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Abstract

Let G be a graph that may be drawn in the plane in such a way
that all internal faces are centrally symmetric convex polygons. We show
how to find a drawing of this type that maximizes the angular resolution
of the drawing, the minimum angle between any two incident edges, in
polynomial time, by reducing the problem to one of finding parametric
shortest paths in an auxiliary graph. The running time is at most O(t3),
where t is a parameter of the input graph that is at most O(n).
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1 Introduction

Angular resolution, the minimum angle between any two edges at the same
vertex, has been recognized as an important aesthetic criterion in graph drawing
since its introduction by Malitz and Papakostas in 1992 [10]. Much past work
on angular resolution in graph drawing has focused on bounding the resolution
by some function of the vertex degree or other related quantities, rather than
on exact optimization; however, recently, Eppstein and Carlson [3] showed that,
when drawing trees in such a way that all faces form (infinite) convex polygons,
the optimal angular resolution may be found by a simple linear-time algorithm.
The resulting drawings have the convenient property that the lengths of the
tree edges may be chosen arbitrarily, keeping fixed the angles selected by the
optimization algorithm, and no crossing can occur; therefore, one may choose
edge lengths either to achieve other aesthetic goals such as good vertex spacing
or to convey additional information about the tree.

In this paper, we consider similar problems of reorienting edges so as to
optimize the angular resolution of a more complicated class of graph drawings.
Here we consider the class of planar straight line drawings in which each inter-
nal face of the drawing is a centrally-symmetric convex polygon. Such polygons
always have an even number of vertices. In previous work [6], we investigated
drawings of this type, which we called face-symmetric drawings. We charac-
terized them as the duals of weak pseudoline arrangements in the plane, and
described an algorithm that finds a face-symmetric drawing (if one exists) in
linear time, based on an SPQR-tree decomposition of the graph. Graphs with
face-symmetric drawings are automatically partial cubes (or, equivalently, me-
dia [7]), graphs in which the vertices may be labeled by bitvectors in such a way
that graph distance equals Hamming distance; see [7] for the many applications
of graphs of this type.

Figure 1 depicts an example, a hyperbolic line arrangement with no three
mutually intersecting lines, the intersection graph of which requires five colors,
as constructed by Ageev [1], and the planar dual graph of the arrangement. The
dual of a hyperbolic line arrangement with no three mutually intersecting lines,
such as this one, is a squaregraph, a type of planar median graph in which each
internal face is a quadrilateral and each internal vertex is surrounded by four or
more faces [2,5]. Any squaregraph may be drawn in such a way that its faces are
all rhombi, by our previous algorithm [6], and the drawing produced in this way
is shown in the figure. However, note that some rhombi have such sharp angles
that they appear only as line segments in the figure, making them difficult to
view. Other rhombi, even those near the edge of the figure, are drawn with
overly wide angles, making them very legible but detracting from the legibility
of other nearby rhombi. Thus, we are led to the problem of spreading out the
angles more uniformly across the drawing, in such a way as to optimize its
angular resolution, while preserving the property that all faces are rhombi.

As we show, this problem of optimizing the angular resolution of a face-
symmetric drawing may be solved in polynomial time, by translating it into a
problem of finding parametric shortest paths in an auxiliary network. In the
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Figure 1: A hyperbolic line arrangement (top), and its dual squaregraph (bot-
tom), drawn by our previous un-optimized algorithm with all faces rhombi.
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parametric shortest path problem, each edge of a network is given a length that
is a linear function of a parameter λ; substituting different values of λ into these
functions gives different real weights on the edges and therefore different shortest
path problems [8]. The number of different shortest paths formed in this way, as
λ varies, may be superpolynomial [4], but fortunately for our problem we do not
need to find all shortest paths for all values of λ. Rather, the optimal angular
resolution we seek may be determined as the maximum value of λ for which
the associated network has no negative cycles, and the drawing itself may be
constructed using distances from the source in this network at the critical value
of λ. The linear functions of our auxiliary network have a special structure—each
is either constant or a constant minus λ—that allows us to apply an algorithm
of Karp and Orlin [9] for solving this variant of the parametric shortest path
problem, and thereby to optimize in polynomial time the angular resolution of
our drawings.

2 Drawings with symmetric faces

The algorithm of [6] can be used to find a non-optimal face-symmetric drawing,
when one exists, in linear time; therefore, in the algorithms here we will assume
that such a drawing has already been given. We summarize here the relevant
properties of the drawings produced in this way.

In a face-symmetric drawing, any two opposite edges of any face must be
parallel and of equal length [6]. The transitive closure of this relation of being
opposite on the same face partitions the edges of the drawing into equivalence
classes, which we call zones; any zone consists of a set of edges that are parallel
and have equal lengths. (Note, however, that edges in different zones may also
be parallel and have equal lengths.) The line segments connecting opposite pairs
of edge midpoints within each face can be grouped together into a collection of
curves which can be extended to infinity away from the interior faces to form a
weak pseudoline arrangement. Each zone is formed by the drawing edges that
cross one of the curves of this arrangement. This construction is depicted in
Figure 2. Note that these weak pseudoline drawings are a useful expository
concept, but are never created or manipulated by our algorithm.

Thus, the positions of all the vertices of the drawing are determined, up to
translation of the whole drawing, by a choice of a vector for each zone that
specifies the orientation and length of the zone’s edges. For, if an arbitrarily
chosen base vertex has its placement fixed at the origin, the position of any other
vertex v must be the sum of the vectors corresponding to the weak pseudolines
that separate v from the base vertex. All vertex positions may be computed by
performing a depth first search of the graph, setting the position of each newly
visited vertex v to be the position of v’s parent in the depth first search tree
plus the vector for the zone containing the edge connecting v to its parent.

The algorithm from [6] determines the vectors for each zone as follows. Asso-
ciate a unit vector with each end of each of the pseudolines dual to the drawing,
in such a way that these unit vectors are equally spaced around the unit circle in
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Figure 2: Converting a face-symmetric drawing into a weak pseudoline arrange-
ment, by drawing line segments connecting opposite pairs of edge midpoints
within each face. From [6].

the same cyclic order as the order in which the pseudoline ends extend to infin-
ity. The vector associated with each zone is then simply the difference of the two
unit vectors associated with the corresponding pseudoline’s ends, normalized so
that it is itself a unit vector.

As shown in [6], this choice of a vector for each zone leads to a face-symmetric
drawing without crossings. Additionally, it has two more properties, both of
which are important and will be preserved by our optimization algorithm. First,
if the planar embedding chosen for the given graph has any symmetries, they will
be reflected in the dual pseudoline arrangement, in the choice of zone vectors,
and therefore in the resulting drawing.

Second, although it may not be possible to draw the given graph in such
a way that the outer face is convex, its concavities are all mild. This can be
measured by defining the winding number of any point p on the boundary of
the drawing, with respect to any other point q also on the boundary, as the sum
of the turning angles between consecutive edges along a path counterclockwise
around the boundary from q to p. For any simple polygonal boundary, the
winding number from p to q is 2π minus the turning angle from q to p. In
a convex polygon, all winding numbers would lie in the range [0, 2π]; in the
drawings produced by this method, they instead lie in the range [−π, 3π]. That
is, intuitively, the sides of any concavity may be parallel but may not turn back
towards each other. It follows from this property that the vectors of each zone
may be scaled independently of each other, preserving only their relative angles,
and the resulting drawing will remain planar [6]. In particular, the step in the
algorithm of [6] in which the zone vectors are normalized to unit length leads
to a planar drawing. A similar constraint on winding numbers was used in the
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algorithm of [3] for finding the optimal angular resolution of a tree drawing,
and again led to the ability to adjust edge lengths arbitrarily while preserving
the planarity of the drawing. Indeed, tree drawings may be seen as a very
special case of face-symmetric drawings in which there are no internal faces to
be symmetric.

Thus, we may formalize the problem to be solved, as follows: given a face-
symmetric drawing of a graph G, described as a partition of the edges of G into
zones and a zone vector for each zone, we wish to find a new set of zone vectors
to use for a new drawing of G, preserving the relative orientation of any two
edges that meet at a vertex of G, maintaining the constraint that all winding
numbers lie in the range [−π, 3π], and maximizing the angular resolution of the
resulting drawing.

3 Algorithmic results

In this section we describe a polynomial-time algorithm for the problem at
hand. As described above, the core of our algorithm is a routine that maps
a planar face-symmetric drawing G to an auxiliary graph A, such that the
auxiliary graph may be used as input to a parametric shortest paths algorithm
of Karp and Orlin [9], and the output of that algorithm describes a drawing G′

isomorphic to G and with maximal angular resolution. The algorithm of [9] runs
in polynomial time, so what remains to be seen is the correctness and running
time of our mapping routine.

Table 1 summarizes the intuitive relationships between concepts in the draw-
ings G and G′ and their representation in the auxiliary graph A. As shown in
the table, edge zones correspond to auxiliary graph vertices; angular resolution
corresponds to the parametric variable λ; the change in angle of zones between
G and G′ corresponds to lengths of shortest paths in A; and constraints on the
angles are represented by edges in A. Figure 3 shows a small example input
graph G with five zones, and Figure 4 shows the corresponding auxiliary graph
A.

We now define our notation formally and show that our reduction is correct.

Definition 1 Let

• G be the planar face-symmetric graph and its nondegenerate drawing given
as input;

• Z = {z0, z1, . . .} be the zones of G;

• t = |Z| be the number of zones in G;

• θG(zi) be the angle assigned to edges of zone zi in G, in radians counter-
clockwise;

• ∠G(i, j) = θG(zj) − θG(zi) be the counterclockwise turning angle from
θG(zi) to θG(zj) in G;
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Figure 3: Example input graph G, using degrees rather than radians.

• A be a weighted, directed, auxiliary graph, such that every zone zi ∈ Z
corresponds to some vertex vi in A, and every edge (vi, vj) of A has weight
w(vi, vj) = bi,j −mi,j · λ, where bi,j ∈ R and mi,j ∈ {0, 1} are per-edge
constants, and λ is a graph-wide variable;

• s be a special start vertex in A;

• A have a weight 0 edge (s, vi) for every vertex vi 6= s in A;

• for every pair of distinct zones zi, zj, such that θG(zi) ≤ θG(zj) and there
exists a face in G with some edge from zi and some edge from zj, A
contains the following edges:

– an edge (vj , vi) with weight w(vj , vi) = θG(zj)− θG(zi)− λ,
– if a corresponding angle in G is interior, an edge (vi, vj) with weights
w(vi, vj) = π + θG(zi)− θG(zj), and

– if a corresponding angle in G is exterior, opposing edges with weights
w(vi, vj) = 3π+ θG(zi)− θG(zj) and w(vj , vi) = π+ θG(zj)− θG(zi);

• λ∗ be the largest value of λ such that A contains no negative cycles;

• d(vi) be the weight of the shortest path from s to vi in A when λ = λ∗;
from the x-axis;
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Figure 4: Auxiliary graph A for the input shown in Figure 3, again using degrees.
Only the lowest-weight edge between any pair of vertices is shown.

• G′ be the output drawing of G;

• θG′(zi) = d(vi) + θG(zi) be the angle assigned to edges in zone zi in the
output drawing G′, in radians counterclockwise from the x-axis;

• and ∠G′(i, j) = θG′(zj) − θG′(zi) be the angle between zi and zj in G′,
analogous to ∠G(i, j) in G.

Lemma 1 If A contains any edge from vi to vj with weight w(vi, vj) = W ,
then d(vj) ≤ d(vi) +W .

Proof: The shortest path to vi in A, followed by the edge (vi, vj), is a path to
vj with total weight d(vi) +W . Since d is defined for λ = λ∗, A has no negative
cycle; so the shortest path to vj has weight d(vj) ≤ d(vi) +W . �

Lemma 2 G′ has angular resolution λ∗, and every interior face of G′ is non-
concave.

Proof: Let ei and ej be any pair of edges in G that form an angle on some
interior or exterior face. If ei has the lesser absolute angle measure, then by con-
struction there exists an edge (vj , vi) with weight w(vj , vi) = θG(zj)−θG(zi)−λ∗,
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Concept in drawing Representation in auxiliary graph

Zone zi Vertex vi
Angular resolution Parametric variable λ
α is feasible angular resolution No negative cycles when λ ≤ α
Difference between angles of vec-
tors for zone zi in unoptimized
and optimized drawings

Shortest path distance d(vi) from s to vi

Angle between zi and zj is ≥ λ Edge with weight θG(zi)− θG(zj)− λ
Interior faces are convex Edge with weight π + θG(zi)− θG(zj)
Exterior boundary is mildly con-
vex

Opposing edges with weight w(vi, vj) =
3π + θG(zi)− θG(zj) and w(vj , vi) = π +
θG(zj)− θG(zi)

Table 1: Intuitive relationships between drawing concepts and auxiliary graph
components.

where vi and vj are the zones for ei and ej , respectively. Thus by Lemma 1,

d(vi) ≤ d(vj) + w(vj , vi)

d(vi)− d(vj) ≤ (θG(zj)− θG(zi)− λ∗)
−d(vi) + d(vj) ≥ −θG(zj) + θG(zi) + λ∗

d(vj) + θG(zj)− d(vi)− θG(zi) ≥ λ∗

(θG′(zj))− (θG′(zi)) ≥ λ∗

∠G′(i, j) ≥ λ∗;

so every corner angle in G′ has measure no less than λ∗.
Now suppose ∠eiej is interior. Then by construction there also exists an

opposing edge (vi, vj) with weight w(vi, vj) = π + θG(zi)− θG(zj). So again by
Lemma 1,

d(vj) ≤ d(vi) + (π + θG(zi)− θG(zj))

d(vj) + θG(zj)− d(vi)− θG(zi) ≤ π

(θG′(zj))− (θG′(zi)) ≤ π

∠G′(i, j) ≤ π,

which implies that G′ contains no concave face. �

Lemma 3 The winding number of any p and q on the boundary of G′ is in the
range [−π, 3π].

Proof: As in Lemma 2, let ei and ej be edges in G such that θG(i) ≤ θG(j). If
ei and ej form an angle on the boundary of G, then the corresponding vertices
vi and vj in A have opposing edges with weights w(vi, vj) = 3π+θG(zi)−θG(zj)
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and w(vj , vi) = π+θG(zj)−θG(zi). Then by algebraic manipulations symmetric
to those in Lemma 2,

−π ≤ ∠G′(i, j) ≤ 3π.

�

Theorem 2 The output graph G′ is a planar face symmetric drawing isomor-
phic to the input drawing G, such that all boundary winding numbers lie in
the range [−π, 3π], and the angular resolution of G′ is maximal for any such
drawing. Given G, G′ may be generated in O(t3) time.

Proof: Identifying the zones of G and constructing A may be done naively in
O(t2) time. The value λ∗ and corresponding distances d(vi) for every vertex vi in
A may be reported by invoking the algorithm of Karp and Orlin. That algorithm
runs in O(N3) time, where N is the number of vertices in the algorithm’s input
graph. We pass our auxiliary graph to the Karp-Orlin algorithm; A has t
vertices, so this step takes O(t3) time. The d(vi) distances define the zone
angles θG′ , allowing the drawing G′ to be output in linear time as described in
Section 2.

Our method of choosing new angles for the zone vectors implies that G′

is isomorphic to G and every interior face of G′ is centrally symmetric. By
Lemmas 2 and 3, every interior face of G′ is convex, and the exterior boundary
of G′ satisfies the convexity constraint.

Finally we must show that G′ has maximal angular resolution. Let H be any
correct drawing of the graph G, and let H have angular resolution λH . Then A
has no negative cycles for λ = λH : for, suppose we replace every weight w(vi, vj)
with w′(vi, vj) = w(vi, vj)+θH(vi)−θH(vj), where θH(vk) is the angle assigned
to zone zk in H. Any cycle contains an equal number of +θH(vk) and −θH(vi)
terms for each vi in the cycle, so our transformation does not change total cycle
weights, and hence preserves negative cycles. Each edge has nonnegative weight,
so no negative cycles exist in A. We use the Karp-Orlin algorithm to find the
largest value λ∗ for which A contains no negative cycle, and by Lemma 2, the
output graph G′ has angular resolution λ∗. Thus the angular resolution of G′

is greater than or equal to that of any correct drawing H. �

4 Experimental results

We implemented a simplified version of the algorithm described in Section 3
in the Python language. Our simpler algorithm performs a numerical binary
search for λ∗ rather than an implementation of the Karp-Orlin parametric search
algorithm. We make binary search decisions by generating the auxiliary graph as
described in Section 3, substituting in the value of λ to obtain real-valued edge
weights, then checking for negative cycles with a conventional Bellman-Ford
shortest paths computation. This algorithm runs in O(t3 logW ) time, where t
is the number of pseudolines (zones) in the drawing and W is the number of
bits of numerical precision used. Our motivation for these experiments was to
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Figure 5: Example input (top) and output (bottom) with 15 pseudolines.
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Figure 6: Output of our implementation for the graph shown in Figure 1, safely
optimized (top) and unsafely optimized (bottom).
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confirm that our optimization algorithm makes a noticeable visual improvement
over nonoptimized drawings, so we were comfortable trading some running time
for ease of implementation. Wall clock time ranged from a matter of seconds
for small t to roughly two minutes for t = 220 and W = 64.

Figure 5 shows a sample of input and output for our implementation. The
input is a correct, though suboptimal, planar face-symmetric drawing of a graph
with 15 pseudolines generated by the algorithm presented in [6]. The angular
resolution of the output is visibly improved. Figure 6 shows the output of the
algorithm when the 220-pseudoline graph shown in Figure 1 is used as input.
That unoptimized drawing has angular resolution 2π/110 ≈ .0571 radians. The
top output drawing was produced by our optimization algorithm using all cor-
rectness constraints, and has angular resolution 2π/75 ≈ .0838 radians. The
bottom drawing is the result of removing the constraint that concavities have
opening angles of at least π radians, which may in general result in a nonplanar
drawing, but in this case yields a planar drawing with an even greater angular
resolution of 2π/30 ≈ .209 radians.

5 Conclusion

We have described two algorithms for generating face-symmetric drawings with
optimal angular resolution. The first algorithm runs in strictly cubic time and
uses a subsidiary parametric shortest paths algorithm as a black-box subroutine.
The second algorithm runs in pseudopolynomial time and relies on the simpler
Bellman-Ford shortest paths algorithm. We implemented the latter algorithm
and found that it generates output that is both numerically and visibly improved
over unoptimized drawings.

Finally we offer the following possible directions for future research:

• We choose the edge length for each zone arbitrarily; can choosing them
more carefully lead to improved legibility?

• Can this approach be applied to related types of drawings, such as the
projections of high dimensional grid embeddings also studied in [6]?

• Our algorithm respects a fixed embedding. What about allowing for dif-
ferent embeddings, e.g. flipping parts of the graph at articulation vertices?
Is it still possible to optimize angular resolution efficiently in this more
general problem?

• What about other angle optimization criteria, such as those defined by all
angles in the drawing, rather than merely the sharpest angle?
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