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Abstract

Let G = (V,E) be an edge-weighted graph, and let w(H) denote the
sum of the weights of the edges in a subgraph H of G. Given a positive
integer k, the balanced tree partitioning problem requires to cover all
vertices in V by a set T of k trees of the graph so that the ratio α of
maxT∈T w(T ) to w(T ∗)/k is minimized, where T ∗ denotes a minimum
spanning tree of G. The problem has been used as a core analysis in
designing approximation algorithms for several types of graph partitioning
problems over metric spaces, and the performance guarantees depend on
the ratio α of the corresponding balanced tree partitioning problems. It is
known that the best possible value of α is 2 for the general metric space.
In this paper, we study the problem in the d-dimensional Euclidean space
Rd, and break the bound 2 on α, showing that α < 2

√
3 − 3/2 ; 1.964

for d ≥ 3 and α < (13 +
√
109)/12 ; 1.953 for d = 2. These new

results enable us to directly improve the performance guarantees of several
existing approximation algorithms for graph partitioning problems if the
metric space is an Euclidean space.
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1 Introduction

Let G = (V,E) be a simple undirected graph with vertex set V and edge set
E such that edges are weighted by nonnegative reals, and let p be a specified
positive integer. Then the minmax subtree cover problem requires to find a set
of p trees covering all the vertices such that the maximum weight of a tree in the
set is minimized. This problem arises in various types of practical applications,
such as multi-vehicle scheduling problem [6, 8, 9, 10], task sequencing problem
[4], and political districting [3, 7]. The minmax subtree cover problem on graphs
can be described formally as follows, where R+ denotes the set of nonnegative
reals.

Minmax Subtree Cover Problem (MSC):
Input: An undirected graph G = (V,E), an edge weight function w : E → R+,
and a positive integer p.
Feasible solution: A partition S = {S1, S2, . . . , Sp} of V and a set T =
{T1, T2, . . . , Tp} of p trees of G such that Si ⊆ V (Ti), i = 1, 2, . . . , p.
Goal: Minimize max1≤i≤p w(Ti), where w(Ti) =

∑
e∈E(Ti)

w(e).

A tree cover T of a graph G = (V,E) is defined by a set of trees of G such
that the union of vertices of the trees in T contains V . That is, the MSC
requires to find a tree cover with p trees that minimizes the maximum weight
of a tree in the tree cover, where the weight of a tree is the sum of the weights
of all edges in the tree. Trees in a tree cover are not necessarily vertex-disjoint
or edge-disjoint.

The MSC is known to be NP-hard even if p = 2 and G is a tree, or if G
can be embedded in the Euclidean space [11, 5], and thus several approximation
algorithms for the problem have been proposed in the literatures. Andersson
et al. [11] provided a (2 + ε)-approximation algorithm for the MSC when G
can be embedded in the Euclidean space, where ε is a sufficiently small posi-
tive real number, and Nagamochi and Kawada [13] presented a (4− 4/(p+ 1))-
approximation algorithm for the problem when the given graph is a cactus. Even
et al. [6] presented a 4-approximation algorithm for the MSC with an arbitrary
graph G. The MSC on a tree-like structure graphs has also been studied ex-
tensively. Averbakh and Berman [2] presented a (2− 2/(p+ 1))-approximation
algorithm with time complexity O(pp−1np−1), and afterward Nagamochi and
Okada [14] gave a polynomial time approximation algorithm with the same ap-
proximation factor which runs in O(p2n) time, where n is the number of vertices
in the tree. In an extension of the problem, a set of vertices to be covered is
given as a subset S ⊆ V of vertices and nonnegative weights to handle vertices
in S are also introduced in the tree weight. For this problem, Nagamochi and
Okada [15] proposed a (2 − 2/(p + 1))-approximation algorithm that runs in
O((p− 1)!n).

For a rooted version of the MSC, a graph G = (V,E) with a set R of
prescribed vertices is given and a tree cover is required to consist of trees each of
which is rooted at a vertex in R. In [6], a 4-approximation algorithm is proposed
for an arbitrary graph G under an additional condition that all trees T are



JGAA, 15(3) 345–371 (2011) 347

required to be rooted at distinct vertices in R. Nagamochi [12] proposed a (3−
2/(p+1))-approximation algorithm to the problem with |R| = 1. For the rooted
version of the MSC on a tree, Averbakh and Berman [1] presented a linear time
4/3-approximation algorithm for the problem with p = 2, and Nagamochi and
Okada [14, 16] gave an O(n log log1+ε/2 3) time (2+ε)-approximation algorithms
for arbitrary p, where ε > 0 is a prescribed constant.

Some of the above approximation algorithms for the MSC include a proce-
dure for partitioning a minimum spanning tree T ∗ of a given graph into k trees
of the graph as uniformly as possible, and their performance analysis relies on
the fact that w(T ∗)/k is a lower bound on the maximum weight of a tree in any
such partition. Thus the ratio α of the maximum weight of a tree to w(T ∗)/k
appears as a factor of their performance guarantees. Motivated by the impor-
tance of the analysis on tree covers, we consider the balanced tree partitioning
problem in this paper. For a given positive integer k, the problem requires to
find a tree cover T = {T1, T2, . . . , Tk} with k trees of the graph that minimizes
the ratio of max1≤i≤k w(Ti) to w(T ∗)/k, where T ∗ denotes a minimum spanning
tree of G. Note that a tree Ti in a tree cover is allowed to contain an edge not
in T ∗. In particular, we analyze an upper bound on the factor α such that

max
1≤i≤k

w(Ti) ≤ α · w(T ∗)/k.

For any metric, it is known that α ≤ 2 holds [1, 2]. We here remark that
α ≤ 2 is best possible for the general metric. Consider a metric graph G =
(V,E) consisting of a star S on k + 2 vertices V = {s, v1, . . . , vk+1} such that
E(S) = {(s, vi) | i = 1, 2, . . . , k+ 1}, where each edge in S is weighted by 1 and
each of the remaining edges in G is weighted by 2. Clearly, S is the minimum
spanning tree of G with weight w(S) = k+1. On the other hand, the maximum
weight of any k trees of G is at least 2, since one of the trees must contain
two leaves of S. Hence α is at least 2/(1 + 1/k), which is nearly 2 when k is
sufficiently large.

In this paper, we prove that there are better upper bounds on α in the
Euclidean space. The following two results are the main contribution of the
paper.

Theorem 1 For a set V of n points in the Euclidean space R2 and a positive
integer k, there exists a tree cover T1, T2, . . . , Tk of V such that

max1≤i≤k w(Ti)

w(T ∗)/k
≤ (13 +

√
109)/12 ; 1.953,

where T ∗ is a minimum weight tree spanning V . Furthermore, such a tree cover
can be obtained in polynomial time. �

Theorem 2 For a set V of n points in the Euclidean space Rd (d ≥ 3) and a
positive integer k, there exists a tree cover T1, T2, . . . , Tk of V such that

max1≤i≤k w(Ti)

w(T ∗)/k
≤ 2
√

3− 3/2 ; 1.964,
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where T ∗ is a minimum weight tree spanning V . Furthermore, such a tree cover
can be obtained in polynomial time. �

These new results enable us to directly improve the performance guarantees
of several existing approximation algorithms for graph partitioning problems
if the metric space is a Euclidean space Rd. For example, the performance
guarantee on the MSC due to Andersson et al. [11] is given as α+ ε, which is at
most 1.965+ε for d ≥ 3 and 1.954+ε for d = 2. Also the performance guarantees
on the rooted and unrooted versions of the MSC due to Even et al. [6] are 2+α
and 2α, respectively. Thus, our results imply that the unrooted versions of the
MSC is 3.929-approximable in Rd with d ≥ 3 and 3.907-approximable in R2.

The paper is organized as follows. Section 2 introduces terminologies and
definitions on graphs. Section 3 gives a framework of an approximation algo-
rithm to the balanced tree partitioning problem, from which Theorems 1 and
2 follow directly. Sections 4, 5, and 6 give detailed proofs of some tree cover
results based on which we build our algorithm in Section 3. Section 7 makes
some concluding remarks.

2 Preliminaries

Throughout this paper a graph stands for a simple undirected graph unless
otherwise stated.

For a set Z, a set {Z1, Z2, . . . , Z`} of pairwise disjoint non-empty subsets of
Z is called a partition of Z if ∪`i=1Zi = Z.

A singleton set {x} may be denoted by x. Let G be a graph. The vertex and
edge sets of G are denoted by V (G) and E(G), respectively. A graph G with a
vertex set V and an edge set E is denoted by (V,E). LetG1 andG2 be subgraphs
of G. We let G1 +G2 denote the graph (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). For
an edge e = (u, v) ∈ E(G), we denote by G1 + u (resp., G1 + e) the subgraph
G1 + ({u}, ∅) (resp., G1 + ({u, v}, {e})) of G.

For a subset X ⊆ V (G), let G[X] denote the subgraph induced from G by
X. and G−X denote the subgraph obtained from G by removing the vertices
in X together with all edges incident to a vertex in X. The degree of u, i.e., the
number of edges incident to vertex u ∈ V (G), is denoted by deg(u).

For a graph G and an edge weight w : E(G) → R+, the weight w(G′) of a
subgraph G′ of G is defined by

∑
e∈E(G′) w(e). For a set S of subgraphs of G, let

w(S) denote
∑
G′∈S w(G′). The weight w(e) of edge e = (u, v) may be denoted

by w(u, v). An edge-weighted graph (G,w) is a metric if it satisfies the triangle
inequality, i.e., w(x, y) + w(y, z) ≥ w(x, z) holds for all vertices x, y, z ∈ V .
An edge-weighted graph (G,w) in the Euclidean space Rd is a complete graph
whose vertex set is defined by a set V of points in the space, where the edge
weight w(u, v), u, v ∈ V is defined by the Euclidean distance between the two
points u and v. The line segment between points u and v in the Euclidean space
Rd is denoted by uv and its weight by uv.
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Let T be a rooted tree. The set of children of a vertex v is denoted by
Ch(v), and the set of descendants of a vertex v is denoted by D(v), where D(v)
includes v. Let D(S) = ∪v∈SD(v) for a subset S ⊆ V (T ). A non-root vertex of
degree 1 is called a leaf in T . The subtree Tv rooted at a vertex v ∈ V (T ) is the
subtree of T induced by the descendants of v. An edge e = (u, v) ∈ E(T ), where
v ∈ Ch(u), is called the parent edge of v and a child edge of u, and the subtree
Te rooted at e is defined by Tv + e. The parent edge of a vertex v is denoted by
e(v). A branch of a vertex u is defined as the subtree Te rooted at a child edge
e of u, and B(u) denotes the set of all branches of u. We may mean by a subset
S ⊆ B(u) the subtree that consists of all branches in S and denote by V (S) and
E(S) the vertex and edge sets of the subtree S, respectively, unless confusion
arises.

For a real number β > 0, we define a β-boundary vertex of T as a non-root
vertex v such that

w(Te(v)) ≥ β for its parent edge e(v),

and no proper descendant of v has this property, i.e.,

w(Te′) < β for every child edge e′ of v (if any).

For a subtree T ′ of T , let Vβ(T ′) denote the set of all β-boundary vertices in T ′,
where the root r′ of T ′ is chosen as the vertex closest to the root r of T . Note
that, for two distinct β-boundary vertices u, v ∈ Vβ(T ′), none of u and v is a
descendent or an ancestor of the other in T ′. Also, r′ /∈ Vβ(T ′) by definition.
We observe the next property.

Lemma 1 Let Te be a branch of a vertex u and β be a positive real number .

(i) Vβ(Te) 6= ∅ if and only if w(Te) ≥ β.

(ii) If Vβ(Te) 6= ∅, then Vγ(Te) 6= ∅ for any γ ∈ (0, β].

Proof: (i) The only-if part is obvious. We show the if part. Choose a vertex
v ∈ V (Te)−u closest to u such that v is a leaf or w(S) < β holds for all S ∈ B(v).
For the parent edge e(v) of v, we have w(Te(v)) ≥ β. Then v is a β-boundary
vertex in Te, and Vβ(Te) 6= ∅ holds.

(ii) For any real number γ ∈ (0, β], w(Te) ≥ β ≥ γ > 0 holds. Then
Vγ(Te) 6= ∅ holds by (i). �

3 Approximation Algorithm

To prove Theorems 1 and 2, we assume without loss of generality that w(T ∗) = k
throughout the paper for a minimum spanning tree T ∗. We design an approxi-
mation algorithm to the balanced tree partitioning problem to derive the upper
bounds Theorems 1 and 2. In this section, we first give a framework of the
approximation algorithm. The algorithm computes a set of at most k trees of
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G that cover the vertex set of T ∗ by repeatedly applying three main theorems
on tree partition, where the proofs of such theorems will be given in the three
subsequent sections.

We first introduce the following basic definitions.

For a specified real number α > 3/2 and a 1-boundary vertex u ∈ V1(T ) in
a rooted tree T , we define a canonical partition {L(u),M(u),H(u)} of B(u) by

L(u) = {S ∈ B(u) | 0 < w(S) < 2− α},
H(u) = {S ∈ B(u) | α− 1 < w(S) < 1},
M(u) = {S ∈ B(u) | 2− α ≤ w(S) ≤ α− 1}.

Definition 3 Let T be a tree in a graph G, and let α ∈ [1, 2] be a real number.
A family of h subsets S1, S2, . . . , Sh ⊆ V (T ) is admissible (or h-admissible) in
T if there are trees TS1

, TS2
, . . . , TSh

of G (which are not necessarily subtrees of
T ) such that

(i) For each Si, Si ⊆ V (TSi) and w(TSi) ≤ α.

(ii) If V (T )−
⋃

1≤i≤h Si 6= ∅, then T ′ = T −
⋃

1≤i≤h Si remains connected and
w(T )− w(T ′) ≥ h holds.

(iii) If V (T ) =
⋃

1≤i≤h Si, then dw(T )e ≥ h holds.

We call a set of such subtrees TSi
, i = 1, 2, . . . , h, an h-admissible forest.

To prove Theorems 1 and 2, where the weight of a minimum spanning tree
T ∗ of G is assumed to be k, it suffices to show that a minimum spanning tree
T = T ∗ has a k-admissible family of subsets S1, S2, . . . , Sk ⊆ V (G) = V (T ) for
α = (13 +

√
109)/12 and α = 2

√
3 − 3/2, respectively, and such a a family is

polynomially computable.

Lemma 2 Let T be a tree with w(T ) > 0 and α ∈ [1, 2] be a specified real
number.

(i) For a p-admissible family {S1, S2, . . . , Sp} in T and a q-admissible family
{S′1, S′2, . . . , S′q} in T ′ = T −

⋃
1≤i≤p Si, their union {S1, S2, . . . , Sp} ∪

{S′1, S′2, . . . , S′q} is (p+ q)-admissible in T .

(ii) For a non-root vertex v ∈ V (T ) with w(Tv) ≤ α and w(Te(v)) ≥ 1, D(v)
is 1-admissible in T .

(iii) For a vertex u ∈ V (T ) and a subset C1 ⊆ Ch(u) with 1 ≤
∑
v∈C1

w(Te(v)) ≤
α, S1 = D(C1) is 1-admissible in T .

(iv) If w(T ) ≤ 3α/2, then there is an h-admissible family {Si | i = 1, . . . , h}
(h ≤ 2) in T such that V (T ) = ∪1≤i≤hSi.
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Proof: (i) From Definition 3(i), there are trees TS1 , . . . , TSp (resp., TS′1 , . . . , TS′q )
of G such that, for each Si (resp., S′i), w(TSi

) ≤ α (resp., w(TS′i) ≤ α). Also,
Definition 3(ii) implies that T ′ −

⋃
1≤i≤q S

′
i is connected and w(T )−w(T ′) ≥ p

holds. Finally, if V (T ) = (
⋃

1≤i≤p Si) ∪ (
⋃

1≤i≤q S
′
i), then dw(T )e = dw(T ) −

w(T ′) +w(T ′)e ≥ dp+w(T ′)e = p+ dw(T ′)e ≥ p+ q holds (since dw(T ′)e ≥ q).
This proves (i).

Conditions (ii)-(iii) follow immediately from Definition 3.
(iv) If w(T ) ≤ α, then we see that {S1 = V (T )} is admissible in T and

TS1
= T is a 1-admissible tree.

Assume that α < w(T ) ≤ 3α/2. Regard T as a tree rooted at a vertex r
with deg(r) = 1. For β = w(T )− α(> 0), Vβ(T ) 6= ∅ by Lemma 1(i). Choose a
β-boundary vertex u ∈ Vβ(T ) (note that u 6= r). We distinguish two cases, (1)
w(Tu) < β and (2) w(Tu) ≥ β.
(1) w(Tu) < β. We show that {S1 = D(u), S2 = V (T )− S1} is admissible. Let
TS1

:= Tu and TS2
:= T − V (Tu). Clearly

w(TS1
) = w(Tu) < β = w(T )− α ≤ 3α/2− α < α.

By the definition of a β-boundary vertex and u ∈ Vβ(T ), w(Te(u)) ≥ β holds.
Then we have

w(TS2) = w(T )− w(Te(u)) ≤ w(T )− β = α.

Hence {TS1 , TS2} is a 2-admissible forest, as required.
(2) w(Tu) ≥ β. Choose a minimal subset S ⊆ B(u) such that w(S) ≥ β holds.
We show that {S1 = V (S)− {u}, S2 = V (T )− S1} is admissible. Let TS1

:= S
and TS2

:= T − S1. By u ∈ Vβ(T ), the weight of every branch of u is less than
β. Hence the minimality of S implies that

β ≤ w(TS1
) = w(S) < β + β = 2(w(T )− α) ≤ 2(3α/2− α) = α.

On the other hand, by w(S) ≥ β, we have

w(TS2) = w(T )− w(S) ≤ w(T )− β = α.

Hence {TS1 , TS2} is a 2-admissible forest, as required. �

We consider whether a 1-boundary vertex u in a tree satisfies the following
condition.

Definition 4 For a real number α > 3/2, a 1-boundary vertex u ∈ V1(T ) in a
rooted tree T is called inactive if it satisfies the following condition A, and is
called active otherwise.
Condition A:
(i) w(B(u)) > α, (ii) |H(u)| ≥ 2, (iii)M(u) = ∅, and (iv) w(L(u)) < 2−α.

We use the following results, which will be verified in Sections 4, 5 and 6,
respectively.
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Theorem 5 Let T be a tree rooted at a vertex r with deg(r) = 1, and let
α ∈ [5/3, 2] be a real number. Assume that w(T ) > 3α/2 and there is an active
1-boundary vertex in V1(T ). Then there is an admissible family S in T such
that the tree T ′ = T −

⋃
S∈S S has no active 1-boundary vertices in V1(T ′).

Moreover, if T ′ 6= ∅, w(T ′) = 0, and w(T [S ∪ {r}]) > α for all S ∈ S, then
S ∪ V (T ′) is an admissible family in T .

Theorem 6 Let T be a tree in the Euclidean space Rd (d ≥ 3), and let α =
2
√

3 − 3/2. Assume that T is rooted at a vertex r with deg(r) = 1. If w(T ) >
3α/2 and every 1-boundary vertex u ∈ V1(T ) is inactive, then there is an ad-
missible family S in T . Moreover, for T ′ = T −

⋃
S∈S S, if T ′ 6= ∅, w(T ′) = 0,

and w(T [S ∪ {r}]) > α for all S ∈ S, then S ∪ V (T ′) is an admissible family in
T .

Theorem 7 Let T be a tree in the Euclidean space Rd (d = 2), and let α =
(13 +

√
109)/12. Assume that T is rooted at a vertex r with deg(r) = 1. If

w(T ) > 3α/2 and every 1-boundary vertex u ∈ V1(T ) is inactive, then there
is an admissible family S in T . Moreover, for T ′ = T −

⋃
S∈S S, if T ′ 6= ∅,

w(T ′) = 0, and w(T [S∪{r}]) > α for all S ∈ S, then S∪V (T ′) is an admissible
family in T .

Now we are ready to present the approximation algorithm. We are given
a spanning tree T of a graph G in the Euclidean space and a positive integer
k. The algorithm repeats the following procedure on the current tree T as long
as w(T ) > 3α/2 holds. Depending on the properties of the current tree T , we
first apply one of the above theorems to find an admissible family S in T and
then remove S from the current tree T . Finally, depending on the nature of the
current tree T , we construct the desired admissible family in the given spanning
tree. The algorithm is described as follows.

Algorithm TreeCover
Input: A spanning tree T ∗ of a graph G in the Euclidean space
Rd (d ≥ 2), where w(T ∗) = k for an integer k ≥ 1.

Output: A k-admissible family S∗ for α = (13 +
√

109)/12 (d = 2) and

α = 2
√

3− 3/2 (d ≥ 3).
1 Let T := T ∗, regarding T as a tree rooted at a vertex r with deg(r) = 1,

and S∗ := ∅;
2 while w(T ) > 3α/2 do
3 if T has an active 1-boundary vertex then
4 Find an admissible family S in T by Theorem 5;
5 Let S∗ := S∗ ∪ S; T := T −

⋃
S∈S S

6 end; /* if */
/* the current tree T has no active 1-boundary vertex */

7 Find an admissible family S in T by Theorem 6 (if d ≥ 3)
and Theorem 7 (if d = 2);

8 S∗ := S∗ ∪ S; T := T −
⋃
S∈S S

9 end; /* while */
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/* w(T ) ≤ 3α/2 */
10 if w(T ) > 0 then
11 Find an admissible family S = {Si | i = 1, 2, . . . , h} (h ≤ 2) by

Lemma 2(iv);
12 S∗ := S∗ ∪ S
13 end; /* if */
14 if T 6= ∅ and w(T ) = 0 then /* V (T ) = {r} in the Euclidean space */
15 Let S be the last admissible family computed in the while loop;
16 if w(T ∗[S ∪ {r}]) ≤ α for some S ∈ S then
17 S := S ∪ {r}; TS := T ∗[S ∪ {r}]
18 else /* w(T ∗[S ∪ {r}]) > α for all S ∈ S holds */
19 S′ := {r}; TS′ := T ; S∗ := S∗ ∪ {S′}
20 end /* if */
21 end. /* if */

Theorem 8 Algorithm TreeCover delivers a k-admissible family S∗ in T ∗

such that
⋃
S∈S∗ S = V (T ∗).

Proof: In each iteration of the while-loop, at least one of Theorems 5, 6, and
7 is applied to find an admissible family S in the current tree T . After the
last iteration of the while-loop, we have w(T ) ≤ 3α/2. Assume that T = ∅ or
w(T ) > 0 holds for the remaining tree T after line 9. Then Lemma 2(iv) can be
applied to find another admissible family S for T if w(T ) > 0. By Lemma 2(i),
the union of all resulting admissible families gives a desired admissible family S∗
in T ∗. By the definition of admissible family, the admissible family S∗ contains
at most k subsets since w(T ∗) = k.

Next assume that T 6= ∅ and w(T ) = 0 for the remaining tree T after line 9.
Then T = ({r}, ∅) since otherwise w(T ) would be positive in the Euclidean
space. Let S be the last admissible family computed in the while loop. Now, if
w(T ∗[S ∪ {r}]) ≤ α holds for some S ∈ S, then the new subset S := S ∪ {r}
computed in line 17 is an admissible set. Again by Lemma 2(i), the union of
all resulting admissible families gives a desired admissible family S∗ in T ∗, and
the admissible family S∗ contains at most k subsets since w(T ∗) = k.

Assume that w(T ∗[S ∪ {r}]) > α for all S ∈ S. Hence, by Theorems 5, 6,
and 7, S ∪ {S′} is an admissible set for the subset S′ computed in line 19.
Therefore, by Lemma 2(i), the union of all resulting admissible families gives a
desired admissible family in T ∗, and the admissible family S∗ contains at most
k subsets since w(T ∗) = k. This completes the proof. �

4 Proof of Theorem 5

This section is devoted to present a proof of Theorem 5 which holds for any
α ∈ [5/3, 2].

For a non-root vertex u in a rooted tree T , a partition {S1,S2, . . . ,Sp,
L,M,H} of B(u) is called valid if 1 ≤ w(Si) ≤ α, i = 1, 2, . . . , p, L ⊆ L(u),
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M ⊆M(u), and H ⊆ H(u). Note that, by Lemma 2(iii), Si = V (Si) − {u} in
a valid partition forms an admissible family with a 1-admissible tree Si.

Lemma 3 Let u ∈ V1(T ) be a 1-boundary vertex in a rooted tree T . Then
there exists a valid partition {S1,S2, . . . ,Sp, L,M,H} of B(u) that satisfies the
following (i)-(ii), where B = L ∪M∪H.

(i) If H 6= ∅, then M = ∅ and w(L) < 2− α hold.

(ii) w(B) < 1 holds if and only if |H| ≤ 1 holds.

Proof: We first partition L(u) into M′1,M′2, . . . ,M′q and L′ so that

w(L′) < 2− α and 2− α ≤ w(M′i) ≤ α− 1, i = 1, 2, . . . , q.

Since α ≥ 5/3 and w(L) < 2 − α for all L ∈ L(u), such a partition can be
obtained by constructing {M′i} adding branches in L(u) one by one until the
weight of the remaining branches becomes less than 2− α. We now treat each
M′i as a single subtree M ′i . Let H(u) = {H1, H2, . . . ,Hh} and M(u) ∪ {M ′i |
i = 1, 2, . . . , q} = {M1,M2, . . . ,Mm}. Note that any pair {Hi,Mj} gives an
1-admissible tree since w(Hi +Mj) ≥ (α− 1) + (2− α) = 1 and w(Hi +Mj) ≤
1 + (α− 1) = α hold.

(a) h ≥ m. In this case, we construct m sets of branches, Si = {Hi,Mi},
i = 1, 2, . . . ,m. If h > m and w(L′) +w(Hm+1) ≥ 1, then we construct Sm+1 =
L′∪{Hm+1}, letting p = m+1, L :=M := ∅, and H := {Hi | i = m+2, . . . , h}.
Otherwise, let p = m, L := L′, M := ∅, and H := {Hi | i = m+ 1, . . . , h}.

(b) h < m. In this case, we first construct h sets of branches, Si = {Hi,Mi},
i = 1, 2, . . . , h. We then partition the set B′ = B(u)−∪1≤i≤hSi into subsets Sj ,
j = h+ 1, h+ 2, . . . , p and B so that

w(B) < 1 and each Sj is a minimal subset with w(Sj) ≥ 1.

Such a partition can be obtained by repeatedly choosing such a minimal subset
Sj from B′ until the weight of the remaining branches becomes less than 1.
Since w(B) ≤ α− 1 for all B ∈ B′, we see that 1 ≤ w(Sj) ≤ 1 + α− 1 = α, i.e.,
Sj is 1-admissible. Let L := B ∩ L(u), M := B ∩M(u), and H := ∅.

Next we prove that properties (i) and (ii) hold in both cases (a) and (b).
(i) If H 6= ∅, then L, M, and H are constructed in case (a) and thereby

M = ∅ and w(L) < 2− α hold.
(ii) By construction, w(B) < 1 holds if and only if w(B) = w(H) +w(L) < 1

holds in (a) or w(B) = w(M) + w(L) < 1 holds in (b). Since w(H) > α− 1(>
1/2) holds for every H ∈ H, we obtain |H| ≤ 1. �

Given a rooted tree T , the following algorithm converts T into another tree
T ′ in which all 1-boundary vertices are inactive. Such a tree T ′ is constructed
by applying a procedure that first chooses an active vertex u ∈ V1(T ) in the
current tree T , computes a valid partition {S1,S2, . . . ,Sp, L,M,H} of B(u)
by Lemma 3, and then removes the admissible family {S1,S2, . . . ,Sp} (if any)
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from T . We observe that if u is a 1-boundary vertex in the resulting tree T ′

(i.e., w(T ′e(u)) ≥ 1), then either (i) u is inactive if w(T ′u) = w(B) > α, or (ii)

w(T ′u) = w(B) ≤ α and w(T ′e(u)) ≥ 1 otherwise, where B = L ∪M ∪ H. In

the latter case, DT ′(u) is an admissible set by Lemma 2(ii). In other words,
the above procedure makes an active 1-boundary vertex inactive or creates an
admissible set.

Algorithm RemoveActive
Input: A tree T rooted at a vertex r with deg(r) = 1.
Output: An admissible family S in T such that T ′ = T −

⋃
S∈S S has

no active 1-boundary vertices in V1(T ′).
1 S := ∅; Let VA be the set of all inactive 1-boundary vertices in V1(T );
2 while V1(T )− VA 6= ∅ do
3 Choose a 1-boundary vertex u ∈ V1(T )− VA;
4 Find a valid partition {S1,S2, . . . ,Sp, L,M,H} of B(u) in Lemma 3;
5 Let S := S ∪ {V (Si)− {u} | i = 1, 2, . . . , p}; T := T − (V (S)− {u});

/* Tu = B = L ∪M∪H holds */
6 if w(Te(u)) ≥ 1 (i.e., u ∈ V1(T )) then
7 if w(Tu) = w(B) > α then

/* |H| ≥ 2, M = ∅ and w(L) < 2− α by Lemma 3 */
8 VA := VA ∪ {u} /* u is inactive in the current T */
9 else /* w(Tu) = w(B) ≤ α and w(Te(u)) ≥ 1 */
10 S := S ∪ {V (Tu)}; T := T − V (Tu)
11 end /* if */
12 end /* if */
13 end; /* while */
14 /* V1(T ) = VA holds */
15 Return S and T ′ := T .

Lemma 4 Given a rooted tree T , RemoveActive outputs an admissible family
S and a tree T ′ such that all vertices in V1(T ′) are inactive.

Proof: Note that RemoveActive terminates when V1(T ′) = VA holds. Con-
sider the case where a 1-boundary vertex u ∈ V1(T ) in the current tree T is
added to VA during the execution of RemoveActive. We see that this u
satisfies Condition A, since condition A(i) holds by w(Tu) = w(B) > α, and
this implies condition A(ii) |H(u)| ≥ 2, condition A(iii) M(u) = ∅, and con-
dition A(iv) w(L(u)) < 2 − α by Lemma 3. By the definition of 1-boundary
vertices, no ancestor of a vertex in VA will be chosen in line 3. Thus any vertex
in VA remains to be a 1-boundary vertex upon completion of RemoveActive.
This proves the lemma. �

Lemma 5 For the admissible family S and the tree T ′ output from Remove-
Active, if T ′ 6= ∅, w(T ′) = 0, and w(T [S ∪ {r}]) > α for all S ∈ S, then
S ∪ V (T ′) is an admissible family in T .

Proof: Let T0 denote the tree input to RemoveActive. Assume that T ′ 6= ∅,
w(T ′) = 0, and w(T [S∪{r}]) > α for all S ∈ S. Note that T ′ 6= ∅ and w(T ′) = 0
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imply that T ′ = ({r}, ∅) in the Euclidean space. Moreover, T ′ = ({r}, ∅) is
obtained in lines 9-10, where applied to a subtree Tu for a 1-boundary vertex u
incident to r. Clearly w(Tu) < α and w(T ′) = 0 < α. Note that S − {V (Tu)}
is also an admissible family in T by Lemma 3. Hence there are trees TS with
S ⊆ V (TS) and w(TS) ≤ α for all S ∈ S − {V (Tu)}, and the subtree T [V (Tu)∪
{r}] = T0 − ∪S∈S−{V (Tu)}S satisfies w(T0) − w(T [V (Tu) ∪ {r}]) ≥ |S| − 1. By
the assumption on the lemma, w(T [V (Tu)∪{r}]) > α > 1 holds. Hence we have
w(T0) ≥ |S| − 1 + w(T [V (Tu) ∪ {r}]) > |S|, and thereby dw(T0)e ≥ |S| + 1 =
|S ∪ {V (T ′)}|. Then we conclude that S ∪ {V (T ′)} is an admissible family in
T . This proves the lemma. �

Theorem 5 follows from Lemmas 4 and 5.

5 Proof of Theorem 6

This section gives a proof of Theorem 6. For this, we assume that α = 2
√

3−3/2
throughout this section.

For a rooted tree T , consider a branch Te of a vertex u in T such that
2α − 3 ≤ w(Te) < 1 and Te(u) ≥ 1. We denote by H∗(T ) the set of such
branches Te in T .

Lemma 6 Let T be a rooted tree which has no active 1-boundary vertices in
V1(T ). Then every 2-boundary vertex z ∈ V2(T ) satisfies the following condition.
Condition B:
(i) |H∗(Tz)| ≥ 2, (ii) |H(u)| = 2 for all u ∈ V1(Tz), (iii) w(z, u) < 2 − α for
all u ∈ V1(Tz).

Proof: Let z be an arbitrary 2-boundary vertex z ∈ V2(T ).
Tree Tz contains a vertex u that is a 1-boundary vertex in T . If V1(Tz) 6= ∅,

then this is true; otherwise (V1(Tz) = ∅) z is a 1-boundary vertex in T . Let u be a
1-boundary vertex u ∈ V1(T )∩V (Tz). Then |H(u)| ≥ 2 holds by condition A(ii),
and u has two branches Te and Te′ with w(Te), w(Te′) ∈ (α− 1, 1) ⊆ (2α− 3, 1)
by α ≤ 2. We see that Te, Te′ ∈ H∗(Tz) since u is a 1-boundary vertex and
w(Te(u)) ≥ 1 holds. Hence |H∗(Tz)| ≥ 2 holds, proving B(i).

By Condition A(ii), |H(u)| ≥ 2 holds for all 1-boundary vertices u ∈ V1(Tz) ⊆
V1(T ). If |H(u)| ≥ 3 for some u ∈ V1(Tz), then we would have

w(Tu) > 3(α− 1) ≥ 2

since α ≥ 5/3, contradicting that z ∈ V2(T ). Hence |H(u)| = 2 holds for all
u ∈ V1(Tz), i.e., B(ii) holds.

Finally, we prove B(iii). Let Te ∈ B(z) satisfy u ∈ V1(Te), and PT (z, u) be
the path between z and u along T . Since Te is a branch of a 2-boundary vertex
z of T , w(Te) < 2 holds. On the other hand, by condition A(i), w(Tu) > α
holds. Therefore we have

w(PT (z, u)) ≤ w(Te)− w(Tu) < 2− α.
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Since (G,w) is a metric, we have w(z, u) ≤ w(PT (z, u)) < 2− α. �

Note that, for any T ′ ∈ H∗(Tz) with a root r′, the root r′ must be z or a
1-boundary vertex in V1(Tz) since w(Te(r′)) ≥ 1 must hold by the maximality
of T ′.

We distinguish two cases; (i) |H∗(Tz)| = 2 and (ii) |H∗(Tz)| ≥ 3. In case
(i), we find a 2-admissible family in Tz. In case (ii), we find a 1-admissible
family {S}, where the corresponding 1-admissible tree TS will be constructed
by introducing an edge which is not in tree T .

5.1 Case of |H∗(Tz)| = 2

We first consider the case where |H∗(Tz)| = 2.

1T 2T

2S

z z

1T 2T

1S 2S

u

(a) (b) 

1S

z

1T 2T

1S 2S

(c) 

u

Figure 1: Illustration of Lemma 7, where (a), (b), and (c) represent (i), (ii), and
(iii), respectively.

Lemma 7 Let T be a rooted tree which has no active 1-boundary vertex, and
let z ∈ V2(T ) satisfy |H∗(Tz)| = 2. Then |V1(T )∩V (Tz)| = 1. Furthermore, for
H∗(Tz) = {T1, T2}, one of the following holds:

(i) If V1(T )∩V (Tz) = {z} holds, then S1 := V (T1) and S2 := V (Tz)−S1 give
a 2-admissible family in T (see Fig. 1(a)).

(ii) If V1(T ) ∩ V (Tz) = {u}, u 6= z, and w(Tz) < 2 hold, then S1 := V (T1)
and S2 := V (Tz)−S1 give a 2-admissible family in T (see Fig. 1(b)).
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(iii) If V1(T )∩V (Tz) = {u}, u 6= z, and w(Tz) ≥ 2 hold, then for any minimal
subset S ⊆ B(z)−{Te} satisfying w(Te) + w(S) ≥ 2, S1 := V (T1) and
S2 := V (Te) ∪ V (S)−(S1 ∪ {z}) give a 2-admissible family in T , where
Te ∈ B(z) satisfies u ∈ V (Te) (see Fig. 1(c)).

Proof: We first show that |V1(T ) ∩ V (Tz)| = 1. If z ∈ V1(T ) ∩ V (Tz), then
no descendant of z is a 1-boundary vertex in T since w(Te(v)) < 1 for all v ∈
Ch(z), i.e., V1(T ) ∩ V (Tz) = {z}. Assume that z 6∈ V1(T ) ∩ V (Tz). Since
w(Te(z)) ≥ 2 holds by z ∈ V2(T ), a descendant u of z must be a 1-boundary
vertex in T (also in Tz). Such a vertex u ∈ V1(Tz) has two children v and v′ with
w(Te(v)), w(Te(v′)) > α− 1 ≥ 2α− 3, since |H(u)| = 2 holds by Condition B(ii),
implying that w(Te(v)), w(Te(v′)) ∈ H∗(Tz) (note that w(Te(v)), w(Te(v′)) < 1 by
u ∈ V1(T )). Therefore, by |H∗(Tz)| = 2, such a vertex u is unique. Hence one of
the following holds: (i) V1(T ) ∩ V (Tz) = {z}, (ii) V1(T ) ∩ V (Tz) = {u}, u 6= z,
and w(Tz) < 2, and (iii) V1(T ) ∩ V (Tz) = {u}, u 6= z, and w(Tz) ≥ 2.

(i) Since z ∈ V1(T ), by Condition A(iii)-(iv), we have a partition B(z) =
{T1, T2} ∪ L(z). Then TS1

:= T1 and TS2
:= T [S2 ∪ {z}] satisfy

w(TS1) = w(T1) < 1,

w(TS2) = w(T2) + w(L(z)) < 1 + (2− α) = 3− α < α.

Furthermore, for T ′ := T − (S1 ∪ S2), w(T ) − w(T ′) ≥ 2 holds by z ∈ V2(T ).
This implies that {S1, S2} is 2-admissible.

(ii) Note that u ∈ V1(Tz) is unique and H(u) ∩H∗(Tz) = {T1, T2} holds by
Condition B(ii). Then TS1

:= T1 and TS2
:= T [S2 ∪ {u}] satisfy

w(TS1
) = w(T1) < 1,

w(TS2
) = w(Tz)− w(T1) < 2− (α− 1) = 3− α < α.

Since z ∈ V2(T ) holds, we have w(T ) − w(T ′) ≥ 2 for T ′ := T − (S1 ∪ S2).
Therefore {S1, S2} is 2-admissible.

(iii) Since w(Tz) = w(Te)+w(B(z)−{Te}) ≥ 2, there exists a minimal subset
S ⊆ B(z)−{Te} such that w(Te) + w(S) ≥ 2 holds. Then the minimality of S
implies

2 ≤ w(Te) + w(S) ≤ 2 + (2α− 3) = 2α− 1,

because for every B ∈ S, w(B) < 2α − 3 holds. Since H(u) = {T1, T2} holds
(i.e., w(T1) > α− 1 holds), TS1 := T1 and TS2 := T [S2 ∪ {u, z}] satisfy

w(TS1) = w(T1) < 1,

w(TS2) = w(Te) + w(S)− w(T1)

< (2α− 1)− (α− 1) = α.

Furthermore, w(TS1
)+w(TS2

) = w(Te)+w(S) ≥ 2 holds, implying that {S1, S2}
is 2-admissible. �
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5.2 Case of |H∗(Tz)| ≥ 3

We next consider the case where |H∗(Tz)| ≥ 3. In this case, we construct a
1-admissible tree by introducing an edge not in the current tree T .

The next lemma describes a property of the angle formed by two of three
line segments in the Euclidean space Rd.

Lemma 8 For vertices z, v1, v2, and v3, the minimum angle θ formed by line
segments zvi and zvj, i 6= j, i, j = 1, 2, 3, is no more than 120◦.

Proof: Let γ be the plane that contains three points v1, v2, v3. Without loss of
generality, we assume that z is on the origin 0. We distinguish two cases; (i) z
is also on the plane γ, and (ii) z is not on the plane γ.

(i) The origin 0 is on γ. Then, obviously, three line segments (0, v1), (0, v2), (0, v3)
divide 360◦ to three and hence the minimum angle θ formed by two of such seg-
ments is no more than 120◦.

(ii) The origin 0 is not on γ. Let x be the projection of 0 to γ. We have the
following two situations.
(a) x is equal to one of the points v1, v2, v3; assume without loss of generality
that x = v1. Since v1 is the projection of 0 to γ, the vector v1 intersects vectors
v2 − v1 and v3 − v1 orthogonally; i.e.,

v1 · (v2 − v1) = v1 · (v3 − v1) = 0,

where u · v is the inner product of u, v ∈ Rd. From this, we obtain

v1 · v2 = v1 · v3 = v1 · v1 = ‖v1‖2.

Let ϕ be the angle formed by (0, v1) and (0, v2). Then we have

cosϕ =
v1 · v2
‖v1‖‖v2‖

=
‖v1‖2

‖v1‖‖v2‖
=
‖v1‖
‖v2‖

> 0.

This implies that the minimum angle θ is no more than 120◦.
(b) x is not equal to v1, v2 and v3. Let ψ be the minimum angle formed by two
of (x, v1), (x, v2), (x, v3); assume without loss of generality that ψ is formed by
(x, v1) and (x, v2). Then ψ ≤ 120◦ holds by (i) since x, v1, v2, v3 are on γ. Since
x is the projection to γ, the vector x intersects vectors v1−x, v2−x and v3−x
orthogonally; i.e.,

x · (v1 − x) = x · (v2 − x) = x · (v3 − x) = 0.

From this, we obtain

x · v1 = x · v2 = x · v3 = x · x = ‖x‖2.

Then we have

cosψ =
(x− v1) · (x− v2)

‖x− v1‖‖x− v2‖
≥ −1

2
.
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Therefore, we conclude that

v1 · v2 ≥ ‖x‖2 −
1

2
‖x− v1‖‖x− v2‖.

Now, let ϕ be the angle formed by (0, v1) and (0, v2). Then ϕ satisfies

cosϕ =
v1 · v2
‖v1‖‖v2‖

≥ ‖x‖2

‖v1‖‖v2‖
− ‖x− v1‖‖x− v2‖

2‖v1‖‖v2‖
.

Note that ‖x− v1‖2 = (x− v1) · (x− v1) = ‖v1‖2 − ‖x‖2 (since x · v1 = ‖x‖2).
Therefore, ‖x − v1‖ < ‖v1‖ since ‖x‖, ‖v1‖, ‖x − v1‖ > 0. Similarly, we can
conclude that ‖x− v2‖ < ‖v2‖. Hence, we have

cosϕ >
‖x‖2

‖v1‖‖v2‖
− 1

2
> −1

2
.

Therefore, we obtain ϕ ≤ 120◦.
This implies that the minimum angle θ is no more than 120◦ in all situations.

�

For a descendent v of a vertex u in a rooted tree T , the (1/2)-distant point of v
with u is defined by the point puv on the line segment uv such that w(u, puv) =
min{1/2, w(u, v)}; i.e., puv = v if w(u, v) ≤ 1/2, and puv is the point on uv
satisfying w(u, puv) = 1/2 otherwise.

Let z be a 2-boundary vertex in a rooted tree T which has no active 1-
boundary vertices. By definition, the root ui of any branch Ti ∈ H∗(Tz) is
a 1-boundary vertex in T . Therefore, the intersection of any two branches
Ti, Tj ∈ H∗(Tz) contains a vertex if and only if they have the same root, i.e.,
ui = uj . We also note that a 1/2-boundary vertex vi ∈ V1/2(Ti) is unique since
w(Ti) < 1.

The next lemma claims that if |H∗(Tz)| ≥ 3, then an admissible set S can
be found or H∗(Tz) contains a pair of branches Ti and Tj that satisfies a certain
condition.

Lemma 9 Let T be a rooted tree which has no active 1-boundary vertices in
V1(T ). Let z be a 2-boundary vertex in V2(T ) such that there are three subtrees
T1, T2, T3 ∈ H∗(Tz), where ui denotes the root of Ti (ui ∈ V1(T ) ∩ V (Tz)),
i = 1, 2, 3. For each i = 1, 2, 3, let vi be a 1/2-boundary vertex in V1/2(Ti).
Then:

(a) For each Ti ∈ {T1, T2, T3}, there exists a branch T̃i ∈ H(ũi)∩H∗(Tz)− Ti
such that the root ũi ∈ V1(T ) ∩ V (Tz) of T̃i satisfies w(ui, ũi) < 2− α.

(b) Assume that there is i ∈ {1, 2, 3} such that w(Tvi) ≥ 1/2 holds. If there
exists a minimal subtree S ⊆ B(vi) such that w(S) + w(T̃i) ≥ 1 and

w(S) + w(T̃i) + w(vi, ũi) ≤ α, (1)

then S := (V (T̃i) − {ũi}) ∪ (V (S) − {vi}) is admissible. Testing whether
such a subtree exists or not can be done in O(|B(vi)|) time.
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(c) If the condition of (b) does not hold, then there exists {Ti, Tj} ⊆ {T1, T2, T3} (i 6=
j) such that the tuple (T, z, Ti, Tj , ui, uj , puivi , pujvj ) satisfies the following
condition; i = 1 and j = 2 are assumed without loss of generality.

Condition C:

(i) For each i = 1, 2, 1/2 ≤ w(Ti) < 1 holds.

(ii) θ := ∠pu1v1zpu2v2 ≤ 120◦.

(iii) For each i = 1, 2, w(z, ui) < 2− α holds.

(iv) For each i = 1, 2, if w(Tvi) ≥ 1/2 holds, then B̄i := B(vi)−{Bi}
satisfies w(B̄i) < 2 − α, where Bi ∈ B(vi) is the heaviest branch of
vi.

Proof: (a) We distinguish two cases; (1) ui = z and (2) ui 6= z.

(1) If V1(T )∩ V (Tz) = {z}, then H(z) = H∗(Tz) holds, and hence |H∗(Tz)| ≥ 3
implies that, for ũi = z, there is a branch T̃i ∈ H∗(Tz) other than Ti, where
w(ui, ũi) = w(z, z) = 0. Otherwise, there exists ũi ∈ V1(T ) ∩ V (Tz) such that
w(z, ũi) < 2 − α by Condition B(iii). Then by Condition B(ii), there exists
T̃i ∈ H(ũi) ∩H∗(Tz) such that w(ui, ũi) = w(z, ũi) < 2− α holds.

(2) By ui 6= z, we have Ti ∈ H∗(Tz) − H(z). This implies that ui ∈ V1(Tz).
Then by Condition B(ii), we can choose ũi = ui and T̃i ∈ H(ui)∩H∗(Tz)−{Ti},
where w(ui, ũi) = w(ui, ui) = 0.

(b) Assume that w(Tvi) ≥ 1/2 holds for some i ∈ {1, 2, 3}. Obviously any
minimal subtree S ⊆ B(vi) that satisfies w(S)+w(T̃i) ≥ 1 and (1) is admissible.
We show that we can test whether a minimal subtree S ⊆ B(vi) satisfying
w(S) + w(T̃i) ≥ 1 and (1) exists or not in O(|B(vi)|) time. For vi ∈ {v1, v2, v3}
satisfying w(Tvi) ≥ 1/2, we partition B(vi) into the following two subsets of
branches:

Hi := {B ∈ B(vi) | 4− 2α < w(B) < 1/2},
Li := {B ∈ B(vi) | w(B) ≤ 4− 2α},

where w(B) + w(T̃i) > (4− 2α) + (α− 1) > 1 holds for every B ∈ Hi. We can
test whether w(B) + w(T̃i) + w(vi, ũi) ≤ α holds or not in O(|Hi|) time.

If w(Li) ≥ 2−α holds, then we choose a minimal subtree L′ ⊆ Li satisfying
w(L′)+w(T̃i) ≥ 1. This can be done in O(|L′|) time. Therefore testing whether
there exists a minimal subtree satisfying w(S) + w(T̃i) ≥ 1 such that (1) holds
or not can be done in O(|Hi|+ |L′|) = O(|B(vi)|) time.

We here show that L′ always satisfies (1). By the minimality of L′, we have

1 ≤ w(L′) + w(T̃i) < 1 + (4− 2α) = 5− 2α.

Note that w(ui, vi) < 1/2 holds because 1 > w(Ti) ≥ w(ui, vi) + w(Tvi) ≥
w(ui, vi) + 1/2 holds. By (a), there exists a branch T̃i ∈ H(ũi) ∩ H∗(Tz) such
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that the root ũi ∈ V1(T )∩V (Tz) of T̃i satisfies w(ui, ũi) < 2−α. Then we have

w(L′) + w(T̃i) + w(vi, ũi) < (5− 2α) + w(ui, vi) + w(ui, ũi)

< (5− 2α) + 1/2 + (2− α)

= 15/2− 3α

< α.

Therefore L′ satisfies (1).
(c) By Lemma 8, we can assume that ∠pu1v1zpu2v2 ≤ 120◦ holds (see

Fig. 2(c)). Then by assumption, (T, z, T1, T2, u1, u2, pu1v1 , pu1v2) satisfies Con-
dition C(i) and C(ii). By u1, u2 ∈ V1(T ) ∩ V (Tz) and Condition B(iii), we have
w(z, ui) < 2 − α, i = 1, 2, implying that Condition C(iii) holds. Therefore it
remains to show that the tuple satisfies Condition C(iv) if (b) does not hold.

Suppose that w(Tvi) ≥ 1/2 holds for some i ∈ {1, 2} and Bi is the branch
in B(vi) with the maximum weight. Then |B(vi)| ≥ 2 holds because of the
definition of 1/2-boundary vertices and w(Tvi) ≥ 1/2. This implies that Bi :=
B(vi) − {Bi} 6= ∅ holds, and therefore w(Bi) > 0 holds. In addition, we have
w(Bi) < 1/2 because Bi ∈ B(vi) holds for vi ∈ V1/2(Ti) ⊆ V1/2(Tz).

We show that w(Bi) < 2 − α. Assume that w(Bi) ≥ 2 − α holds. Then by
the proof of (b) and the assumption, w(Li ∩ Bi) < 2 − α must hold. Then we
obtain

2− α ≤ w(Bi) = w(Hi ∩ Bi) + w(Li ∩ Bi) < w(Hi ∩ Bi) + 2− α,

implying that |Hi ∩ Bi| > 0 holds.
By assumption, every B ∈ Hi ∩ Bi satisfies w(B) + w(T̃i) ≥ 1 and does not

satisfy (1). Therefore we have

w(Bi) + w(T̃i) + w(vi, ũi) > w(B) + w(T̃i) + w(vi, ũi) > α.

Then we obtain

4− α = 1 + 1 + (2− α) > w(Ti) + w(T̃i) + w(ui, ũi)

≥
(
w(ui, vi) + w(Bi) + w(Bi)

)
+ w(T̃i) + w(ui, ũi)

≥ w(Bi) + w(Bi) + w(T̃i) + w(vi, ũi)

> w(Bi) + α,

implying that w(Bi) < 4− 2α holds. Therefore Bi ∈ Li holds by the definition
of Li. Then by the maximality of Bi, w(B) ≤ w(Bi) < 4 − 2α holds for all
B ∈ B(vi). This implies that Hi = ∅, which contradicts |Hi∩Bi| > 0. Therefore
w(Bi) < 2− α holds. �

Let (T, z, T1, T2, u1, u2, pu1v1 , pu2v2) denote a tuple for a 2-boundary ver-
tex z ∈ V2(T ) in a rooted tree T , two branches T1 ∈ B(u1), T2 ∈ B(u2)
rooted at u1, u2 ∈ V (Tz) (possibly u1 = z, u2 = z or u1 = u2), respec-
tively, 1/2-boundary vertices v1 ∈ V1/2(T1), v2 ∈ V1/2(T2), and (1/2)-distant
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points pu1v1 , pu2v2 of v1, v2 with u1, u2, respectively. Assume that such a tu-
ple (T, z, T1, T2, u1, u2, pu1v1 , pu2v2) satisfies Condition C. The following proce-
dure, called Combine returns an 1-admissible set S, where a corresponding
1-admissible tree will be generated by introducing an edge which is not in the
tree T .

Procedure Combine
Input: A tuple (T, z, T1, T2, u1, u2, pu1v1 , pu2v2) satisfying Condition C.
Output: An admissible set S in T .
1 If w(Tv1) < 1/2 or w(Tv2) < 1/2 holds then
2 Return S := D(v1) ∪D(v2) (see Fig. 2 (a))
3 else /* w(Tv1) ≥ 1/2 and w(Tv2) ≥ 1/2 hold */
4 Choose a subset S ⊂ B(v1) ∪ B(v2) such that

1 ≤ w(S) < 3− α holds (see Fig. 2 (b));
5 Return S := S−{v1, v2}
6 end. /* if */

z

(a) 

S

1v 2v

z

(b) 

S

1v 2v

z

1v 2v

1u 2u

11vup
22vup



1T 2T

(c) 

Figure 2: Introducing a shortcut v1v2. (a) w(Tv1) < 1/2 or w(Tv2) < 1/2; (b)
w(Tv1) ≥ 1/2 and w(Tv2) ≥ 1/2; (c) v1v2 < pu1v1v1 + pu1v1pu2v2 + pu2v2v2,
where pu1v1pu2v2 = zpu1v1

2 + zpu2v2
2 − 2zpu1v1 · zpu2v2 cos θ.

To show the correctness of Combine, we first discuss the following two
lemmas.

Lemma 10 For a tuple (T, z, T1, T2, u1, u2, pu1v1 , pu2v2) satisfying Condition C,
it holds

v1v2 < 2 (5/2− α) sin(θ/2) + pu1v1v1 + pu2v2v2.
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Proof: By the definition of (1/2)-distant points pu1v1 and pu2v2 , Condition
C(ii), and the cosine rule, we obtain (see Fig. 2(c))

pu1v1pu2v2
2 = zpu1v1

2 + zpu2v2
2 − 2zpu1v1 · zpu2v2 cos θ

≤ (zu1 + u1pu1v1)2 + (zu2 + u2pu2v2)2 − 2(zu1 + u1pu1v1)(zu2 + u2pu2v2) cos θ

< (5/2− α)2 + (5/2− α)2 − 2(5/2− α)(5/2− α) cos θ

= 4(5/2− α)2 sin2(θ/2).

This implies that pu1v1pu2v2 < 2(5/2 − α) sin(θ/2). By the triangle inequality,
we have

v1v2 ≤ pu1v1pu2v2 + pu1v1v1 + pu2v2v2

< 2(5/2− α) sin(θ/2) + pu1v1v1 + pu2v2v2.

�

Lemma 11 For a tuple (T, z, T1, T2, u1, u2, pu1v1 , pu2v2) satisfying Condition C,
the following (i), (ii) and (iii) hold:

(i) For each i ∈ {1, 2} satisfying w(Tvi) < 1/2, it holds w(Tvi)+puivivi < 1/2.

(ii) For each i ∈ {1, 2} satisfying w(Tvi) ≥ 1/2, it holds w(Tvi) < 5/2−α and
puivivi = 0.

(iii) If w(Tv1) ≥ 1/2 and w(Tv2) ≥ 1/2 hold, then there exists a subset S ⊂
B(v1) ∪ B(v2) such that 1 ≤ w(S) < 3− α holds.

Proof: (i) If uivi < 1/2 holds, then puivivi = 0 holds by the definition of puivi ,
implying that the statement is true. Otherwise, by Condition C(i), we have

1 > w(Ti) ≥ w(Tvi) + uivi

= w(Tvi) + uipuivi + puivivi

= w(Tvi) + 1/2 + puivivi.

Therefore we obtain w(Tvi) + puivivi < 1/2.
(ii) The former is trivial by Condition C(iv). To prove the latter, we show

that uivi < 1/2 holds. By Condition C(i), we have

1 > w(Ti) ≥ w(Tvi) + uivi ≥ 1/2 + uivi,

implying that uivi < 1/2.
(iii) By Condition C(iv), we have a partition B(v1) ∪ B(v2) = {B1, B2} ∪

B̄1 ∪ B̄2. We choose a minimal subset S ⊂ B(v1) ∪ B(v2) such that w(S) ≥ 1
holds. Then by w(B̄1) < 2 − α,w(B̄2) < 2 − α and w(B(v1)) + w(B(v2)) =
w(Tv1) + w(Tv2) ≥ 1, the minimality of S implies w(S) < 1 + (2− α) = 3− α.

�

Lemma 12 Any set S output by Combine is an admissible set.
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Proof: Obviously, w(T ) − w(T − S) ≥ 1 holds by v1, v2 ∈ V1/2(T ) and
Lemma 11(iii). We also see that T − S remains connected by construction
of S. We claim that TS := T [S ∪ {v1, v2}] + (v1, v2) satisfies

w(TS) < 3− α+ 2(5/2− α) sin(θ/2) (≤ α).

We distinguish the following three cases.
(i) w(Tv1) < 1/2 and w(Tv2) < 1/2. By Lemmas 10 and 11, we have

w(TS) = w(Tv1) + w(Tv2) + v1v2

< w(Tv1) + w(Tv2) + 2(5/2− α) sin(θ/2) + pu1v1v1 + pu2v2v2

< 1/2 + 1/2 + 2(5/2− α) sin(θ/2)

< 3− α+ 2(5/2− α) sin(θ/2).

(ii) min{w(Tv1), w(Tv2)} < 1/2 ≤ max{w(Tv1), w(Tv2)}. We can assume that
w(Tv1) < 1/2 and w(Tv2) ≥ 1/2 without loss of generality. Then by Lemmas 10
and 11(i)-(ii), we obtain

w(TS) = w(Tv1) + w(Tv2) + v1v2

< w(Tv1) + w(Tv2) + 2(5/2− α) sin(θ/2) + pu1v1v1 + pu2v2v2

< 1/2 + (5/2− α) + 2(5/2− α) sin(θ/2)

= 3− α+ 2(5/2− α) sin(θ/2).

(iii) w(Tv1) ≥ 1/2 and w(Tv2) ≥ 1/2. Then by Lemmas 10, 11(ii)-(iii), we have

w(TS) = w(S) + v1v2

< w(S) + 2(5/2− α) sin(θ/2) + pu1v1v1 + pu2v2v2

= 3− α+ 2(5/2− α) sin(θ/2).

�

Lemma 13 Let T be a tree rooted at a vertex r with deg(r) = 1 and has no
active 1-boundary vertex. Let S be the admissible family in T computed in
Lemma 7 or Lemma 12. Then, for T ′ = T −

⋃
S∈S S, if T ′ 6= ∅, w(T ′) = 0, and

w(T [S ∪ {r}]) > α for all S ∈ S, then S ∪ V (T ′) is an admissible family in T .

Proof: Assume that T ′ 6= ∅, w(T ′) = 0, and w(T [S ∪ {r}]) > α for all S ∈ S.
Note that T ′ 6= ∅ and w(T ′) = 0 imply that T ′ = ({r}, ∅) in the Euclidean
space. Clearly w(T ′) = 0 < α. We observe that T ′ = ({r}, ∅) is obtained
in Lemma 7(i)-(ii) where applied to a subtree Tz for a 2-boundary vertex z
incident to r. Note that Lemma 7(i)/(ii) computes a 2-admissible family S =
{S1, S2} in T such that S1 = V (T1), S2 = V (Tz) − S1, and z ∈ S2 for a
subtree T1 with w(T1) > 2α − 3. This implies that T = T1 + T [S2 ∪ {r}]
holds. By assumption on the lemma, w(T [S1 ∪ {r}]) > α holds. Therefore,
w(T ) = w(T1)+w(T [S2∪{r}]) > 3α−3 > 2 by assumptions on α = 2

√
3−3/2.

Thereby dw(T )e ≥ 3, and hence S ∪{V (T ′)} is a 3-admissible family in T . This
proves the lemma. �

Lemma 13 completes the proof of Theorem 6.
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6 Proof of Theorem 7

The proof of Theorem 7 is similar to that of Theorem 6 described in the previous
section. Let T be a rooted tree that has no active 1-boundary vertices in V1(T ).
Then the main difference in the proof of Theorem 7 is the treatment of the
case where |H∗(Tz)| = 3 and |H∗(Tz)| ≥ 4 for a 2-boundary vertex z in T . We
assume that α := (13 +

√
109)/12 throughout this section.

The next Lemma treats the case where |H∗(Tz)| = 3.

Lemma 14 For z ∈ V2(T ) in a rooted tree T , let H∗(Tz) = {T1, T2, T3}. Let
ui ∈ V1(T )∩V (Tz) and vi ∈ V1/2(Ti) be the root and 1/2-boundary vertex of Ti,
respectively, i = 1, 2, 3. Then:

(a) For each Ti ∈ {T1, T2, T3}, there exists a branch T̃i ∈ H(ũi)∩H∗(Tz) such
that the root ũi ∈ V1(T ) ∩ V (Tz) of T̃i satisfies w(ui, ũi) < 2− α.

(b) For each vi ∈ {v1, v2, v3}, if w(Tvi) ≥ 1/2 holds and there exists a minimal
subtree S ⊆ B(vi) satisfying w(S) + w(T̃i) ≥ 1 such that

w(S) + w(T̃i) + w(vi, ũi) ≤ α (2)

holds, then S := (V (T̃i)− {ũi})∪ (V (S)− {vi}) is an admissible. Testing
whether such a subtree exists or not can be done in O(|B(vi)|) time.

(c) If the condition of (b) does not hold, then there exists {Ti, Tj} ⊆ {T1, T2, T3} (i 6=
j) such that the tuple (T, z, Ti, Tj , ui, uj , puivi , pujvj ) satisfies Condition C
and

(v) ui = uj 6= z or z = ui or z = uj.

(vi) vivj <
√

1/4 + (5/2− α)2 − (5/2− α) cos θ + puivivi + pujvjvj.

Proof: It suffices to show that (v) and (vi) hold.
(v) Since |H∗(Tz)| = 3 holds, |V1(Tz)| ≤ 1 by Condition B(ii). In this case, two
of three branches in H∗(Tz) are rooted at some u ∈ V1(T ) ∩ V (Tz) (possibly
u = z) and the other one branch must be rooted at z, as required.
(vi) We assume that ui = z and uj 6= z without loss of generality by (v).
Similar to the proof of Lemma 10, we have

puivipujvj
2 = zpuivi

2 + zpujvj
2 − 2 · zpuivi · zpujvj cos θ

≤ uipuivi
2 + (zuj + ujpujvj )2 − 2uipuivi · (zuj + ujpujvj ) cos θ

< (1/2)2 + (5/2− α)2 − 2 · 1/2 · (5/2− α) cos θ

= 1/4 + (5/2− α)2 − (5/2− α) cos θ.

This implies that puivipujvj <
√

1/4 + (5/2− α)2 − (5/2− α) cos θ. By the
triangle inequality, we obtain

vivj ≤ puivipujvj + puivivi + pujvjvj

<
√

1/4 + (5/2− α)2 − (5/2− α) cos θ + puivivi + pujvjvj .
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�

By Lemmas 11 and 14, as in the proof of Lemma 12, we can show that
any output S of Combine is admissible because TS := T [S ∪ {vi, vj}] + (vi, vj)
satisfies

w(TS) < (3− α) +
√

1/4 + (5/2− α)2 − (5/2− α) cos θ

< (3− α) +
√

1/4 + (5/2− α)2 + (5/2− α) · 1/2
= α.

The next lemma treats the case where |H∗(Tz)| ≥ 4. In this case, obviously
the minimum angle formed by four line segments zvi (i = 1, 2, 3, 4) in R2 is no
more than 90◦.

Lemma 15 For z ∈ V2(T ) in a rooted tree T , let T1, T2, T3, T4 ∈ H∗(Tz).
Let ui ∈ V (Tz) and vi ∈ V1/2(Ti) be the root and 1/2-boundary vertex of Ti,
respectively, i = 1, 2, 3, 4. Then:

(a) For each Ti ∈ {T1, T2, T3, T4}, there exists a branch T̃i ∈ H(ũi)∩H∗(Tz)−
Ti such that the root ũi ∈ V1(T ) ∩ V (Tz) of T̃i satisfies w(ui, ũi) < 2− α.

(b) For each i ∈ {1, 2, 3, 4}, if w(Tvi) ≥ 1/2 holds and there exists a minimal
subtree S ⊆ B(vi) satisfying w(S) + w(T̃i) ≥ 1 such that

w(S) + w(T̃i) + w(vi, ũi) ≤ α (3)

holds, then S := (V (T̃i) − {ũi}) ∪ (V (S) − {vi}) is admissible. Testing
whether such a subtree exists or not can be done in O(|B(vi)|) time.

(c) If the condition of (b) does not hold, then there exists {Ti, Tj} ⊆ {T1, T2, T3, T4} (i 6=
j) such that the tuple (T, z, Ti, Tj , ui, uj , puivi , pujvj ) satisfies Condition C
with θ ≤ 90◦.

By Lemmas 11 and 15 and θ ≤ 90◦, as in the proof of Lemma 12, we can
show that the output S of Combine is admissible because TS := T [S∪{vi, vj}]+
(vi, vj) satisfies

w(TS) < (3− α) + 2(5/2− α) sin(θ/2)

< (3− α) + (5/2− α) ·
√

2

< α.

Note that the difference in the proofs of Theorem 6 and Theorem 7 is the
treatment of the case where |H∗(Tz)| = 3 and |H∗(Tz)| ≥ 4 for a 2-boundary
vertex z in T . On the other hand, for |H∗(Tz)| = 3 and |H∗(Tz)| ≥ 4, a
1-admissible family is computed such that the remaining tree has a nonzero
weight. Therefore, the proof of the following lemma is the same as that of
Lemma 13.
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Lemma 16 Let T be a tree rooted at a vertex r with deg(r) = 1 and has no
active 1-boundary vertex. Let S be the admissible family in T computed in this
section. Then, for T ′ = T−

⋃
S∈S S, if T ′ 6= ∅, w(T ′) = 0, and w(T [S∪{r}]) > α

for all S ∈ S, then S ∪ V (T ′) is an admissible family in T .

2
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Figure 3: A minimum spanning tree T ∗ of a given graphG including q horizontal
line segments each of which has weight δ, q + 1 vertical line segments each of
which has weight α/2, and each of the remaining two vertical line segments has
weight α/2 + ε, where 0 < α < 2, 0 < ε < 1 − α/2, δ = 1 − α/2 − ε, and
q = max{2, d(3α− 4)/2εe}. The weight of the tree is qδ + (q + 1)α/2 + (α/2 +
ε)× 2 = q + α+ α/2− (q − 2)ε ≤ q + 2.

7 Concluding Remarks

In this paper, we have studied the balanced tree partitioning problem in the
Euclidean space Rd, and have shown that the ratio α of the maximum tree
weight to w(T ∗)/k for the weight w(T ∗) of a minimum spanning tree is at most
1.965 for d ≥ 3 and at most 1.954 for d = 2, by designing polynomial time
algorithms for finding a tree cover that attains such α. To derive these results,
we allowed for trees in a tree cover to use edges not in a minimum spanning
tree T ∗. We remark that if a tree cover is required to consist of subtrees of T ∗,
then the best possible α is at least 2. Such an example is shown in Fig. 3, where
each line segment consists of numerous points in R2 and edges joining every
two nearest points on it, and the whole set of edges in all line segments gives a
(unique) minimum spanning tree T ∗ for the set of all points in all line segments.
For q = max{2, d(3α − 4)/2εe}, it holds w(T ∗) ≤ q + 2 since it contains q + 3
vertical line segments each of which with weight of at least α/2. For k = q + 2,
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any tree cover T which contains only subtrees of T ∗ must contains a subtree
T ∈ T with weight of at least α. This implies that the ratio w(T ) to w(T ∗)/k
is at least α, which can be chosen as any number close to 2.

It is left open to determine the best possible α for each dimension d ≥ 2. For
d ≥ 2, we see that α cannot be smaller than 1.23 by the example in Fig. 4(a)
which consists of seven points v1, v2, . . . , v7 in R2 and a (unique) minimum
spanning tree T ∗ of G is drawn by bold lines. It holds w(T ∗) < 2 (we see
that T ∗ is minimum because it can be constructed by choosing shortest edges
repeatedly). For k = 2, we show that an optimal tree cover T = {T1, T2}
attains max{w(T1), w(T2)} = 1.22. For any tree cover {T1, T2}, two of the
vertices v1, v2, and v3 must be contained in one of T1 and T2; assume without
loss of generality that v1, v2 ∈ V (T1). Then either V (T1) = {v1, v2} or V (T1) =
{v1, v2, vi}, i ∈ {4, 5}, since otherwise the weight of T1 is larger than 1.22. Note
that, in both cases, a minimum tree spanning vertices in T2 is a subtree of T ∗.
Therefore, in the former case, w(T1) = 1.14 and w(T2) = 1.22, while in the latter
case, w(T2) = 0.94 and a minimum tree spanning vertices in T1 has weight 1.22.
Thus, an optimal tree cover attains max{w(T1), w(T2)} = 1.22, and the ration
of 1.22 to w(T ∗)/2 is at least 1.23. It would be interesting and challenging to
close the gap between the current upper and lower bounds on the ratio α by
developing further insightful geometric arguments over the Euclidean space.
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Figure 4: An example for showing a lower bound on the ration in the balanced
tree partitioning problem. (a) Seven points in the Euclidean plane, where a
minimum spanning tree T ∗ of G is drawn by bold lines; (b) An optimal tree
cover for k = 2 is drawn in bold lines.
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