ver-
sion of the conjecture stated in [5] is a step in this direction.

6. What is the pebbling number of simple weighted graphs like a weighted cy-
cle? Note that pebbling in unweighted graphs can be reduced to pebbling
in complete weighted graphs by assigning huge weights to non-adjacent
vertex pairs.

244 Nándor Sieben A Graph Pebbling Algorithm on Weighted Graphs

References

[1] Airat Bekmetjev and Charles A. Cusack. Pebbling algorithms in diameter
two graphs. SIAM J. Discrete Math., 23(2):634–646, 2009.

[2] David P. Bunde, Erin W. Chambers, Daniel Cranston, Kevin Milans, and
Douglas B. West. Pebbling and optimal pebbling in graphs. J. Graph
Theory, 57(3):215–238, 2008.

[3] Christopher Cabanski. Forbidden pebbling numbers. University of Dayton
honors thesis, 2007.

[4] Fan R. K. Chung. Pebbling in hypercubes. SIAM J. Discrete Math.,
2(4):467–472, 1989.

[5] T. A. Clarke, R. A. Hochberg, and G. H. Hurlbert. Pebbling in diameter
two graphs and products of paths. J. Graph Theory, 25(2):119–128, 1997.

[6] Betsy Crull, Tammy Cundiff, Paul Feltman, Glenn H. Hurlbert, Lara Pud-
well, Zsuzsanna Szaniszlo, and Zsolt Tuza. The cover pebbling number of
graphs. Discrete Math., 296(1):15–23, 2005.

[7] Shawn Elledge and Glenn H. Hurlbert. An application of graph pebbling
to zero-sum sequences in abelian groups. Integers, 5(1):A17, 10 pp. (elec-
tronic), 2005.

[8] D. Herscovici, B. Hester, and G. H. Hurlbert. Diameter bounds,
fractional pebbling, and pebbling with arbitrary target distributions.
arXiv:0905.3949v1.

[9] Glenn H. Hurlbert. A survey of graph pebbling. In Proceedings of the
Thirtieth Southeastern International Conference on Combinatorics, Graph
Theory, and Computing (Boca Raton, FL, 1999), volume 139, pages 41–64,
1999.

[10] Glenn H. Hurlbert. Recent progress in graph pebbling. Graph Theory Notes
N. Y., 49:25–37, 2005.

[11] A. Lourdusamy and S. Somasundaram. The t-pebbling number of graphs.
Southeast Asian Bull. Math., 30(5):907–914, 2006.

[12] Brendan D. McKay. Practical graph isomorphism. In Proceedings of the
Tenth Manitoba Conference on Numerical Mathematics and Computing,
Vol. I (Winnipeg, Man., 1980), volume 30, pages 45–87, 1981.

[13] Kevin Milans and Bryan Clark. The complexity of graph pebbling. SIAM
J. Discrete Math., 20(3):769–798 (electronic), 2006.

[14] David Moews. Pebbling graphs. J. Combin. Theory Ser. B, 55(2):244–252,
1992.

	Introduction
	Preliminaries
	Cycles in the transition digraph
	Cut vertices
	Simplifications using leaves
	Simplification using ears
	Closed ears
	Cut ears
	Open ears
	Examples

	Barely sufficient pebble distributions
	Finding barely sufficient distributions
	Squished distributions
	Finding insufficient distributions
	Test results
	Further questions

