
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 15, no. 3, pp. 437–456 (2011)

Straight-Line Grid Drawings of

Label-Constrained Outerplanar Graphs with

O(n logn) Area

Md. Rezaul Karim 1,2 Md. Jawaherul Alam 1 Md. Saidur

Rahman 1

1Department of Computer Science and Engineering, Bangladesh University of
Engineering and Technology (BUET), Dhaka-1000, Bangladesh.

2Department of Computer Science and Engineering, University of Dhaka,
Dhaka-1000, Bangladesh.

Abstract

A straight-line grid drawing of a planar graph G is a drawing of G

on an integer grid such that each vertex is drawn as a grid point and
each edge is drawn as a straight-line segment without edge crossings. Any
outerplanar graph of n vertices with maximum degree d has a straight-line
grid drawing with area O(dn log n). In this paper, we introduce a subclass
of outerplanar graphs, which we call label-constrained outerplanar graphs,
that admits straight-line grid drawings with O(n log n) area. We give a
linear-time algorithm to find such a drawing. We also give a linear-time
algorithm for the recognition of label-constrained outerplanar graphs.

Submitted:

May 2009
Reviewed:

September 2009
Revised:

July 2010
Accepted:

October 2010

Final:

December 2010

Published:

July 2011

Article type:

Regular paper
Communicated by:

S. Das and R. Uehara

E-mail addresses: rkarim@univdhaka.edu (Md. Rezaul Karim) jawaherul@yahoo.com (Md.

Jawaherul Alam) saidurrahman@cse.buet.ac.bd (Md. Saidur Rahman)

mailto:rkarim@univdhaka.edu
mailto:jawaherul@yahoo.com
mailto:saidurrahman@cse.buet.ac.bd

438 Karim et al. Drawings of Label-Constrained Outerplanar Graphs

1 Introduction

Recently, automatic aesthetic drawings of graphs have created intense interest
due to their broad applications in computer networks, VLSI layout, information
visualization etc., and as a consequence a number of drawing styles have come
out [4, 9, 14, 15]. A classical and widely studied drawing style is the “straight-
line drawing” of a planar graph. A straight-line drawing of a planar graph G is
a drawing of G such that each vertex is drawn as a point and each edge is drawn
as a straight-line segment without edge crossings. A straight-line grid drawing
of a planar graph G is a straight-line drawing of G on an integer grid such that
each vertex is drawn as a grid point as illustrated in Figure 1(d). The area of
a drawing is the area of the smallest rectangle that encloses the drawing. It is

w

3

r

u v

1 1 1
1 1

1
1 1

2
2 2

2

3
3

3 3

u

w

v

(d)

(b)(a)

(c)

Figure 1: (a) A label-constrained outerplanar graph G, (b) the dual rooted
ordered tree Tr of G, (c) a straight-line grid drawing of Tr, and (d) a straight-
line grid drawing of G.

well known that a planar graph of n vertices admits a straight-line grid drawing
on a grid of area O(n2) [16, 3]. A lower bound of Ω(n2) on the area-requirement
for straight-line grid drawings of certain planar graphs is also known [3]. Garg
and Rusu showed that an n-node binary tree has a planar straight-line grid
drawing with area O(n) [8]. Although trees admit straight-line grid drawings
with linear area, triangulations may require a grid of quadratic size. Hence
finding nontrivial classes of planar graphs of n vertices richer than trees that
admit straight-line grid drawings with area o(n2) is posted as an open problem
in [2], and several recent works have addressed this open problem (see, e.g.,
[7, 11, 12, 13]). The problem of finding straight-line grid drawings of outerplanar
graphs with o(n2) area was first posed by Biedl in [1], and Garg and Rusu
showed that an outerplanar graph with n vertices and maximum degree d has

JGAA, 15(3) 437–456 (2011) 439

a planar straight-line drawing with area O(dn1.48) [7]. Di Battista and Frati
showed that a “balanced” outerplanar graph of n vertices has a straight-line
grid drawing with area O(n) and a general outerplanar graph of n vertices has
a straight-line grid drawing with area O(n1.48) [5]. Recently Frati showed that
a general outerplanar graph with n vertices admits a straight-line grid drawing
with area O(dn log n), where d is the maximum degree of the graph [6].

In this paper, we introduce a subclass of outerplanar graphs which has a
straight-line grid drawing on a grid of area O(n log n). We give a linear-time al-
gorithm to find such a drawing. We call this class “label-constrained outerplanar
graphs” since a “vertex labeling” of the dual tree of this graph satisfies certain
constraints. Figure 1(a) illustrates a “label-constrained outerplanar graph” G,
and a straight-line grid drawing of G with O(n logn) area is illustrated in Fig-
ure 1(d). The “label-constrained outerplanar graphs” are richer than “balanced”
outerplanar graphs. We also give a linear-time algorithm for recognition of a
“label-constrained outerplanar graph.”

The remainder of the paper is organized as follows. In Section 2, we give
some definitions. Section 3 provides the drawing algorithm. Section 4 presents
a linear-time algorithm for recognition of a “label-constrained outer planar
graph,” and Section 5 concludes the paper. An early version of this paper
is presented at [10].

2 Preliminaries

In this section we give some definitions, introduce a labeling of a binary tree and
define a class of outerplanar graphs which we call “label-constrained outerplanar
graphs.”

Let G = (V,E) be a connected simple graph. Throughout the paper, we
denote by n the number of vertices in G, that is, n = |V |, and denote by m the
number of edges in G, that is, m=|E|. We denote by G− {u, v} a graph G′ =
(V ′, E′) where V ′ = V (G) − {u, v} and E′ is the set of edges induced by V ′ in
G. A path in G is an ordered list of distinct vertices v1, v2, ..., vq ∈ V such that
(vi−1, vi) ∈ E for all 2 ≤ i ≤ q. Vertices v1 and vq are the end vertices of the
path v1, v2, ..., vq. We call a path u-v path if u and v are the end vertices of the
path.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding. A plane graph G divides
the plane into connected regions called faces. A bounded region is called an
inner face and the unbounded region is called the outer face. For a face f in G

we denote by V (f) the set of vertices of G on the boundary of f .
A plane graph is an outerplanar graph if all its vertices lie on the outer face.

Let G be an outerplanar graph. We now define the dual tree of G. The dual
tree T of G is a tree whose vertices correspond to the inner faces of G, and two
vertices x and y of T are adjacent if the faces of G corresponding to x and y

share an edge in G. A maximal outerplanar graph is an outerplanar graph to

440 Karim et al. Drawings of Label-Constrained Outerplanar Graphs

which no edge can be added without losing outerplanarity. Clearly, each inner
face of a maximal outerplanar graph has three edges. It is easy to see that any
outerplanar graph can be augmented in linear time to a maximal outerplanar
graph by adding only a linear number of extra edges. A vertex of the dual tree
of a maximal outerplanar graph G has degree at most three, hence the dual tree
T of G is a binary tree.

We now define a vertex labeling of a rooted binary tree. Let T be a binary
tree and let r be the root of T . Then the labeling of a vertex u of T with respect
to r, which we denote by Lr(u), is defined as follows:

(a) if u is a leaf node then Lr(u) = 1;

(b) if u has only one child q and Lr(q) = k then Lr(u) = k;

(c) if u has two children s and t, and Lr(s) = k and Lr(t)=k′ where k > k′,
then Lr(u) = k; and

(d) if u has two children s and t, and Lr(s) = k and Lr(t)=k, then Lr(u) =
k + 1.

Note that for a rooted binary tree, the labeling of a vertex with respect to the
root is unique. We denote by Lr(Tr) the labeling of all the vertices of Tr with
respect to r. We also denote by T r

x the subtree of Tr rooted at x and by Lr(T
r
x)

the labeling of all the vertices of T r
x with respect to r. Figure 2 illustrates the

vertex labeling of a binary tree T rooted at r where an integer value represents
the label of the associated vertex. The following lemma is immediate from the

r

23
3

3
3

2
2

1 1
1 1

2

1

3

1
1

1

Figure 2: Vertex labeling of a binary tree T .

labeling defined above.

Lemma 1 Let T be a binary tree and let r be the root of T . Let u and v be two
vertices of T such that u is an ancestor of v. Then Lr(u) ≥ Lr(v).

The following lemma gives an upper bound on the value of the vertex labeling.

Lemma 2 Let T be a binary tree with n vertices and let r be the root of T .
Assume that Lr(r) = k. Then k = O(logn).

JGAA, 15(3) 437–456 (2011) 441

Proof: We first show that T has at least 2k − 1 vertices using an induction on
k. The claim is obvious for k = 1. Assume that k ≥ 2 and the result is true
for all the trees T ′ with the root of label k′ such that k′ < k. Let T be a tree
with the root r of label k. Let us assume that s is the farthest vertex from r in
T such that s has label k. Then each of the left and the right children of s is
labeled with k− 1, and hence by induction hypothesis each of the subtrees of s
has at least 2k−1 − 1 vertices. Therefore T has at least 2k − 1 vertices. Hence
n ≥ 2k − 1, i.e., k = O(logn). �

We also have the following lemma.

Lemma 3 Let T be a binary tree and let r be the root of T . Assume that all
the vertices of T are labeled with respect to r using vertex labeling. Let V (k)
be a set of vertices such that for all v ∈ V (k), Lr(v) = k. Then any connected
component of the subgraph of T induced by V (k) is a path.

Proof: Let a connected component of the subgraph induced by V (k) in T be
T ′(k). Assume for a contradiction that T ′(k) is not a path. Then a vertex
v ∈ T ′(k) has degree three. In such a case, v and the two children of v have the
same label in T which is a contradiction to the definition of vertex labeling of
T , thus proving the lemma. �

A binary tree T is ordered if one child of each vertex v of T is designated
as the left child and the other is designated as the right child. (Note that the
left child and/or the right child of a vertex may be empty.) Let T be a rooted
ordered binary tree. For any vertex v ∈ T , we call the subtree of T rooted at
the left child (if any) of v the left subtree of v. Similarly we define the right
subtree of v. We call an u-v path of T a left-left path if u is an ancestor of all
the vertices of the path and each vertex of this path, except u, is the left child
of its parent. Similarly we define a right-right path of T . We call a maximal
left-left path of T the leftmost path of T if one of the end vertices of the path
is the root of T . Similarly we define the rightmost path of T . For any vertex
x ∈ T , we call a path x, v1, ..., vm is the left-right path of x if v1 is the left child
of x, and vi+1 is the right child of vi where 1 ≤ i ≤ m− 1. Similarly we define
the right-left path of x.

We call Lr(Tr) a flat labeling if every path induced by the vertices of Tr with
the same label is either a left-left path or a right-right path.

We now have the following fact.

Fact 4 Let Tr be an ordered binary tree and let r be the root of Tr. Suppose
that Lr(Tr) is a flat labeling. Then for any vertex x ∈ Tr, each of the vertices of
the left-right (right-left) path of x except the left (right) child of x has a smaller
label than the label of x.

Let x be a vertex of Tr. A cross path x, v1, ..., vm at x is either a left-right path
or a right-left path of x induced by the same label vertices of Lr(Tr). Note that
Lr(Tr) is a flat labeling if and only if there is no cross path at any vertex of Tr.

442 Karim et al. Drawings of Label-Constrained Outerplanar Graphs

Let G be a maximal outerplanar graph and let T be the dual tree of G.
We convert T as a rooted ordered binary tree Tr by fixing its root r and the
ordering of the children of each vertex of T , as follows. Let r be a vertex of T
such that r corresponds to an inner face fr of G containing an edge (u, v) on
the outerface. (Note that the degree of r is either one or two in T .) We regard r

as the root of T . Let w be the vertex of fr other than u, v such that u, v and w

appear in the clockwise order on fr. We call u and v the poles of fr and w the
central vertex of fr. We also call u the left vertex of fr and v the right vertex
of fr. The vertex of T corresponding to the face (if any) sharing the vertices v
and w with fr is the right child of r and the vertex of T corresponding to the
face sharing the vertices u and w (if any) of fr is the left child of r. Let p and q

be two vertices of T such that p is the parent of q, and let fp and fq be the two
faces of G corresponding to p and q in T . Let v1, v2 and v3 be the vertices of
fq in the clockwise order such that v1 and v2 are also in fp. Then v1 and v2 are
poles of fq, and v3 is the central vertex of fq. The vertex v1 is the left vertex
of fq and the vertex v2 is the right vertex of fq. The vertex of T corresponding
to the face sharing the vertices v2 and v3 (if any) of fq is the right child of q
and the vertex of T corresponding to the face sharing the vertices v1 and v3 (if
any) of fq is the left child of q. Thus we have converted the dual tree T of a
maximal outerplanar graph G to a rooted ordered dual tree Tr.

We are now ready to give the definition of “label-constrained outerplanar
graphs.” Let G be a maximal outerplanar graph and let T be the dual tree of
G. We call G a label-constrained outerplanar graph if T can be converted to a
rooted ordered binary dual tree Tr such that Lr(Tr) is a flat labeling. Figure 3(a)
illustrates a label-constrained outerplanar graph G since G is a maximal outer-
planar graph and Lr(Tr) is a flat labeling as illustrated in Figure 3(b). Lp(Tp)
is not a flat labeling since Lp(Tp) has a cross path at q induced by the vertices
with label 2 as illustrated in Figure 3(c).

r

3
2

1

p

1 1

1
1

2
3

3
3

fr
fi
p

1 1
1 1

1
2 22

2 3

p

r
i 2

1

2
f

2

1 1 1 1

3
1 q

i

2
c 3

c

(a) (b) (c)

Figure 3: (a) A maximal outerplanar graph G, (b) Tr is a rooted ordered binary
dual tree of G where the vertex r of Tr corresponds to the face fr of G, and (c)
Tp is a rooted ordered binary dual tree of G where the vertex p of Tp corresponds
to the face fp of G.

JGAA, 15(3) 437–456 (2011) 443

3 Drawing Algorithm

In this section we give a linear-time algorithm for finding a straight-line grid
drawing of a label-constrained outerplanar graph with O(n log n) area.

Let G be a maximal outerplanar graph and let Tr be the rooted ordered
binary dual tree of G where r is the root of Tr and fr is the face of G cor-
responding to r. In [5], Di Battista and Frati defined a bijection function γ

between the vertices of Tr and vertices of G except for the poles of fr, where
each of the vertices of Tr is mapped to the central vertex of the corresponding
face of G. We immediately have the following lemma from [5].

Lemma 5 Let G be a maximal outerplanar graph and let Tr be the rooted or-
dered binary dual tree of G. Then G contains a copy of Tr which is a spanning
tree T ′ of G − {u, v}, where u and v are the poles of the face fr corresponding
to the root of Tr.

Figure 4(b) illustrates the dual tree of G in Figure 4(a) where fr contains
vertices u, v and w in clockwise order. G contains a copy of Tr, which is a
spanning tree T ′ of G − {u, v}, such that each of the vertices of Tr is mapped
to the central vertex of the corresponding face of G as illustrated in Figure 4(c)
where the edges of T ′ are drawn by solid lines.

u v

w

u

w

v

r

(a) (b) (c)

Figure 4: (a) A maximal outerplanar graph G, (b) the rooted ordered dual tree
Tr of G, and (c) a spanning-tree T ′ of G− {u, v} is drawn by the solid lines.

Our idea is as follows. We first draw the rooted ordered binary dual tree Tr

of a label-constrained outerplanar graph G, and then we put the poles of the
face fr corresponding to the root r of Tr, and add each of the edges of G which
are not in the drawing of Tr.

The x-coordinates of the vertices of Tr are assigned in the order of the inorder
traversal of Tr in increasing order starting from 1. The y-coordinate of a vertex
of Tr is the label of the vertex minus one. We now add the required edges to
complete the drawing of Tr. Figure 1(c) illustrates a straight-line grid drawing
of Tr in Figure 1(b).

We now put the poles of the face of G corresponding to the root of Tr. The
left vertex and the right vertex of the face corresponding to the root of Tr are
put at (0, k) and at (n − 1, k), respectively, where k is the label of the root
of Tr. We now add each of the edges of G which are not in the drawing of

444 Karim et al. Drawings of Label-Constrained Outerplanar Graphs

Tr using straight-line segments, and thus we complete the drawing of G. We
call the algorithm described above for drawing an outerplanar graph Algorithm
Draw-Graph. We now have the following theorem.

Theorem 1 Let G be a label-constrained outerplanar graph. Then Algorithm
Draw-Graph finds a straight-line grid drawing of G with O(n logn) area in
linear time.

In the rest of this section, we give a proof of Theorem 1. We first show that
Algorithm Draw-Graph produces a straight-line drawing of G. The following
lemmas are immediate from the assignment of x-coordinates and y-coordinates
of the vertices of Tr.

Lemma 6 Let G be a label-constrained outerplanar graph and let Tr be a rooted
ordered binary dual tree of G. Let u be a vertex of Tr, and let s and t be the
left and the right child of u, respectively. Then the x-coordinate of any vertex of
the subtree rooted at s is less than the x-coordinate of any vertex of the subtree
rooted at t.

Lemma 7 Let G be a label-constrained outerplanar graph and let Tr be a rooted
ordered binary dual tree of G. Let u and v be vertices of Tr where u is an ancestor
of v. Then the y-coordinate of u is greater than or equal to the y-coordinate of
v.

We also have the following lemma.

Lemma 8 Let G be a maximal outerplanar graph and let Tr be a rooted ordered
binary dual tree of G. Let q be any vertex of Tr, and let x and y be the left and
the right child of q, respectively. Let fq, fx and fy be the faces of G corresponds
to the vertices q, x and y in Tr. Then the left vertex of fq is the left vertex of
fx and the right vertex of fq is the right vertex of fy.

Proof: Immediate from the definition of the left and the right vertex of a face
in G. �

By Lemmas 6 and 7, the drawing of Tr is a straight-line grid drawing. We
now show that each of the edges of G that are not in Tr can be drawn using
straight-line segments without any edge crossings. An edge between the two
pole vertices of the face corresponding to the root of Tr can be drawn using
a straight-line segment without any crossings with the existing drawing of Tr

since each of the pole vertices is placed above all the vertices of Tr. By Lemma
8, the left vertex of the face corresponding to the root of Tr is the left vertex
of the faces corresponding to the vertices of the leftmost path of Tr. Therefore
the left vertex of the face corresponding to the root of Tr is adjacent to all
the vertices of the leftmost path of Tr in G. These edges can be drawn using
straight-line segments without any edge crossings since the left vertex of the face
corresponding to the root of Tr is placed strictly to the left and above of all the
vertices on the leftmost path of Tr. Similarly, we can draw the edges between the

JGAA, 15(3) 437–456 (2011) 445

right vertex of the face corresponding to the root of Tr and the vertices on the
rightmost path of Tr using straight-line segments without any edge crossings.
In a maximal outerplanar graph, the rest of the edges are between any vertex
v ∈ Tr and a vertex on the left-right or the right-left path of v. We now show
that we can draw these edges with straight-line segments without any edge
crossings. From the x-coordinate of any vertex v ∈ Tr and by Fact 4, one can
see that a vertex v ∈ Tr is placed strictly to the left (right) and above of all
the vertices of the right-left (left-right) path of v except the right (left) child
of v. We first consider that we are adding the edges from v to the vertices on
the right-left path of v in Tr other than the right child of v. (Note that the
edge between v and its right child is an edge of Tr.) From the x-coordinate and
the y-coordinate assignment, we can see that the edges among the vertices on
the right-left path of v other than the right child of v forms a polyline in the
drawing which is both x-monotone and y-monotone. Hence each of the vertices
on this polyline is visible from v. Similarly, the vertices on the left-right path
of v other than the left child of v are visible from v. Thus all such edges can
be drawn using straight-line segments without any edge crossings and hence the
following lemma holds.

Lemma 9 Let G be a label-constrained outerplanar graph. Then Algorithm
Draw-Graph finds a straight-line grid drawing of G.

Figure 1(d) illustrates the straight-line grid drawing of G in Figure 1(a). We
are now ready to give a proof of Theorem 1.
Proof of Theorem 1: By Lemma 9, the drawing of G is a straight-line grid
drawing. The height of the drawing of G is the label of the root of the dual tree
of G. By Lemma 2, the height of the drawing of G is O(log n). The width of
the drawing is O(n). Therefore the area of the drawing is O(n logn). One can
easily see that the drawing of G can be found in linear time. �

4 Recognition Algorithm

In this section we give a linear-time algorithm for recognition of a label-constrained
outerplanar graph.

Let G be a maximal outerplanar graph and let Tr be a rooted ordered binary
dual tree of G taking a vertex r of degree 1 or 2 as the root. (Note that r

corresponds to an inner face fr of G having an edge on the outer face.) From
the definition of the vertex labeling of a binary tree in Section 2, one can easily
see that Lr(Tr) can be computed by a bottom-up traversal of Tr in linear time.
The verification whether Lr(Tr) is a flat labeling can also be done in linear time.
In case Lr(Tr) is not a flat labeling, Lp(Tp) might be a flat labeling where Tp is
a rooted ordered binary dual tree of G rooted at a vertex p of degree one or two
other than r. Therefore, in order to examine whether G is a label-constrained
outerplanar graph or not, we have to compute the vertex labeling Lp(Tp) of the
ordered binary dual tree Tp of G rooted at each vertex p with degree one or
degree two in the dual tree T of G and verify whether Lp(Tp) is a flat labeling

446 Karim et al. Drawings of Label-Constrained Outerplanar Graphs

or not. Hence, the recognition of a label-constrained outerplanar graph takes
O(n2) time by a naive approach. In the rest of this section we show that the
recognition can be done in linear time.

Before presenting our recognition algorithm, we present the following obser-
vation. Figures 3(b) and 3(c) illustrate the rooted ordered binary trees Tr and
Tp of a maximal outerplanar graph G where r and p correspond to the faces
fr and fp of G, respectively. Note that the vertex i is the left child of p in Tr

in Figure 3(b), but it is the right child of p in Tp as illustrated in Figure 3(c).
Again c is the parent of p in Tr but c is a child of p in Tp. Thus we can not
get the rooted ordered binary dual tree Tp of G immediately from Tr by sim-
ply choosing the vertex p of Tr as the new root without taking care about the
ordering of the children of each vertex as well as the parent-child relationship
between pairs of vertices. However from a close observation, one can see that
the ordering of the children is changed only for the vertices on the r-p path
of Tr. Furthermore, the parent-child relationship between a pair of vertices is
also changed only for the vertices on the r-p path of Tr. For the rest of the
vertices of Tr, both the ordering of the children of a vertex and the parent-child
relationship between a pair of vertices remain unchanged in Tp. Let x and y

be a pair of vertices on the r-p path of Tr such that x is the parent of y in Tr.
Then y is the parent of x in Tp. The change in the ordering of the children of a
vertex on the r-p path of Tr can be described by the following three lemmas.

Lemma 10 Let G be a maximal outerplanar graph and let Tr be a rooted ordered
binary dual tree of G. Let s be the right (left) child of r in Tr. Let p be a vertex
of T other than r such that the degree of p is one or two, and the vertex s is a
child of r in Tp. Then s is the left (right) child of r in Tp. (See Figures 5 (a)
and (b).)

Lemma 11 Let G be a maximal outerplanar graph and let Tr be a rooted ordered
binary dual tree of G. Let s be a vertex of Tr other than r such that the degree
of s is one or two, and let t be the right (left) child of s in Tr. Then t is the left
(right) child of s in Ts. (See Figures 5 (c) and (d).)

Lemma 12 Let G be a maximal outerplanar graph and let Tr be a rooted ordered
binary dual tree of G. Let x be a degree three vertex such that s is the parent of
x, p is the left child of x and q is the right child of x in Tr. Then the following
two conditions hold.

(i) Let y be a descendant of x in the left subtree of x in Tr such that the degree
of y is one or two. Then q is the left child of x and s is the right child of
x in Ty. (See Figures 5 (e) and (f).)

(ii) Let z be a descendant of x in the right subtree of x in Tr such that the
degree of z is one or two. Then s is the left child of x and p is the right
child of x in Tz. (See Figures 5 (g) and (h).)

JGAA, 15(3) 437–456 (2011) 447

)(a)(b

rT pT

r

q
s

p

x
r

s

q
x

p

)(e)(f

rT

r
s

x
p

y
q

t

rTyT

xp
y

r
s

q
t

yT

)(g)(h

zr
s

x
p

z
q

t x p

r
s

q
t

sT

)(d

s

q

t r

)(c

rT

q
r

s
t

Figure 5: Illustration for Lemmas 10, 11 and 12.

The proofs of Lemmas 10, 11 and 12 are immediate from the definition of
the ordering of the children of a vertex in the rooted ordered binary dual tree.

Let x be a vertex of Tr. Let p be the parent of x, u be the left child of x and
v be the right child of x. Since the degree of x is at most three, there are at
most three connected components in T − x. We call the connected component
containing u the left subtree of x. Similarly the connected component that
contains v is called the right subtree of x and the connected component that
contains p is called the ancestor subtree of x. We call any of the left subtree, the
right subtree and the ancestor subtree of x a subtree of x. The rooted left subtree
of x is the rooted tree obtained by taking u as the root of the left subtree of x.
Similarly we define the rooted right subtree and the rooted ancestor subtree of x
to be the rooted trees obtained by taking v as the root of the right subtree of x
and by taking p as the root of the ancestor subtree of x, respectively. We now
have the following lemma whose proof is immediate from the fact that labeling
is done in a bottom-up approach.

Lemma 13 Let Tr be a rooted binary tree and let x be a vertex of Tr. Then
for any two vertices y and z with degree one or two in the same subtree of x,
Ly(x) = Lz(x).

Thus although there are O(n) possible rooted trees obtained from a binary
tree, each vertex of a tree can have at most three different labels. Let x be a
vertex in a rooted tree Tr. Then for any vertex y in the left subtree of x, the
value of Ly(x) is called the left-label of x in Tr. Similarly we define the right-label
of x in Tr and ancestor-label of x in Tr. In the recognition algorithm, we first
compute these three labels for each vertex of Tr by two linear-time traversals
of Tr. We then verify whether any of these three labels induces any cross path
at each vertex of Tr. Finally, we verify for each vertex x whether Lx(Tx) is a

448 Karim et al. Drawings of Label-Constrained Outerplanar Graphs

flat-labeling or not by two more linear-time traversals of Tr. The detail of the
recognition algorithm is given below.

Let Tr be a rooted tree and let x be a vertex of Tr. Let p be a vertex with
degree one or two in Tr. Then by Lemma 13, the value of Lp(x) is equal to the
left-label of x if p is in the left subtree of x; LP (x) is equal to the right-label of
x if p is in the right subtree of x; otherwise Lp(x) is equal to the ancestor-label
of x. From this observation, we can compute all the three labels of each vertex
of Tr by two linear-time traversals of Tr as described in the following lemma.

Lemma 14 Let Tr be a rooted ordered binary tree. Then one can compute the
left-label, the right-label and the ancestor-label of each vertex in Tr in linear
time.

Proof: We compute the three labels of each vertex in Tr by two linear-time
traversals of Tr. We first compute the ancestor-label of each vertex in Tr by a
bottom-up traversal of Tr. We next compute the left-label and the right-label
of each vertex by a top-down traversal of Tr as follows.

Assume that we are traversing a vertex x during the top-down traversal of
Tr. Let p be the parent of x in Tr, u be the left child of x in Tr and v be the
right child of x in Tr. Let y be any vertex in the left subtree of x. Then by
Lemmas 10, 11 and 12, v becomes the left child and p becomes the right child
of x in Ty. Then the left-label of x is computed from the ancestor-label of v
and the left-label of p in Tr if x is the left child of p in Tr. On the other hand
the left-label of x is computed from the ancestor-label of v and the right-label
of p if x is the right child of p. Again if z is any vertex in the right subtree of x,
then by Lemmas 10, 11 and 12, p is the left child of x and u is the right child
of x in Tz. Then we can compute the right-label of x in the similar way as the
computation of its left-label. Clearly each of the bottom-up and the top-down
traversals of Tr takes linear time. �

Let x be a vertex in a rooted tree Tr. Lemma 13 implies that for any
two vertices y and z in the same subtree of x, Ly(x) = Lz(x). We now have
the following lemma that gives a similar result on cross paths induced at x.
The proof of this lemma is immediate from the fact that labeling is done in a
bottom-up approach.

Lemma 15 Let Tr be a rooted ordered binary dual tree and let x be a vertex
of Tr. Then for any two vertices y and z with degree one or two in the same
subtree of x, Ly(x) induces a cross path at x if and only if Lz(x) induces a cross
path at x.

Let x be a vertex in Tr. We say that the left-label of x induces a cross path
at x if Ly(x) induces a cross path at x where y is a vertex in the left subtree of
x with degree one or two. Similarly the right-label of x induces a cross path at
x if Ly(x) induces a cross path at x where y is a vertex in the right subtree of
x with degree one or two. Again the ancestor-label of x induces a cross path at
x if Ly(x) induces a cross path at x where y is a vertex in the ancestor subtree
of x with degree one or two. We now have the following lemma.

JGAA, 15(3) 437–456 (2011) 449

Lemma 16 Let Tr be a rooted ordered binary dual tree. Assume that the left-
label, the right-label and the ancestor-label of each vertex of Tr has been com-
puted. Then for any vertex x of Tr, one can verify in constant time whether
each of the left-label, the right-label and the ancestor-label of x induces any cross
path at x.

Proof: Let p be the parent of x, u be the left child of x and v be the right child
of x in Tr. Assume that ul, ur are the left and the right child of u, respectively;
and vl, vr are the left and the right child of v, respectively. Also assume that q is
the parent of p and s is the other child of p. Then the ancestor-label of x induces
a left-right path at x if the ancestor-label of x is equal to the ancestor-label of
u and the ancestor-label of u is equal to the ancestor-label of ur. Similarly the
ancestor-label of x induces a right-left path at x if the ancestor-label of x is equal
to the ancestor-label of v and the ancestor-label of v is equal to the ancestor-
label of vl. The ancestor-label of x induces a cross path at x if it induces either
a left-right path or a right-left path at x.

We now show that we can also verify whether the left-label and the right-
label of x induce any cross path at x in constant time. We have the following
four cases to consider.
Case 1: p is the left child of q and x is the left child of p.

Let y be any vertex of degree one or two in the left subtree of x in Tr. Then
by Lemmas 10, 11 and 12, v is the left child and p is the right child of x in Ty

as illustrated in Figure 6(a)–(b). Furthermore, vr is the right child of v and s is
the left child of p in Ty. Thus the left-label of x induces a left-right path if the
left-label of x is equal to the ancestor-label of v and the ancestor-label of v is
equal to the ancestor-label of vr. Similarly the left-label of x induces a right-left
path if the left-label of x is equal to the left-label of p and the left-label of p is
equal to the ancestor-label of s. Thus, the left-label of x induces a cross path if
it induces either a left-right path or a right-left path at x.

r

v

vrvl

x
u

qp

s

y

(a)

vl vr

v

s
r

q
p

x
u

y

(b)

r

ul ur

x
u

qp

s
v

z ul ur

x
v

y

p

r

q
s

u

(d)(c)

Figure 6: Illustration for the proof of Lemma 16.

Similarly if z is any vertex of degree one or two in the right subtree of x in
Tr. Then by Lemmas 10, 11 and 12, p is the left child and u is the right child of
x in Tz as illustrated in Figure 6(c)–(d). Furthermore, q is the right child of p
and ul is the left child of u in Tz. Thus the right-label of x induces a left-right
path if the right-label of x is equal to the left-label of p and the left-label of p is

450 Karim et al. Drawings of Label-Constrained Outerplanar Graphs

equal to the left-label of q. Similarly the right-label of x induces a right-left path
if the right-label of x is equal to the ancestor-label of u and the ancestor-label
of u is equal to the ancestor-label of ul. Thus, the right-label of x induces a
cross path if it induces either a left-right path or a right-left path at x.

Case 2: p is the left child of q and x is the right child of p.

Let y be any vertex in the left subtree of x and let z be any vertex in the
right subtree of x in Tr. Then one can find the ordering of the children of x and
the ordering of the children of the children of x in Ty and Tz by Lemmas 10, 11
and 12 in a similar way as in Case 1.

The left-label of x induces a left-right path if the left-label of x is equal to
the ancestor-label of v and the ancestor-label of v is equal to the ancestor-label
of vr. Similarly the left-label of x induces a right-left path if the left-label of x
is equal to the right-label of p and the right-label of p is equal to the left-label
of q. The left-label of x induces a cross path if it induces either a left-right path
or a right-left path.

The right-label of x induces a left-right path if the right-label of x is equal
to the right-label of p and the right-label of p is equal to the ancestor-label
of s. Similarly the right-label of x is equal to the ancestor-label of u and the
ancestor-label of u is equal to the ancestor-label of ul. The right-label of x

induces a cross path if it induces either a left-right path or a right-left path.

Case 3: p is the right child of q and x is the left child of p.

In this case, we can verify whether the left-label and the right-label of x
induce any cross path at x in a similar way as in Case 1. The only difference is
that we need to use the right-label of q instead of the left-label of q (since p is
now the right child of q, rather than the left child.)

Case 4: p is the right child of q and x is the right child of p.

In this case, we can verify whether the left-label and the right-label of x
induce any cross path at x in a similar way as in Case 2. The only difference is
that we need to use the right-label of q instead of the left-label of q (since p is
now the right child of q, rather than the left child.) �

Lemma 16 implies that once we compute the left-label, the right-label and
the ancestor-label of each vertex of a rooted tree Tr, we can verify in linear time
whether the left-label, the right-label and the ancestor-label of x induce any
cross path at x by a traversal of Tr. Let x be a vertex of Tr. Then we say that
the ancestor-label of x is flat if the rooted ancestor subtree induces a flat label.
Similarly, the left-label of x is flat if the rooted left subtree induces a flat label.
Again, the right-label of x is flat if the rooted right subtree induces a flat label.
We now have the following three lemmas, whose proofs are trivial.

Lemma 17 Let Tr be a rooted ordered binary dual tree and let x be a vertex in
Tr. Let u be the left child of x and let v be the right child of x in Tr. Then the
ancestor-label of x is flat if the ancestor-label of u is flat, the ancestor-label of
v is flat and the ancestor-label of x does not induce any cross path at x.

JGAA, 15(3) 437–456 (2011) 451

Lemma 18 Let Tr be a rooted ordered binary dual tree and let x be a vertex in
Tr. Let p be the parent of x and let v be the right child of x in Tr. Then the
left-label of x is flat if one of the following conditions (i)–(ii) hold.

(i) x is the left child of p, the ancestor-label of v is flat, the left-label of p is
flat and the left-label of x does not induce any cross path at x.

(ii) x is the right child of p, the ancestor-label of v is flat, the right-label of p
is flat and the left-label of x does not induce any cross path at x.

Lemma 19 Let Tr be a rooted ordered binary dual tree and let x be a vertex
in Tr. Let p be the parent of x and let u be the left child of x in Tr. Then the
right-label of x is flat if one of the following conditions (i)–(ii) hold.

(i) x is the left child of p, the left-label of p is flat, the ancestor-label of u is
flat and the right-label of x does not induce any cross path at x.

(ii) x is the right child of p, the right-label of p is flat, the ancestor-label of u
is flat and the right-label of x does not induce any cross path at x.

We are now ready to present our linear-algorithm to recognize whether a
given outerplanar graph is a label-constrained outerplanar graph or not.

Let G be an outerplanar graph and let T be the dual tree of G. We first
take an arbitrary vertex r as the root of T to obtain a rooted tree Tr. We then
compute the ancestor-label, the left-label and the right-label of each vertex of
Tr by two linear-time traversals of Tr as described in the proof of Lemma 14.
We next verify whether the ancestor-label, the left-label and the right-label of
each vertex x of Tr induce any cross path at x by another linear-time traversal
of Tr as described in Lemma 16. We now verify whether the ancestor-label, the
left-label and the right-label of each vertex is flat or not by two more linear-time
traversal of Tr as follows. The first of this traversals is a bottom-up traversal
of Tr, where we verify for each vertex x of Tr whether the ancestor-label of x is
flat or not by Lemma 17. Then in a top-down traversal of Tr, we verify whether
the left-label and the right-label of each vertex x of Tr is flat or not by Lemmas
18 and 19. Finally, we recognize whether G is a label-constrained outerplanar
graph or not by verifying whether LP (Tp) is a flat labeling or not for vertex p

of degree one or two in T as follows. Since the degree of p is one or two; at
least one of the left child, the right child and the parent of p is empty in Tr. If
the parent of p is empty then the ancestor-label of p represents the label of p
with respect to p. Similarly, the label of p with respect to p is represented by
the left-label of p if the left child of p is empty and by the right-label of p if the
right child of p is empty. Thus Lp(Tp) is a flat labeling for a vertex p of degree
one or two if at least one of the following conditions (i)–(iii) hold.

(i) The parent of p is empty and the ancestor-label of p is flat.

(ii) The left child of p is empty and the left-label of p is flat.

(iii) The right child of p is empty and the right-label of p is flat.

452 Karim et al. Drawings of Label-Constrained Outerplanar Graphs

Clearly this takes constant time for each vertex p with degree one or two.
Thus the overall complexity of the algorithm is linear. We thus have the follow-
ing theorem.

Theorem 2 Let G be an outerplanar graph. Then one can verify in linear time
whether G is a label-constrained outerplanar graph or not.

5 Conclusion

In this paper we introduced a subclass of outerplanar graphs, which we call
label-constrained outerplanar graphs. A graph in this class has a straight-line
grid drawing on a grid of O(n log n) area, and the drawing can be found in linear
time. We gave an algorithm to recognize a label-constrained outerplanar graph
in linear time. Our drawing algorithm is based on a very simple and natural
labeling of a tree. The labeling might also be adopted for solving some other
tree-related problems.

Recently Frati [6] showed that the area bound for a straight-line grid draw-
ing of an outerplanar graph G is O(dn log n), where d is the maximum degree
of G. This immediately gives an O(n log n) area bound for straight-line grid
drawing of G if the maximum degree of G is bounded by a constant. But the
maximum degree of an outerplanar graph is not always bounded by a constant.
A trivial outerplanar graph may have the maximum degree n− 1 as illustrated
in Figure 7(a) (although it requires O(n) area for a straight-line grid drawing as
illustrated in Fig. 7(b)). We have introduced a non-trivial subclass of outerpla-
nar graphs, which we call (2p − 1)-graphs for p ≥ 2, has the maximum degree
d = O(n0.5). A (2p−1)-graphG consists of several blocks, called (2p−1)-blocks.

u

(b)

u

(a)

Figure 7: (a) A trivial outerplanar graph G with maximum degree n− 1, and
(b) a straight-line grid drawing of G with O(n) area.

Each such block consists of a path P , and two distinct vertices u and v such
that

(i) the path P is v−f , v−f+1, . . ., v−1, v0, v1, . . ., vf−1, vf with 2p−1 vertices,
where f = 2p−1 − 1, and

(ii) vertices u and v are adjacent, and u is adjacent to all the vertices v−f ,
v−f+1, . . ., v−1, v0 and v is adjacent to all the vertices v0, v1, . . ., vf−1,
vf .

JGAA, 15(3) 437–456 (2011) 453

We call the vertices u and v the pole vertices, and the vertices v−1, v0 and v1 as
the left, middle and right base vertices of the block, respectively. The structure
of a (2p − 1)-block is illustrated in Fig. 8(a). Figures 8(b) and 8(c) illustrate a
(2p−1)-block for p = 2 and p = 3, respectively. A (2p−1)-graphG is constructed

v0 v1 v2v−1v−2
v fv0 v1 v2v−1v−2v−f

v0 v1 v2v−1v−2v−3 v3

u v

(c)

u v

(b)(a)

u v

Figure 8: (a) The structure of a (2p − 1)-block, (b)-(c) (2p − 1)-blocks for p = 2
and p = 3, respectively.

from 2p − 1 such blocks as follows. Let us denote these blocks as B1, B2, . . .,
B2p−1, respectively. For 1 ≤ i ≤ (2p−1 − 1), the left and middle base vertices
of Bi is identified with the pole vertices of B2i, and the middle and right base
vertices of Bi are identified with the pole vertices of B2i+1. Figures 9(a) and 9(b)
illustrate the construction of a (2p − 1)-graph for p = 2 and p = 3, respectively.
The number of vertices in G is n = (2p − 1)2 + 2 and the middle base vertex of
each block Bi (1 ≤ i < 2p−1) has the maximum degree, d = 2p + 4. Therefore,
the maximum degree of G is d = O(n0.5). A straight-line grid drawing of such
a graph by the algorithm of Frati [6] requires O(n1.5 logn) area. However, this
subclass of outerplanar graphs is a subclass of label-constrained outerplanar
graphs. Hence our algorithm produces an O(n log n) area drawing for such a
graph as illustrated in Fig. 10.

Acknowledgements

We thank the referees for their useful comments which helped us to improve the
presentation of the paper.

454 Karim et al. Drawings of Label-Constrained Outerplanar Graphs

(b)(a)

Figure 9: The construction of (2p − 1)-graph for (a) p = 2 and (b) p = 3.

Figure 10: The drawing of a (2p − 1)-graph for p = 3 using our algorithm.

JGAA, 15(3) 437–456 (2011) 455

References

[1] T. C. Biedl. Drawing outerplanar graphs in o(n logn) area. In Proceedings
of Graph Drawing 2002, volume 2528 of Lect. Notes in Computer Science,
pages 54–65. Springer, 2002.

[2] F. Brandenburg, D. Eppstein, M. Goodrich, S. Kobourov, G. Liotta, and
P. Mutzel. Selected open problems in graph drawing. In Proceedings of
Graph Drawing 2003, volume 2912 of Lect. Notes in Computer Science,
pages 515–539. Springer, 2004.

[3] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on
a grid. Combinatorica, 10:41–51, 1990.

[4] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Al-
gorithms for the Visualization of Graphs. Prentice-Hall Inc., Upper Saddle
River, New Jersey, 1999.

[5] G. Di Battista and F. Frati. Small area drawings of outerplanar graphs.
Algorithmica, 54(1):25–53, 2009.

[6] F. Frati. Straight-line drawings of outerplanar graphs in o(dn log n) area. In
Proceedings of the 19th Canadian Conference on Computational Geometry,
pages 225–228, 2007.

[7] A. Garg and A. Rusu. Area-efficient drawings of outerplanar graphs. In
Proceedings of Graph Drawing 2003, volume 2912 of Lect. Notes in Com-
puter Science, pages 159–165. Springer, 2003.

[8] A. Garg and A. Rusu. A more practical algorithm for drawing binary trees
in linear area with arbitrary aspect ratio. In Proceedings of Graph Drawing
2003, volume 2912 of Lect. Notes in Computer Science, pages 129–134.
Springer, 2003.

[9] M. Jünger and P. Mutzel (Eds.). Graph Drawing Software. Springer, Berlin,
2004.

[10] M. R. Karim, M. J. Alam, and M. S. Rahman. Straight-line grid drawings
of label-constrained outerplanar graphs with o(n logn) area. In Proceedings
of Workshop on Algorithms and Computation 2009, volume 5431 of Lect.
Notes in Computer Science, pages 310–321. Springer, 2009.

[11] M. R. Karim and M. S. Rahman. Straight-line grid drawings of planar
graphs with linear area. In Proceedings of Asia-Pacific Symposium on Vi-
sualisation 2007, pages 109–112. IEEE, 2007.

[12] M. R. Karim and M. S. Rahman. Four-connected spanning subgraphs of
doughnut graphs. In Proceedings of Workshop on Algorithms and Computa-
tion 2008, volume 4921 of Lect. Notes in Computer Science, pages 132–143.
Springer, 2008.

456 Karim et al. Drawings of Label-Constrained Outerplanar Graphs

[13] M. R. Karim and M. S. Rahman. On a class of planar graphs with straight
line grid drawings on linear area. Journal of Graph Algorithms and Appli-
cations, 13(2):153–177, 2009.

[14] M. Kaufmann and D. Wagner (Eds.). Drawing Graphs: Methods and Mod-
els, volume 2025 of Lect. Notes in Computer Science. Springer, Berlin,
2001.

[15] T. Nishizeki and M. S. Rahman. Planar Graph Drawing. World Scientific,
Singapore, 2004.

[16] W. Schnyder. Embedding planar graphs on the grid. In Proceedings of First
ACM-SIAM Symposium on Discrete Algorithms, pages 138–148, 1990.

	Introduction
	Preliminaries
	Drawing Algorithm
	Recognition Algorithm
	Conclusion

