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Abstract

Obtaining I/O-efficient algorithms for basic graph problems on sparse
directed graphs has been a long-standing open problem. The best known
algorithms for most basic problems on such graphs still require Ω(V ) I/Os
in the worst case, where V is the number of vertices in the graph. Never-
theless optimal O(sort(V )) I/O algorithms are known for special classes of
sparse graphs, like planar graphs and grid graphs. It is hard to accept that
a problem becomes difficult as soon as the graph contains a few deviations
from planarity. In this paper we extend the class of graphs on which ba-
sic graph problems can be solved I/O-efficiently. We discuss several ways
to transform graphs that are almost planar into planar graphs (given a
suitable drawing), and based on those transformations we obtain the first
I/O-efficient algorithms for directed graphs that are almost planar.

Let G be a directed graph that is given as a planar subgraph (V,E) and
a set of additional edges EC . Our main result is a single-source-shortest-
paths algorithm that runs in O(EC + sort(V + EC)) I/Os. When EC is
small our algorithm is a significant improvement over the best previously
known algorithms, which required Ω(V ) I/Os. Alternatively, when G
is given with a drawing with T crossings, we can compute single-source
shortest paths in O(sort(V + T )) I/Os. We obtain similar bounds for
computing (strongly) connected components, breadth-first and depth-first
traversals and topological ordering.
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1 Introduction

When working with massive graphs, only a fraction of the data can be held
in the main memory of a computer. Thus, the transfer of blocks of data be-
tween main memory and disk, rather than the actual computation, is often the
bottleneck. Therefore the running time can be improved considerably by devel-
oping external-memory or I/O-efficient algorithms—algorithms that specifically
optimize the number of block transfers between main memory and disk.

As graph problems are widely encountered in practice, I/O-efficient algo-
rithms for graph problems have been an active area of research. Even though
significant progress has been made, there is still a significant gap between the
lower and the upper bounds for all basic problems. Consider a directed graph
(digraph) with non-negative real edge weights. A shortest path from vertex u to
vertex v in G is a minimum-length path from u to v in G, where the length of a
path is the sum of the weights of the edges on the path. The length of a shortest
path is called the distance δG(u, v) from u to v in G. The single-source-shortest-
paths (SSSP) problem is to find shortest paths from a source vertex s to all ver-
tices in G. For planar digraphs (graphs that can be embedded in the plane such
that no two edges intersect), there exist SSSP-algorithms with upper bounds on
the number of block transfers that match proven lower bounds up to a constant
factor. However, for general digraphs, the SSSP problem is still open, as are
other basic problems such as the computation of connected components (CC),
strongly-connected components (SCC), and depth- and breadth-first traversals
(DFS, BFS). We note that these problems are also open on undirected graphs,
although the best known upper bounds on undirected graphs have seen signifi-
cant progress in the recent years.

Both from a theoretical and from a practical point of view, it is hard to
accept that SSSP should become extremely difficult as soon as a graph contains
a few deviations from planarity (like the one in Fig. 1). In practice, networks
(e.g. transportation networks) may not be planar. However, when edges are
expensive and junctions are cheap, such networks still have a strong tendency
to planarity: there will be only relatively few links (e.g., motorways) that cross
other edges without connecting to them. Other examples are networks in which
each vertex is connected to a few nearby vertices. In such networks, there may be
quite a number of crossings, but they are all very ‘local’. In this paper we give a
characterization of near-planarity covering a wide range of near-planar graphs,
and develop the first I/O-efficient algorithms for such graphs. An extended
abstract of this work appeared in [19].

I/O-Model and related work: We develop I/O-efficient algorithms using
the standard two-level I/O-model of Aggarwal and Vitter [1]. The model defines
two parameters: M is the number of vertices/edges that fit into internal memory,
and B the number of vertices/edges that fit into a disk block, where B 6
M/2. An Input/Output (or I/O) is the operation of transferring a block of
data between main memory and disk. The I/O-complexity of an algorithm
is the number of I/Os it performs. The basic bounds in the I/O-model are
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Figure 1: A “near-planar” graph (bottom) consisting of a planar graph (top
left) and a set of additional edges (top right).

those for scanning and sorting. The scanning bound, scan(N) = Θ(NB ) is the
number of I/Os necessary to read N contiguous items from disk. The sorting
bound, sort(N) = Θ(NB logM/B

N
B ) represents the number of I/Os required to

sort N contiguous items on disk [1]. For all realistic values of N , B, and M ,
scan(N) < sort(N)� N .

I/O-efficient graph algorithms have been considered by a number of authors;
for a recent review see Meyer et al. [27]. On general digraphs G = (V,E)
with V > M the best known algorithm for SSSP, as well as for the BFS and
DFS traversal problems, use Ω(V ) I/Os in the worst case1; their complexity is
O(min{(V + E

B ) · log V +sort(E), V + V
M

E
B }) as shown by Buchsbaum et al. [11],

Chiang et al. [12], and Kumar and Schwabe [22]. On sparse graphs, which have
E = O(V ), the best known bounds are thus O(V ) I/Os or worse, which is no
better than just running the internal-memory algorithms with an I/O-efficient
priority queue in external memory. This is far from the currently best lower
bound of Ω(min{V, sort(V )} + E/B) I/Os [12, 28], which on sparse graphs is
practically Ω(sort(V )).

The search for BFS, DFS and SSSP algorithms using O(sort(E)) I/Os on
general (sparse) graphs has led to a number of improved results for special
classes of sparse graphs by Arge and Toma [6], Arge and Zeh [9], and Arge et

1We denote the size of a set by its name; the meaning will be clear from the context.
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al. [4, 5, 7]. All these algorithms are based on the existence of small separators.
For planar graphs, they exploit R-partitions, as introduced by Frederickson [16].
Given a parameter R, for any planar graph K = (V,E) we can find a sub-
set VS of O(V/

√
R) separator vertices, such that the removal of VS partitions K

into O(V/R) subgraphs of size O(R). Moreover, the separator vertices can be
“evenly” distributed among the subgraphs, so that each subgraph is adjacent
to O(

√
R) separator vertices, called the boundary of the subgraph.

Maheshwari and Zeh [25] showed that such a partition of a planar graph
can be computed I/O-efficiently with O(sort(V )) I/Os provided that M >
min(cB2, cR log2B), for a sufficiently big constant c. All I/O-efficient pla-
nar graph algorithms first compute a partition of the graph with R = Θ(B2)
and use it to reduce the original problem to a smaller problem, defined on the
Θ(V/B) separator vertices. Assuming that M = Ω(B2), each subgraph has size
O(B2) = O(M) and thus fits in memory. The reductions rely crucially on the
fact that there are a factor of B fewer separator vertices, and they are distributed
among the subgraphs, so that each subgraph has a small boundary. Using these
ideas, on planar digraphs, SSSP and BFS can be solved in O(sort(V )) I/Os as
described by Arge et al. [7], and DFS in O(sort(V ) log V

M ) I/Os as described by
Arge and Zeh [9].

Now consider a digraph G = (V,E ∪ EC) that consists of a planar graph
K = (V,E) and a given set of additional edges EC ; with a slight abuse of
terminology, we call GC = G−K = (VC , EC) the non-planar part of G, and we
call VC and EC the non-planar vertices and the non-planar edges, respectively
(refer to Fig. 1). If EC is empty, G is planar and SSSP can be solved with
only O(sort(V )) I/Os. On the other hand if G is not planar, running any
of the general I/O-efficient SSSP algorithms would result in Ω(EC + V ) I/Os.
Moreover, running the planar SSSP algorithm using a separator of K would also
result in Ω(EC +V ) I/Os (details in Sec. 2.2). If EC is small compared to V , we
show that we can do much better by refining the separator of K and extending
the ideas behind the planar SSSP algorithm to handle the non-planar part of G.

Our results: In this paper we extend the class of directed graphs that ad-
mit I/O-efficient algorithms. We introduce a class of near-planar graphs and
show how to find small separators for planar subgraphs of such graphs, that
gracefully depend on the non-planarities. Using these separators, we develop
the first I/O-efficient SSSP, BFS, DFS, topological sorting and (strongly) con-
nected components algorithms for near-planar digraphs.

The main ingredient of our results is a partitioning theorem for a non-planar
digraph G = (V,E ∪ EC) consisting of a planar graph K = (V,E) and a given
set of additional edges EC ; let GC = G−K = (VC , EC) be the non-planar part
of G. Starting with an R-partition of the planar part K of G, we show how
to refine it to restrict the number of non-planar vertices v ∈ Vc per subgraph
and ensure that the number of subgraphs and separator vertices is not too
large. More precisely, we show that an R-partition can be refined so that no
subgraph contains more than O(

√
R) vertices of VC , while adding no more
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than O(
√
V VC/R

1/4) vertices to the separator and increasing the number of
subgraphs in the partition by no more than O(VC/

√
R).

Using this refined R-partition and extending the ideas behind the planar
SSSP algorithm, we show how to compute SSSP on G in O(EC+sort(V +EC)).

We generalize our result to digraphs G = (V,E ∪EC) such that K = (V,E)
can be drawn in the plane with T crossings. If we know for each edge (u, v)
of K which edges it crosses, and in which order these crossings occur when
traversing the edge from u to v, we can compute SSSP on such a graph G in
O(EC + sort(V + T + EC)) I/Os.

When a graph is near-planar in the sense that T = O(V ) and EC = O(V/B),
these bounds reduce to O(sort(V )), whereas the best known SSSP-algorithm for
general graphs require O((V + E

B )·log V
B +sort(E)) ⊃ O(V ) I/Os. If information

about a suitable drawing (that is, the location of its vertices) of a graph is
given, our results allow the computation of SSSP in O(sort(E)) I/Os on graphs
with crossing number O(E), on graphs that are k-embeddable in the plane
for constant k, on graphs with skewness O(E/B) and on graphs with splitting
number O(E/B). We obtain similar results for BFS, DFS, topological ordering
and SCC.

Outline: The paper is organized as follows. Sec. 2 presents background on
planar partitions and describes how to extend the results to graphs that are not
planar. Sec. 3 describes how to use a refined, non-planar partition to compute
SSSP efficiently. Sec. 4 extends our approach to other basic graph problems—
BFS, DFS, topological sort, and (strongly) connected components. In Sec. 5
we explain how our technique could be used for problems on several types of
graphs that are near-planar according to measures of planarity proposed in the
literature. We conclude in Sec. 6 and give directions for further research.

2 Partitioning a Near-Planar Graph

In this section we give an overview of partitions of planar graphs as described
by Frederickson [16] and discuss how to extend his result to obtain a partition
with similar good properties on graphs that are not planar.

We assume that we work with a directed graph G = (V,E∪EC) that consists
of a planar subgraph K = (V,E) of constant degree and a set of edges EC ; Let
GC = (VC , EC) = G − K denote the non-planar part of G, where a vertex
v ∈ VC if it is an endpoint of an edge in EC . We call the edges of GC cross-link
edges, the vertices of GC cross-link vertices and GC the cross-link graph; for an
example see Fig. 1. The graph G is directed, but in this section, when computing
a partition of G, we ignore the direction of the edges. For this section and the
next two sections we assume that the vertices and edges in GC are known and
labeled as such. We assume that K has degree at most three; in Sec. 5 we will
discuss how to transform any planar graph K = (V,E) of higher degree into a
planar graph K′ with O(V ) vertices, O(E) edges, and degree at most three, so
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Figure 2: Left: Partition of a planar graph into subgraphs (white background)
and separator vertices (dark background). Each dark region constitutes a
boundary set. Right: Removing the separator vertices and their incident edges
would make the graph fall apart into its subgraphs.

that our algorithms can be run on K′+EC and the results can easily be mapped
back to G.

2.1 Planar partition

By applying the separator theorem by Lipton and Tarjan [24] recursively, Fred-
erickson [16] showed that any planar graph can be partitioned into subgraphs of
arbitrarily small size with a small number of separator vertices. More precisely
he showed the following:

Theorem 1 (Frederickson [16]) For any planar graph K = (V,E), given a
parameter R ≤ V , we can find a subset VS ⊂ V of O(V/

√
R) vertices, such that

the removal of VS partitions K into subgraphs Ki such that:

1. there are O(V/R) subgraphs (clusters);

2. each subgraph has size O(R), and

3. (the vertices in) each Ki is (are) adjacent to O(
√
R) vertices of VS.

We call such a partition an R-partition—refer to Fig. 2. We use the following
notation: the vertices in VS are separator vertices, and each of the subgraphs is a
cluster ; the set of vertices in K−Ki adjacent to Ki are the boundary vertices ∂Ki
(or simply the boundary) of Ki. We use Ki to denote the graph consisting of
Ki, ∂Ki and the subset of edges of E connecting vertices in Ki ∪ ∂Ki.

The set of separator vertices can be partitioned into maximal subsets so that
the vertices in each subset are adjacent to precisely the same set of subgraphs
(Fig. 2). These sets are the boundary sets of the partition. Assuming the graph
has constant degree (we will discuss how to ensure this in Sec. 5), there exists
an R-partition with only O(V/R) boundary sets [16].
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2.2 Refining a planar partition

Given a non-planar graph G, we start by computing an R-partition for its planar
subgraph K = (V,E). Let Gi denote the subgraph induced by Ki in G. The
separator VS is a separator for K but not necessarily forG, because any subgraph
in K may contain up to O(R) cross-link vertices that are connected by cross-link
edges to cross-link vertices in other subgraphs, bypassing the separator.

A straightforward way to get a separator for G would be to add all cross-link
vertices VC to VS ; however, the planar SSSP algorithm of Arge et al. [7], run
on the basis of such a separator, would use Ω(EC + V ) I/Os (see Remark 3.1).
This is essentially the same as runnning any of the general SSSP algorithms,
and no better than just running Dijkstra’s algorithm in external memory with
an external priority queue.

Therefore, we need a more sophisticated method to get a separator for G. In
the remainder of this section we show how to refine the partition of K to incor-
porate the cross-link vertices of G while ensuring that each subgraph contains
O(
√
R) cross-link vertices and that the total number of separator vertices and

subgraphs is not too large. The main conclusion of this section is the following.

Lemma 1 Given a subgraph G = (V,E) of a planar graph with |∂G| = O(
√
V ),

and a weight function w : V → R such that
∑
v∈V w(v) = W , we can find a sub-

set S ⊂ V of size O(
√
VW ) which separates G into a set of O(W ) subgraphs G′

with the following properties:

• each subgraph G′ = (V ′, E′) has a total weight
∑
v∈V ′ w(v) of at most 1.

• each subgraph G′ = (V ′, E′) has a boundary ∂G′ with O(
√
V ) vertices.

Proof: The proof follows the proof of Lemmas 1 and 2 from Frederickson [16],
which is based on recursive application of the separator theorem by Lipton and
Tarjan [24] in two phases: first with uniform weights on the vertices, and then
with weights on the separator vertices only. However, we use a non-uniform
weight function in the first phase. Note that we are not interested in low-weight
separators: it is the weight of the subgraphs that counts.

The first phase of the recursive procedure is as follows. When G has weight
w(G) at most 1, we are done. Otherwise, by applying Lipton and Tarjan’s
separator theorem, we find a subset S of at most 2

√
2
√
V vertices of V such

that S separates G − S into two subgraphs A and B that each have weight at
most 2

3w(G). We partition the subgraphs A and B recursively. This procedure
results in a number of subgraphs. By construction each subgraph G′ = (V ′, E′)
has weight at most 1, and it can be seen that the number of subgraphs is O(W ).
However, the boundary ∂G′ of a subgraph G′ may still have more than O(

√
V )

vertices—in the second phase of the algorithm we will subdivide each subgraph
further into subgraphs with boundary size O(

√
V ). But first we show that so

far, the total number of vertices in the subsets S that were selected throughout
the recursive process is O(

√
VW ). Let s(V,W ) be the maximum number of

separator vertices that may be selected while recursively partitioning a planar
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graph induced by a set of V vertices with weight W . Note that each of its
subgraphs A and B has total weight at most 2

3W , and at least one of them has
at most V/2 vertices. Therefore s(V,W ) is bounded by the following recursive
expression:

s(V,W ) 6 max
0<α61/2,1/36β62/3

c
√
V + s(αV, βW ) + s((1− α)V, (1− β)W )

where s(V,W ) = 0 if W 6 1, and c = 2
√

2. Subgraphs without vertices have
zero weight, thus s(0, 0) = 0. Since no graph with 0 vertices and weight W > 0
exists, no separator vertices can ever be selected while recursively partitioning
such a graph, so s(0,W ) = 0 by definition.

We claim that this recurrence solves to s(V,W ) 6 10c
√
VW − 6c

√
V for

W > 1. We proof this by induction on W , starting with the base case 1 <
W 6 3. It is easy to see that a subgraph with weight at most 3 is subdivided
further at most 4 times, so that for 1 < W 6 3, we have s(V,W ) 6 4c

√
V 6

10c
√
VW − 6c

√
V . It remains to prove that for W > 3, the following inequality

holds for all 0 < α 6 1/2 and 1/3 6 β 6 2/3 (dividing out all factors c
√
V ):

10
√
W − 6 > 1 + 10

(√
αβ +

√
(1− α)(1− β)

)√
W − 6

(√
α+
√

1− α
)

(1)

To prove this, we distinguish three cases:

• If α 6 1/32 and β 6 1/2, Equation (1) follows from
√
α+
√

1− α > 1 and√
αβ+

√
(1− α)(1− β)+1/(10

√
W ) <

√
1/32

√
1/2+

√
2/3+1/(10

√
3) <

1.

• If α 6 1/32 and β > 1/2, Equation (1) follows from
√
α +
√

1− α > 1
and
√
αβ +

√
(1− α)(1− β) + 1/(10

√
W ) <

√
α(1− β) +

√
(1− α)β +

1/(10
√
W ) <

√
1/32

√
1/2 +

√
2/3 + 1/(10

√
3) < 1.

• If α > 1/32, Equation (1) follows from
√
α +

√
1− α − 1 > 1/6 and√

αβ +
√

(1− α)(1− β) ≤ 1.

Thus, it follows that the total number of vertices selected as separator vertices
is at most s(V,W ) ≤ 10c

√
VW − 6c

√
V = O(

√
VW ).

The second phase of our algorithm subdivides each subgraph that results
from the first phase recursively until each subgraph has boundary size O(

√
V ).

As with Frederickson, the number of subdivisions required is O(S/
√
V ) and

the number of separator vertices added in each step is O(
√
V ), thus only O(S)

separator vertices are added. The number of subgraphs in the second phase
increases by O(S/

√
V ) = O(

√
VW/V ) = O(

√
W ) and therefore stays O(W ).

�

We note that the first phase of the above proof effects to computing a
weighted version of Frederickson’s partition, and could be obtained using the
results of Aleksandrov et al. [2]. However, we believe that the proof above is
simpler.
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Figure 3: Top left: A near-planar graph that consists of a planar subgraph and
a set of cross-links. Circles represent cross-link vertices. Top right: Partition
of the planar subgraph into subgraphs (white background) and boundary sets
(dark background), before refinement. If c

√
R = 6, the central subgraph and

the top right subgraph have too many cross-link vertices. Bottom left: Partition
after refinement. Bottom right: Partition after refinement with cross-links.

Our algorithm for refining theR-partition ofK proceeds by applying Lemma 1
to each subgraph Gi that has more than c

√
R cross-link vertices, for some fixed

constant c. For each such subgraph we assign weight 1/(c
√
R) to every cross-

link vertex in Gi and weight 0 to every other vertex. We get that each resulting
subgraph has O(

√
R) cross-link vertices and O(

√
R) vertices on its boundary—

see Fig. 3. We use Lemma 1 to bound the total number of separator vertices
and number of subgraphs resulting from the refinement. We have the following.

Lemma 2 After refining the R-partition of K, the total number of vertices in
VS is O(V/

√
R+
√
V VC/R

1/4).

Proof: Let Gi be a subgraph in the original partition of G (before refinement)
that had more than c

√
R cross-link vertices. Subgraph Gi has total weight:

Wi =
∑
v∈Gi

w(v) =
|Gi ∩ VC |
c ·
√
R

.
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From Lemma 1 we get that the number of separator vertices obtained by refining
a subgraph Gi is:

O

(√
|Gi| ·Wi

)
= O

√R · |Gi ∩ VC |√
R

 = O

(
R1/4

√
|Gi ∩ VC |

)
.

Summed over all subgraphs Gi this adds O(R1/4
∑
Gi

(|Gi ∩ VC |)1/2) separator

vertices in total. Since 2
√

(a+ b)/2 >
√
a +
√
b, the worst case occurs if the

cross-link vertices VC are evenly distributed over the O(V/R) subgraphs Gi, and
we get:

R1/4
∑
Gi

√
|Gi ∩ VC | 6 R1/4 ·O(V/R) ·O

(√
VCR

V

)
= O

(
V

R3/4
+

√
V VC
R1/4

)
.

Adding this to the O(V/
√
R) vertices that were already in VS before we started

refining the partition, we get a total of O(V/
√
R+
√
V VC/R

1/4). �

Recall that a boundary set of a planar partition is a maximal set of separator
vertices adjacent to the same subgraphs. In our case G is not planar and we
compute a partition of K = G−EC ; thus, a boundary set in the refined partition
is a maximal set of separator vertices that are adjacent (ignoring the cross-link
edges) to precisely the same set of subgraphs. For simplicity, we can think of
all the cross-link vertices in a subgraph Gi which are not in VS as an additional
“boundary” set of that subgraph.

Lemma 3 After refining the R-partition of K, the total number of subgraphs
and the number of boundary sets in the partition is O(V/R+ VC/

√
R).

Proof: Let Gi be a subgraph in the original partition (before refinement) that
had more than c

√
R cross-link vertices. By Lemma 1, the number of subgraphs

obtained by refining Gi is O(Wi) = O(|Gi ∩ VC |/(c ·
√
R)). The total number

of subgraphs that we obtain from refinement, summed over all subgraphs in the
original partition, is thus

∑
Gi
O(|Gi ∩ VC |/

√
R) = O(V/R+ VC/

√
R). Adding

O(V/R) for the subgraphs that already had at most c
√
R cross-link vertices

and did not need to be subdivided further, we get a total of O(V/R+ VC/
√
R)

subgraphs in the refined partition.
To bound the number of boundary sets, we model the refined partition as a

region graph: each subgraph represents a vertex, and two vertices are connected
by an edge if the corresponding subgraphs share a boundary vertex. By the
analysis of [16], from the fact that the vertices in the input graph have degree
at most three, it follows that the region graph is planar and that the worst-
case number of boundary sets is asymptotically the same as the number of
subgraphs Gi. �

Lemma 4 If R ≤ M/c, for a sufficiently big constant c, then the R-partition
of K can be refined with O (sort(V + EC)) I/Os.
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Proof: Given that we know, before refining the partition, for every non-
separator vertex the subgraph that contains it, we can sort the partition into an
edge-list representation. This representation consists of a a list of edges, with the
out-edges of each vertex appearing consecutively in the list; thus, the out-edges
of vertices in each subgraph Gi are stored consecutively. This representation can
be obtained in O(sort(V )) I/Os. Furthermore we label the cross-link vertices
in each subgraph as such, in O(sort(V + EC)) I/Os.

The recursive subdivision algorithm works on one subgraph of theR-partition
at a time, each of which can be processed in main memory if R ≤ M/c. Thus,
the total number of I/Os needed are the I/Os needed to load the subgraphs Gi
and their boundaries, one at a time, into memory, and output the results. With
the above representation each subgraph Gi and all its adjacent edges can be
loaded into memory in O(R/B) I/Os, or O(V/B) I/Os in total. The total time
to refine the partition is thus O(sort(V + EC)) I/Os. �

Overall we have the following:

Theorem 2 Let G be a graph that consists of a planar subgraph K of constant
degree and a set of edges EC , and let VC be the set of vertices of V that are
endpoints of edges in EC . Given a parameter 1 ≤ R < V , there exists a set of
vertices VS ⊂ V whose removal separates K into a set of subgraphs Gi with the
following properties:

1. the total number of vertices in VS is O(V/
√
R+
√
V VC/R

1/4);

2. there are O(V/R+ VC/
√
R) subgraphs Gi in K − VS;

3. each subgraph contains O(R) vertices, is adjacent to O(
√
R) separator

vertices and contains O(
√
R) cross-link vertices;

4. the number of boundary sets is asymptotically the same as the number of
subgraphs.

Furthermore, if M > min(cB2, cR log2B) for a sufficiently big constant c, then
the above set VS can be computed with O (sort(V + EC)) I/Os.

Proof: The size of the partition follows from Lemmas 2 and 3. Provided that
M > min(cB2, cR log2B) the R-partition can be computed in O(sort(V )) I/Os
using the algorithm of Maheshwari and Zeh [25]. With one pass through the
partition and EC one can label the cross-link vertices. Thus, the partition can
be refined with O(sort(V + EC)) I/Os by Lemma 4. �

Representation of the refined partition. We refer to the partition of The-
orem 2 as a refined partition of G. For the rest of the paper we assume that the
refined partition of G is given in edge-list representation, as follows. Let Vσ be
the list of vertices of G in the following order: all vertices in V − (VS ∪ VC) are
at the front of Vσ grouped by the subgraphs Gi, and, within the same subgraph,
by vertex ID; then follow all the separator and cross-link vertices v ∈ VS ∪ VC
grouped by boundary set, and, within the same boundary set in order of their
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vertex ID (remember that all cross-link vertices in a subgraph which are not in
VS are considered to be another boundary set of that subgraph). Given that
we know for each vertex v ∈ VS ∪ VC the boundary set which contains it and
for every other vertex the subgraph which contains it, we can produce Vσ in
O(sort(V )) I/Os. Moreover, also in O(sort(V )) I/Os, we can associate to each
vertex v its position σ(v) in Vσ.

From the ordering σ we produce an edge-list of G by sorting the edges (u, v)
by (σ(u), σ(v)). In this list, all the edges contained in or outgoing from a
subgraph Gi are consecutive and can be accessed sequentially; similarly, all out-
edges of a boundary set are consecutive. Given the refined partition and the
ordering Vσ, this edge-list representation of the partition can be obtained in
O(sort(V + EC)) I/Os.

3 Non-planar SSSP using a Refined Partition

In this section we show how to use a refined partition of a non-planar digraph
G = K ∪GC to compute single-source shortest paths I/O-efficiently.

The approach follows the one used by the I/O-efficient algorithm for planar
digraphs by Arge et al. [7], which is as follows. First, compute an R-partition
of the planar graph K, while ignoring the directions of edges. Given the parti-
tion, compute a substitute digraph KR defined on the separator vertices. The
graph KR is a reduced version of K (it has fewer vertices), and it is constructed
such that for any pair of vertices in KR, the length of the shortest path between
them in KR is the same as in K. The substitute graph KR is obtained by replac-
ing each subgraph with a complete graph on its boundary vertices; the weight of
each edge (u, v) between two boundary vertices u, v of a subgraph Ki is the dis-
tance from u to v in that subgraph. In addition, KR contains the source vertex
s and edges to the boundary of its subgraph, with weights defined in a similar
way. The substitute graph KR as computed by Arge et al. [7] has O(V/

√
R)

vertices and O(V ) edges. Using KR the SSSP computation can now be accom-
plished in two steps: (1) Compute SSSP in KR; by construction, we thus get
the lengths of the shortest paths to separator vertices in K; (2) Compute the
shortest paths to non-separator vertices (vertices inside the subgraphs Ki).

To extend this approach to a non-planar graph G we have to incorporate the
non-planar part of G. A straightforward way to do this would be to construct
an R-partition for K and add all cross-link vertices VC to VS . However, as we
will explain below in Remark 3.1, the algorithm of Arge et al. [7], run on the
basis of such a separator, would use Ω(V + EC) I/Os in the worst case. Below
we show how to exploit Theorem 2 to define the substitute graph GR of a refined
R-partition and get a better result. We will prove the following.

Theorem 3 If M = Ω(B2) the distances from a given source vertex s to all
other vertices in a directed graph G = K ∪GC can be computed in
O (EC + sort(V + EC)) I/Os.
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Figure 4: Construction of the substitute graph. Left: Within each subgraph,
we draw all edges between separator vertices and cross-link vertices that have a
path in K between them that does not go through any other boundary vertices.
Right: The complete substitute graph consisting of edges inside subgraphs,
edges between separator vertices, and cross-links, before adding the source ver-
tex s.

3.1 The substitute graph

We construct the substitute graph GR on the basis of a refined R-partition
that divides G into subgraphs Gi, as explained in Sec. 2. Note that a short-
est path between two arbitrary vertices in G enters and exits a subgraph Gi
either through a boundary vertex or through a cross-link vertex. Therefore the
substitute graph GR will be defined on both the separator and the cross-link
vertices.

• First, GR includes the edges between the separator vertices in VS , and the
edges between the cross-link vertices VC , i.e., the cross-link graph GC .

• Second, it includes the union of all graphs GRi obtained by replacing each
subgraph Gi as follows: the vertices of GRi are the boundary vertices ∂Gi
of Gi and the cross-link vertices VC ∩Gi of Gi, and there is an edge from
u to v in GRi if there is a path from u to v in Gi that does not pass
through any vertices of ∂Gi other than u and v. The edge (u, v) has
weight equal to the length of a shortest path from u to v in Gi. Note that
GRi contains edges between boundary vertices, between cross-link vertices
and boundary vertices, and between cross-link vertices, see Fig. 4.

• Third, if the SSSP source vertex s is not a separator or a cross-link vertex,
we add it to GR and add edges from s to all the boundary vertices and all
cross-link vertices of the subgraph Gi containing s (for which there exists
a path from s in Gi); as above, the weight of an edge (s, v) is the length
of a shortest path from s to v in Gi.

Lemma 5 The substitute graph GR has O(V/
√
R+
√
V VC/R

1/4 +VC) vertices
and O(V + VC

√
R+ EC) edges.
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Proof: The number of vertices in the substitute graph is VS + VC + 1, which,
by Theorem 2, is O(V/

√
R+
√
V VC/R

1/4 + VC).
By Theorem 2, there are O(V/R + VC/

√
R) subgraphs in total, each of

which has O(
√
R) boundary vertices, O(

√
R) cross-link vertices, and possibly

a source vertex; thus each complete graph GRi has O(R) edges in total. In
total ∪GRi has O(V/R + VC/

√
R) · O(R) = O(V + VC

√
R) edges. Add the

O(VS+EC) = O(V/
√
R+
√
V VC/R

1/4+EC) cross-link edges and edges between
separator vertices in the partition, and the claimed bound follows. �

Recall that δG(u, v) denotes the length of the shortest path from u to v in G.

Lemma 6 For any pair of vertices u, v ∈ VS ∪ VC ∪ {s}, we have δGR(u, v) =
δG(u, v), that is, GR maintains shortest paths between its vertices.

Proof: We will first prove δGR(u, v) 6 δG(u, v), and then prove δGR(u, v) >
δG(u, v), from which the lemma follows.

Let p be a shortest path in G from u to v. Let u′ ∈ VS ∪VC ∪{s} be a vertex
on p and let v′ be the next vertex from VS ∪ VC ∪ {s} on p. Thus the part pu′v′

of p between u′ and v′ is either a single edge (which is also included in GR), or
it only visits vertices within a single subgraph Gi. In the latter case, pu′v′ must
be a shortest path from u′ to v′ in Gi (otherwise we could replace pu′v′ with a
shortest path from u′ to v′ in Gi and get a shorter path p, which is impossible
by the definition of p). By the construction of GR, there must be an edge (u′, v′)
in GR which corresponds to pu′v′ . This shows that δGR(u, v) 6 δG(u, v).

To prove that δGR(u, v) > δG(u, v), let p be a shortest path in GR from u
to v. Consider an edge (u′, v′) of p. The edge is either an edge in G with weight
at least δG(u′, v′); or it is an edge in some graph GRi , in which case its weight is
equal to δGi

(u′, v′) > δG(u′, v′). Therefore the total length of p is at least the
total length of some path from u to v in G. This means that δGR(u, v) > δG(u, v)
and this concludes the proof. �

Lemma 7 Given a refined partition as in Theorem 2, an edge-list representa-
tion of the substitute graph GR can be computed in

O
(

(V/R+ VC/
√
R) · d

√
R/Be+ sort(|GR|)

)
I/Os,

provided that R ≤M/c, for a sufficiently large constant c.

Proof: To compute GR we need to load, one at a time, each subgraph Gi into
memory together with its boundary and cross-link vertices; compute all pairs’
shortest paths (APSP) between its boundary and cross-link vertices; and write
the edges and their weights to disk. Assume the representation of the partition
at the end of Sec. 2. Loading the subgraphs Gi into memory takes O(scan(|Gi|))
I/Os, plus d

√
R/Be I/Os for each boundary set of Gi. The total number of

boundary sets is O(V/R + VC/
√
R) by Theorem 2, and each is loaded O(1)

times (because of the assumption that the degree of each vertex is at most three).
Thus the total number of I/Os required to load the subgraphs Gi into memory
is O((V/R + VC/

√
R) · d

√
R/Be + scan(|G|)). If R ≤ M/c, each subgraph Gi

fits in memory and the APSP computation on a subgraph can be done without
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further I/O. Writing all the edges of GR to disk and sorting them in the end by
vertex index to obtain the edge-list of GR requires O(sort(|GR|)) I/Os. Thus,
in total, the computation of GR uses O((V/R+VC/

√
R) ·d

√
R/Be+scan(|G|)+

sort(|GR|)) = O((V/R+ VC/
√
R) · d

√
R/Be+ sort(|GR|)) I/Os. �

3.2 Computing δG(s, v) for all vertices v ∈ GR

The distances δG(s, v) = δGR(s, v) from s to all vertices v in the substitute
graph GR can be computed by adapting Dijkstra’s algorithm as discussed by
Arge et al. [7]. One of the problems with SSSP in external memory is figuring
out, when relaxing an edge (u, v), the current tentative distance of vertex v.
This distance is necessary in order to be able to delete the vertex from the
priority queue—known external-memory priority queues support N insertions,
extractions and deletions in O(sort(N)) I/Os (which is what we can afford) only
if the deletion operations are given the element to be deleted together with its
current priority. To this end, in addition to using a priority queue, we maintain a
list L that stores the tentative distances from s to all the vertices in GR, that is,
in VS ∪VC ∪{s}. When extracting a vertex from the priority queue, we retrieve
the tentative distances of its out-neighbors from L. For each out-neighbor w
of v, we check whether its tentative distance as stored in L is greater than d(v)
plus the weight of the edge −→vw; if it is, we update the distance of w in L, delete
the old entry of w from the priority queue and insert a new entry for w with
the updated distance into the queue.

To analyze the I/O-complexity of the computation, we bound the number
of accesses to the priority queue and to the list L. On the priority queue we
perform in total O(V (GR)) = O(VS + VC) ExtractMins, and O(E(GR)) =
O(V +VC

√
R+EC) Deletes and Inserts; in total there are O(|GR|)) = O(V +

VC
√
R+EC) operations. These operations can be performed in O(sort(|GR|)) =

O(sort(V + VC
√
R + EC)) I/Os using an I/O-efficient priority queue, e.g. the

queue from Arge [3].
The list L is accessed O(E(GR)) = O(V +VC

√
R+EC) times; this is because

every vertex in L is accessed once by each incoming edge in GR. Of course, we
cannot afford one I/O per edge. In order to perform the accesses to L efficiently,
we store L in the following order: all vertices in VS are at the front of L, grouped
by boundary set, followed by the vertices in VC−VS , grouped by the subgraph Gi
that contains them. With this order the vertices in the same boundary set, as
well as cross-link vertices in the same subgraph, are consecutive in L.

Lemma 8 The accesses to the list L can be performed in

O
(
VS + EC + (V/

√
R+ VC) · d

√
R/Be

)
I/Os.

Proof: The accesses to the list L are of three types: (1) O(EC) accesses through
the cross-link edges of GR; (2) O(VS) accesses through edges between separator
vertices; and (3) O(V + VC

√
R) accesses through the edges in the substitute

graphs GRi . The first two types of accesses clearly take O(VS + EC) I/Os.
We now analyze the third type of accesses to L by counting the number of
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accesses per boundary set (while ignoring the cross-link edges, which are counted
separately in (1)).

Recall that a boundary set is a maximal set of separator vertices which are
adjacent in K (that is, ignoring cross-link edges) to precisely the same sub-
graphs Gi. Every vertex v ∈ VS ∪ VC ∪ {s} in GR that is processed needs to
access the tentative distances of its out-neighbors in L: that is, every separator
vertex v ∈ VS needs to access all the boundary vertices and cross-link vertices
of all subgraphs Gi adjacent to v; every vertex v ∈ {s} ∪ VC \ VS needs to
access all the boundary vertices and all cross-link vertices in the subgraph Gi
containing v. Every time a vertex in a boundary set needs to be accessed, the
other vertices in the boundary set need to be accessed as well, since the vertices
of a boundary set are adjacent to the same subgraphs. For simplicity, we think
of all the cross-link vertices in a subgraph Gi as an additional “boundary” set
of that subgraph. Overall, each boundary set of GR is accessed once by each of
the vertices on the boundaries of the subgraphs adjacent to the boundary set,
and by each of the cross-link vertices in these subgraphs. By Theorem 2, each
subgraph Gi has O(

√
R) boundary and O(

√
R) cross-link vertices. Thus, each

boundary set is accessed O(
√
R) times for each adjacent subgraph.

By Theorem 2, the number of boundary sets is asymptotically the same as
the number of subgraphs Gi, and each boundary set is adjacent to O(1) sub-
graphs. We get that the total number of accesses to boundary sets is O(

√
R) ·

O(V/R + VC/
√
R) = O(V/

√
R + VC). Since boundary sets are stored consec-

utively in L (including the “boundary” set consisting of the O(
√
R) cross-link

vertices of a subgraph), each boundary set can be accessed in O(d
√
R/Be) I/Os.

Thus, the accesses to boundary sets use in totalO(V/
√
R+VC)·d

√
R/Be I/Os.

Adding the O(VS) accesses between separator vertices and the O(EC) I/Os
to L caused by the cross-link edges (type (1) and (2)), we get a total of
O(VS + EC + (V/

√
R+ VC) · d

√
R/Be) I/Os. �

Putting the operations on the priority queue and the accesses to the list L
(Lemma 8) together, we get:

Lemma 9 The distances from s to all other vertices in GR can be computed in

O
(
VS + EC + (V/

√
R+ VC) · d

√
R/Be+ sort(|GR|)

)
I/Os, provided that R ≤

M/c for a sufficiently large constant c.

Remark 3.1 As mentioned above, it is straightforward to get a separator for G
by simply adding all cross-link vertices VC to a separator for K, instead of re-
fining the separator according to Theorem 2. However, the algorithm of Arge et
al. [7], run on the basis of such a straightforward separator, would use Ω(EC+V )
I/Os. To see why this is true, consider a graph G with Θ(V/B) cross-link ver-
tices and compute a B2-partition for it. Imagine that the Θ(V/B) cross-link ver-
tices are distributed in the subgraphs of the partition as follows: of the Θ(V/B2)
subgraphs, Θ(V/B3) of them contain Θ(B2) cross-link vertices each, and each
such subgraph has Θ(B) boundary sets on its boundary. If we run the algorithm
of [7] on this partition, each cross-link vertex’s extraction from the priority queue
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will cause each boundary set in its subgraph to be accessed, which may cause
Θ(B) I/Os per cross-link vertex; in addition, the relaxation of each cross-link
edge will cause an access. This adds up to Θ(V/B ·B+EC) = Θ(V +EC) I/Os
in total. This is essentially the same as runnning any of the general SSSP algo-
rithms, and no better than just running Dijkstra’s algorithm in external memory
with an external priority queue.

3.3 Computing δG(s, v) for all vertices v ∈ V − (VS ∪ VC)
Since shortest paths in GR are the same as in G (by Lemma 6), after com-
puting SSSP on GR we know δ(s, v) for all v ∈ VS ∪ VC . The final step in
the SSSP algorithm computes the lengths of the shortest paths to all vertices
in V − (VS ∪ VC).

Consider a vertex v ∈ Gi − VC . The shortest path δ(s, v) to v must cross
into Gi either through a boundary vertex or a cross-link vertex of Gi. It is easy
to see that δ(s, v) = minu∈∂Gi∪(VC∩Gi){δ(s, u) + δGi

(u, v)}. Thus, δ(s, v) can
be computed locally in each subgraph Gi.

For every subgraph Gi in turn, we load Gi and its boundary and cross-link
vertices—now marked with shortest path lengths—into memory, and use an
internal-memory algorithm to compute δ(s, v) for every v ∈ Gi − VC using the
above formula.

The total number of I/Os in this step is the number of I/Os required to
load the subgraphs Gi into memory and to retrieve δ(s, u) for all boundary and
cross-link vertices in each Gi. Assume that the shortest paths to vertices in
VS ∪ VC are stored in the list L as above. Using similar arguments as in the
proof of Lemma 7 and 8 we get that each boundary set in L is accessed O(1)
times. In total we get:

Lemma 10 Given the distances from s to all vertices GR, the distances from s
to all vertices in G can be computed in

O
(

scan(|G|) + (V/R+ VC/
√
R) · d

√
R/Be

)
I/Os,

provided that R ≤M/c for a sufficiently large constant c.

3.4 Putting everything together

Putting Theorem 2, Lemma 7, Lemma 9, and Lemma 10 together, we get that
the total number of I/Os needed to compute δG(s, v) for all vertices v ∈ G is:

O
(

sort(V + EC) + sort(|GR|) + VS + EC + (V/
√
R+ VC)d

√
R/Be

)
,

provided M > min(cB2, cR log2B), for a sufficiently large constant c. Substitut-
ing |GR| = O(V +VC

√
R+EC) (Lemma 5) and VS = O(V/

√
R+
√
V VC/R

1/4)
(Theorem 2), we get that the total number of I/Os is:

O

(
sort(V + VC

√
R+ EC) +

V√
R

+

√
V VC
R1/4

+ EC +

(
V√
R

+ VC

)⌈√
R

B

⌉)
.
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We can balance the terms in the expression above by choosing the subgraph
size R appropriately. We assume that M = Ω(B2). We have two cases:

• If VC < V/B, we choose R = B2. Then
√
V VC/R

1/4 = O(V/B) and
VC
√
R = O(V ), and the above bound becomes O(EC + sort(V + EC)).

• If VC > V/B, we choose R = (V/VC)2 = O(B2) = O(M). Then V/
√
R =

VC = O(EC),
√
V VC/R

1/4 = VC and VC
√
R = V , and the above bound

becomes O(EC + sort(V + EC)).

This concludes the proof of Theorem 3.
In the above algorithm we only discussed how to compute the length of the

shortest paths. If we are interested in finding the actual paths, we can easily
augment the algorithm to output the edges in the shortest path tree. Given a
tree, Hutchinson et al. [20] showed how to store it such that for any vertex t, the
shortest path between the source (root) s and t can be returned in k/B I/Os,
where k is the number of vertices on the path. This data structure can be
constructed from the computed distances in O(sort(V )) I/Os.

Corollary 4 Let G = (K∪GC) be a directed non-planar graph. A data structure
can be constructed in O (EC + sort(V + EC)) I/Os such that the shortest path
from a fixed source vertex s to a given vertex t can be found in O(k/B) I/Os,
where k is the number of vertices on the path.

4 Other Non-planar Graph Problems using a
Refined Partition

The refined R-partition can be exploited for other basic graph problems on
non-planar graphs. The computation of a breadth-first search order is simply a
special case of SSSP. Below we mention results for topological order, (strongly)
connected components (SCC, CC) and depth-first search (DFS). All algorithms
use the refined R-partition of G, which, according to Theorem 2, can be com-
puted in O(sort(V + EC)) I/Os if M > min(cB2, cR log2B).

4.1 Topological order

Let G = K∪GC be a directed acyclic non-planar graph. A refined partition of G
can be used to compute a topological ordering on G by extending the algorithm
for planar graphs of Arge and Toma [6]. The basic idea is that an ordering of
the vertices in order of the lengths of their longest paths from a source vertex
gives a valid topological order. The algorithm is similar to SSSP, except that
the substitute graph is defined to encode reachability and each vertex is labeled
with the length (total weight) of its longest path from a source. The size of GR

is the same as the size of the substitute graph in Sec. 3. The algorithm proceeds
by sorting the vertices of GR in topological order and then processing them in
this order to compute the lengths of their longest paths in GR. Finally each
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subgraph is loaded into memory to compute the lengths of the longest paths to
internal vertices. Sorting all vertices in order of these lengths will put them in
topological order.

Analysis: If R ≤ M/c, for a sufficiently large constant c, then each sub-
graph fits in memory. Computing the initial separator, computing GR, and
the last step can be done as in Sec. 3 with O(sort(V + EC) + sort(|GR|) +
(V/R + VC/

√
R)d
√
R/Be) I/Os, provided M > min(cB2, cR log2B). Comput-

ing a topological order and longest paths on GR will cause O(1) I/Os per vertex,
cross-link edge and boundary set, making a total of O(VS +EC +(V/

√
R+VC) ·

d
√
R/Be) I/Os (the proof is the same as for Lemma 8).
From Theorem 2 we know that the size of VS is O(V/

√
R +

√
V VC/R

1/4),
and by Lemma 5, the size of GR is O(V + VC

√
R + EC). Substituting this in

the above bounds and adding them up we get the following.

Theorem 5 Let G = K ∪GC be a non-planar directed acyclic graph.
If M = Ω(B2), a topological ordering of G can be computed with
O (EC + sort(V + EC)) I/Os.

4.2 Strongly-Connected Components (SCC)

The same ideas can be used to compute the strongly-connected components
of G based on the algorithm by Arge and Zeh [9]. The algorithm is similar to
SSSP and topological order, in that it computes a partition, defines a substitute
graph GR, computes SCC on GR and then computes SCC on the entire graph
loading each subgraph into memory, one by one. The substitute graph is defined
to encode reachability between vertices in the same way as it is defined above for
topological order, except that it is not weighted. To compute SCC on GR the
standard algorithm explores the edges in depth-first search manner and finds
out, when exploring an edge (v, w), whether w has been explored before and
whether it causes any of the current components to merge. The challenge is to
find out the status of w with o(1) I/Os per edge. Arge and Zeh [9] showed how
this can be done by keeping the active vertices in 3 stacks: one to store one
vertex per each active component, one to store all vertices in order of discovery,
and one to store the adjacency lists of these vertices. The key for I/O-efficiency
is to store the out-edges of a vertex on the stack in order of the boundary set
of the target vertex. This defines the so-called “stack segments”. The stack
segment on top of the (adjacency list) stack is kept up-to-date with the SCC
labels of the target nodes. It is shown in [9] that maintaining this invariant
causes O(1) I/Os per vertex, and O(B) I/Os per boundary set. For the full
proof we refer the reader to [9].

The analysis can be extended to use the refined partition. The size and time
to compute GR are the same. The only difference with computing topological
order is computing SCC on GR. Using the same arguments as in [9], every vertex
in GR will cause O(1) accesses to a stack segment; since a stack segment is stored
consecutively, each access takes O(d

√
R/B/e) I/Os. Every stack segment will be
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accessed once by each of the vertices on the boundary of the subgraphs adjacent
to the boundary set, and by each cross-link vertex. In addition, there are O(EC)
acceses to stack segments caused by the cross-link edges. Skipping the details
which are the same as in the proof of Lemma 9 we get the following.

Theorem 6 Let G = K ∪GC be a non-planar directed acyclic graph.
If M = Ω(B2), the strongly-connected components of G can be computed with
O (EC + sort(V + EC)) I/Os.

If the graph G is undirected, the SCC algorithm gives an upper bound for
computing the connected components of G.

Theorem 7 Let G = K∪GC be a non-planar undirected graph. If M = Ω(B2),
the connected components of G can be computed with O (EC + sort(E)) I/Os.

We note that it is possible to obtain this CC bound directly: either by using
graph contraction; or by constructing a sparse substitute graph GR that encodes
all connectivity information between its boundary and cross-link vertices, and
using it to compute CC on GR and further on G.

4.3 Depth-First Search (DFS)

To compute a depth-first search order, we extend the ideas from Meyer [26], who
computes DFS on a planar graph (V,E) in O(V/

√
B + sort(V )) I/Os. Assume

we are given a refined R-partition for G, with R ≤ M/c, for a sufficiently
large constant c. We run the standard internal-memory DFS algorithm on the
partition. Whenever DFS reaches a vertex inside a subgraph Gi, we load the
entire subgraph together with its visited-node information into memory. While
DFS stays insideGi it will not require any further I/O. When it moves outsideGi
we update the visited-node information on disk with the progress on Gi.

Analysis: As before, if M > min(cB2, cR log2B), then computing the parti-
tion andGR takes O(sort(V +EC)+sort(|GR|)+(V/R+VC/

√
R)d
√
R/Be) I/Os.

As in Lemma 5, the size of GR is O(V + VC
√
R+EC), so the above bound be-

comes O(sort(V + VC
√
R+ EC) + V/R+ VC/

√
R).

Every subgraph can be entered through one of its boundary vertices or cross-
link vertices. Loading a subgraph takes O(R/B) I/Os. Each subgraph is loaded
|∂Gi|+ |VC ∩Gi| = O(

√
R+ |VC ∩Gi|) times. By Theorem 2, there are O(V/R+

VC/
√
R) subgraphs, so over all subgraphs the above adds up to:

O

((
√
R ·
(
V

R
+
VC√
R

)
+
∑
i

|VC ∩Gi|
)⌈

R

B

⌉)
=

O

(
V√
R

+ VC +
V
√
R

B
+
VCR

B

)
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In addition, the depth-first search accesses to the separator and cross-link
vertices take O(VS+EC) = O(V/

√
R+
√
V VC/R

1/4+EC) I/Os. Overall we get:

O

(
sort(V + VC

√
R+ EC) +

V√
R

+
V
√
R

B
+
VCR

B
+

√
V VC
R1/4

+ EC

)
.

If VC ≤ V/
√
B, then we choose R = B; in this case VC

√
R ≤ V and√

V VC/R
1/4 ≤ V/

√
B and the overall bound becomes O(sort(V +EC)+V/

√
B+

EC) I/Os. If VC > V/
√
B, then we choose R = (V/VC)2; in this case VC

√
R =

V , V/
√
R = VC , V

√
R/B = VCR/B < V/

√
B and

√
V VC/R

1/4 = VC and again
the overall bound becomes O(sort(V + EC) + V/

√
B + EC) I/Os.

Theorem 8 Let G = K ∪GC be a non-planar directed graph.
If M = Ω(B2), a depth-first search ordering of G can be computed with
O(EC + V/

√
B + sort(V + EC)) I/Os.

5 Planarizing graphs

As before, we denote by K = (V,E) the planar part of G, and by GC =
(VC , EC) = G − K the non-planar parts of G. In the previous sections of
this paper we made two assumptions: firstly, that the planar part K and the
non-planar part GC are known, and secondly, that all vertices have degree at
most three in K. At first sight these assumptions may seem somewhat limit-
ing, and on top of that, if EC = ω(V/B), the performance of our algorithms
suffers. In this section we discuss approaches to deal with these problems. We
will discuss heuristics to find a good set EC such that G− EC is crossing-free,
we will discuss transformations that allow us to deal with O(V ) crossings while
keeping the number of I/Os needed by our algorithms within O(sort(V )), and
we discuss transformations that allow us to deal with vertices of degree more
than three.

Transforming a non-planar graph G into a planar graph is called planarizing,
and if we quantify the size of the transformation, it may serve as a measure
of how close G is to planarity. The problem of planarizing a graph is much-
studied and has obvious applications in, for example, graph drawing and in
the manufacturing of VLSI circuits. Several measures of planarity have been
defined in the literature, including crossing number, k-embeddability in the
plane, skewness, and splitting number. All of these measures can be seen as the
size of a transformation that makes the graph planar (replacing crossings by
vertices, removing edges, or splitting vertices). For a survey on planarization,
see Liebers [23]. The class of near-planar graphs studied in this paper includes
graphs which have low crossing number or are k-embeddable for small k (we will
handle such graphs with a technique that transforms crossings into vertices),
and graphs that have low skewness or low splitting number (we will handle
such graphs by viewing them as combinations of a planar graph and a set of
cross-links, as in the previous sections).
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In all cases we assume that information about a suitable drawing of the graph
is given, which will guide our selection of crossings that will be transformed into
vertices and edges EC that are labelled as cross-links, so that the remaining
graph K = G − EC is planar. Unfortunately this assumption seems difficult
to overcome. Finding an optimal set of crossings would imply determining the
crossing number of G, and finding an optimal set of cross-links EC would imply
determining a maximum planar subgraph of G—both of these problems are well
known to be NP-hard [18, 30]. However, in practice, graphs often come with
good drawings. We can use the drawing of the graph to attempt to identify a
large planar subgraph of G.

Below we will discuss the measures of planarity mentioned above and discuss
how a graph that is near-planar, according to these measures, can be prepro-
cessed so that it can be operated on by the algorithms described in the previous
sections of this paper. After that we explain how to deal with vertices of degree
more than three.

5.1 Graphs with low skewness

The skewness of a graph G = (V,E) is the minimum size of any set of edges EC
such that G−EC is planar. When the skewness of a graph is O(E/B) and the set
EC is given, our SSSP algorithm needs only O(sort(E)) I/Os, even if the edges
and vertices in EC form a graph that is far from planar (for example a clique
which would have Θ(E2/B2) crossings when drawn in the plane). If EC is not
given, it may be difficult to find it. Finding a minimum-size set EC corresponds
to finding a maximum-size planar subgraph of G, which is NP-hard [17].

When a drawing of the graph is given, we can obtain an approximation for a
minimum-size set EC by describing the problem as a vertex cover problem. Let
G′ = (V ′, E′) be the crossing graph in which V ′ has a node v(e) for every edge e
in G, and E′ has an arc (v(e), v(f)) for every pair of crossing edges e and f in G.
A minimum-size set of cross-links EC that leaves the remaining graph G− EC
planar—that is, without crossings—now corresponds to a minimum-size set of
nodes V ′

C in G′ such that every arc in G′ is incident to at least one node in V ′
C .

Finding a minimum-size vertex cover is again an NP-complete problem, even
for planar graphs [21], but fortunately a factor-two approximation is sufficient
for our purposes. We can find such an approximation as follows. We use the
algorithm by Zeh [31] to find a maximal matching in the crossing graph, that is,
a maximal set of arcs such that no two of them have a node in common. Since
the maximal matching leaves no arc uncovered, while any minimum node cover
must contain at least one node of every arc in the matching, we have that the
nodes in the maximal matching form a factor-two approximation of a minimum-
size node cover. The algorithm takes O(sort(E′)) = O(sort(T )) I/Os, where T
is the number of crossings in the input graph. We get the following:

Theorem 9 Let G = (V,E) be a graph for which we are given a drawing with T
crossings. If M = Ω(B2), then single-source shortest paths, (strongly) connected
components, and a topological order (if G is acyclic) of G can be computed with
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O (EC + sort(V + T + EC)) I/Os, where EC is the minimum number of edges
that needs to be removed from the drawing of G to make it a plane drawing.
A depth-first search order can be computed with

O
(
EC + V/

√
B + sort(V + T + EC)

)
I/Os.

5.2 Graphs with small splitting number

Another measure of planarity used in the literature is the splitting number.
Splitting a vertex is the process of replacing a vertex u by two vertices u1, u2,
whereby some of the edges incident to u will be reconnected to u1, while the
remaining edges incident to u are reconnected to u2. The splitting number of
a graph is the minimum number of splittings that is needed to make the graph
planar.

Finding the splitting number of a graph is NP-hard [15]. When the split-
ting number of a graph is O(E/B) and the necessary splittings are given, we
can solve the SSSP problem on such a graph in O(sort(E)) I/Os, using an ap-
proach similar to that for graphs with small skewness. Instead of running the
shortest paths algorithm on the original graph, we run it on the planar graph
resulting from the splittings, augmented with a zero-weight2 bidirectional cross-
link (u1, u2) for every vertex u split into u1 and u2. This approach also works for
connected components and depth-first search, but not for topological ordering,
as it introduces bidirectional edges in the graph.

5.3 Graphs with low crossing number

The crossing number of a graph G = (V,E) is the minimum number of edge
crossings needed in any drawing of a given graph in a plane.

Finding the crossing number of a graph is NP-complete [17]. However, when
a drawing with T crossings is given, we will show that it can be preprocessed
so that our SSSP algorithm described in the previous sections uses O(sort(V +
T )) I/Os. As before, we assume that all vertices of the graph have degree at
most three.

The idea is to represent each crossing x by two crossing vertices c and c′,
which are marked as a crossing. Each crossed edge (u, u′), with crossings
x1, ..., xn in order going from u towards u′, is replaced by edges (b0, c1), (c1, c

′
1),

(c′1, b1), (b1, c2), (c2, c
′
2), ..., (cn, c

′
n), (c′n, bn), where b0 = u and bn = u′. The

edges crossing (u, u′) are transformed in the same way; thus, the edge (v, v′) that
crosses (u, u′) in xi is replaced by a sequence of edges that also includes (ci, c

′
i).

For an illustration, see Fig. 5. The vertices bi are inserted to make it easier to
restore the original connectivity of the graph later; we call these vertices break-
ers. The resulting graph is a planar graph with O(V ) original vertices, O(T )
crossing vertices, and O(T ) breakers, and all vertices have degree at most three.

2Some SSSP algorithms deal with zero-weight edges by contracting them into single ver-
tices. This is not the case with our SSSP algorithm which can handle zero-weight edges in
the same way as positive-weight edges.
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x1
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u′
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c′2
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c′1
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v4

v1

ci

c′i
ci

v2

v3

v4

v1

Figure 5: Top left: A non-planar graph. Top right: Introducing crossing vertices
(circles with dots) and breakers (circles without dots). Bottom left: A partition
into subgraphs (white background), with separator vertices drawn on a dark
background. Bottom right: Final graph with the original connectivity and a
good partition.
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We now apply our partitioning scheme from Sec. 2 to the transformed graph.
After that, we restore the original connectivity of the graph so that shortest
paths, connected components etc. are the same is in the original graph, while
we maintain a good partition. We do this as follows. Consider a pair of cross-
ing vertices ci and c′i, and let c′i, v1, v2 be the neighbours of ci in clockwise
order, and let ci, v3, v4 be the neighbours of c′i in clockwise order—see Fig. 5.
The vertices v1, ..., v4 are points on two input edges: more specifically they are
original input vertices or breakers. The pair ci, c

′
i models the crossing between

the segments (v1, v3) and (v2, v4) of these input edges. We remove the edges
(ci, c

′
i), (ci, v1), (ci, v2), (c′i, v3) and (c′i, v4) and the vertices ci and c′i from the

graph. If v1 and v3 lie in the same subgraph Gi (that is, a subgraph with its
boundary), we put an edge (v1, v3) back in. If v1 and v3 do not lie in the same
subgraph Gi, we put a vertex ci and edges (v1, ci) and (ci, v3) back in, with
ci added to the boundary set between the subgraphs that contain v1 and v3.
Analogously, we put in an edge (v2, v4), or a vertex c′i and two edges (v2, c

′
i)

and (c′i, v4).

Note that these operations can only decrease the number of vertices and
edges in any subgraph. The number of vertices in the boundary sets may in-
crease by a constant factor, as a pair of vertices ci, c

′
i of which only one vertex

was in the boundary set, may be replaced by a pair ci, c
′
i with both vertices in

the boundary set.

Our algorithms for shortest paths (Sec. 3), (strongly) connected components,
depth-first search, and topological sort will run correctly on the resulting graph.
Note that the transformation before and after partitioning can easily be carried
out in O(sort(V + T )) I/Os. We get the following:

Theorem 10 Let G = (V,E) be a directed graph for which we are given a
drawing with T crossings. If M = Ω(B2), then single-source shortest paths,
(strongly) connected components, and a topological order (if G is acyclic) of G
can be computed with O (sort(V + T )) I/Os. A depth-first search order can be

computed with O
(

(V + T )/
√
B + sort(V + T )

)
I/Os.

Thus, if a drawing is given where the number of crossings T = O(E) then
SSSP, SCC and topological sorting can be solved in O(sort(E)) I/Os and DFS
in O(V/

√
B + sort(E)) I/Os.

The approach described above can be compared with the approach described
in Sec. 5.1 above. Both approaches have the same asymptotic dependency on T ;
however, the approach described in Sec. 5.1 also depends on EC , the number
of edges that needs to be removed from the drawing of G to make it a plane
drawing. The approach described in Sec. 5.1 may nevertheless be advantageous
if a large number of crossings is caused by a small number of edges: in that case
the approach of Sec. 5.1 will work with a substitute graph with a small number
of cross-link vertices, while the approach described here in Sec. 5.3 would work
with a substitute graph to which breaker and separator vertices may be added
for many crossings.
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5.4 Graphs that are k-embeddable in the plane

A graph is k-embeddable in the plane if it can be drawn in the plane so that each
edge crosses at most k other edges [29]. Since a k-embeddable graph necessarily
has small crossing number, the above approach can be taken.

5.5 Combining crossings and cross-links

Above we mentioned that graphs that have low crossing number (or are k-
embeddable in the plane for small k) can be handled efficiently by replacing
crossings by special vertices, while graphs with small skewness or small splitting
number can be handled efficiently by identifying a small number of cross-link
edges. The two approaches can be combined, so that we get the following:

Theorem 11 Let G = K ∪ GC be a directed graph and let a drawing for K
with T crossing be given. If M = Ω(B2), then single-source shortest paths,
(strongly) connected components, and a topological order (if G is acyclic) of G
can be computed with O(EC+sort(V +T+EC)) I/Os. A depth-first search order

can can be computed with O
(
EC + (V + T )/

√
B + sort(V + T + EC)

)
I/Os.

Hence we can find shortest paths in O(sort(E)) I/Os on a graph that consists
of O(E/B) cross-links and a graph with crossing number O(E), provided the
cross-links and the intersections in the remaining graph are given. However,
how to find a constant-factor approximation of a minimum-size set of cross-
links such that the rest of the graph has crossing number O(E), still remains as
an open problem.

5.6 Vertices with degree more than three

Figure 6: Transforming high-degree vertices into vertices of degree three, in the
undirected case (left) and the directed case (right). The fat edges have zero
weight.

Graphs with vertices of degree more than three, can be handled by first
transforming these vertices into vertices of degree three. If the graph is undi-
rected, a vertex of degree d > 3 can easily be transformed into d− 2 vertices of
degree 3 while keeping the graph planar, see Fig. 6 (left).

If the graph is directed, the same transformation can be used when com-
puting shortest paths and strongly-connected components. However, this trans-
formation does not work for topological sorting, since the added zero-weight
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edges would have to be undirected (thus introducting cycles). For directed
graphs another transformation can be used that does not introduce cycles, see
Fig. 6 (right). This transformation may make the graph non-planar: it may
introduce up to d− 2 crossings. However, these can easily be handled with the
technique described in Sec. 5.3. This increases the number of I/Os only by a
constant factor.

6 Discussion

In this paper we extended the class of graphs for which efficient computations
of single-source shortest paths are possible from planar graphs to several classes
of near-planar graphs. Our approach yields efficient algorithms for graphs with
low crossing number, low splitting number, or low skewness—provided suitable
drawings are given. Our techniques can also be applied to compute (strongly)
connected components, BFS orderings, DFS orderings, and topological order-
ings.

In theory, creating suitable drawings is difficult, since identifying a maxi-
mum planar subgraph or computing the crossing number, splitting number, or
skewness of a graph are NP-complete problems [15, 18, 30]. However, in many
practical applications of graph algorithms, graphs are given with a drawing or
suitable drawings can be produced by heuristic methods.

Even if a good drawing is given, the method to identify cross-links in a
graph of low skewness as described in Sec. 5.1 needs to know all crossings in the
drawing. The crossings would need to be given or would need to be computed: in
the case of a rectilinear drawing3 we could do so with the external-memory line
segment intersection algorithm by Arge et al. [8] or the randomized algorithm by
Crauser et al. [13]. One could hope to find an algorithm that can find an effective
set of cross-links without computing all crossings in the drawing first. It would
also be interesting to find a constant-factor approximation of a minimum-size
set of cross-links such that the rest of the graph has crossing number O(E), so
that we may have only very few cross-links and handle the remaining crossings
with auxiliary vertices as described in Sec. 5.3.

Furthermore, it would be interesting to look into more measures of planarity
that may be exploited, such as thickness or geometric thickness [14].
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