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Abstract

The geometric simultaneous embedding problem asks whether two pla-

nar graphs on the same set of vertices in the plane can be drawn using

straight lines, such that each graph is plane. Geometric simultaneous em-

bedding is a current topic in graph drawing and positive and negative

results are known for various classes of graphs. So far only connected

graphs have been considered. In this paper we present the first results for

the setting where one of the graphs is a matching.

In particular, we show that there exist a planar graph and a matching

which do not admit a geometric simultaneous embedding. This strength-

ens an analogous negative result for a planar graph and a path. On the

positive side, we describe algorithms that compute a geometric simulta-

neous embedding of a matching and a wheel, outerpath, or tree. Our

drawing algorithms minimize the number of orientations used to draw the

edges of the matching. Specifically, when embedding a matching and a

tree, we can draw all matching edges horizontally. When embedding a

matching and a wheel or an outerpath, we use only two orientations.
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1 Introduction

The computation of node-link diagrams of two sets of relations on the same
set of data is a recent and already well-established research direction in net-
work visualization. The interest in this problem is partly due to its theoretical
relevance and partly motivated by its importance in many application areas,
such as software engineering, databases, and social networks. There are various
application scenarios where a visual analysis of dynamic and evolving graphs
defined on the same set of vertices is useful, see [5, 6] for detailed descriptions.

Formally, the problem can be stated as follows: Let G1 and G2 be two graphs
that share their vertex set, but which have different sets of edges. We would like
to compute two readable drawings of G1 and G2 such that the locations of the
vertices are the same in both visualizations. Cognitive experiments [11] prove
that the readability of a drawing is negatively affected by the number of edge
crossings and by the number of bends along the edges. Hence, if G1 and G2

are both planar, we want to compute plane drawings of the two graphs where
the vertices have the same locations and edges are straight-line segments. Note
that we allow edges from different graphs to cross.

In a seminal paper, Brass et al. define a geometric simultaneous embedding
of two planar graphs sharing their vertex set as two crossing-free straight-line
drawings that share the locations of their vertices [2]. Geometric simultaneous
embedding is a current topic in graph drawing and positive and negative results
are known for various classes of graphs. A comprehensive list can be found in
Table 1 of a recent paper by Frati, Kaufmann, and Kobourov [9]. Specifically,
Brass et al. [2] show that two paths, two cycles, and two caterpillars always
admit a geometric simultaneous embedding. (A caterpillar is a tree such that
the graph obtained by deleting its leaves is a path.) The authors also prove
that three paths may not admit a geometric simultaneous embedding. Erten
and Kobourov [7] prove that a planar graph and a path may not admit a ge-
ometric simultaneous embedding. Frati, Kaufmann, and Kobourov [9] extend
this negative result to the case where the path and the planar graph do not
share any edges. Geyer, Kaufmann, and Vrt’o [10] show that two trees may not
have a geometric simultaneous embedding. A major open question in this area
was solved very recently: Angelini et al. [1] show that a tree and a path may
not have a geometric simultaneous embedding. Finally, Estrella-Balderrama et
al. [8] prove that determining whether two planar graphs admit a geometric
simultaneous embedding is NP-hard.

So far, only connected graphs have been considered and in particular, there
are no results for one of the simplest classes of graphs, namely matchings. A
matching is an independent set of edges. Clearly a geometric simultaneous
embedding of two matchings always exists, since the union of two matchings is
a collection of cycles and hence planar. But already the union of the edges of
a path and a matching is not always planar: Fig. 1 (left) shows a path and a
matching which form a subdivision of K3,3.
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Results. We study geometric simultaneous embeddings of a matching with
various standard classes of graphs. In Section 2 we show that there exists a
planar graph and a matching which do not admit a geometric simultaneous
embedding. This strengthens an analogous negative result for a planar graph
and a path [7].

On the positive side, we describe algorithms that compute a geometric simul-
taneous embedding of a matching and a wheel, outerpath, or tree. Specifically,
in Section 3 we sketch a construction that computes a geometric simultaneous
embedding of a wheel and a cycle, which immediately implies an embedding for
a wheel and a matching. In Section 4 and 5 we describe algorithms to embed a
matching together with two specific types of outerplanar graphs, namely outer-
zigzags and outerpaths. An outerzigzag is also known as a triangle strip. Its
weak dual is a path and each of its vertices has degree at most 4. An outerpath
is an outerplanar graph whose weak dual is a path. Our result for outerpaths
subsumes the result for outerzigzags, but we nevertheless first present the con-
struction for outerzigzags, to introduce our techniques on a conceptually simpler
class of graphs. The algorithms for the wheel, the outerzigzag, and the outer-
path, preserve the “natural” embedding of these graphs. That is, the center of
the wheel is not incident to the outer face, and the embeddings of the outerpla-
nar graphs are outerplanar. Note that an outerplanar graph and a path may not
have a geometric simultaneous embedding if the circular ordering of the edges
around the vertices of the outerplanar graph is fixed a-priori [9]. In Section 6
we present an algorithm that computes a geometric simultaneous embedding of
a tree and a matching. This algorithm is inspired by and closely related to an
algorithm by Di Giacomo et al. [3]. Finally, in Section 7 we briefly consider the
simultaneous embeddability of three or more matchings.

All our drawing algorithms minimize the number of orientations used to
draw the edges of the matching. This may simplify the visual inspection of
the data and of their relationships in practice. Consider the simple example in
Fig. 1 (right). It immediately shows that a geometric simultaneous embedding
of an outerpath or wheel with a matching requires the matching edges to have at
least two orientations. Our constructions match this bound. When embedding
a matching and a tree, we can even draw all matching edges horizontally.

Figure 1: Left: The union of a path (black) and a matching (gray) can be
non-planar. Right: Two orientations of the matching edges (gray) are forced.
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2 Planar graph and matching

Theorem 1 There exists a planar graph and a matching that do not admit a
geometric simultaneous embedding.

Proof: We denote the planar graph by G and the matching byM , refer to Fig. 2
for further notation. Consider the subgraph G1 of G and the submatching
M1 of M which are induced by the vertices a, a′, b, b′, c, and c′, marked by
boxes in the figure. Correspondingly, let G2 be the subgraph and let M2 be
the submatching induced by the remaining vertices. Note that the embedding
subproblems 〈G1,M1〉 and 〈G2,M2〉 are isomorphic.

We first argue that there is no geometric simultaneous embedding of G1 and
M1 where a, b, and c define the outer face of G1. Indeed, if a, b, and c define the
outer face of G1, then all the other vertices of G1 lie inside the triangle △abc.
Therefore, the matching edge (a, a′) is also contained in △abc, and thus some
part of (a, a′) is contained either in △abc′ or △ac′c. In the latter case, we would
have a crossing between the edges (c, c′) and (a, a′), and therefore we conclude
that (a, a′) must cross (b, c′). By symmetry, the edge (b, b′) must cross (a, c′).
However, this implies that (a, a′) and (b, b′) cross inside △abc′.

Again by symmetry, there is no geometric simultaneous embedding of G2

and M2 where x, y, and z define the outer face of G2. However, since G is
3-connected, any planar embedding of G has the same facial cycles as the em-
bedding depicted in Fig. 2. This implies that in any planar embedding of G,
either G1 has △abc as the outer face, or G2 has △xyz as the outer face, or both.
In the first case, we have a crossing between two edges of M1, in the second
case, between two edges of M2. �

a

b

y

z

c xc′

a′

b′

Figure 2: A planar graph (black) and a matching (gray) that do
not admit a geometric simultaneous embedding.

3 Wheel and matching

We describe how to compute a geometric simultaneous embedding of a wheel
and a cycle, which immediately implies the result for a wheel and a matching.

Theorem 2 A wheel and a cycle always admit a geometric simultaneous em-
bedding.
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x = 0 x = n/2− 2

v1
v2

v3

v4
ℓ3

ℓn

Figure 3: A geometric simultaneous embedding of a wheel and a cycle.

Proof: We denote the wheel by W and the cycle by C. They share a set of
vertices V = {v1, v2, . . . , vn}. Let v1 be the center of W and let v1 → v2 →
· · · → vn → v1 be the edges of C. See Fig. 3: the center v1 of the wheel is
marked with a box, the rim is drawn in black, and the spokes are not drawn at
all, although they do lie on the dashed lines. The cycle is drawn in gray.

We place v1 at the origin and v2 on the line y = 0 to the left of v1. Next we
place the remaining vertices on a set of rightward directed rays ℓi (3 ≤ i ≤ n)
which emanate from the origin. We assume that the rays are ordered clockwise,
see Fig. 3: the dashed lines indicate the rays. The vertices are placed on the
rays, according to their order along the rim of W . Their x-coordinates are
determined by their order in C, as described below. Let v3 be the other vertex
connected to v2 in C. We assign x-coordinates to the vertices such that the
path obtained by removing (v2, v3) from C is drawn as an x-monotone curve.
We use every x-coordinate twice, so that about half the edges of the cycle are
drawn vertically. Finally, to remove any possible crossings with edge (v2, v3) of
C, we move v2 to the left and v3 outwards along its ray (see Fig. 3). If the edge
(v3, v4) was vertical and we would like to keep that property, then we need to
do the same for v4, which is always possible if we choose the rays for v3 and v4
on opposite sides of the x-axis. �

As stated above this construction immediately implies the result for a wheel
and a matching: we can simply add edges to the matching to turn it into
a cycle. When drawing a matching in this fashion, all matching edges are
drawn vertically, with the exception of the first edge (v1, v2) which is drawn
horizontally. Note that this edge is necessarily shared with a spoke of the
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wheel. So we use exactly two orientations for the edges of the matching, which
is optimal in the worst case.

4 Outerzigzag and matching

Recall that an outerzigzag is a triangle strip: it is a triangulated outerplanar
graph, whose weak dual is a path and whose vertices have degree at most 4.
More precisely, there are exactly two vertices of degree 2, two vertices of degree
3, and all other vertices have degree 4. Let G1 = (V,E1) be an outerzigzag and
let G2 = (V,E2) be a matching. We first place the vertices of V in such a way
that their placement induces a plane drawing of G1. We then move some of the
vertices vertically to planarize G2, while keeping the drawing of G1 planar.

Specifically, we initially place the vertices of V at positions (0, 0), (2, 1),
(4, 0), (6, 1), (8, 0), etc., and adjust their vertical positions as needed such that
they remain on a grid of size 2n × 4n. One of the degree-2 vertices of G1 is
drawn at (0, 0), the remainder is drawn in such a way that the edges of G1

always connect two consecutive vertices on the line y = 0, or two consecutive
vertices on the line y = 1, or two vertices at distance

√
5, see Fig. 4.

0

1

0 1 2 3 4 2n − 2

Figure 4: Drawing an outerzigzag G1 on a grid.

We classify the edges of the matching G2 based on the placement of their
vertices on the grid:

BB-edges connect any two vertices on the line y = 0.

TT-edges connect any two vertices on the line y = 1.

BT-edges connect two vertices (i, 0) and (j, 1) with i < j.

TB-edges connect two vertices (i, 1) and (j, 0) with i < j.

We then move half of the vertices of V vertically according to three simple rules:

1. Only the right vertex of a matching edge moves, the left vertex is fixed.

2. The right vertex of every BT- and TT-edge is moved up until the edge
has slope +1.

3. The right vertex of every TB- and BB-edge is moved down until the edge
has slope −1.
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BT TT

TB BB
TB

BT

TT
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Figure 5: A geometric simultaneous
embedding of an outerzigzag (black)

and a matching (gray).

See Fig. 5 for an example. It is
easy to see that the displacements
preserve the planarity of the embed-
ding of G1, because vertices only
move vertically. The displacements
also make G2 planar: all edges of E2

with slope +1 are on parallel diag-
onal lines, so they cannot intersect.
Symmetrically, all edges of E2 with
slope −1 cannot intersect. Finally,
an edge with slope −1 and an edge
with slope +1 from E2 cannot in-
tersect because their only y-overlap
is between 0 and 1, and here they
are sufficiently separated to prevent
intersections. Clearly this construc-
tion uses only two orientations for the
edges of the matching.

Theorem 3 An outerzigzag and a
matching always admit a geometric
simultaneous embedding.

5 Outerpath and matching

We now extend the approach for outerzigzags to outerpaths. First, we assume
that the outerpath is triangulated. Since a triangulated outerpath has two
vertices of degree 2, we can place them as the leftmost and rightmost vertex of
an initial placement. We place all vertices on two horizontal lines y = 0 and
y = 1 in such a way that we obtain a plane drawing of the outerpath G1 (see
Fig. 6). We say that vertices which lie on the line y = 1 are on the top chain,
correspondingly, vertices which lie on the line y = 0 are on the bottom chain.
The leftmost vertex is placed at (0, 0). In the final drawing the edges of the
matching have slopes −1 or +1 as before. However, the embedding algorithm
for outerpaths needs to move vertices not only vertically, but also horizontally
and hence the x-order of the vertices in the initial placement is not preserved.

We view an outerpath as a sequence of maximal fans that are alternatingly
directed upwards and downwards. A maximal fan shares its first and last edge

uk

vi vj

y = 1

y = 0
(0, 0)

Figure 6: Outerpath with one fan indicated in gray.
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with a neighboring fan. Fig. 6 shows a downward fan in gray. We denote by d
the maximum degree of any vertex in the outerpath G1.

Our algorithm works as follows: we treat one fan after the other, moving
from left to right. When we treat a fan, we place its vertices at new locations
to planarize G2, while keeping the drawing of G1 planar. In the following we
explain the placement algorithm for a downward fan F , upward fans are treated
similarly. We denote the single apex vertex of F by uk and its sequence of finger
vertices by vi, . . . , vj (see Fig. 6). Note that i < j; if i = j then the outerpath
was not triangulated or F was not maximal. We place all vertices of F , with
the exception of vi and vj . Vertex vi has already been placed, since it is the
apex of the preceding fan (or it is the leftmost vertex which remains fixed). We
do not place vj since it is the apex of the following fan and will be placed when
that fan is treated. We distinguish three cases, depending on the matching
partner of the apex uk. Case (1): the matching partner of uk has already been
placed, Case (2): the matching partner of uk has not been placed yet and it is
not among vi+1, . . . , vj−1, and Case (3): the matching partner of uk is among
vi+1, . . . , vj−1.

Case (1) Apex uk has a matching partner that has already been placed. Hence
the matching partner lies either on the top chain and has an index smaller than
k, or it lies on the bottom chain and has an index smaller than or equal to i.
Let X denote the total width (x-range) of the drawing constructed so far. We
place uk at x-coordinate 2X + 1 and then move uk upwards until it lies on the
line with slope +1 through its matching partner (see Fig. 7 (left)).

Next we place vi+1, . . . , vj−1 at positions (2X, 0), (2X + 1/d, 0), . . ., (2X +
(j−i−2)/d, 0). Consider the j−i−1 lines through uk and each of vi+1, . . . , vj−1.
If we ensure that the final placements of vi+1, . . . , vj−1 lie on these lines, then

X

X

X

vi+1

uk
u1, . . . , uk−1

v1, . . . , vi

uk

vi+1 vj−1

y = 1

y = 0

Figure 7: Left: Case (1), uk is a right vertex of a
matching edge. Right: Global situation of Case (1),
previously placed vertices lie inside the gray triangle.
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we will never invert any triangle of the fan and hence keep the drawing of G1

planar. We now move those vertices of vi+1, . . . , vj−1 that are right vertices
of matching edges down on their lines until they reach the proper position,
determined by the lines with slope −1 through their matching partners. Those
vertices of vi+1, . . . , vj−1 that are left vertices of matching edges stay where they
are; they define lines with slope −1 or +1 on which their matching partners will
be placed eventually. By construction, none of these lines intersect each other
to the right of the vertices that defined them, and they also do not intersect the
lines defined by vertices treated earlier (see Fig. 7 (left)).

See Fig. 7 (right) for a global sketch of Case (1). Note that vi+1 stays to
the right of all vertices placed before. This is true because the line defined by
uk and vi+1 has slope > 1, and the separation between vi+1 and the previously
placed vertices is at least X . The y-range for the previously placed vertices is
[−X,+X ], since the edges of the matching have slopes −1 and +1. Further
note that triangle △ukvi+1vi is not inverted, regardless of where vi is placed in
the initial part and whether vi+1 is moved on its line. Finally, note that vj can
be placed anywhere on the line y = 0 or lower, as long as its x-coordinate is at
least that of uk: the triangle △ukvjvj−1 will not be inverted.

Case (2) Apex uk has a matching partner that has not been placed yet and
which is not among vi+1, . . . , vj−1. We place uk at position (3X + 2, 1), where
X is again defined as the total width of the drawing constructed so far. Next we
place the vertices vi+1, . . . , vj−1 at positions (3X, 0), (3X + 1/d, 0), . . ., (3X +
(j−i−2)/d, 0). Consider the j−i−1 lines through uk and each of vi+1, . . . , vj−1.
We again move those vertices of vi+1, . . . , vj−1 that are right vertices of matching
edges down on their lines until they reach the proper position, determined by
the lines with slope −1 through their matching partners (see Fig. 8). All lines
on which the vertices move have slope at least 1/2, implying that all vertices of
vi+1, . . . , vj−1 are placed to the right of all previously placed vertices, due to the
x-separation of at least 2X . Again we note that △ukvi+1vi is not inverted, and
that vj may be placed anywhere to the right of uk without the risk of inverting
△ukvjvj−1.

uk

vi+1

vj−1

y = 1

y = 0

Figure 8: Case (2), uk is a left vertex of a matching edge.
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uk

vi+1

vm

y = 1

y = 0
vj−1

Figure 9: Case 3.

Case (3) Apex uk has a matching partner vm that is among vi+1, . . . , vj−1,
see Fig. 9. We place uk at position (3X + 2, 1) and vm at position (3X + 1, 0),
where X is again the total width of the drawing constructed so far. Note that
the edge (uk, vm) is an edge of both G1 and G2. Next we place the vertices
vi+1, . . . , vm−1 at positions (3X, 0), (3X + 1/d, 0), . . ., (3X + (m− i− 2)/d, 0),
and the vertices vm+1, . . . , vj−1 at positions (3X+1+1/d, 0), (3X+1+2/d, 0),
. . . , (3X+1+(j−m−1)/d, 0). As before, we now use the lines through uk and
each of vi+1, . . . , vm−1, vm+1, . . . , vj−1 to move vertices down if they are right
vertices of matching edges.

Theorem 4 An outerpath and a matching always admit a geometric simulta-
neous embedding.

6 Tree and matching

Our algorithm that computes a geometric simultaneous embedding for a tree
and a matching is inspired by and closely related to an algorithm by Di Giacomo
et al. [3], which computes a matched drawing of two trees. Matched drawings
are a relaxation of geometric simultaneous embeddings. Specifically, two planar
graphs G1 and G2 are matched, if they are defined on two vertex sets V1 and
V2 of the same cardinality and there is a one-to-one mapping between V1 and
V2. A matched drawing of two matched graphs is a pair of planar straight-line
drawings, such that matched vertices of G1 and G2 are assigned the same y-
coordinate. A geometric simultaneous embedding of a tree and a matching is in
essence a matched drawing of half of the vertices of the tree with the other half.
And indeed, the algorithm by Di Giacomo et al. can be adapted to compute
a geometric simultaneous embedding of a tree and a matching. However, the
edges of the matching in the resulting drawing will in general not all have the
same orientation. In the remainder of this section we give a construction akin
to the one from [3], to compute a simultaneous embedding where all matching
edges are drawn horizontally.

Definitions and overview. We place the vertices one by one, always placing
the two vertices of a matching edge consecutively at the same y-coordinate. We
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use y-coordinates 1, . . . , n/2, from the outside in. That is, at any point of the
construction, there are two indices i and j with 1 ≤ i ≤ j ≤ n/2 such that the
coordinates 1, . . . , i− 1 and j + 1, . . . , n/2 have been used, and the coordinates
i, . . . , j have not been used yet. Before every odd-numbered placement we de-
cide if we should place the next vertex at the top or at the bottom, that is,
at the highest or the lowest available y-coordinate. The next, even-numbered
placement will be at the same y-coordinate.

Let T be the tree with some of its vertices already placed. The placed vertices
induce an edge partition of the tree into connected components (subtrees); we
call each component up to and including the placed vertices a rope. The placed
vertices incident to a rope are called the knots of that rope, see Fig. 10. Hence,
placed vertices will be knots of several ropes, exactly as many as the degree of
the vertex in the tree. We maintain the following invariant: after every odd
placement, every rope of T has one or two knots, but not more. After an even
placement this invariant might be false for exactly one rope, which has three
knots. Then there is a unique vertex, which we call the splitter, that lies on the
three paths between the knots. We show below how to restore the invariant with
the next odd placement by choosing the splitter as the next vertex to place. In
the example of Fig. 10, vertex s became a splitter when v6 was placed, so s will
be placed next (and afterwards its matching partner). We define the degree of
a rope to be the number of knots it has.

Since we place vertices from the outside in, and ropes have degree at most
three, there are nine types of ropes which we can encounter during the construc-
tion. They are the degree-1 ropes with one knot at the top or at the bottom, the
degree-2 ropes with two knots at the top, or two at the bottom, or one at the
top and one at the bottom, and the degree-3 ropes with zero, one, two, or three
knots at the top and three, two, one, or zero knots at the bottom, respectively.
We call these ropes T-rope, B-rope, TT-rope, BB-rope, TB-rope, BBB-rope,

1

n/2

i

j

v1 v2

v3v4

v1 v2

v3v4

s

v5 v6

s

v5 v6

Figure 10: Left: A tree of which six vertices have been placed, where (v1, v2),
(v3, v4), and (v5, v6) are edges of the matching. Right: The ropes that are
induced. From left to right a TT-rope (with knots v1 and v5), a TB-rope

(with knots v5 and v4), a TTB-rope, a TB-rope, and two T-ropes.
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Figure 11: Even placement for T-ropes, TB-ropes, and TT-ropes.

TBB-rope, TTB-rope, or TTT-rope, respectively. A placement typically splits
a rope into several ropes.

The constructive proof describes the placements in two steps. In the first
step, we decide which vertex to place next, how to order the incident edges of this
vertex, and what the left-to-right sequence of ropes becomes. We distinguish
even and odd placements. In the second step, we show that we can associate
suitable regions of the plane in which the ropes can be drawn, so that the tree
is drawn plane and straight-line. We maintain these regions at each placement.
In a sense, the first step assigns a y-coordinate, and the second step shows that
an x-coordinate can be assigned as well.

Even placement. The invariant given above implies that before an even place-
ment there are only degree-1 and degree-2 ropes. Furthermore, there is exactly
one edge (v, w) of the matching M that has one, but not both of its vertices
placed. We assume that v has been placed and we place w next, at the same
y-coordinate as v. The exact placement depends on the type of rope w is part of,
as well as the y-coordinate of v. Fig. 11 shows the cases for T-ropes, TB-ropes,
and TT-ropes; B-ropes and BB-ropes are symmetric. Placing w can create at
most two degree-2 ropes or one degree-3 rope, plus zero or more degree-1 ropes.
New degree-1 ropes all have w as their knot. The new degree-2 ropes may have
no internal vertices, in which case they are fully placed. Placing w creates a
degree-3 rope if w was part of a degree-2 rope but did not lie on the path be-
tween its two knots. In this case a new splitter s is identified (marked by a
circle in Fig. 11), which will be placed in the next odd placement. The top right
case depicted in Fig. 11 shows two dashed arrows, indicating that there are two
possible locations for w. Which of the two we will use depends on the matching
partner of the splitter s. We explain below how to make this decision.

Odd placement. Before an odd placement, each matching edge has both of
its vertices placed, or neither of its vertices placed. There are two cases: the
previous even placement left us with a splitter, or not. If there is no splitter,
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Figure 12: Odd placement for a splitter and a TTT-rope or a TTB-rope.

then we place any unplaced vertex, whose placement does not create a splitter.
Any vertex that is directly adjacent to an already placed vertex qualifies. If
there is a splitter s, then we place it next. If s is part of a TTT-rope or a TTB-
rope, then we place it at the lowest unused y-coordinate i, which creates two or
three new TB-ropes and one or zero new BB-ropes, respectively. Symmetrically,
if s is part of a TBB-rope or a BBB-rope, then we place it at the highest unused
y-coordinate j.

There are two additional things to consider. Let u be the matching partner
of the splitter s. By construction u has not been placed yet, but it will be placed
in the next even placement, on the same y-coordinate as s.

(1) If s was part of a TTT-rope (or symmetrically, a BBB-rope), then
placing s creates three new TB-ropes. If u is part of one of these TB-ropes,
then we need to ensure that this particular TB-rope is not in the middle TB-
rope. The TTT-rope was created by placing a vertex w at y-coordinate j in the
previous step (top right case in Fig. 11). Recall that we had two choices for the
location of w. At least one of the two ensures that u is in a rope on the outside
(see Fig. 12 (top row)). Hence we now make one of the choices we had in the
even placement, and place w accordingly. Placing s might also have created one
or more B-ropes. If u is part of one of these B-ropes, then we need to ensure
that this particular B-rope is the leftmost or rightmost one that has s as a knot.
We can easily do this by ordering the degree 1-ropes with knot s accordingly.

(2) If s was part of a TTB-rope (or symmetrically, a TBB-rope), then
placing s creates two TB-ropes and one BB-rope. If u is part of one of the
TB-ropes, then we have to ensure again that this particular TB-rope is on the
outside. Fortunately, we have a choice of two possible locations for s, see Fig. 12
(bottom row). One of the two ensures that u is in a rope on the outside, hence
we place s accordingly. Again, placing s might also have created one or more
B-ropes. In general we can place these B-ropes in an arbitrary order. But if u
is part of a B-rope, then we need to place this particular rope on the outside.
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i

j

Figure 13: Parallelogram
for a TTB-rope.

Placement regions. At each odd and even
placement, we have chosen a vertex and assigned a
y-coordinate to it. As a result all matching edges
are drawn horizontally at different y-coordinates.
We have also chosen the left-to-right order of the
new ropes this vertex is incident to. To ensure
that a straight-line drawing of the tree will be
plane, we use a placement region for each rope,
where all placement regions are disjoint. We
choose the placement region for each rope to be
a parallelogram bounded by two horizontal lines
and two other lines. If i and j are the lowest and
highest unused y-coordinates, then the horizontal lines are y = i and y = j.
The knots of the rope and part of their incident edges are not placed inside the
parallelogram, but all unplaced vertices and edges between them will be inside.

When a rope is split, we determine a number of disjoint, new parallelograms
for the new ropes which are inside the parallelogram of the rope that was split.
This ensures that the parallelograms of all ropes after the split are again disjoint.

More precisely, we maintain the following geometric invariant, which holds
for every rope after every even placement, see Fig. 13. Let i and j be the lowest
and highest unused y-coordinates. There exists a parallelogram between the
horizontal lines y = i and y = j and two other lines, such that the knots of the
rope lie strictly between the supporting lines of the non-horizontal sides of the
parallelogram. This invariant ensures that the rope can be drawn crossing-free
with straight lines inside the parallelogram, where only the knots are outside
and part of the edges they are incident to. The edges incident to the knots
will intersect only the horizontal sides of the parallelogram. Fig. 14 shows the
parallelograms for the example of Fig. 10. In the following we argue how to
maintain the geometric invariant as the embedding algorithm proceeds.

Consider a rope R and its associated parallelogram P , and assume that the
invariant holds after an even placement. The next two steps of the embedding

1

n/2

i

j

v1 v2

v3v4

s

v5 v6

Figure 14: The parallelograms for the ropes of the example in Figure 10.
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algorithm place two vertices at the y-coordinate i or j. If neither vertex is part of
R then we simply shorten P . However, if one or both of the newly placed vertices
was part ofR then we need to split P into several disjoint subparallelograms, one
for each rope created by the placement. The cases are many, but not difficult
(and they are similar to the cases discussed in [3]). Instead of describing all
cases in full detail, we restrict ourselves to two representative examples.

The first example shows a vertex of a TT-rope that is placed at y-coordinate
i. Fig. 15 illustrates the situation before placement, the situation after place-
ment, and the new parallelograms inside the old one. Note that there is room
for any number of new degree-1 ropes. By making the new parallelograms very
narrow, we can ensure that they are disjoint at the bottom as well since their
lower y-coordinate is i+ 1.

i

j

i
i + 1

j

i
i + 1

j

Figure 15: Splitting the parallelogram of a TT-rope.

The second example shows a splitter s that is placed at y-coordinate i,
while its matching partner u is contained in one of the B-ropes created by this
placement (see Fig. 16). Recall that we place the rope with u on the outside
with respect to s, which allows us to place u at y-coordinate i as well. We choose
the x-coordinates of s and u so that parallelograms can be found for each new
rope within the old parallelogram. Again, by making the new parallelograms
very narrow, we can ensure that they are disjoint at the bottom.

Theorem 5 A tree and a matching always admit a geometric simultaneous
embedding.

i

j

i

j

i
i + 1

j

s

s s

u

u
u

Figure 16: Splitting the parallelogram of a TTB-rope,
only one of the five new parallelograms is shown.
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7 Many matchings and more

Figure 17: Two paths
and a matching.

Geometric simultaneous embeddings have also been
considered for more than two graphs. For example,
Brass et al. [2] show that three paths may not admit a
geometric simultaneous embedding. Two paths always
admit a geometric simultaneous embedding where one
path is drawn in a y-monotone and the other in an x-
monotone fashion. An intriguing open question in this
context is the following: do two paths and a matching
always admit a geometric simultaneous embedding? The simple example in
Fig. 17 shows that the matching edges have to have at least two orientations
and that the paths cannot both be drawn in a monotone fashion.

The union of two matchings is a set of cycles which can be drawn as rectilin-
ear staircase polygons such that each matching is drawn with either only vertical
or horizontal edges. A set of cycles is a subgraph of an outerzigzag and hence by
Theorem 3 three matchings always admit a geometric simultaneous embedding.
However, it is unclear if one can restrict the set of orientations for each match-
ing to be constant. Furthermore, a set of cycles is also a maximum-degree-two
graph, that is, a graph such that every vertex has degree at most two. Dun-
can, Eppstein, and Kobourov [4] proved that two maximum-degree-two graphs
always admit a geometric simultaneous embedding. This immediately implies
that four matchings also always admit a geometric simultaneous embedding, but
again, it is unclear if one can restrict the set of orientations for each matching.

We finally argue that a set of six matchings may not admit a geometric
simultaneous embedding. Consider the six vertices of a K3,3 to be labeled.
Then there are six different ways to take a subset of three edges that form
a matching (see Fig. 18). Now consider any pair of edges of the K3,3 that
are incident to four different vertices. One of the six matchings contains this
pair. Therefore, the planarity of all six matchings in a geometric simultaneous
embedding implies a planar embedding of K3,3. Hence, six matchings may not
admit a geometric simultaneous embedding.

1 2 3

a b c

1 2 3

a b c

1 2 3

a b c

1 2 3

a b c

1 2 3

a b c

1 2 3

a b c

Figure 18: Six matchings that cover K3,3.
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8 Conclusions and open problems

We presented the first results for geometric simultaneous embeddings where
one of the graphs is a matching. Specifically, we showed that there exist planar
graphs that do not admit a geometric simultaneous embedding with a matching.
We do not know whether this negative result holds also under the additional
constraint that the matching and the planar graph do not have any edges in
common. Note here that a path and a planar graph might not have a geometric
simultaneous embedding, even if they do not share any edges [9].

We also described algorithms that compute a geometric simultaneous em-
bedding of a matching and a wheel, outerpath, or tree. Our drawing algorithms
minimize the number of orientations used to draw the edges of the matching.
The main remaining open question in this context is: do an outerplanar graph
and a matching always admit a geometric simultaneous embedding?

Three or four matchings always admit a geometric simultaneous embedding,
but it is unclear if one can restrict the set of orientations for each matching
to be constant. Furthermore, the following two questions remain open: do five
matchings or two paths and a matching always admit a geometric simultaneous
embedding?
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