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Abstract

In this paper, we give polynomial-time algorithms that can take a
graph G with a given combinatorial embedding on an orientable surface
S of genus g and produce a planar drawing of G in R2, with a bounding
face defined by a polygonal schema P for S. Our drawings are planar,
but they allow for multiple copies of vertices and edges on P’s boundary,
which is a common way of visualizing higher-genus graphs in the plane.
However, unlike traditional approaches the copies of the vertices might
not be in perfect alignment but we guarantee that their order along the
boundary is still preserved. Our drawings can be defined with respect
to either a canonical polygonal schema or a polygonal cutset schema,
which provides an interesting tradeoff, since canonical schemas have fewer
sides, and have a nice topological structure, but they can have many more
repeated vertices and edges than general polygonal cutsets. As a side
note, we show that it is NP-complete to determine whether a given graph
embedded in a genus-g surface has a set of 2g fundamental cycles with
vertex-disjoint interiors, which would be desirable from a graph-drawing
perspective.
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1 Introduction

The classic way of drawing a graph G = (V,E) in R2 involves associating
each vertex v in V with a unique point (xv, yv) and associating with each edge
(v, w) ∈ E an open Jordan curve that has (xv, yv) and (xw, yw) as its endpoints.
If the curves associated with the edges in a classic drawing of G intersect only
at their endpoints, then (the embedding of) G is a plane graph. Graphs that
admit plane graph representations are planar graphs, and there has been a
voluminous amount of work on algorithms on classic drawings of planar graphs
(e.g., see [15]). Most notably, planar graphs can be drawn with vertices assigned
to integer coordinates in an O(n)× O(n) grid, which is often a desired type of
classic drawing known as a grid drawing. Moreover, there are planar graph
drawings that use only straight line segments for edges (e.g., see [3, 7, 9, 16]).

The beauty of plane graph drawings is that, by avoiding edge crossings, con-
fusion and clutter in the drawing is minimized. Likewise, straight-line drawings
further improve graph visualization by allowing the eye to easily follow connec-
tions between adjacent vertices. In addition, grid drawings enforce a natural
separation between vertices, which further improves readability. Thus, a “gold
standard” in classic drawings is to produce planar straight-line grid drawings
and, when that is not easily done, to produce planar grid drawings with edges
drawn as simple polygonal chains (e.g., see [4, 15]).

Unfortunately, not all graphs are planar. So drawing them in the classic
way requires some compromise in the gold standard for plane drawings. In
particular, any classic drawing of a non-planar graph must necessarily have
edge crossings, and minimizing the number of crossings is NP-hard [8]. One
point of hope for improved drawings of non-planar graphs is to draw them
crossing-free on surfaces of higher genus, such as toruses, double toruses, or,
in general, a surface topologically equivalent to a sphere with g handles, that
is, a genus-g surface. Such drawings are called cellular embeddings or 2-cell
embeddings, since they partition the genus-g surface into a collection of cells
that are topologically equivalent to disks. As in classic drawings of planar
graphs, these cells are called faces, and it is easy to see that such a drawing
would avoid edge crossings.

In a fashion analogous to the case with planar graphs, cellular embeddings of
graphs in a genus-g surface can be characterized combinatorially. In particular,
it is enough if we just have a rotational order of the edges incident on each
vertex in a graph G to determine a combinatorial embedding of G on a surface
(which has that ordering of associated curves listed counterclockwise around
each vertex). Such a set of orderings is called a rotation system and, since it
gives us a combinatorial description of the set of faces, F , in the embedding,
it gives us a way to determine the genus of the (orientable) surface that G is
embedded into by using the Euler characteristic, |V |− |E|+ |F | = 2−2g, which
also implies that |E| is O(|V |+ g) [14].

Unfortunately, given a graph G, it is NP-hard to find the smallest g such
that G has a combinatorial cellular embedding on a genus-g surface [17]. This
challenge need not be a deal-breaker in practice, however, for there are heuristic
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algorithms for producing such combinatorial embeddings (that is, consistent
rotation systems) [2]. Moreover, higher-genus graphs often come together with
combinatorial embeddings in practice, as in many computer graphics and mesh
generation applications.

In this paper, we assume that we are given a combinatorial embedding of a
graph G on an orientable genus-g surface, S, and are asked to produce a geo-
metric drawing of G that respects the given rotation system. Motivated by the
gold standard for planar graph drawing and by the fact that computer screens
and physical printouts are still primarily two-dimensional display surfaces, the
approach we take is to draw G in the plane rather than on some embedding of
S in R3.

Making this choice of drawing paradigm, of course, requires that we “cut up”
the genus-g surface, S, and “unfold” it so that the resulting sheet is topologically
equivalent to a disk. Fortunately, there are several well-studied ways of doing
this, at least in a topological sense. The traditional method for performing
such a cutting is with a polygonal schema formed from fundamental cycles.
A fundamental cycle on S is a continuous closed curve on S that cannot be
retracted continuously to a point. If cutting S along a fundamental cycle results
in a topological disk, the resulting boundary composed of the cut edges is called
a polygonal schema, P. Essentially, in the plane, the cycle can be represented
as a polygon of at least 4g sides such that identifying edges with each other
(gluing the cut edges back together) results in the original surface. If the schema
is formed by 2g fundamental cycles all containing a common point, p, it is
referred to as a canonical polygonal schema, for the corresponding polygon can
be represented with exactly 4g sides each corner of which is the point p. Observe
that the union of the 2g cycles is itself a fundamental cycle, and hence the cycles
still form a valid polygonal schema. Moreover, these 2g fundamental cycles can
be paired up into complementary sets of cycles, (ai, bi), one for each handle, so
that if we orient the sides of P, then a counterclockwise ordering of the sides of
P can be listed as

a1b1a
−1
1 b−11 a2b2a

−1
2 b−12 . . . agbga

−1
g b−1g ,

where a−1i (b−1i ) is a reversely-oriented copy of ai (bi), so that these two sides
of P are matched in orientation on S. That is, they correspond to the two
sides of a cycle that we cut on S to form a polygonal schema P. Thus, the
canonical polygonal schema for a genus-g surface S has 4g sides that are pairwise
identified; see Fig. 1.

Because we are interested in drawing the graph G and not just the topology
of S, it would be preferable if the fundamental cycles are also cycles in G in
the graph-theoretical sense. It would be ideal if these cycles form a canonical
polygonal schema with no repeated vertices other than the common one. This
is not always possible [11] and furthermore, as we show in Section 2.2, the
problem of finding a set of 2g fundamental cycles with vertex-disjoint interiors
in a combinatorially embedded genus-g graph is NP-complete. There are two
natural choices, both of which we explore in this paper:
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(a) (b)

Figure 1: Drawings of K7 on the torus. (a) A crossing-free drawing of K7 using
the classic approach; (b) A polygonal-schema drawing of K7, with fundamental cycles
a1 = (5, 3, 4, 5) and b1 = (5, 6, 7, 5).

• Draw G in a polygon P corresponding to a canonical polygonal schema,
P, possibly with repeated vertices and edges on its boundary.

• Draw G in a polygon P corresponding to a polygonal schema, P, that is
not canonical.

In either case, the edges and vertices on the boundary of P are repeated (since we
“cut” S along these edges and vertices). Thus, we need labels in our drawing of
G to identify the correspondences. Such planar drawings of G inside a polygonal
schema P are called polygonal-schema drawings of G. There are three natural
aesthetic criteria such drawings should satisfy:

1. Straight-line edges: All the edges in a polygonal-schema drawing should
be rendered as polygonal chains, or straight-line edges, when possible.

2. Straight frame: Each side of the polygonal schema, which in a canonical
polygonal schema corresponds to a fundamental cycle that was cut along
its boundary, should be rendered as a straight line segment, with the
vertices and edges of the corresponding fundamental cycle placed along
this segment, and such that the resulting polygon is convex. We refer to
such a polygonal-schema drawing as having a straight frame.

3. Polynomial area: Drawings should have polynomial area when they are
normalized to an integer grid.

It is also possible to avoid repeated vertices and instead use a classic graph
drawing paradigm, by transforming the fundamental polygon rendering using
polygonal-chain edges that run through “overpasses” and “underpasses” as in
road networks, so as to illustrate the topological structure of G; see Fig. 2.
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Figure 2: First row: Canonical polygonal schemas for graphs of genus one, two and
four. Second row: Unrolling the high genus graphs with the aid of the overpasses and
underpasses. Third row: Folding high genus graphs by compressing all the overpasses.

Our Contributions. We provide several methods for producing planar po-
lygonal-schema drawings of higher-genus graphs. In particular, we provide four
algorithms, one for toroidal (g = 1) graphs and three for non-toroidal (g > 1)
graphs. Our algorithm for toroidal graphs simultaneously achieves the three
aesthetic criteria for polygonal schema drawings: it uses straight-line edges,
a straight frame, and polynomial area. The three algorithms for non-toroidal
graphs, Peel-and-Bend, Peel-and-Stretch, and Peel-and-Place, provide various
tradeoffs between these three desired criteria, which are identified in Table 1.
Thus, we can achieve any two of the three desired aesthetic criteria for non-
toroidal graphs. A recent result by Chambers et al. [1] has extended our work
to achieve all three simultaneously for non-toroidal graphs.

Our algorithms also can be differentiated on whether we use a canonical
polygonal schema or not. Having the ability to use either a canonical polygo-
nal schema or a general cutset schema allows for more flexibility for visualizing
graphs with combinatorial embeddings in genus-g surfaces. Specifically, canoni-
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Algorithm straight-line edges straight frame poly. area
Peel-and-Bend • •

Peel-and-Stretch • •
Peel-and-Place • •

Table 1: Aesthetic criteria achieved by each of our algorithhms for non-toroidal
graphs.

cal polygonal schemas tend to have fewer sides than general polygonal schemas,
which tend to have fewer boundary vertices than canonical polygonal schemas.
Moreover, as we show in Section 2.2, optimizing both of these competing criteria
is NP-complete.

2 Finding Polygonal Schemas

Suppose we are given a graph G together with its cellular embedding on an
orientable genus-g surface, S. An important first step in all of our algorithms
involves our finding a polygonal schema, P, for G, that is, a set of cycles in
G such that cutting S along these cycles results in a topological disk. We
refer to this as the Peel step, since it involves cutting the surface S until it
becomes topologically equivalent to a disk. Since these cycles form the sides of
the fundamental polygon we will be using as the outer face in our drawing of G,
it is desirable that these cycles be as “nice” as possible with respect to drawing
aesthetics.

2.1 Trade-offs for Finding Polygonal Schemas

Unfortunately, some desirable properties are not effectively achievable. As
Lazarus et al. [11] show, it is not always possible to have a canonical polyg-
onal schema P such that each fundamental cycle in P has a distinct set of
vertices in its interior. The interior of a fundamental cycle is the set of vertices
distinct from the common vertex shared with its complementary fundamental
cycle—with this vertex forming a corner of a canonical polygonal schema. In
addition, we show in Section 2.2 that finding such a vertex-disjoint set of funda-
mental cycles is NP-complete. So, from a practical point of view, we have two
choices with respect to methods for finding polygonal schemas.

Finding a Canonical Polygonal Schema. As mentioned previously, a canon-
ical polygon schema of a graph G 2-cell embedded on a surface of genus g consists
of 4g sides, which correspond to 2g fundamental cycles all containing a com-
mon vertex. Lazarus et al. [11] show that one can find such a schema for G in
O(gn) time and with total size O(gn), and they show that this bound is within
a constant factor of optimal in the worst case, where n is the total combinatorial
complexity of G (vertices, edges, and faces), which is O(|V |+ g).
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Minimizing the Number of Boundary Vertices in a Polygonal Schema.
Another optimization would be to minimize the number of vertices in the bound-
ary of a polygonal schema. Erikson and Har-Peled [6] show that this problem
is NP-hard, but they provide an O(log2 g)-approximation algorithm that runs
in O(g2n log n) time, and they give an exact algorithm that runs in O(nO(g))
time.

In our Peel step, we assume that we use one of these two optimization
criteria to find a polygonal schema, which either optimizes its number of sides
to be 4g, as in the canonical case, or optimizes the number of vertices on its
boundary, which will be O(gn) in the worst case either way. Nevertheless, for
the sake of concreteness, we often describe our algorithms assuming we are given
a canonical polygonal schema. It is straight-forward to adapt these algorithms
for non-canonical schemas. We elaborate on some of these details throughout.

2.2 Finding Simple Fundamental Cycles is NP-Complete

We now address the difficulty in finding fundamental cycles with vertex-disjoint
interiors.

Theorem 1 Given a graph G combinatorially embedded on a genus-g surface,
it is NP-complete to find a set of 2g fundamental cycles with vertex-disjoint
interiors.

Proof: It is easy to see that this problem is NP—just guess a set of 2g cycles
and test that they are fundamental cycles with vertex-disjoint interiors.

To complete the proof, we observe that there is a simple reduction from the
following NP-complete problem [12]:

• Disjoint Paths for Planar Graphs with Maximum Degree 3
(DPP3): Given a planar graph G with maximum degree 3 and a set
S of disjoint edges in G, determine if there is a set of vertex-disjoint cycles
in G such that each cycle contains exactly one edge of S and each edge of
S is in exactly one cycle.

Suppose, then, that we are given an instance of the DPP3 problem. We begin
by removing all the edges in S from G, giving the subgraph G′, and checking,
for each edge e = (v, w) in S, if w is reachable from v. If any such test fails,
then the answer to the DPP3 problem is “no.” So, let us suppose each such
endvertex is reachable from its partner. Then, for each e = (v, w) in S, we
connect v and w with a subgraph, Ge, which is a copy of K5 minus one edge,
oriented as shown in Fig. 3. Let Ĝ denote G′ with the subgraph Ge replaced
for each edge e in S, and note that Ĝ is embedded on a surface of genus |S|.

Suppose that for a given G and S, the answer to the DPP3 problem is “yes.”
Then in Ĝ we can form a set of 2|S| fundamental cycles with vertex-disjoint
interiors, by taking, for each edge e = (v, w) in S, the path from v to w in G′

plus a path from w to v in Ge, and we can form its complementary fundamental
cycle, say, by taking the cycle formed by the vertices in Ge adjacent to v.
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G’

e

v

w
G’

v

w

Figure 3: Replacing each edge in S with Ge, which is K5 minus one edge.

Suppose, instead, that we can form a set of 2|S| vertex-disjoint fundamental
cycles in Ĝ. Note that, since w is reachable from v in G′, for each e = (v, w) in
S, each Ge requires a handle in the embedding of Ĝ on a surface of genus |S|.
That is, G′ is essentially providing the missing edge in K5 and the edges of Ge

are oriented to require a handle here. Moreover, by the construction, one fun-
damental cycle must include only vertices in Ge, since Ge forms a biconnected
component in Ĝ. In addition, since Ge does not itself contain two complemen-
tary fundamental cycles, the complementary fundamental cycle to the one in Ge

must be formed by a path from v to w in G′. Therefore, if all the fundamental
cycles in Ĝ have vertex-disjoint interiors, then the paths in G′ connecting the
ends of each edge in S must be vertex disjoint. Thus, replacing each subgraph
Ge with the associated edge e in S gives us a set of |S| vertex-disjoint cycles in
G containing each edge in S. 2

2.3 Constructing Chord-Free Polygonal Schemas

In all of our algorithms the first step, Peel, constructs a polygonal schema of
the input graph G. In fact, we need a polygonal schema, P, in which there is
no chord connecting two vertices on the same side of P. Here we show how to
transform any polygonal schema into a chord-free polygonal schema.

In the Peel step, we cut the graph G along a canonical set of 2g fundamental
cycles getting two copies of each cycle in G∗, the resulting planar graph. For
each of the two pairs of every fundamental cycle there may be chords. If the
chord connects two vertices that are in different copies of the cycle in G∗ then
this is a chord that can be drawn with a straight-line edge and hence does not
create a problem. However, if the chord connects two vertices in the same copy
of the cycle in G∗, then we will not be able to place all the vertices of that cycle
on a straight-line segment; see Fig. 4(a). We show next that a new chord-free
polygonal schema can be efficiently determined from the original schema.

Theorem 2 Given a graph G combinatorially embedded on a genus-g surface
and a canonical polygonal schema P on G with a common vertex p, a chord-free
polygonal schema P∗ can be found in O(gn) time.

Proof: We first use the polygonal schema to cut the embedding of G into a
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(a) (b)

Figure 4: (a) A graph embedded on the torus that has been cut into a topological
disk using the cycles 1, 2, 3 and 1, 4, 7, 8, 11, 13, 15 with chord (4, 8). The grey nodes
correspond to the identical vertices above. The highlighted path represents a shortest
path between the two copies of the common vertex 1. (b) The topological disk after
cutting along this new fundamental cycle. The grey nodes show the old fundamental
cycle.

topological disk; see Fig. 4(a). Notice this cutting causes certain vertices to
be split into multiple vertices. For each fundamental cycle ci ∈ P starting
with i = 1, we temporarily stitch the disk graph back together along this cycle
forming a topological cylinder. The outer edges (left and right) of the cylinder
along this stitch have (at least) two copies of the common vertex p, say p1 and
p2. We perform a shortest path search from p1 to p2. This path becomes our
new fundamental cycle c∗i , (since p1 and p2 are the same vertex in G). Observe
that this cycle must be chord-free or else the path chosen was not the shortest
path; see Fig. 4(b). We then cut the cylinder along c∗i and proceed to ci+1.
The resulting set, P∗ = {c∗1, c∗2, . . . , c∗2g}, is therefore a collection of chord-free
fundamental cycles all sharing the common vertex p. 2

It should be noted that, although each cycle c∗i is at the time of its creation
a shortest path from the two copies of p, these cycles are not the shortest
fundamental cycles possible. For example, a change in the cycle of ci+1 could
introduce a shorter possible path for c∗i but not additional chords. These cycles
are in a sense minimal but they are not the optimal (minimum) set; recall that
computing the optimal set of fundamental cycles is NP-hard [6].

If the polygonal schema is not canonical, we no longer require that each
side be a complete fundamental cycle with a common shared point, but we still
want to maintain the overall structure of the polygon by retaining the vertices
at the corners of the polygon. Fortunately, the same technique can be used to
ensure each side of the polygon is chord-free: create a topological disk by cutting
along the entire cycle, stitch each side together one by one creating topological
cylinders, perform a shortest path search from one side at p1 to the other at p2,
and cut along that path to get a disk again. The resulting polygonal schema
will have the same vertex corners as the original but each side will be chord-free.
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3 Straight Frame and Polynomial Area

In this section, we describe our algorithms that construct a drawing of G in a
straight frame using polynomial area. Here we are given an embedded genus-g
graph G = (V,E) along with a chord-free polygonal schema, P, for G from the
Peel step. For the drawing, we rely on a modified version of the algorithm of
de Fraysseix, Pach and Pollack [7], of which a brief review is given in Section 3.1.
Sections 3.2 and 3.3 describe the details for g = 1 and for g > 1, respectively. In
the latter case we introduce up to O(k) edges with single bends where k is the
number of vertices on the fundamental cycles. Thus, we refer to the algorithm
for non-toroidal graphs as the Peel-and-Bend algorithm.

3.1 Canonical Labeling

We start with a brief overview of the algorithm of de Fraysseix, Pach and Pol-
lack for drawing planar graphs with straight lines on an O(n) × O(n) grid [7].
The dPP algorithm inserts vertices of a fully triangulated graph incrementally
according to an ordering created by a canonical labeling defined below, which
assigns to each of the n vertices a unique label from the set {1, 2, . . . , n}. We
refer to the subgraph of G induced by the first i inserted vertices as Gi. The
algorithm maintains a key invariant that at each iteration every edge on the
boundary Ci of the external face of Gi is drawn with a slope either +1 or −1
except for the initial two vertices v1 and v2 that are connected by a horizontal
line (at the bottom of the drawing). The face Ci, minus the edge from v1 to v2,
is also drawn monotonically in the x-direction so that its shape is akin to a chain
of mountain peaks. The initial graph G3 is drawn with v1, v2 and v3 at positions
(0, 0), (2, 0) and (1, 1) respectively. The vertices are ordered such that for any
vertex vi the set of its neighbors in Gi−1 forms a consecutive chain on Ci. This
condition and the shape of the drawing of Ci guarantees that each successive
vertex vi can “easily see” all of its neighbors in Gi−1, although some horizontal
shifting of the vertices might be necessary to maintain the key invariant.

The canonical labeling is created essentially by reversing the process. For
each graph Gi, starting with G = Gn−1, there exists at least one vertex vi,
not including v1 and v2, on Ci with exactly two neighbors on Ci, one v` imme-
diately left and the other vr immediately right of vi. Since the graph is fully
triangulated, the removal of vi from Gi yields a new subgraph with an external
face that is the same as Ci except that vi has been replaced with a chain of its
neighbors from v` to vr.

Formally, we define the labeling as follows. Given a fully triangulated planar
graph G embedded in the plane with exterior face v1, v2, vn, a canonical labeling
of the vertices v1, v2, v3, . . . , vn−1, vn satisfies the following requirements for n >
i > 2:

1. Gi, the subgraph of G induced by the first vi vertices, is bi-connected, and
the boundary Ci of its outer face contains the edge (v1, v2);



JGAA, 15(1) 7–32 (2011) 17

2. vi+1 lies in the outer face and its neighbors in Gi form a connected subpath
of Ci − (v1, v2) with length at least two.

The canonical ordering and the subsequent embedding can be done in linear
time [3] and produces an embedding on an O(n)×O(n) grid [7]. Although the
standard dPP algorithm does not directly solve all our needs, it can be modified
so that we can achieve our stated goals.

3.2 Grid Embedding of Toroidal Graphs

For toroidal graphs we are able to achieve all three aesthetic criteria: straight-
line edges, straight frame, and polynomial area.

Theorem 3 Let G∗ be an embedded planar graph and P = {P1, P2, P3, P4} in
G∗ be a collection of four paths such that each path Pi = {pi,1, pi,2, . . . , pi,ki} is
chord-free, the last vertex of each path matches the first vertex of the next path,
(pi,ki

= pi+1,1), including P4 and P1, and when treated as a single cycle, P forms
the external face of G∗. We can in linear time draw G∗ on an O(n) × O(n2)
grid with straight-line edges and no crossings in such a way that, for each path
Pi on the external face, the vertices on that path form a straight line. Moreover,
the external face forms a rectangle.

We refer to P as a collection of paths, but they originated as fundamental
cycles that were cut in a previous step. For our purposes, it is easier to think of
each split vertex as a separate vertex and hence the cycles become paths after
the cutting process. Reconnecting the split vertices, if desired, is a separate step
using bridge edges (underpasses and overpasses). The remainder of this section
deals with the proof of this theorem.

Proof: For simplicity, we assume that every face is a triangle, except for the
outer face (extra edges can be added and later removed). The algorithm of
de Fraysseix, Pach and Pollack (dPP) [7] does not directly solve our problem
because of the additional requirement for the drawing of the external face. In
this case, the additional requirement is that the graph must be drawn so that
the external face forms a rectangle, with P1 and P3 as the top and bottom
horizontal boundaries and P2 and P4 as the right and left boundaries.

As mentioned in Section 3.1, the dPP algorithm computes a canonical la-
beling of the vertices of the input graph and inserts them one at a time in that
order while ensuring that when a new vertex is introduced it can “see” all of its
already inserted neighbors. In our problem we need to modify the algorithm to
ensure that all vertices belonging to the same fundamental cycle are placed along
a straight-line segment. One technical difficulty lies in the proper placement of
the top row of vertices. Due to the nature of the canonical order, we cannot
force the top row of vertices to all be the last set of vertices inserted, unlike
the bottom row which can be the first set inserted; see Fig. 5. Consequently,
we propose an approach similar to that of Miura, Nakano, and Nishizeki [13].
First, we split the graph into two parts (not necessarily of equal size), perform
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a modified embedding on both pieces, invert one of the two pieces, and stitch
the two pieces together.

Figure 5: Placing vertices 9, 8, 7, 5, 4 along the top row; labels correspond to the
canonical ordering. The dPP algorithm would insert vertex 6 after 5 but before 7. As
dPP places the next vertex in the canonical order above their neighboring predecessors,
6 would be placed above 5, thus preventing 5 from being in the top row.

Lemma 1 Given an embedded plane graph G that is fully triangulated except
for the external face and two edges e` and er on that external face, it is possible
in linear time to partition V (G) into two subsets V1 and V2 such that

1. the subgraphs of G induced by V1 and V2, called G1 and G2, are both
connected subgraphs;

2. for edges e` = (u`, v`) and er = (ur, vr), we have u`, ur ∈ V1 and v`, vr ∈
V2;

3. the union U of the set of internal faces in G that are not in G1 or G2

forms an outerplane graph with the property that the external face of U is
a cycle with no repeated vertices.

Proof: First, we compute the dual D of G, where each face in (the primal
graph) G is a node in D and there is an arc between two nodes in D if their
corresponding primal faces share an edge in common. We delete the node cor-
responding to the external face from D, along with its incident arcs. For clarity
we shall refer to vertices and edges in the primal and nodes and arcs in the dual;
see Fig. 6(a). We further augment the dual by adding an arc between two nodes
in D if they also share a vertex in common. Call this augmented dual graph
D∗. We refer to the arcs in D as regular arcs and to the arcs added to form D∗

as augmented arcs.
Let the source node s be the node corresponding to the internal face contain-

ing the edge e` and the sink node t be the node corresponding to the internal face
with edge er. We then perform a breadth-first shortest-path traversal from s to
t on D∗; see Fig. 6(b). Let p∗ be a shortest (augmented) path in D∗ obtained
by this search. We now create an (unaugmented) path p in D by expanding the
augmented arcs added. That is, if there is an arc (u, v) ∈ p∗ such that u and v
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(a) (b)

(c) (d)

Figure 6: (a) A graph G and its dual D. Note that the augmented arcs for D∗ are
not shown. For example, there are arcs between all faces (nodes) incident to vertex
9. The dark edges/nodes represent the sink and source nodes. (b) Each dual node is
labeled with its distance (in D∗) from the start node 0. Note the sink is at distance 4.
A shortest path p∗ is drawn with thick dark arcs. This path includes the augmented
arcs of D∗. (c) The path p formed after expanding the augmented arcs. The edges
from the primal that are cut by this path are shown faded. (d) The two sets V1 (light
vertices) and V2 (darker vertices) formed by the removal of path p. The external face
of U is defined by the thick edges along with the edges (1, 2) and (3, 4).
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share a common vertex in G but not a common edge in G, i.e. they are part of a
fan around the common vertex, we add back the regular arcs from u to v adja-
cent to this common vertex. The choice of going clockwise or counter-clockwise
around the common vertex depends on the previous visited arc. That is, if the
previous arc was a result of going around vertex a and we now wish to go around
vertex b, the current (dual) node corresponds to the (primal) face abc for some
shared vertex c and we go around b by crossing edge bc, rather than edge ba.
For example, in Fig. 6(c), if at node (triangle) 5, 6, 17 we went around vertex 17
clockwise rather than counterclockwise, we would have used node 9, 7, 17 before
reaching node 9, 17, 10. At this point, going clockwise around vertex 9 would
mean repeating the node 9, 7, 17.

Although p is no longer the shortest possible path in D, it is still necessarily
acyclic, and so no node in D is visited more than once. Additionally, no (primal)
vertex is visited by more than one consecutive sequence of nodes in the path.
That is, if two nodes u and v in p share a common (primal) vertex then all nodes
between u and v in p also share a common vertex. To see why, assume not. Then
in p∗ there would have been two nodes u and v that shared a common vertex
that visited at least one other node w between them. But since the distance
between u and v in D∗ is one, p∗ could not be a shortest path.

Each arc in p corresponds to an edge in G. Since p is a path from one edge
on the external face to another edge on the external face, the removal of these
edges in G along with the two edges e` and er clearly separates the graph into
two subgraphs G1 and G2. This proves the first condition. The second condition
holds directly by construction, since we started with and removed edges e` and
er; see Fig. 6(d).

We prove the final condition inductively by considering the nodes along the
path p incrementally. First note that after the start node s, we have a single
triangular face which clearly is outerplanar with a simple cycle for an external
face. Therefore, let us assume that we have added the first i − 1 nodes of p
creating the outerplane graph Ui−1 with the external face as a simple cycle.
We now add the node ui to create Ui. Since Ui−1 is outerplanar, all vertices
are represented on the external cycle, which is simple. The addition of node ui

replaces one edge on the external cycle, say (ai−1, bi−1), with two edges (ai−1, ai)
and (ai, bi−1). Since no (primal) vertex on the path p is visited more than once
non-consecutively, ai must be a new vertex not already on the external face.
In addition, notice that both ai−1 and bi−1 remain on the external face of Ui.
Therefore, both Ui and its external face increase by exactly one new vertex ai.
Consequently, all vertices are still represented on the external face which implies
that Ui is outerplanar. Since ai is a new vertex, the external face remains a
simple cycle.

All of the steps described above can be easily implemented in linear time.
However, the augmented arcs could incur quadratic time and space costs (e.g.,
with a vertex of degree O(n) in G). We can solve the problem in linear time and
space if we instead find the path using the vertex-face incidence graph V F of G
(see, [14]), where every vertex and face in G corresponds to a node in V F and
two nodes a and b in V F are connected by an arc if and only if a corresponds to a
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vertex that is on the boundary of the face b. Any path in V F is an alternating
sequence of face and vertex nodes, and bypassing the vertex nodes in such a
path yields an equivalent path in the augmented dual graph. Similarly, any
path in the augmented dual graph can be mapped to an equivalent path in V F ,
by including a shared vertex between face nodes. Therefore, a shortest path in
V F can be used to compute a valid shortest augmented path p∗. 2

Fig. 6(d) illustrates the result of one such partition as well as an issue that
can arise in the splitting of the planar graph G. In particular, there will be
vertices on the external cycle of G that are also part of the union U . This
means that either G1 or G2 might have a cut vertex. For vertices that are to be
placed along the bottom row this is not a problem, but it can be problematic
for the sides. We can avoid this issue by choosing a start and end edge from
among a set of edges rather than just the two edges e` and er. The following
extension of Lemma 1 addresses this issue.

Lemma 2 Given an embedded plane graph G that is fully triangulated, except
for the external face, and given two vertex-disjoint chord-free paths L and R on
that external face, it is possible in linear time to partition V (G) into two subsets
V1 and V2 such that

1. the subgraphs of G induced by V1 and V2, called G1 and G2, are both
connected subgraphs;

2. there exists exactly one vertex v ∈ V (L) (say v ∈ V1) with neighbors in
V2 \ V (L) (the opposite vertex set that are not part of V (L)), the same
holds for V (R); and

3. the union U of the set of internal faces in G that are not in G1 or G2

forms an outerplane graph with the property that the external face of U is
a cycle with no repeated vertices.

Proof: The proof is a simple modification of the graph and proof of Lemma 1.
First, let V (L) = v1, v2, . . . , vk be the ordered set of vertices in the path of L.
We add an edge e` = (v1, vk) on the external face; see Fig. 7(a). We do the
same for the set R creating an edge er. We then proceed as with Lemma 1 with
one additional caveat. After expanding p∗ to yield the path p in the dual D,
let a be the last node visited on p that is incident to a vertex v ∈ L; that is,
the face corresponding to a is incident to v. Replace the portion of the path
of p from s to a with a path from s to a that visits consecutive nodes incident
to v. For clarity, we shall refer to this path as p′; see Figs. 7 and 8. Again,
the choice of going clockwise or counterclockwise around v will depend now on
the succeeding arcs from a. If the arcs leave counterclockwise from a, then
the path from s to a also proceeds counterclockwise around v. Otherwise, it
proceeds clockwise around v. Though not always necessary, Fig. 8(c) illustrates
an example where this is essential. The same is done with the first node visited
on p that is incident to a vertex in R.
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(a)

(b)

Figure 7: (a) A graph G with the added edges e` = (1, 20) and er = (5, 17). The
light vertices correspond to those in L or R. The nodes of the augmented dual D∗

are shown labeled by their distance from the start node. One shortest (augmented)
path p∗ is shown highlighting the nodes visited. (b) The path p∗ has been expanded
revealing path p. Observe the two highlighted nodes from D correspond to the last,
respectively first, node incident to a vertex in L, respectively R. Cutting along this
path would place vertices 9, 10 and 16 in the upper graph but with edges extending to
the lower graph and would place vertices 13 and 15 in the lower graph but with edges
extending to the upper graph.
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(a)

(b) (c)

Figure 8: (a) Replacing the path p by pivoting around vertex 16 and vertex 13 to form
p′. In this example, the choice of traversing CW or CCW did not matter. Observe
that no nodes between the two highlighted nodes can be incident to a vertex in L or R
and all other nodes are incident to either 16 or 13. (b) The result after splitting along
the selected path p′. (c) Part of a graph depicting an example where the orientation
matters. In this case, node 1 is the last visited node on the path p incident to a vertex
(2) on L. The path from node 1 to 2 (and further) remains unchanged. Choosing the
(dotted) counterclockwise path around vertex 2 causes 5 to be connected by only one
edge once the cut is made; the resulting lower graph would have an external cycle that
visited 6 twice. Choosing the (dashed) clockwise path avoids the issue.
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The construction ensures that conditions (1) and (3) are met as they were
with Lemma 1. To see that the new condition (2) is met, we claim that at most
two (neighboring) vertices in L are involved in any cut along the path p′. By
our construction, the path p′ visits a sequence of nodes that are all incident to
one vertex vi ∈ L starting from node s until node a; see Fig. 8(a). Since we let
node a be the last such incident node on the original path p and hence on p′,
the only nodes visited that are incident to vertices in L must belong to this first
sequence of nodes in p′. The first node visited after node s must cross an edge
of L, namely, vi and one of its immediate neighbors in L, which without loss
of generality we call vi+1. By construction of the path p′, all subsequent nodes
until a are also incident to vi. Let v be any other vertex incident to one of these
subsequent nodes. Clearly, v cannot be vi+1. If v = vi−1, the other immediate
neighbor of vi, then the path would have returned to the source node and hence
p∗ was not a shortest path. Finally, v cannot be any other vertex in L because
L is chord-free and the edge (v, vi) would necessarily be a chord.

Therefore, there are at most two vertices vi and vi+1 from L involved in any
of the cuts along the path p. Since no vertex is repeated, only one of these
two vertices will have other neighboring vertices on the opposite vertex set; see
Figs. 8(a-b). The same argument holds for R. 2

We can now discuss the steps for the grid drawing of the genus-1 graph
G∗ with an external face formed by P. Using Lemma 2, with L = P4 and
R = P2, divide G∗ into two subgraphs G1 and G2. We show how to embed
G1, as G2 is processed in the same fashion. Assume without loss of generality
that G1 contains the bottom path, P3. Compute a canonical order of G1 so
that the vertices of P3 are the last vertices removed. This is possible with a
simple modification. Introduce three new vertices a, b, c forming a new external
face; connect all vertices of P3 to b and the last vertex of P3 to c; connect the
first and last vertices of P3 as well as all other vertices on the external cycle to
a. The added vertices are ignored from the canonical ordering afterwards; see
Figs. 9(a-b).

Place all of the vertices of P3 consecutively on the horizontal line y = 0;
p3,k3 , p3,k3−1, . . . , p3,1; see Fig. 9(c). This is possible since the path is chord-
free. As discussed in Section 3.1, the standard dPP algorithm [7] maintains the
invariant that at the start of each iteration, the current external face consists
of the original horizontal line and a set of line segments of slope ±1 between
consecutive vertices. The algorithm also maintains a “shifting set” for each
vertex. We modify this condition by requiring that the vertices on the right
and left boundary that are part of P2 and P4 be aligned vertically and that
the current external face might have horizontal slopes corresponding to vertices
from P3; see Figs. 9(d) and 10(a). Upon insertion of a new vertex v, the vertex
will have consecutive neighboring vertices on the external face. We label the
left and rightmost neighbors x` and xr. To achieve our modified invariant, we
insert a vertex v into the current drawing depending on its type, 0, 1, or 2, as
follows:

Type 0: Vertices not belonging to a path in P are inserted as with the tra-
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(a)

(b)

(c) (d)

Figure 9: (a) A graph G1 with no canonical labeling. The external face a, b, c has been
added along with its adjacent edges. Though the embedding is fixed, the placement
is done for illustrative purposes to show the final positions after the drawing process.
The path P3 is highlighted with darkened nodes. (b) One possible canonical labeling
on the vertices, ignoring the added external face. Observe that the vertices of P3 are
labeled 1–5. (c) The initial embedding step placing all of P3 on a horizontal line and
inserting the next vertex 6. (d) The result after adding the vertex 7, which being part
of P2 must lie directly above vertex 5.
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(a) (b)

(c) (d)

Figure 10: (a) The embedding process after insertion of the first 11 vertices. Note
the invariant condition allowing horizontal lines along the bottom row {1, 2, 3, 4, 5} =
P3 and the two partial vertical walls {8, 7, 5} ⊂ P2 and {1, 9, 10} ⊂ P4. (b) The
subsequent insertion of a Type 0 vertex with v = 12, x` = 2, and xr = 11. The light
vertices to the right of 12 including xr have been shifted over one unit. (c) The result
of inserting a Type 1 vertex with v = 13, x` = 11, and xr = 8. In this particular
instance, we did not have to shift. (d) Two subgraphs G1 and G2 stitched together,
the thicker edges are the edges initially removed in the separation phase. Although
p can be used as the point of placement, as this example illustrates, it is possible to
compress the stitch further.
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ditional dPP algorithm. That is, the vertex v is connected to its two
neighboring vertices x` and xr on the external face using a slope of +1
and −1. This insertion might require up to two horizontal shifts deter-
mined by the shifting sets; see Fig. 10(b). The remaining neighboring
vertices x`+1, . . . , xr−1 are connected with straight line segments as usual.

Type 1: Vertices belonging to P2, which must be placed vertically along the
right boundary, are inserted with a line segment of slope +1 between x`

and v and a vertical line segment between v and xr. Notice that xr must
also be in P2. And because P2 is chord-free xr is the topmost vertex on
the right side of the current external face. That is, v can see xr. By
Lemma 2 and the fact that the graph was fully triangulated, we also know
that v must have a vertex x`. This insertion requires only 1 shift, for
the visibility of x` and v. Again the remaining vertices x`+1, . . . , xr−1 are
connected as usual; see Fig. 10(c).

Type 2: Vertices belonging to P4, which must be placed vertically along the
left boundary, are handled similarly to Type 1 vertices.

Because of Lemma 2, after processing both G1 and G2, we can stitch the
two portions together; see Fig. 10(d). Shift the left wall of the narrower graph
sufficiently to match the width of the other graph. Thus, both graphs have width
W . For simplicity, refer to the vertices on the external face of each subgraph
that are not exclusively part of the wall or bottom row as upper external vertices.
For each subgraph, consider the point p located at the intersection of the lines
of slope ±1 extending from the left and rightmost external vertices. Flip G2

vertically placing it so that its point p lies either on or just above (in case
of non-integer intersection) G1’s point. Because the edges between the upper
external vertices have slope |m| ≤ 1 and because of the vertical separation of the
two subgraphs, every upper external vertex on G1 can directly see every upper
external vertex on G2. By Lemma 2, we know that the set of edges removed
in the separation along with the edges connecting the upper external vertices
forms an outerplanar graph. Therefore, we can reconnect the removed edges,
joining the two subgraphs, without introducing any crossings.

We claim that the area of this grid is O(n) × O(n2). First, let us analyze
the width. From our discussion, we have accounted for each insertion step using
shifts. Since the maximum amount of shifting of 2 units is done with Type
0 vertices, we know that each of the two subgraphs has width at most 2n.
In addition, the stitching stage only required a shifting of the smaller width
subgraph. Therefore, the width of our drawing is at most 2n. After completion
of the traditional dPP algorithm the height is half the width, because the edges
on the external face have slopes ±1. We can only say this about the upper
vertices. Fortunately, after the insertion of each wall vertex we know that the
height increases by at most W . Therefore, we know that the height is at most
Wn or 2n2 and consequently we have a correct drawing using a grid of size
O(n)×O(n2). 2
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Figure 11: Two examples forcing a height that grows quadratically, as our method is
currently described. A relaxation of the slope constraints could resolve this issue.

Thus, we get a planar polygonal-schema drawing of a toroidal graph G in
a rectangle, which simultaneously achieves polynomial area, a straight frame,
and straight-line edges. Ideally, the height of our drawing would also match the
linear width bound. The stitching stage for example only adds at most W ≤ 2n
units to the final height. Unfortunately, as Fig. 11 illustrates, a problem arises
when vertices of Type 1 and Type 2 interconnect.

In particular, let the width at the start of an iteration be W . If we add a
vertex v on the left wall that is connected to a vertex on the right wall, then
this vertex must be inserted at a height W above the vertex on the right wall,
to maintain proper slope. Repeating this, leads to a height of the grid that is
quadratic in the width of the grid. As the underlying dPP algorithm requires
width linear in the number of vertices in the graph, we get the O(n) × O(n2)
area.

3.3 The Peel-and-Bend Algorithm

The case for g > 1 is similar but involves a few alterations. First, we use
n = |V | unlike the previous sections which used n = |V | + g. The main differ-
ence, however, is that we cannot embed the outer face using only horizontal and
vertical walls unless the union of the fundamental cycles is chord-free or unless
edge bends are allowed. If we desire a straight-frame rendering of the polygonal
schema P in a rectangle, we must allow some edge bends. The following theo-
rem describes our resulting drawing method, which we call the Peel-and-Bend
algorithm.
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Theorem 4 Let G∗ be an embedded planar graph and P = {P1, P2, . . . , P4g} in
G∗ be a collection of 4g paths such that each path Pi = {pi,1, pi,2, . . . , pi,ki} is
chord-free, the last vertex of each path matches the first vertex of the next path,
(pi,ki

= pi+1,1) including P4g and P1, and when treated as a single cycle, P
forms the external face of G∗. Let k =

∑4g
i=1(ki − 1) be the number of vertices

on the external cycle. We can draw G∗ on an O(n)×O(n2) grid with straight-
line edges and no crossings and at most k − 3 single-bend edges in such a way
that for each path Pi on the external face the vertices on that path form a straight
line. Moreover, the external face forms a rectangle.

Proof: First, let us assume that the entire external face, represented by P, is
completely chord-free. That is, if two vertices on the external cycle share an
edge then they are adjacent on the cycle. In this case we can create a new
set of 4 paths, P ′ = {P1,∪i=2,...,2gPi, P2g+1,∪i=2g+2,4gPi}. We can then use
Theorem 3 to prove our claim using no bends.

If, however, there exist chords on the external face, embedding the graph
with straight-lines becomes problematic, and in fact impossible to do using a
rectangular outer face. By introducing a temporary bend vertex for each chord
and retriangulating the two neighboring faces, we can make the external face
chord free. Clearly, this addition can be done in linear time. Since there are
at most k vertices on the external face and since the graph is planar, there are
no more than k − 3 such bend points to add. We then proceed as before using
Theorem 3, subsequently replacing each temporary vertex with a bend point
and deleting the added edges. 2

4 Algorithms for Non-Toroidal Graphs

In this section, we describe two more algorithms for producing a planar polygonal-
schema drawing of a non-toroidal graph G, which is given together with its
combinatorial embedding on a genus-g surface, S, where g > 1. As mentioned
above, these algorithms provide alternative trade-offs with respect to the three
primary aesthetic criteria for polygonal-schema drawings: straight-line edges,
straight frames and polynomial area.

The Peel-and-Stretch Algorithm. In the Peel-and-Stretch Algorithm, we
find a chord-free polygonal schema P for G and cut G along these edges to form
a planar graph G∗. We then lay out the sides of P in a straight-frame manner as
a regular convex polygon, with each fundamental path forming one side of the
polygon and the vertices along each boundary edge spaced as evenly as possible.
We then fix this as the outer face of G∗ and apply Tutte’s algorithm [18, 19]
to construct a straight-line drawing of the rest of G∗. This algorithm there-
fore achieves a drawing with straight-line edges in a (regular) straight frame,
but it may require exponential area when normalized to an integer grid, since
Tutte’s drawing algorithm may generate vertices with coordinates that require
Θ(n log n) bits to represent.
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The Peel-and-Place Algorithm. In the Peel-and-Place Algorithm, we start
by finding a polygonal schema P for G and cut G along these edges to form
a planar graph G∗, as in all our algorithms. In this particular case, we next
create a new triangular face, T , and place G∗ in the interior of T . After fully
triangulating this graph, we then apply the standard dPP algorithm [7] or the
planar drawing algorithm of Schnyder [16] to construct a drawing of this graph
in an O(n)× O(n) integer grid with straight-line edges. Finally, we remove all
extra edges to produce a polygonal schema drawing of G. The result will be
a polygonal-schema drawing with straight-line edges having polynomial area,
but there is no guarantee that it is a straight-frame drawing, since the two
algorithms make no collinear guarantees for vertices adjacent to the vertices on
the bounding triangle.

5 Conclusion and Future Work

In this paper, we present several algorithms for polygonal-schema drawings of
higher-genus graphs. Our method for toroidal graphs achieves drawings that
simultaneously use straight-line edges in a straight frame and polynomial area.
Previous algorithms for the torus are restricted to special cases or do not always
produce polygonal-schema renderings [5, 10, 20]. Our methods for non-toroidal
graphs can achieve any two of these three criteria. To the best of our knowl-
edge, previous algorithms for general graphs in genus-g surfaces were restricted
to those with “nice” polygonal schemas [21]. The problem of whether it is pos-
sible to achieve all three of these aesthetic criteria for non-toroidal graphs has
recently been resolved in [1]. However, we feel one big open problem in both
the current paper and the more recent generalization is embedding the drawing
such that the positions of matching vertices coincide. This is a common way
to depict the split vertices particularly in the rendering of a toroidal graph; see
for example Fig. 1(b). Reducing the area bound established in both papers is
another important research direction as discussed at the end of Section 3.2.
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