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Abstract

We present a quadratic-time algorithm for computing the genus dis-
tribution of any 3-regular outerplanar graph. Although recursions and
some formulas for genus distributions have previously been calculated for
bouquets and for various kinds of ladders and other special families of
graphs, cubic outerplanar graphs now emerge as the most general fam-
ily of graphs whose genus distributions are known to be computable in
polynomial time. The key algorithmic features are the syntheses of the
given outerplanar graph by a sequence of edge-amalgamations of some
of its subgraphs, in the order corresponding to the post-order traversal
of a plane tree that we call the inner tree, and the coordination of that
synthesis with just-in-time root-splitting.
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1 Introduction

Counting the embeddings of interesting graphs in designated orientable and
non-orientable surfaces is a pursuit with considerable on-going activity. Various
papers derive formulas with exact numbers, recursions that are useful in con-
structing tables, or lower bounds. In this paper, we inventory the orientable
embeddings of 3-regular outerplanar graphs according to genus, by designing a
tree-based recursion algorithm. This involves new methods beyond those used
for linear-like families. It leads immediately to a genus distribution algorithm
for all 3-regular outerplanar graphs.

An outerplanar graph is a graphG that has an embedding in the sphere S0,
such that there is a face f∞ whose boundary-walk contains every vertex of G.
The graph can be drawn in the plane so that the face f∞ contains the point
at infinity. Then f∞ is called the exterior face, and the fixed embedding
represented is called an outerplane embedding.

Terminology A graph is taken to be connected and an embedding to be
cellular (i.e., the interior of each face is homeomorphic to an open disk), unless
it is explicitly declared or evident from context that something else is intended.
It may have multiple edges and/or self-loops. The words degree and valence
are used interchangeably.

Abbreviation We abbreviate “face-boundary walk” as fb-walk.

Table 1: Table of Notations

deg(v) degree of vertex v
bd(f) boundary of face f
Si orientable surface of genus i
SG surface in which graph G has some given embedding
γ(S) genus of orientable surface S

γmin(G) minimum genus of graph G
γmax(G) maximum genus of graph G
gi(G) number of embeddings of graph G in surface Si

The sequence {gi(G) | i ≥ 0} is called the genus distribution of the
graph G. We recall that two equivalent orientable embeddings of a graph G
are embeddings that have the same rotation at every vertex of G. We recall also
that for any (connected) graph G, the cycle rank β(G) equals the number of
edges in the edge-complement of a spanning tree. In §6 we derive an algorithm
for calculating the genus distribution of any 2-connected 3-regular outerplanar
graph.

Prior and contemporaneous work

Counting the embeddings of a given graph according to the genus or crosscap
numbers of the surfaces is an enumerative problem first proposed by [14]. The
earliest important successes, [8] and [16], were with classes of graphs that could
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be defined by recursive application of a single topological operation. Subsequent
results of this kind appear in [28], [25], [26], [36], [27], [5], [41], [38], and [42].
In [33], [34], and [35], Stahl made several significant theoretical observations,
including the resemblance of some genus distributions to Stirling numbers of the
first kind and the characterization of various graph families with known genus
distributions as “linear families”.

Some previous papers concerned with the related pursuit of enumerating the
embeddings of a graph in a minimum-genus surface are [4], [24], [9], and [10].

There is extensive complementary work about counting maps on a designated
surface by [20], [21], [22], [6], and many others. We call attention to [39], [40],
[19], and [7], all of which are concerned with counting maps whose 1-skeletons are
3-regular Hamiltonian graphs such that the Hamilton cycle bounds a face. The
name chord diagrams has been used for such graphs, which are a generalization
of outerplanar graphs.

Results contained in this paper and in the following sequence of related
papers were obtained within a year or so of each other: [15], [11], [12], [13], [30],
[23], [32], and [31]. We call special attention to [31], which derives a quadratic-
time algorithm for the genus distributions of 4-regular outerplanar graphs.

Distinguishing features of this paper

In previous papers on embedding distributions, all roots are static; that
is, they are assigned at the outset of a computation. In general, the number
of partials required in a partitioned genus distribution increases exponentially
with the number of roots, and the number of associated productions is at least
the square of that number of partials. A distinguishing feature of this paper is
the introduction of dynamic assignment of roots, by the new technique called
root-splitting, which is critical to the success of the algorithm. No graph oc-
curring in the calculation ever has more than two roots, but some graphs with
one root are given an additional root in precisely the necessary place at pre-
cisely the necessary time that permits continuation of the process of iterated
amalgamation.

Another distinguishing feature of this paper is the importance of the class
of graphs whose genus distributions are its objective. Outerplanar graphs occur
in many graph-theoretic contexts within chromatic graph theory, topological
graph theory, and elsewhere. Moreover, the 2-connected outerplanar graphs
generalize to Hamiltonian planar graphs and, beyond the plane, to graphs that
are 1-skeletons of chord diagrams in any surface.

Calculating the minimum genus of a graph is known to be NP-hard [37],
and calculating its genus distribution is clearly at least that hard. However,
knowing that the outerplanar graphs have treewidth at most 2 (see [3]) suggests
that their genus distributions might be computationally accessible, since there
are instances (esp. [29]) in which bounding the tree-width makes an otherwise
NP-hard graph-theoretic problem solvable in polynomial time.
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Organization of this paper

§2 provides some definitions that are useful in topological graph theory. §3
defines a tree in the dual of an outerplane embedding that will be used to provide
an order for the operations of the algorithm by which the genus distribution is
to be calculated. §4 introduces the concept of partitioning a genus distribution
and the concept of productions. §5 offers an intuitive characterization of the
structure of 2-connected cubic outerplanar graphs. §6 presents the algorithm for
the 2-connected case. §7 analyzes the computational complexity and extends
the algorithm to the 1-connected case. §8 offers some conclusions.

2 Some Definitions for Genus Distributions

This paper uses terminology and notations from topological graph theory that
are consistent with [17] and [2]. We use some topological results from [30],
which analyzes the genus distribution of edge-amalgamations. This paper is
predominantly self-contained, but prior reading of [30] may be helpful.

An edge-end is a small, connected region of an edge that contains an end-
point of the edge and lies to one side of the midpoint. Thus, every edge has two
edge-ends, even if it is a self-loop (i.e., with only one endpoint).

A rotation at a vertex is an assignment of a cyclic ordering to the edge-ends
incident at that vertex. A rotation system for a graph is an assignment of a
rotation at every vertex. There is a bijective correspondence between the set
of rotation systems for a graph and the topological equivalence classes of its
cellular embeddings in orientable surfaces.

The general context for any investigation of genus distribution is that the
number of embeddings of a graph G is∏

v∈V (G)

((deg(v)− 1)!)

and that calculating genus distributions is NP-hard. Thus, the emphasis is on
deriving genus distributions for interesting families of graphs.

Any edge in a graph may be designated as an edge-root. A graph with one
or more edge-roots is called an edge-rooted graph. This paper is primarily
concerned with graphs having two root edges, which are called double-edge-
rooted graphs. A graph G with a single edge-root d may be denoted by (G, d),
and by (G, d, e) if it has a second edge-root e.

3 Inner Tree for a Cubic Outerplanar Graph

A plane tree is a rooted tree such that at each vertex, there is a linear ordering
of the children. This corresponds to a planar drawing of the tree, such that in
each generation of descendents, the children occur left-to-right in the prescribed
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linear order. Alternatively, a plane tree can be specified by a pair 〈T, ρ〉 con-
sisting of a tree T and a rotation system ρ for that tree, plus the designation of
a root vertex v and a principal descendant of the root v.

We observe that every 2-connected cubic outerplane embedding G→ R2 can
be obtained by adding non-intersecting inner chords to a cycle in the plane. The
Jordan curve theorem implies that the dual of a 2-connected cubic outerplane
embedding is obtainable by joining each vertex of a tree (lying inside bd(f∞)) one
or more times to the vertex in the exterior region. More precisely, the number
of times a dual vertex inside bd(f∞) is joined to the vertex in the exterior region
equals the number of edges in which its corresponding primal region meets the
exterior region f∞.

By selecting an arbitrary vertex of the tree as its root and selecting an
arbitrary child of the root as its leftmost child, we make the tree into a plane
tree, which we call an inner tree of the outerplane embedding of G. We recall
(e.g., from [1] or [18]) that the post-order for a plane tree is obtained from
a traversal of the fb-walk for its only face, starting with the edge from the
root to its leftmost child. Figure 1 shows the post-order for an inner tree of an
outerplane embedding. To construct the post-order, each vertex is enqueued
the last time that it occurs along this walk. Alternatively, one might traverse
the fb-walk in the opposite direction and push a vertex onto a stack the first
time that it occurs.

1 2

3

4
5
6
7

8
9
10

11

12

Figure 1: Outerplanar graph (left); post-order for its inner tree (right).

In §3 and §4, we restrict our attention to calculating the genus distribution
of 2-connected cubic outerplanar graphs. The result of subdividing one edge of
each of two disjoint graphs and then running a new edge between the two new
vertices is a form of bar-amalgamation, terminology introduced by [14]. In
§7, we use the bar-amalgamation operation to extend our algorithm from the
2-connected case to all cubic outerplanar graphs.
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4 Partials and Productions

The edge-amalgamation of a pair of edge-rooted graphs (G, c) and (H, d) is
the graph obtained from their disjoint union by merging the root-edges c and d.
We use an asterisk to denote the operation:

(G, c) ∗ (H, d) = X

Of course, there are two ways to merge edges c and d, depending on which
end of d is matched to which end of c. In what follows, it is assumed that
an edge-amalgamation is only one of these two ways, not both. We further
assume throughout this paper, as in [30], that root-edges have two 2-valent
endpoints. It follows that there are four rotation systems for the graph X =
(G, c) ∗ (H, d) that are consistent with a pair of prescribed rotation systems
for (G, c) and (H, d). Figure 2 illustrates an edge-amalgamation and the four
consistent rotation systems for the resulting graph.

(G,d) (H,e)

Figure 2: Edge-amalgamation and the four resultant rotation systems.

The distribution of genera for this set of four embeddings depends only on
the genus γ(SG), the genus γ(SH), and the respective numbers of faces in which
the two root-edges c and d lie. Accordingly, we partition the embeddings of a
single-edge-rooted graph (G, c) in a surface of genus i into the subset of type-di
embeddings, in which root-edge c lies on two distinct fb-walks, and the subset
of type-si embeddings, in which root-edge c occurs twice on the same fb-walk.
Moreover, we define

di(G, c) = the number of embeddings of type-di, and

si(G, c) = the number of embeddings of type-si.

Thus,
gi(G, c) = di(G, c) + si(G, c)

The numbers di(G, c) and si(G, c) are called single-root partials. The se-
quences {di(G, c) | i ≥ 0} and {si(G, c) | i ≥ 0} are called (single-root)
partial genus distributions.

Notation We may simply write di and si, when it is clear from context to
which graph they apply.

Remark More generally, with a root-edge whose endpoints may have higher
valence, there would be more partials, corresponding to a larger number of
possible configurations of fb-walks at the root.
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A production for an edge-amalgamation

(G, c) ∗ (H, d) = X

of single-edge-rooted graphs is a rule of the form

pi(G, c) ∗ qj(H, d) −→ αi+j gi+j(X) + αi+j+1 gi+j+1(X)

where, pi and qj are partials, and where αi+j and αi+j+1 are integers. It means
that amalgamation of a type-pi embedding of graph G and a type-qj embedding
of graph H induces a set of αi+j genus-(i + j) embeddings of X and αi+j+1

genus-(i+ j + 1) embeddings of X. We often write such a rule in the form

pi ∗ qj −→ αi+j gi+j + αi+j+1 gi+j+1

A double-edge-rooted graph (H, d, e) has many more partials than a single-
edge-rooted graph. The art of calculating genus distributions for recursively
defined families involves careful selection of the building blocks, so as to avoid
their having an unwieldy number of non-zero-valued double-root partials. The
two non-zero-valued double-root partials we need here, where our building blocks
are cycle graphs — and thus both endpoints of both root-edges d and e are 2-
valent — are as follows:

• The value of the double-root partial dd′′i (H, d, e) is the number of em-
beddings of graph H in the surface Si such that root-edge d lies on two
distinct fb-walks, and such that there is an occurrence of root-edge e on
each of these fb-walks.

• The value of the double-root partial ss 1
i (H, d, e) is the number of embed-

dings of graph H in the surface Si such that both occurrences of root-edge
d lie on the same fb-walk, and such that when that fb-walk is broken into
two strands by deleting the occurrences of edge d, one of these strands
contains both occurrences of root-edge e.

A production for an edge-amalgamation of a single-edge-rooted
graph to a double-edge-rooted graph

(G, c) ∗ (H, d, e) = (X, e)

such that edges c and d are merged and e becomes the root of the resulting
graph is a rule

pi(G, c) ∗ qj(H, d, e) −→ αi+j di+j(X, e) + αi+j+1 di+j+1(X, e)

+βi+j si+j(X, e) + βi+j+1 si+j+1(X, e)

where pi and qj are partials, and where αi+j , αi+j+1, βi+j and βi+j+1 are in-
tegers. It means that the amalgamation of a type-pi embedding of graph G
with a type-qj embedding of graph H induces a set of αi+j type-di+j embed-
dings, αi+j+1 type-di+j+1 embeddings, βi+j type-si+j embeddings, and βi+j+1

type-si+j+1 embeddings of X. We often write such a rule in the form

pi ∗ qj −→ αi+j di+j + αi+j+1 di+j+1 + βi+j si+j + βi+j+1 si+j+1

Remark If two graphs are pasted on root-edges whose endpoints have valence
larger than 2, there may be additional terms on the right side of the production.
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Theorem 4.1 Let (X, f) = (G, d) ∗ (H, e, f) be an edge-amalgamation where
the endpoints of root-edge d are 2-valent in G and the endpoints of root-edges e
and f are 2-valent in H. Then the genus distribution of (X, f) conforms to the
following productions:

di(G, d) ∗ dd′′j (H, e, f) −→ 2di+j(X, f) + 2si+j+1(X, f) (1)

si(G, d) ∗ dd′′j (H, e, f) −→ 4di+j(X, f) (2)

di(G, d) ∗ ss 1
j (H, e, f) −→ 4si+j(X, f) (3)

si(G, d) ∗ ss 1
j (H, e, f) −→ 4si+j(X, f) (4)

Proof: See Theorems 3.1 and 3.2 of [30]. �

In the next subsection, we apply Theorem 4.1 to the example of closed-
end ladders, with some attention devoted to the time required for recursive
calculation of their genus distributions.

Calculating the genus distribution of an edge-rooted ladder Ln

Example 4.1 We recall from [8] that the closed-end ladder Ln is defined to
be the result of doubling both the leftmost and rightmost edges of the cartesian
product of the path-graph Pn with K2. Thus, there are n interior rungs and
two outer rungs. See Figure 3.

For convenience, we define L0 to be the cycle graph C4 with roots on two non-
adjacent edges, i.e., a ladder with no interior rungs. On the other ladders, we
trisect one of the edges at the end of the ladder, and we regard the resulting
middle segment as the root-edge.

L1L0 L3L2
Figure 3: Some closed-end ladders with root-edges.

A basis for an inductive calculation is that the ladder L0 has the single-root
partitioned genus distribution

d0(L0, w) = 1

and the double-root partitioned genus distribution

dd′′0(L0, x, y) = 1

The single-rooted ladder Lj is representable as the edge-amalgamation of a copy
of Lj−1 to a double-rooted copy of L0. For instance, using Production (1), we
can calculate the single-root partitioned genus distribution of the ladder L1:

d0(L1, x) = 2 s1(L1, x) = 2
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Next, using Production (1) and Production (2), we can calculate the single-root
partitioned genus distribution of the ladder L2:

d0(L2, x) = 4 d1(L2, x) = 8 s1(L2, x) = 4

To obtain the single-root partitioned genus distribution of the ladder Lj from
the single-root distribution for Lj−1 and the double-root distribution for L0,
Productions (1) and (2) are sufficient. We continue applying these rules until
we obtain a partitioned genus distribution for Ln.

Proposition 4.2 The number of multiplications needed to calculate either the
single-edge-root or the double-edge-root partitioned genus distribution of the lad-
der Ln is in O(n2).

Proof: Since the cycle rank of the ladder Lk−1 is k, we have

γmax(Lk−1) ≤
⌊
k

2

⌋
Since there are only two single-edge-root partials, i.e., di and si, for each
genus gi, it follows that the number of non-zero single-edge-root partials of
the ladder Lk−1 is at most 2bk2 c, and thus, at most k. Since L0 has only one
non-zero partial, it follows that the number of combinations of a partial of Ln−1
with a partial of L0 needed to calculate the partials of Lk is at most k. Since
each production for a single-edge-root partial has at most four terms on its right
side, the total number of multiplications required is at most 4k. Accordingly, in
calculating the single-edge-root partial genus distribution of Ln, starting from
the partial genus distribution of L0, the number of multiplications is at most

n∑
k=1

4k = 4

(
n+ 1

2

)
≤ 4n2

There are 16 double-edge-root partials given in [30] (see Table 5). Thus, the
number of non-zero double-root partials of the ladder Lk−1 is at most 8k. By
a similar analysis, it follows that in calculating the double-edge-root partial
genus distribution of Ln, starting from the partial genus distribution of L0, the
number of multiplications is at most

n∑
k=1

32k = 32

(
n+ 1

2

)
≤ 32n2

�

Remark A closed formula for the genus distribution of unrooted closed-end
ladders is given by [8]. However, since the present objective is obtaining genus
distributions for a much more extensive family of graphs, we regard closed for-
mulas for various rooted varieties of ladders as peripheral.
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5 Characterizing Cubic Outerplanar Graphs

In this section, we define a special kind of outerplanar graph, called a star-
ladder graph, and we show that every 2-connected cubic outerplanar graph can
be regarded as a tree of star-ladder graphs. This is helpful in understanding the
algorithm that will be used to calculate the genus distribution.

Star-ladder graphs

For an r-tuple of non-negative integers U = (k1, k2, . . . , kr) the star-ladder
with signature U is the graph SLU obtained from the cycle graph C2r, with
consecutive edges labeled e1, e2, . . . , e2r as follows:

1. Subdivide one endrung of each of the closed-end ladders

Lk1 , Lk2 , . . . , Lkr

into three parts and take the middle third as the root-edge.

2. For i = 1, . . . , r, amalgamate Lki across its newly created root edge to
edge e2i of the cycle C2r.

We regard a cycle graph as a degenerate star-ladder corresponding to the empty
tuple.

Each of the closed-end ladders is regarded as a ray of the star and the cycle
as the hub. On each ray, one of the end-rungs farthest from hub is regarded as
the tip of the ray. The star-ladder SL(3,2,1) is shown in Figure 4.

hub

ray

tip

Figure 4: The star-ladder SL(3,2,1).

Remark We observe that two 3-regular star-ladders are isomorphic if the
signature of one can be obtained by a rotation and/or a reversal of the signature
of the other. However, placing a root-edge at the tip of one of the rays of a star-
ladder may not be equivalent to placing it at the tip of another ray. Similarly,
two different locations on the hub may be inequivalent.
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Trees of star-ladders

We seek to characterize a cubic outerplanar graph in an intuitive manner.
Toward that objective, we define a family T L of graphs called trees of star-
ladders recursively:

• Every graph that is homeomorphic to a star-ladder graph is in T L.

• Let (G1, e1) and (G2, e2) be in T L, with each of the edge-roots e1 and e2
either at the tip of a ray or on a hub, and with both endpoints of both
edges e1 and e2 2-valent. (Obtaining such an edge for amalgamating can
be achieved by trisecting an edge and using the middle third.) Then the
edge-amalgamated graph (G1, e1) ∗ (G2, e2) is in T L.

Theorem 5.1 Every 2-connected cubic outerplanar graph is homeomorphic to
a graph in the family T L.

Proof: Let G be a 2-connected cubic outerplanar graph. If there is only one
chord, then G is isomorphic to the star-ladder SL(0) and, therefore, in T L. As
an induction hypothesis, assume that this theorem is true when there are up to
m− 1 chords. Next, suppose that the graph G is 2-connected cubic outerplanar
with m chords, and let e be any chord. As illustrated in Figure 5, it is possible
to represent the graph G as an edge-amalgamation G = (G1, e1) ∗ (G2, e2) of
two graphs, such that edge e corresponds to the image of e1 and e2.

e2e1e
= *

G G1 G2
Figure 5: Splitting an outerplane embedding of G on the chord e.

Splitting an outerplane embedding of G on the chord e induces outerplane
embeddings of the graphs G1 and G2. Since G1 and G2 each have fewer chords
than G, it follows by the induction hypothesis that they are both in T L. Let
e1 and e2 be the images of edge e in graphs G1 and G2, respectively. If each of
them is either on a hub or at the tip of a ray, then the recursive construction
of the generalized star-ladders implies immediately that the edge-amalgamation
G = (G1, e1) ∗ (G2, e2) is in T L.

It is helpful here to call a 4-cycle in a closed-end ladder a “hole” (i.e., sug-
gesting a place in the ladder where one might insert a foot while climbing the
ladder). If, alternatively, the edge ei (where i is 1 or 2) lies within a side-edge of
some ladder in Gi, then let H be a hole in that ladder that contains the edge e1.
We may regard the hole H as a hub and proceed. �
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Theorem 5.2 Every graph in the family T L is homeomorphic to a 2-connected
cubic outerplanar graph.

Proof: Let G be a graph in T L. If no amalgamations are needed in the
recursive construction of G, then G is a star-ladder, and, thus, outerplanar.
Assume, by way of induction, that this theorem is true when G is constructable
with m−1 or fewer amalgamations. Next suppose that graph G is obtained by a
sequence of m amalgamations of graphs in T L. Consider the mth amalgamation
G = (G1, e1) ∗ (G2, e2) in such a sequence. By the induction hypothesis, both
G1 and G2 are homeomorphic to 2-connected cubic outerplanar graphs. Since
their respective root-edges e1 and e2 each lie either on a hub or at the tip of
a ray, they lie on Hamiltonian cycles C1 and C2 that bound the outer face of
respective planar embeddings of G1 or G2. When these two planar embeddings
are amalgamated across e1 and e2, the edges e1 and e2 merge into a single edge
e, and the subgraph (C1 ∪C2)− e is a Hamiltonian cycle in the resulting planar
embedding, and it bounds the outer face. Moreover, since each vertex of the
graph resulting from such an amalgamation is either 2-valent or 3-valent, the
graph is homeomorphic to a cubic graph. �

6 Algorithm for a Cubic Outerplanar Graph

To calculate the genus distribution of a 2-connected cubic outerplanar graph,
we introduce a new technique. The necessity arises in that constructing an
outerplane embedding G with n chords from cycle graphs involves n edge-
amalgamations. As we may observe in Figure 5, for example, sometimes there
are more than two chords on the boundary of a single region, and each of them
must be an active root-edge at some point in the process of iterative edge-
amalgamation used to construct G. In general, the number of partials increases
so rapidly with the number of root-edges on a graph, that having a graph with
more than two root-edges as an amalgamand would make the number of pro-
ductions required for calcution of the genus distribution formidably large. Ac-
cordingly, we now introduce a just-in-time technique that avoids having more
than two root-edges on any amalgamand at any time during the process. It is
designed to be used in conjunction with the post-order traversal.

Splitting a single root-edge into two root-edges

Let (G, a) be an edge-rooted graph such that both endpoints of edge a are 2-
valent. By splitting the root-edge a, we mean trisecting edge a and regarding
the two “outer” segments as root-edges of the resulting graph. (We may call
one of these outer segments a.) See Figure 6.

Theorem 6.1 Let (G, a, b) be a double-edge-rooted graph such that both end-
points of root-edges a and b are 2-valent, and such that there is a path from
edge a to edge b along which every internal vertex is 2-valent. Then for every
non-negative integer i,
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a
a

b

Figure 6: Splitting a root-edge a into root-edges a and b.

dd′′i (G, a, b) = di(G, a) (5)

ss 1
i (G, a, b) = si(G, a) (6)

Moreover, every other double-root partial of (G, a, b) is zero-valued.

Proof: The partial di(G, a) counts embeddings in which the occurrences of root-
edge a lie on separate fb-walks. We observe that, under the given premises, one
occurrence of edge b lies on one of these two fb-walks, and the other occurrence
of edge b lies on the other fb-walk. Thus, we have dd′′i (G, a, b) = di(G, a), as
illustrated at the left of Figure 7.

Figure 7: Transforming a single-root partial into a double-root partial.

The partial si(G, a) counts embeddings in which both occurrences of root-
edge a lie on the same fb-walk. We observe that, under the given premises, both
occurrences of edge b lie on that same fb-walk and that a single strand resulting
from the removal of a from that fb-walk contains both occurrences of edge b.
Thus, ss 1

i (G, a, b) = si(G, a), as illustrated at the right of Figure 7.

It follows from the definition of the single-root partials that

gi(G) = di(G, a) + si(G, a)

It follows, further, that

dd′′i (G, a, b) + ss 1
i (G, a, b) = gi(G)

Thus, the other double-root partials for genus i are zero-valued. This holds for
every non-negative integer i. �
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Calculating the genus distribution of a cubic outerplanar graph

We precede the statement of the algorithm by applying its sequence of amalga-
mations to the cubic outerplanar graph illustrated in Figure 1. Figure 8 shows
the complete set of amalgamands used to construct that graph.
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1 2
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3 4567
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Figure 8: Order of the amalgamation steps.

Example 6.1 Let A1, A2, . . . , A12 be the boundaries of the twelve non-outer
faces. The order of amalgamation is as follows:

1. Amalgamating (A1, c1) and (A3, c1, c2) and then splitting the root-edge c2
yields a graph we call (G2, c2, c3).

2. Amalgamating (A2, c2) and (G2, c2, c3) yields a graph we call (G3, c3).

3. Amalgamating (G3, c3) and (A12, c3, c7) and then splitting the root-edge
c7 yields a graph we call (G12, c7, c11).

4. Iteratively amalgamating (((A4, c4)∗(A5, c4, c5))∗(A6, c5, c6))∗(A7, c6, c7)
yields a graph we call (G7, c7).

5. Amalgamating (G7, c7)∗ (G12, c7, c11) and then splitting the root-edge c11
yields a graph we call (G′12, c11, x).

6. Amalgamating (A8, c8) and (A11, c8, c10) and then splitting the root-edge
c10 yields a graph we call (G11, c10, c11).

7. Amalgamating (A9, c9) and (A10, c9, c10) yields a graph we call (G10, c10).

8. Amalgamating (G10, c10) and (G11, c10, c11) yields a graph we call (G′11, c11).

9. Amalgamating (G′11, c11) and (G′12, c11, x) yields the graph we call (G, x).

By following these steps, we obtain the following genus distribution (see Table 2)
for the 22-vertex cubic outerplanar graph of Figure 1.

Remark In Example 6.1, after an amalgamation (Hi, ci) ∗ (Hj , ci, ck), notice
that we split the surviving root-edge ck whenever more children are to be pasted
to the resulting graph before it is pasted to its parent.



JGAA, 15(2) 295–316 (2011) 309

Table 2: Genus distribution of the outerplanar graph of Figure 1.

genus i 0 1 2 3 4 5

gi 2048 55296 458752 1482752 1671168 524288

Example 6.2 This smaller example involves less computation. Consider the
star-ladder (SL(0,1,1), x), where the root-edge x is at the tip of the ray corre-
sponding to the entry 0 in the signature. Table 3 gives the single-root partitioned
genus distribution.

Table 3: Partitioned genus distribution of the star-ladder SL(0,1,1).

genus i 0 1 2 3

di 32 320 384 0
si 0 32 128 128

gi 32 352 512 128

The following algorithm synthesizes an edge-rooted graph (G, x) in the fam-
ily CO from cycle graphs. During the sequence of edge-amalgamations, no
amalgamand ever has more than two root-edges, so the algorithm can
calculate the genus distribution at each step, using Theorem 4.1 and sometimes
Theorem 6.1. This is why we use the post-order of a plane tree. The
input to the algorithm includes a specification (by rotation system) of a plane
embedding of G.

Preliminaries:
1. Designate an inner tree T for the given outerplane embedding of G, such

that the global root-edge x of G lies on the boundary of the face containing
the root-vertex of T , and such that the leftmost subtree traversed in the
post-order for T lies immediately counterclockwise after x.

2. Label the vertices of the inner tree T as v1, v2, . . . , vn, the faces of the
outerplane embedding of G as f1, f2, . . . , fn, and the chords relative to
the designated outer cycle as c1, c2, . . . , cn−1, according to their order of
occurrence in the post-order of T .

Main Loop: For j = 1, . . . , n− 1
1. Perform the amalgamation corresponding to chord cj .

2. Use Theorem 4.1 to calculate the single-edge-root genus distribution for
the resulting graph.

3. If more children are to be pasted to the result before it is pasted to its
parent, then split the surviving root-edge and use Theorem 6.1 to calculate
the resulting double-edge-root genus distribution.

4. Continue with next j

Final Step: Label the surviving root-edge x.



310 Jonathan L. Gross: Genus Distributions of Cubic Outerplanar Graphs

7 Computational Complexity of the Algorithm

We would like to proceed in a fashion similar to our derviation in Proposition
4.2 of a quadratic-time upper bound for the genus distribution of closed-end
ladders. However, that previous derivation is based on having all the second
amalgamands in a path-based iterative sequence isomorphic to the same graph.
In this tree-based sequence of amalgamations of cycle graphs, both amalga-
mands may grow in size as the process progresses. Accordingly, we need a new
principle to obtain the quadratic upper bound for the total computation time.

Lemma 1 Let both (H, c) and (K, d, e) be homeomorphic to 2-connected cu-
bic outerplanar graphs, and such that both endpoints of the three root-edges are
2-valent. Then the number of multiplications needed to calculate the genus dis-
tribution of (H, c) ∗ (K, d, e) is at most 80 γmax(H) γmax(K), and the number of
additions needed is at most 160 γmax(H) γmax(K).

Proof: For each i = 0, . . . , γmax(H), the number of single-root partials is 2 (i.e.,
di and si), and for each j = 0, . . . , γmax(K), the number of double-root partials
is 10 (see §2 of [30]). Thus, the number of pairs (pi(H, c), qj(K, d, e)) of such
partials is

20 (γmax(H) + 1) (γmax(K) + 1)

≤ 20 γmax(H) γmax(K) + 20 γmax(H) + 20 γmax(K) + 20

≤ 80 γmax(H) γmax(K)

The last inequality uses the facts that γmax(H) ≥ 1 and γmax(K) ≥ 1. Each pair
(pi(H, c), qj(K, d, e)) requires only one multiplication of coefficients. Moreover,
each pair is subject to a single production, which yields at most two terms, by
Theorems 3.1, 3.2, and 3.3 of [30]. Thus, the number of terms in all is at most

160 γmax(H) γmax(K)

In calculating the non-zero single-root partials of the genus distribution of
(H, c) ∗ (K, d, e) from all these terms, each term is added into only one of the
partials. Hence, the total number of additions cannot exceed the number of
terms. �

Theorem 7.1 Let (G, x) be an n-vertex graph in T L (i.e, homeomorphic to a
2-connected cubic outerplanar graph) with root-edge x on the outer cycle, and
such that both endpoints of x are 2-valent. Then the time needed to calculate its
single-edge-root partitioned genus distribution is in O(n2).

Proof: Since the number of edges of a planar graph is linear in the number
of vertices, the dual graph of a planar embedding of G can be constructed in
linear time, using the familiar Heffter-Edmonds algorithm (e.g., see [17]). Thus,
the preliminary steps of the algorithm can be executed in linear time. We can
smooth out all the 2-valent vertices except the endpoints of root-edge x; we call
the resulting graph G.
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In analyzing the Main Loop, we consider an inner tree whose number of
vertices is β = β(G), the cycle rank of G, corresponding to β − 1 amalgamation
steps. The smallest possible case is when G is isomorphic to the dipole D3,
which is the graph obtained by joining two vertices with three edges and then
trisecting one of the edges and allowing the middle part to serve as the root x.
Then n = 4, so we have

d0(G, x) = 2 and s1(G, x) = 2

as the only non-zero partials. When iteratively calculating the non-zero partials
for the graph resulting from each amalgamation, the number of arithmetic op-
erations required is less than a fixed multiple M of the product of the numbers
of vertices in the amalgamands, by Lemma 1.

We denote the cycle graphs that bound the non-outer faces of the outerplane
embedding of G and their lengths by

A1, A2, . . . , Aβ and k1, k2, . . . , kβ

respectively. We let

N =

β∑
j=1

kj

Clearly, N ≤ 3n, since N is the length of the face-sizes – excluding the outer
face, so it is less than 2|EG|, which equals the sum of the vertex degrees, which
is exceeded by 3n, because the maximum degree is 3. (Indeed, N ≤ 2n.)

We denote the amalgamands of the jth amalgamation as G`j and Grj . The
maximum genus of each of these amalgamands is less than the sum of the
lengths of the cycle graphs from which that amalgamand is formed. It follows
from Lemma 1 that the number of arithmetic operations required to calculate
the partitioned genus distribution of the result from the partitioned genus dis-
tributions of the amalgamands is dominated by

M
∑

i:Ai⊂G`j

ki
∑

i:Ai⊂Grj

ki

where M is a multiplicative constant. It follows that the total number of arith-
metic operations needed to calculate the genus distribution of G (via β − 1
edge-amalgamations) is at most

β−1∑
j=1

M
∑

i:Aj⊂G`j

ki
∑

i:Aj⊂Grj

ki = M

β∑
j=1

kj(k1 + k2 + · · ·+ kj−1)

(equality holds since two distinct cycle graphs are merged only once)

≤ M(k1 + · · ·+ kβ)(k1 + · · ·+ kβ)

= MN2 ≤ 9Mn2

Thus, the computation time for the partitioned genus distribution of G is in
O(n2). �
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It is often convenient to represent the genus distribution of a graph G by
the polynomial

PG(x) = g0(G) + g1(G)x+ g2(G)x2 + · · ·+ gγmax(G)x
γmax(G)

which may be called the genus distribution polynomial.

Corollary 7.2 Let (G, x) be an n-vertex cubic outerplanar graph. Then the
time needed to calculate its single-edge-root partitioned genus distribution is in
O(n2).

Proof: It is easily shown that every cubic outerplanar graph is obtainable as
an iterated bar-amagamation of 2-connected cubic outerplanar graphs. Suppose
thatG is so obtained from 2-connected cubic outerplanar graphsG1, G2, . . . , Gp
of n1, n2, . . . , nq vertices, respectively. Then their respective genus distribution
polynomials P1(x), P2(x), . . . , Pq(x) have degrees less than n1, n2, . . . , nq, re-
spectively. By Theorem 5 of [14], the genus distribution of a bar-amalgamation
of two graphs is a multiple (in this case, by the number 4) of the convolu-
tion of the genus distributions of those two graphs. It follows that the genus
distribution polynomial of the graph G equals 4q−1 times the product

P1(x) · P2(x) · · · · · Pq(x)

It takes at most n1n2 integer multiplications to obtain the polynomial product
P1(x)·P2(x), which has degree less than n1+n2. It then takes at most (n1+n2)n3
integer multiplications to obtain the polynomial product P1(x) · P2(x) · P3(x),
which has degree less than n1 + n2 + n3. And so on. Accordingly, the total
number of integer multiplications needed to calculate the genus distribution
polynomial of G is less than

n1n2 + (n1 + n2)n3 + · · · + (n1 + · · ·+ nq−1)nq

which is less than n2. �

8 Conclusions

We have demonstrated that the genus distribution of a cubic outerplanar graph
can be obtained in O(n2)-time by synthesizing that graph via iterative amal-
gamation of cycle graphs and applying productions with each amalgamation.
This indicates the power of the advances in theoretical development provided
by [15], [30], and related papers.

Whereas previous approaches to counting embeddings have been developed
primarily for linear sequences of graphs, the new approach developed here is
applicable to families that can be creatively characterized as tree-like, rather
than linear. In going beyond linearly synthesized families, it is computationally
convenient to limit the number of roots of all (connected) graphs occurring
in the calculation to no more than two, lest there be a large increase in the
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number of partials and in the number of productions. This requires blending
new just-in-time techniques such as root-splitting into the algorithm.

The number of partials needed for a partitioned genus distribution of a rooted
graph grows exponentially in the number of roots. On a hub in the calculations
here, half the edges serve as roots at some time during the calculation. The
new technique of root-splitting introduced here is coordinated with a post-order
tree-traversal to avoid at any time having more than two roots on any graph
occurring in the calculation.

Research Problems.

1. It is proved in [8] that the genus distributions of closed-end ladders are
unimodal. Furthermore, there are no known examples of genus distribu-
tions that are not unimodal. Determine whether the genus distribution of
every cubic outerplanar graph is unimodal.

2. We observe that a Hamiltonian cycle in a 3-regular plane graph partitions
the other edges into inner chords and outer chords. This suggests the
problem of developing a polynomial-time algorithm to calculate the genus
distribution of any cubic planar Hamiltonian graph.

3. Another possible direction for extension of these results is to derive genus
distributions for toroidal chord diagrams and for chord diagrams of higher
genus.
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