
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 15, no. 3, pp. 373–415 (2011)

Crossing-Optimal Acyclic HP-Completion for

Outerplanar st-Digraphs

Tamara Mchedlidze 1 Antonios Symvonis 1

1Department of Mathematics,
National Technical University of Athens, Greece.

Abstract

Given an embedded planar acyclic digraph G, we define the problem of
acyclic hamiltonian path completion with crossing minimization (acyclic-
HPCCM) to be the problem of determining a hamiltonian path completion
set of edges such that, when these edges are embedded on G, they create
the smallest possible number of edge crossings and turnG to a hamiltonian
acyclic digraph. Our results include:

1. We provide a characterization under which a planar st-digraph G is
hamiltonian.

2. For an outerplanar st-digraph G, we define the st-Polygon decom-
position of G and, based on its properties, we develop a linear-time
algorithm that solves the acyclic-HPCCM problem.

3. For the class of planar st-digraphs, we establish an equivalence be-
tween the acyclic-HPCCM problem and the problem of determining
an upward 2-page topological book embedding with minimum num-
ber of spine crossings. We obtain (based on this equivalence) for the
class of outerplanar st-digraphs, an upward topological 2-page book
embedding with minimum number of spine crossings.

To the best of our knowledge, it is the first time that edge-crossing
minimization is studied in conjunction with the acyclic hamiltonian com-
pletion problem and the first time that an optimal algorithm with respect
to spine crossing minimization is presented for upward topological book
embeddings.
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1 Introduction

In the hamiltonian path completion problem (for short, HP-completion) we are
given a graph G (directed or undirected) and we are asked to identify a set of
edges (referred to as an HP-completion set) such that, when these edges are
embedded on G they turn it to a hamiltonian graph, that is, a graph containing
a hamiltonian path.1 The resulting hamiltonian graph G′ is referred to as the
HP-completed graph of G. When we treat the HP-completion problem as an
optimization problem, we are interested in an HP-completion set of minimum
size.

When the input graph G is a planar embedded digraph, an HP-completion
set for G must be naturally extended to include an embedding of its edges on
the plane, yielding to an embedded HP-completed digraph G′. In general, G′ is
not planar, and thus, it is natural to attempt to minimize the number of edge
crossings of the embedding of the HP-completed digraph G′ instead of the size
of the HP-completion set. We refer to this problem as the HP-completion with
crossing minimization problem (for short, HPCCM ).

When the input digraph G is acyclic, we can insist on HP-completion sets
which leave the HP-completed digraph G′ acyclic. We refer to this version of
the problem as the acyclic HP-completion problem.

A k-page book is a structure consisting of a line, referred to as spine, and
of k half-planes, referred to as pages, that have the spine as their common
boundary. A book embedding of a graph G is a drawing of G on a book such
that the vertices are aligned along the spine, each edge is entirely drawn on
a single page, and edges do not cross each other. If we are interested only in
two-dimensional constructions/drawings we have to concentrate on 2-page book
embeddings and to allow spine crossings. These embeddings are also referred to
as 2-page topological book embeddings.

For acyclic digraphs, an upward book embedding can be considered to be a
book embedding in which the spine is vertical and all edges are drawn mono-
tonically increasing in the upward direction. As a consequence, in an upward
book embedding of an acyclic digraph the vertices appear along the spine in
topological order.

The results on topological book embeddings that appear in the literature
focus on the number of spine crossings per edge required to book-embed a
graph on a 2-page book. However, approaching the topological book embedding
problem as an optimization problem, it makes sense to also try to minimize the
total number of spine crossings.

In this paper, we introduce the problem of acyclic hamiltonian path com-
pletion with crossing minimization (for short, acyclic-HPCCM ) for planar em-
bedded acyclic digraphs. To the best of our knowledge, this is the first time
that edge-crossing minimization is studied in conjunction with the acyclic HP-
completion problem. Then, we provide a characterization under which a planar

1In the literature, a hamiltonian graph is traditionally referred to as a graph containing
a hamiltonian cycle. In this paper, we refer to a hamiltonian graph as a graph containing a
hamiltonian path.
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st-digraph is hamiltonian. For an outerplanar st-digraph G, we define the st-
Polygon decomposition of G and, based on the decomposition’s properties, we
develop a linear-time algorithm that solves the acyclic-HPCCM problem.

In addition, for the class of planar st-digraphs, we establish an equiva-
lence between the acyclic-HPCCM problem and the problem of determining
an upward 2-page topological book embedding with a minimal number of spine
crossings. Based on this equivalence, we obtain for the class of outerplanar st-
digraphs an upward topological 2-page book embedding with minimum number
of spine crossings. Again, to the best of our knowledge, this is the first time that
an optimal algorithm with respect to spine crossing minimization is presented
for upward topological book embeddings.

1.1 Problem Definition

Let G = (V,E) be a graph. Throughout the paper, we use the term “graph”
when we refer to both directed and undirected graphs. We use the term “di-
graph” when we want to restrict our attention to directed graphs. We assume
familiarity with basic graph theory [9, 14]. A hamiltonian path of G is a path
that visits every vertex of G exactly once. Determining whether a graph has
a hamiltonian path or circuit is NP-complete [12]. The problem remains NP-
complete for cubic planar graphs [12], for maximal planar graphs [34] and for
planar digraphs [12]. It can be trivially solved in polynomial time for planar
acyclic digraphs.

Given a graph G = (V,E), directed or undirected, a non-negative integer
k ≤ |V | and two vertices s, t ∈ V , the hamiltonian path completion (HPC)
problem asks whether there exists a superset E′ of E such that |E′ \ E| ≤ k

and the graph G′ = (V,E′) has a hamiltonian path from vertex s to vertex t.
We refer to G′ and to the set of edges E′ \ E as the HP-completed graph and
the HP-completion set of graph G, respectively. We assume that all edges of
an HP-completion set are part of the Hamiltonian path of G′, since otherwise
they can be removed. When G is a directed acyclic graph, we can insist on
HP-completion sets which leave the HP-completed digraph also acyclic. We
refer to this version of the problem as the acyclic HP-completion problem. The
hamiltonian path completion problem is NP-complete [11]. For acyclic digraphs
the HPC problem is solved in polynomial time [18].

A drawing Γ of graph G maps every vertex v of G to a distinct point p(v) on
the plane and each edge e = (u, v) of G to a simple open curve joining p(u) with
p(v). A drawing in which every edge (u, v) is a simple open curve monotonically
increasing in the vertical direction is an upward drawing. A drawing Γ of graph
G is planar if no two distinct edges intersect. Graph G is called planar if it
admits a planar drawing Γ. Given a planar drawing Γ of a planar graph G,
the set of points of the plane that can be connected by a curve that does not
intersect any vertex or edge of the drawing are said to belong to the same face.
Each face of a drawing can be indicated by the sequence of edges that surround
it.
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Figure 1: An acyclic digraph and a minimum acyclic HP-completion set that is
not a minimum HP-completion set. Edge (v1, v2) forms a minimum HP-
completion set.

An embedding of a planar graph G is the equivalence class of planar draw-
ings of G that define the same set of faces or, equivalently, of face boundaries.
A planar graph together with the description of a set of faces F is called an
embedded planar graph.

Let G = (V,E) be an embedded planar graph, E′ be a superset of edges
containing E, and Γ(G′) be a drawing of G′ = (V,E′). When the deletion from
Γ(G′) of the edges in E′ \E induces the embedded planar graph G, we say that
Γ(G′) preserves the embedded planar graph G.

Definition 1 Given an embedded planar graph G = (V,E), directed or undi-
rected, a non-negative integer c, and two vertices s, t ∈ V , the hamiltonian path
completion with edge crossing minimization (HPCCM) problem asks whether
there exists a superset E′ of E and a drawing Γ(G′) of graph G′ = (V,E′) such
that (i) G′ has a hamiltonian path from vertex s to vertex t, (ii) Γ(G′) has at
most c edge crossings, and (iii) Γ(G′) preserves the embedded planar graph G.

We refer to the version of the HPCCM problem where the input is an acyclic di-
graph and we are interested in HP-completion sets which leave the HP-completed
digraph also acyclic as the acyclic-HPCCM problem. Figure 1.a shows an acyclic
digraph that has a minimum acyclic HP-completion set consisting of two edges
(shown dashed in Figure 1.b) which is not a minimum HP-completion set.

Over the set of all HP-completion sets for a graph G, and over all of their
different drawings that preserve G, any set with a minimum number of edge-
crossings is called a crossing-optimal HP-completion set.

Note that an acyclic HP-completion set of minimum size is not necessarily
a crossing-optimal HP-completion set. This fact is demonstrated in Figure 2.
For the non-triangulated outerplanar st-digraph of Figure 2.a, every acyclic
HP-completion set of size 1 creates 1 edge crossing (see Figure 2.b) while, it is
possible to obtain an acyclic HP-completion set of size 2 without any crossings
(see Figure 2.c).
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Figure 2: An acyclic digraph that has a crossing-optimal HP-completion set of size
2 that creates no crossings. Any HP-completion set of size 1 creates 1
crossing.

Let G = (V,E) be an embedded planar graph, let Ec be an HP-completion
set of G and let Γ(G′) of G′ = (V,E ∪ Ec) be a drawing with c crossings that
preserves G. The graph Gc induced from drawing Γ(G′) by inserting a new
vertex at each edge crossing and by splitting the edges involved in the edge-
crossing is referred to as the HP-extended graph of G with respect to Γ(G′) (see
Figure 3).

(c)

G G’’

(a) (b)

G’

Figure 3: (a) A planar embedded digraph G. (b) A drawing Γ(G′) of an HP-
completed digraph G′ of G. The edges of the hamiltonian path of G′

appear bold, with the edges of the HP-completion set shown dashed. (c)
The HP-extended digraph G′′ of G with respect to Γ(G′). The newly
inserted vertices appear as squares.

In this paper, we present a linear time algorithm for solving the acyclic-
HPCCM problem for outerplanar st-digraphs. A planar graph G is outerplanar
if there exists a planar drawing of G such that all the vertices of G appear on
the boundary of the same face (which is usually drawn as the external face).
Let G = (V,E) be a digraph. A vertex of G with in-degree equal to zero is
called a source, while, a vertex of G with out-degree equal to zero is called a
sink. An st-digraph is an acyclic digraph with exactly one source and exactly
one sink. Traditionally, the source and the sink of an st-digraph are denoted by
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s and t, respectively. An st-digraph which is planar (respectively outerplanar)
and, in addition, it is embedded on the plane so that both of its source and
its sink appear on the boundary of its external face, is referred to as a planar
st-digraph (respectively an outerplanar st-digraph). It is known that a planar
st-digraph admits a planar upward drawing [19, 7]. In the rest of the paper, all
st-digraphs will be drawn upward.

1.2 Related Work

For acyclic digraphs, the acyclic-HPC problem has been studied in the literature
in the context of partially ordered sets (posets) under the terms Linear Exten-
sions and Jump Number. Each acyclic digraph G can be treated as a poset P .
A linear extension of P is a total ordering L = {x1 . . . xn} of the elements of
P such that xi < xj in L whenever xi < xj in P . We denote by L(P ) the set
of all linear extensions of P . A pair (xi, xi+1) of consecutive elements of L is
called a jump in L if xi is not comparable to xi+1 in P . Denote the number
of jumps of L by s(P,L). Then, the jump number of P , s(P ), is defined as
s(P ) = min{s(P,L) : L ∈ L(P )}. A linear extension L ∈ L(P ) is called optimal
if s(P,L) = s(P ). The jump number problem is to find s(P ) and to construct
an optimal linear extension of P .

From the above definitions, it follows that an optimal linear extension of
a poset P (or its corresponding acyclic digraph G), is identical to an acyclic
HP-completion set Ec of minimum size for G, and its jump number is equal to
the size of Ec. This problem has been widely studied, in part due to its applica-
tions to scheduling. It has been shown to be NP-hard even for bipartite ordered
sets [28] and for the class of interval orders [24]. Up to our knowledge, its com-
putational classification is still open for lattices. Nevertheless, polynomial time
algorithms are known for several classes of ordered sets. For instance, efficient
algorithms are known for series-parallel orders [4], N-free orders [29], cycle-free
orders [6], orders of width two [3], orders of bounded width [5], bipartite orders
of dimension two [31] and K-free orders [30]. Brightwell and Winkler [2] showed
that counting the number of linear extensions is ♯P-complete. An algorithm
that generates all linear extensions of a poset in constant amortized time, that
is in time O(|L(P )|), was presented by Pruesse and Ruskey [27]. Later on, Ono
and Nakano [26] presented an algorithm which generates each linear extension
in “worst case” constant time.

With respect to related work on book embeddings, Yannakakis [35] has
shown that planar graphs have a book embedding on a 4-page book and that
there exist planar graphs that require 4 pages for their book embedding. Thus,
book embeddings for planar graphs are, in general, three-dimensional structures.
If we are interested only on two-dimensional structures we have to concentrate
on 2-page book embeddings and to allow spine crossings. In the literature, the
book embeddings where spine crossings are allowed are referred to as topologi-
cal book embeddings [10]. It is known that every planar graph admits a 2-page
topological book embedding with only one spine crossing per edge [8].

For acyclic digraphs and posets, upward book embeddings have also been
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studied in the literature [1, 15, 16, 17, 25]. An upward book embedding can be
considered to be a book embedding in which the spine is vertical and all edges
are drawn monotonically increasing in the upward direction. The minimum
number of pages required by an upward book embedding of a planar acyclic
digraph is unbounded [15], while the minimum number of pages required by an
upward planar digraph is not known [1, 15, 25]. Giordano et al. [13] studied
upward topological book embeddings of embedded upward planar digraphs, i.e.,
topological 2-page book embedding where all edges are drawn monotonically
increasing in the upward direction. They have showed how to construct in
linear time an upward topological book embedding for an embedded triangulated
planar st-digraph with at most one spine crossing per edge. Given that (i)
upward planar digraphs are exactly the subgraphs of planar st-digraphs [7,
19] and (ii) embedded upward planar digraphs can be augmented to become
triangulated planar st-digraphs in linear time [13], it follows that any embedded
upward planar digraph has a topological book embedding with one spine crossing
per edge.

We emphasize that the presented bibliography is in no way exhaustive. The
topics of hamiltonian paths, linear orderings and book embeddings have been
studied for a long time and an extensive body of literature has been accumulated.

1.3 Our Results

Preliminary versions of the results presented in this paper have appeared in [22]
and [23]. In [20, 22] we reported a linear time algorithm that solves the acyclic-
HPCCM problem for the class of outerplanar triangulated st-digraph provided
that each edge of the initial graph can be crossed at most once by the edge
of the crossing-optimal HP-completion set. Figure 4.a gives an example of
an outerplanar triangulated st-digraph for which an HP-completion set with
smaller number of crossings can be found if there is no restriction on the num-
ber of crossings per edge. In particular, the st-digraph becomes hamiltonian
by adding one of the following completion sets: A = {(v4, u1)}, B = {()u8, v1}
or C = {(u3, v1), (v4, u4)} (see Figures 4.b-d). Each of sets A and B creates
5 crossings with one crossing per edge of G while, set C creates 4 crossings
with at most 2 crossings per edge of G. In addition to relaxing the restriction
of at most one crossing per edge of the st-digraph, the algorithm presented in
this paper does not require its input outerplanar st-digraph to be triangulated,
extending in this way the class of graphs for which we are able to compute a
crossing-optimal HP-completion set.

In this paper, we show that (i) for any st-Polygon (i.e., an outerplanar
st-digraph with no edge connecting its two opposite sides) there is always a
crossing-optimal acyclic HP-completion set of size at most 2 (Section 3.1, The-
orem 2), and, (ii) any crossing-optimal acyclic HP-completion set for an out-
erplanar st-digraph G creates at most 2 crossings per edge of G (Section 3.3,
Theorem 4). Based on these properties and the introduced st-Polygon decom-
position of an outerplanar st-digraph (Section 3.2), we derive a linear time
algorithm that solves the acyclic-HPCCM problem for outerplanar st-digraphs.
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Figure 4: Two crossings per edge are required in order to minimize the total number
of crossings. The edges of the HP-completion sets appear dashed. The
resulting hamiltonian paths are shown in bold.

We also establish an equivalence between the acyclic-HPCCM problem and
the problem of determining an upward 2-page topological book embedding with
a minimal number of spine crossings. Based on this equivalence and the al-
gorithm presented in the paper, we can obtain for the class of outerplanar st-
digraphs an upward topological 2-page book embedding with minimum number
of spine crossings. This is the first time that an optimal algorithm with re-
spect to spine crossing minimization is presented for upward topological book
embeddings without restrictions to the number of crossings per edge.

Recently, the acyclic-HPCCM problem has been solved efficiently for the
classes of N -free and bounded-width upward planar digraphs [21].

2 Hamiltonian Planar st-Digraphs

In this section, we develop a necessary and sufficient condition for a planar
st-digraph to be hamiltonian. The provided characterization will be later on
used in the development of crossing-optimal HP-completion sets for outerplanar
st-digraphs.

It is well known [33] that for every vertex v of a planar st-digraph, its
incoming (outgoing) incident edges appear consecutively around v. For any
vertex v, we denote by Left(v) (respectively Right(v)) the face to the left
(respectively to the right) of the leftmost (respectively rightmost) incoming and
outgoing edges incident to v. For any edge e = (u, v), we denote by Left(e)
(respectively Right(e)) the face to the left (respectively to the right) of edge
e as we move from u to v. The dual of an st-digraph G, denoted by G∗, is a
digraph such that: (i) there is a vertex in G∗ for each face of G; (ii) for every
edge e 6= (s, t) of G, there is an edge e∗ = (f, g) in G∗, where f = Left(e)
and g = Right(e); (iii) edge (s∗, t∗) is in G∗. The following lemma is a direct
consequence of Lemma 7 of Tamassia and Preparata [32].

Lemma 1 Let u and v be two vertices of a planar st-digraph such that there
is no directed path between them in either direction. Then, in the dual G∗ of
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G there is either a path from Right(u) to Left(v) or a path from Right(v) to
Left(u). �

The following lemma demonstrates a property of planar st-digraphs.

Lemma 2 Let G be a planar st-digraph that does not have a hamiltonian path.
Then, there exist two vertices in G that are not connected by a directed path in
either direction.

Proof: Let P be a longest path from s to t and let a be a vertex that does not
belong to P . Since G does not have a hamiltonian path, such a vertex always
exists. Let s′ be the last vertex in P such that there exists a path Ps′ a from
s′ to a with no vertices in P . Similarly, define t′ to be the first vertex in P such
that there exists a path Pa t′ from a to t′ with no vertices in P . Since G is
acyclic, s′ appears before t′ in P (see Figure 5). Note that s′ (respectively t′)
might be vertex s (respectively t). From the construction of s′ and t′ it follows
that any vertex b, distinct from s′ and t′, that is located on path P between
vertices s′ and t′, is not connected to vertex a in either direction. Thus, vertices
a and b satisfy the property of the lemma.

Note that such a vertex b always exists. If this was not the case, then path
P would contain edge (s′, t′). Then, path P could be extended by replacing
(s′, t′) by path Ps′ a followed by path Ps′ a. This would lead to new path P ′

from s to t that is longer than P , and this would be a contradiction since P was
assumed to be of maximum length. �

t

b

a

s

s’

t’

Figure 5: The subgraph used in the proof of Lemma 2. Vertices a and b are not
connected by a path in either direction.

Every face of a planar st-digraph consists of two sides, each of them directed
from its source to its sink. When one side of the face is a single edge and the
other side (the longest) contains exactly one vertex, the face is referred to as a
triangle (see Figure 6). In the case where the longest edge contains more than
one vertex, the face is referred to as a generalized triangle (see Figure 7). We call
both a triangle and a generalized triangle left-sided (respectively right-sided) if
its left (respectively right) side is its longest side, i.e., it contains at least one
vertex.

The outerplanar st-digraph of Figure 8 is called a strong rhombus. It consists
of two generalized triangles (one left-sided and one right-sided) which have their
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ded generalized triangles.

(vs, vt) edge in common. The edge (vs, vt) of a strong rhombus is referred to
as its median and is drawn in the interior of its drawing. The outerplanar st-
digraph resulting by deleting the median of a strong rhombus is referred to as a
weak rhombus. Thus, a weak rhombus is an outerplanar st-digraph consisting of
a single face that has at least one vertex at each of its sides (see Figure 9). We use
the term rhombus to refer to either a strong or a weak rhombus. The following
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Figure 8: A strong rhombus.
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Figure 9: A weak rhombus.

theorem provides a characterization of st-digraphs that have a hamiltonian path.

Theorem 1 Let G be a planar st-digraph. Then G has a hamiltonian path if
and only if G does not contain any rhombus (strong or weak) as a subgraph.

Proof: (⇒) We assume that G has a hamiltonian path and we show that it

v
s

t’

a

s’

b

u

t

Figure 10: The subgraph containing a rhombus which is used in the proof of Theo-
rem 1. In the case of a weak rhombus, edge (s′, t′) is not present.

contains no rhombus (strong or weak) as an embedded subgraph. For the sake
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of contradiction, assume first that G contains a strong rhombus with vertices
s′ (its source), t′ (its sink), a (on its left side) and b (on its right side) (see
Figure 10). Then, vertices a and b of the strong rhombus are not connected by
a directed path in either direction. To see this, assume without loss of generality
that there was a path connecting a to b. Then, this path has to lie outside the
rhombus and intersect either the path from t′ to t at a vertex u or the path from
s to s′ at a vertex v. In either case, there must exist a cycle in G, contradicting
the fact that G is acyclic.

Assume now, for the sake of contradiction again, that G contains a weak
rhombus characterized by vertices s′, t′, a, and b. Then, by using the same
argument as above, we conclude that vertices a and b of the weak rhombus
are not connected by a directed path that lies outside the rhombus in either
direction. Note also that vertices a and b cannot be connected by a path that
lies in the internal of the weak rhombus since the weak rhombus consists, by
definition, of a single face.

So, we have shown that vertices a and b of the rhombus (strong or weak)
are not connected by a directed path in either direction, and thus, there cannot
exist any hamiltonian path in G, a clear contradiction.

(⇐) We assume that G contains neither a strong nor a weak rhombus as
an embedded subgraph and we prove that G has a hamiltonian path. For the
sake of contradiction, assume that G does not have a hamiltonian path. Then,
from Lemma 2, it follows that there exist two vertices u and v of G that are not
connected by a directed path in either direction. From Lemma 1, it then follows
that there exists in the dual G∗ of G a directed path from either Right(u) to
Left(v), or from Right(v) to Left(u). Without loss of generality, assume that
the path in the dual G∗ is from Right(u) to Left(v) (see Figure 11.a) and let
f0, f1, . . . , fk be the faces the path passes through, where f0 = Right(u) and
fk = Left(v). We denote the path from Right(u) to Left(v) by Pu,v. Note
that each face of digraph G and therefore of path Pu,v is a generalized triangle,
because we supposed that G does not contain any weak rhombus.

Note that path Pu,v can exit face f0 only through the solid edge (see Fig-
ure 11.a). The path then enters a new face and, in the rest of the proof, we
construct the sequence of faces it goes through.

The next face f1 of the path, consists of the solid edge of face f0 and some
other edges. There are two possible cases to consider for face f1.

Case 1: Face f1 is left-sided. Then, path Pu,v enters f1 through one of the
edges on its left side (see Figures 11.b, 11.c and 11.d for possible configurations).
Observe that, since f1 is left-sided, f1 has only one outgoing edge in G∗. Thus,
in all of these cases, the only edge through which path Pu,v can leave f1 is the
single edge on the right side of the generalized triangle f1.

Case 2: The face f1 is right-sided. Then the only edge through which the path
Pu,v can enter f1 is the only edge of its left side (see Figure 11.e). Note that in
this case, f0 and f1 form a strong rhombus. Thus, this case cannot occur, since
we assumed that G has no strong rhombus as an embedded subgraph.
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Figure 11: The different cases occurring in the construction of path Pu,v as described
in the proof of Theorem 1.

A characteristic property of the first case that allows to further continue the
identification of the faces path Pu,v goes through is that there is a single edge
that exits face f1. Thus, we can continue identifying the faces path Pu,v passes
through, and build a unique sequence f0, f1, . . . , fk−1 in this way. Note that
all of these faces are left-sided (otherwise, G contains a strong rhombus).

At the end, path Pu,v has to leave the left-sided face fk−1 and enter the
right-sided face fk. As the only way to enter a right-sided face is to cross the
single edge on its left side, we have that the single edge on the right side of fk−1

and the single edge on the left side of fk coincide forming a strong rhombus
(see Figure 11.f). This is a clear contradiction since we assumed that G has no
strong rhombus as an embedded subgraph. �

3 Optimal Acyclic Hamiltonian Path Comple-

tion for Outerplanar st-digraphs

In this section we present an algorithm that computes a crossing-optimal acyclic
HP-completion set for an outerplanar st-digraph. Let G = (V l ∪V r ∪{s, t}, E)
be an outerplanar st-digraph, where s is its source, t is its sink and the vertices
in Vl (respectively Vr) are located on the left (respectively right) side of the
boundary of the external face. Let V l = {vl1, . . . , vlk} and V r = {vr1 , . . . , vrm},
where the subscripts indicate the order in which the vertices appear on the left
(right) side of the external boundary. By convention, the source and the sink are
considered to lie on both the left and the right sides of the external boundary.
Observe that each face of G is also an outerplanar st-digraph. We refer to an
edge that has both of its end-vertices on the same side of G as an one-sided
edge. All remaining edges are referred to as two-sided edges. The edges exiting
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the source and the edges entering the sink are treated as one-sided edges.
The following lemma presents an essential property of an acyclic HP-completion

set of an outerplanar st-digraph G.

Lemma 3 An acyclic HP-completion set of an outerplanar st-digraph G =
(V l ∪ V r ∪ {s, t}, E) induces a hamiltonian path that visits the vertices of Vl

(respectively Vr) in the order they appear on the left side (respectively right side)
of G.

Proof: Let Ec be an acyclic HP-completion set for G and let Gc be the induced
HP-completed acyclic digraph. Consider two vertices v1 and v2 that appear, in
this order, on the same side (left or right) of G. Then, in G there is a path
Pv1,v2 from v1 to v2 since each side of an outerplanar st-digraph is a directed
path from its source to its sink. For the sake of contradiction, assume that v2
appears before v1 in the hamiltonian path induced by the acyclic HP-completion
set of G. Then, the hamiltonian path contains a sub-path Pv2,v1 from v2 to v1.
Thus, paths Pv1,v2 and Pv2,v1 form a cycle in Gc. This is a contradiction, since
Gc is acyclic. �

3.1 st-Polygons

A strong st-Polygon is an outerplanar st-digraph that has at least one vertex at
each side and always contains edge (vs, vt) connecting its source vs to its sink
vt (see Figure 12). Edge (vs, vt) is referred to as its median and it always lies
in the interior of its drawing. As a consequence, in a strong st-Polygon no edge
connects a vertex on its left side to a vertex on its right side. The outerplanar
st-digraph that results from the deletion of the median of a strong st-Polygon
is referred to as a weak st-Polygon (see Figure 13). We use the term st-Polygon
to refer to both a strong and a weak st-Polygon. Observe that an st-Polygon
has at least 4 vertices.
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Figure 12: A strong st-Polygon.
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Figure 13: A weak st-Polygon.

Consider an outerplanar st-digraph G and one of its embedded subgraphs
Gp that is an st-Polygon (strong or weak). Gp is called a maximal st-Polygon
if it cannot be extended (and still remains an st-Polygon) by the addition of
more vertices to its external boundary. In Figure 14, the st-Polygon Ga,d with
vertices a (source), b, c, d (sink), e, and f on its boundary is not maximal
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Figure 14: The st-Polygon with vertices a (source), b, c, d (sink), e, f, and y on
its boundary is maximal.

since the subgraph G′
a,d obtained by adding vertex y to it is still an st-Polygon.

However, the st-Polygon G′
a,d is maximal since the addition of either vertex x

or z to it does not yield another st-Polygon.
Observe that an st-Polygon that is a subgraph of an outerplanar st-digraph

G fully occupies a “strip” of it that is limited by two edges (one adjacent to its
source and one to its sink), each having its endpoints at different sides of G. We
refer to these two edges as the limiting edges of the st-Polygon. Note that the
limiting edges of an st-Polygon that is an embedded subgraph of an outerplanar
graph are sufficient to define it. In Figure 14, the maximal st-Polygon with
vertex a as its source and vertex d as its sink is limited by edges (a, y) and
(c, d).

Lemma 4 An st-Polygon contains exactly one rhombus.

Proof: Let Gp be a weak st-Polygon. By definition it contains a weak rhombus.
Suppose that this is not the only weak rhombus contained in Gp and let R

be a second one. As Gp is an outerplanar graph and does not contain edges
connecting its two opposite sides, we have that all the vertices of R must lie
on the same side of Gp, say its left side. But then we have that the sink of
R is another sink in Gp or that the source of R is another source of Gp (see
Figure 15). This contradicts the fact that Gp is an st-Polygon. Suppose now
that R is a strong rhombus. This case also leads to a contradiction, as R can
be converted to a weak rhombus by deleting its median.

If Gp is a strong st-Polygon, then by the same argument we show that Gp

cannot contain a second rhombus (strong or weak). �

The following lemmata are concerned with a crossing-optimal acyclic HP-
completion set for a single st-Polygon. They state that there exists a crossing-
optimal acyclic HP-completion set containing at most two edges.

Lemma 5 Let R = (V l∪V r ∪{s, t}, E) be an st-Polygon. Let P be an acyclic
HP-completion set for R such that |P | = 2µ + 1, µ ∈ N. Then, there exists
another acyclic HP-completion set P ′ for R such that |P ′| = 1 and the edge in
P ′ creates at most as many crossings with the edges of R as the edges in P do.



JGAA, 15(3) 373–415 (2011) 387

RR

GPGP

(b)(a)

t

s

t1

s1

t1

s1

s

t

Figure 15: Two possible ways for the embedding of a second rhombus into an st-
Polygon. Both lead to a configuration that contradicts the definition of
an st-Polygon.
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Figure 16: An acyclic HP-completion set of odd size for an st-Polygon and an equiv-
alent acyclic HP-completion set of size 1.

In addition, the hamiltonian paths induced by P and P ′ have in common their
first and last edges.

Proof: First observe that, as a consequence of Lemma 3, any acyclic HP-
completion set for R does not contain any one-sided edge. Thus, all 2µ + 1
edges of P are two-sided edges. Moreover, since P contains an odd number of
edges, both the first and the last edge of P have the same direction2. Without
loss of generality, let the lowermost edge of P be directed from left to right (see
Figure 16(a)). By Lemma 3, it follows that the destination of the lowermost
edge of P is the lowermost vertex on the right side of R (i.e., vertex vr1) while
the origin of the topmost edge of P is the topmost vertex of the left side of R
(i.e., vertex vlk).

Observe that P ′ =
{

(vlk, v
r
1)
}

is an acyclic HP-completion set for R. The
induced hamiltonian path is (s 99K vlk → vr1 99K t).3

2Two two-sided edges of an st-Polygon are sail to have the same direction if their origins
lie at the same side of the st-Polygon. Otherwise, they are said to have opposite directions.

3A dashed-arrow ”99K” indicates a path that is on the left or the right side of an st-Polygon
(or outerplanar graph) and might contain intermediate vertices.
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Figure 17: An acyclic HP-completion set of even size for an st-Polygon and an equiv-
alent acyclic HP-completion set of size 2.

In order to complete the proof, we show that edge (vlk, v
r
1) does not cross

more edges of R than the edges in P do. To see that, observe that edge (vlk, v
r
1)

crosses all edges in set {(s, v) : v ∈ V r \ {vr1}} as well as all edges in set
{(v, t) : v ∈ V l \ {vlm}}, provided they exist (see Figure 16(b)). However, the
edges in these two sets are also crossed by the lowermost and the topmost edges
in P , respectively. Thus, edge (vlk, v

r
1) creates at most as many crossings with

the edges of R as the edges in P do. Observe also that the hamiltonian paths
induced by P and P ′ have in common their first and last edges. �

Lemma 6 Let R = (V l∪V r ∪{s, t}, E) be an st-Polygon. Let P be an acyclic
HP-completion set for R such that |P | = 2µ, µ ∈ N, µ ≥ 1. Then, there exists
another acyclic HP-completion set P ′ for R such that |P ′| = 2 and the edges in
P ′ create at most as many crossings with the edges of R as the edges in P do.
In addition, the hamiltonian paths induced by P and P ′ have in common their
first and last edges.

Proof: As in the case of an HP-completion set of odd size (Lemma 5), the 2µ
edges in P are two-sided edges. Moreover, since P contains an even number of
edges, the first and the last edge of P have opposite direction. Without loss
of generality, let the lowermost edge in P be directed from left to right (see
Figure 17.a). By Lemma 3, it follows that the destination of the lowermost edge
in P is the lowermost vertex on the right side of R (i.e., vertex vr1) while the
origin of the topmost edge in P is the topmost vertex of the right side of R
(i.e., vertex vrm). Let the lowermost edge in P be (vlp, v

r
1). Then, again from

Lemma 3, it follows that the HP-completion set P also contains edge (vri , v
l
p+1)

for some 1 < i ≤ m. If i = m, then P contains exactly 2 edges and lemma is
trivially true. So, we consider the case where i < m.

Observe that, for the case where |P | > 3, the set of edges P ′ = {(vlp, v
r
1),

(vrm, vlp+1)} is an acyclic HP-completion set for R (see Figure 17.b). The induced

hamiltonian path is (s 99K vlp → vr1 99K vrm → vlp+1 99K t).

In order to complete the proof, we show that edges (vlp, v
r
1) and (vrm, vlp+1)

do not cross more edges of R than the edges in P do. The edges of E that are
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crossed by the two edges in P ′ can be classified in the following disjoint groups:

a) Edges having their origin below edge (vlp, v
r
1) and their destination above edge

(vrm, vlp+1). All of these edges are crossed by both edges in P ′. But, they are

also crossed by at least edges (vlp, v
r
1) and (vri , v

l
p+1) in P .

b) Edges having their origin below edge (vlp, v
r
1) and their destination between

edges (vlp, v
r
1) and (vrm, vlp+1). All of these edges are only crossed by edge

(vlp, v
r
1) in P ′. But, (vlp, v

r
1) also belongs in P .

c) Edges having their origin between edges (vlp, v
r
1) and (vrm, vlp+1) and their

destination above edge (vrm, vlp+1). All of these edges are only crossed by

edge (vrm, vlp+1) in P ′. But, they are also crossed by at least the topmost

edge (vrm, vlq) in P .

Thus, the edges in P ′ create at most as many crossings with the edges of R as
the edges of P do. Observe also that the hamiltonian paths induced by P and
P ′ have in common their first and last edges. �

The following theorem follows directly from Lemma 5 and Lemma 6.

Theorem 2 Any st-Polygon has a crossing optimal acyclic HP-completion set
of size at most 2. �

3.2 st-Polygon decomposition of an outerplanar st-digraph

Lemma 7 Let G = (V l ∪ V r ∪ {s, t}, E) be an outerplanar st-digraph and
e = (s′, t′) ∈ E be an arbitrary edge. Denote by V the vertex set of G. If O(V )
time is available for the preprocessing of G, we can decide in O(1) time whether
e is a median edge of some strong st-Polygon. Moreover, the two vertices (in
addition to s′ and t′) that define a maximal strong st-Polygon having edge e as
its median can also be computed in O(1) time.

Proof: We can preprocess graph G in linear time so that for each of its vertices
we know the first and last (in clock-wise order) in-coming and out-going edges.
Observe that an one-sided edge (u, v) is a median of a strong st-Polygon if and
only if the following hold (see Figure 18.a):

a) u and v are not successive vertices of the side of G.

b) u has a two-sided outgoing edge.

c) v has a two-sided incoming edge.

Similarly, observe that a two-sided edge (u, v) with u ∈ V R (respectively u ∈
V L) is a median of a strong st-Polygon if and only if the following hold (see
Figure 18.b):

a) u has a two-sided outgoing edge that is clock-wise before (re-
spectively after) (u, v).
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Figure 18: st-Polygons with one-sided and two-sided medians. The median and the
two edges that bound the st-Polygons are shown in bold.

b) v has a two-sided incoming edge that is clock-wise before (re-
spectively after) (u, v).

All of the above conditions can be trivially tested in O(1) time. Then, the two
remaining vertices that define the maximal strong st-Polygon having (u, v) as
its median can be found in O(1) time and, moreover, the strong st-Polygon can
be reported in time proportional to its size. �

Lemma 8 Let G = (V l ∪ V r ∪ {s, t}, E) be an outerplanar st-digraph and f a
face with source u and sink v. Denote by V the vertex set of G. If O(V ) time is
available for the preprocessing of G, we can decide in O(1) time whether f is a
weak rhombus. Moreover, the two vertices (in addition to u and v) that define
a maximal weak st-Polygon that contains f can be also computed in O(1) time.

Proof: By definition, a weak rhombus is a face that has at least one vertex on
each of its sides. Thus, we can test whether face f is a weak rhombus in O(1)
time, if for each face the lists of vertices on its left and right sides are available.

As it was noted in the previous proof, we can preprocess graph G in linear
time so that for each of its vertices we know its first and last (in clock-wise
order) in-coming and out-going edges. Then, the two remaining vertices that
define the maximal weak st-Polygon having f as a subgraph can be found in
O(1) time and it can be reported in time proportional to its size. For example,
in Figure 19 where vertices u and v are both on the right side, the limiting edges
of the maximal weak st-Polygon are the first outgoing edge from u and the last
incoming edge to v.

�

Observe also that, as we extend a weak (strong) rhombus to finally obtain
the maximal weak (respectively, strong) st-Polygon that contains it, we include
all edges that are outgoing from u and incoming to v. During this procedure,
all faces attached to the rhombus are generalized triangles.

Lemma 9 The maximal st-Polygons contained in an outerplanar st-digraph G

are mutually area-disjoint.
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Figure 19: The weak rhombus with u and v as its source and sink, respectively, and
the maximal st-Polygon containing it.

Proof:
We first observe that a maximal st-Polygon cannot fully contain another one.

If it does, then we would have a maximal st-Polygon containing two rhombi,
which is impossible due to Lemma 4.

For the sake of contradiction, assume that two st-Polygons P1 and P2 have
a partial overlap. We denote by (s1, u

l
1, . . . , u

l
k, u

r
1, . . . , u

r
m, t1) and (s2, v

l
1, . . . ,

vlk, v
r
1 , . . . , v

r
m, t2) the vertices of P1 and P2, respectively. Throughout the proof

we refer to Figure 20.
Due to the assumed partial overlap of P1 and P2, an edge of one of them, say

P1, must be contained within the other (say P2). Below we show that none of
the two possible upper limiting edges (ul

k, t1) and (ur
m, t1) of P1 can be contained

in P2.
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Figure 20: Two st-Polygons from the proof of Lemma 9

We have to consider three cases.

Case 1: One of the edges (ul
k, t1) and (ur

m, t1) of P1 coincide with an internal
edge of P2 connecting s2 with a vertex vli on its left side (the case where it is on
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its right side is symmetric). Edge (ul
k, t1) cannot coincide with (s2, v

l
i), since

then, edge (ur
m, t1) has to be inside P2 and therefore to connect the left side of

P2 with its right side. This is a contradiction since P2 is an st-Polygon and it
cannot contain any such edge.

Now assume that edge (ur
m, t1) of P1 coincides with edge (s2, v

l
i) of P2,

Then, edge (s2, v
l
1) is inside P1 and joins its right with its left side, which is

again impossible since P1 is an st-Polygon.

Case 2: One of edges (ul
k, t1) and (ur

m, t1) of P1 coincides with an internal
edge of P2 connecting two vertices on its same side. Let it again be the left
side and denote the edge by (vli, v

l
j). Assume first that (ur

m, t1) coincides with

(vli, v
l
j). As graph P2 is outerplanar, we have that all the remaining vertices of

P1 have to be placed above vertex vli and below vertex vlj on the left side of P2.
Therefore P1 is fully contained in P2, which is impossible.

Assume now that (ul
k, t1) coincides with edge (vli, v

l
j). Then, edge (u

r
m, t1) of

P1 coincides with edge (vli′ , v
l
j) of P2, i

′ < i. This is impossible as it was covered

in the above paragraph. Note also that vli′ cannot be s2 since this configuration
was shown to be impossible in Case 1.

Case 3: One of edges (ul
k, t1) and (ur

m, t1) of P1 coincides with an internal edge
of P2 connecting the vertex on its side (suppose again on its left side) with sink
t2. Let this edge be denoted by (vlj , t2). Suppose first that (ul

k, t1) coincides

with (vlj , t2). If vertex ur
m is on the right side of P2 then P1 is not maximal as

P1 can be extended (and still remain an st-Polygon) by including in it vertices
vlj to vlk. So, assume that ur

m is on the left side of P2. Then, as covered in
Case 2, P1 must be fully contained in P2 which leads to a contradiction.

Assume now that edge (ur
m, t1) coincides with edge (vlj , t2). Due to the

outer-planarity of P2, we have again that all the vertices of P1 have to be placed
above vlj and below t2 on the left side of P2. So P1 is again fully contained in
P2, leading again to a contradiction.

We have managed to show that none of edges (ul
k, t1) and (ur

m, 11) is con-
tained in P2. Therefore, there can be no partial overlap between P1 and P2.

�

Denote by R(G) the set of all maximal st-Polygons of an outerplanar st-
digraph G. Observe that not every vertex of G belongs to one of its maximal
st-Polygons. We refer to the vertices of G that are not part of any maximal
st-Polygon as free vertices and we denote them by F(G). Also observe that
an ordering can be imposed on the maximal st-Polygons of an outerplanar st-
digraph G based on the ordering of the area disjoint strips occupied by each
st-Polygon. The vertices which do not belong to any st-Polygon are located in
the area between the strips occupied by consecutive st-Polygons.

Lemma 10 Let R1 and R2 be two consecutive maximal st-Polygons of an out-
erplanar st-digraph G which do not share an edge and let Vf ⊆ F(G) be the set
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of free vertices lying between R1 and R2. Denote by (u, t1) and (s2, v) the upper
limiting edge and the lower limiting edge of R1 and R2, respectively. For the
embedded subgraph Gf of G induced by the vertices of Vf ∪{u, t1, s2, v} it holds:

a) Gf is an outerplanar st-digraph having vertices u and v as its source and
sink, respectively.

b) Gf is hamiltonian.

Proof: We first show that statement (a) is true, that is, Gf is an outerplanar
st-digraph having vertices u and v as its source and sink, respectively. Without
loss of generality, assume that the limiting edge (s2, v) of the upper maximal
st-Polygon R2 is directed towards the right side of the outerplanar st-digraph
G. We consider cases based on whether R1 and R2 share a common vertex.

1
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Figure 21: The configurations of two st-Polygons used in the proof of Lemma 10.

Case 1: R1 and R2 share no common vertex. Based on the direction of
the limiting edge (u, t1) we can further distinguish the following two cases:

Case 1a: (u, t1) is directed towards the right side of G.

See Figure 21.a.

Case 1b: (u, t1) is directed towards the left side of G.

See Figure 21.b.

In both of the above cases, we observe that Gf forms an st-Polygon (or, a
rhombus) which contradicts the fact that R1 and R2 are consecutive maximal
st-Polygons. Thus, Case 1 cannot occur.

Case 2: R1 and R2 share one common vertex. First observe that the
limiting edge (u, t1) of R1 is directed towards the left side of G. To see that,
assume for the sake of contradiction that edge (u, t1) is directed towards the
right side of G. If v coincides with t1 (see Figure 21.c) then the st-Polygon
R1 could be extended (and still remain an st-Polygon) by adding to it the
area between the two polygons R1 and R2, contradicting the fact that R1 is
maximal. If u coincides with s2 (see Figure 21.d) then the st-Polygon R2 could
be extended (and still remain an st-Polygon) by adding to it the area between
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the two polygons R1 and R2, contradicting the fact that R2 is maximal. Thus,
the limiting edge (u, t1) of R1 is directed towards the left side of G and s2
coincides with t1 (see Figure 21.e). The rest of the proof is a special case of
Case 1b (where no vertices of Vf exist on the left side of G).

So Gf is an outerplanar st-digraph with the source u and the sink v. Note also
that Gf does not contain a rhombus. If it does, then it would be an st-Polygon,
contradicting the fact that R1 and R2 are consecutive maximal st-Polygons.
Then, from Theorem 1 it follows that Gf is hamiltonian. �

Lemma 11 Let R1 and R2 be two consecutive maximal st-Polygons of an out-
erplanar st-digraph G that share a common edge. Let t1 be the sink of R1 and
s2 be the source of R2. Then, edge (s2, t1) is their common edge.

Proof: Let the upper limiting edge of R1 be edge (u, t1) and the lower limiting
edge of R2 be edge (s2, v). Since these are the only two edges that can coincide,
we conclude that v coincides with t1 and u coincides with s2. Thus, edge (s2, t1)
is the edge shared by R1 and R2. �

Lemma 12 Let G be an outerplanar st-digraph. Let R1 and R2 be two G’s
consecutive maximal st-Polygons and let Vf ⊆ F(G) be the set of free vertices
lying between R1 and R2. Then, the following statements hold:
a) For any pair of vertices u, v ∈ Vf there is either a path from u to v or from

v to u.

b) For any vertex v ∈ Vf there are a path from the sink of R1 to v and a path
from v to the source of R2.

c) If Vf = ∅, then there is a path from source of R1 to the source of R2.
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Figure 22: The configurations of adjacent st-Polygons of an outerplanar st-digraph.

Proof:
a) From Lemma 10 we have that the subgraph Gf of G (as defined in the proof

of Lemma 10) is hamiltonian. Thus, all vertices in Vf are connected by a
directed path.

b) Follows directly from Lemma 10.
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c) Note that there are 3 configuration in which no free vertex exists between
two consecutive st-Polygons (see Figures 22.a-c). Denote by s1 and s2 the
sources of R1 and R2, respectively. If s1 and s2 lie on the same side of G
then the claim is obviously true since G is an outerplanar st-digraph. If they
belong to opposite sides of G, observe that the lower limiting edge (s1, c) of
R1 leads to the side of G which contains s2. Since there is a path from c to
s2, it follows that there is a path from s1 to s2.

�

We refer to the source vertex si of each maximal st-Polygon Ri ∈ R(G), 1 ≤
i ≤ |R(G)| as the representative of Ri and we denote it by r(Ri). We also define
the representative of a free vertex v ∈ F(G) to be v itself, i.e. r(v) = v. For
any two distinct elements x, y ∈ R(G) ∪ F(G), we define the relation ∠p as
follows: x∠py if and only if there exists a path from r(x) to r(y).

Lemma 13 Let G be an n-vertex outerplanar st-digraph. Then, relation ∠p

defines a total order on the elements R(G) ∪ F(G). Moreover, this total order
can be computed in O(n) time.

Proof: The fact that ∠p is a total order onR(G)∪F(G) follows from Lemma 12.
The order of the elements of R(G)∪F(G) can be easily derived by the numbers
assigned to the representatives of the elements (i.e., to vertices of G) by a
topological sort of the vertices of G. To complete the proof, recall that an
n-vertex acyclic planar graph can be topologically sorted in O(n) time. �

Definition 2 Given an outerplanar st-digraph G, the st-Polygon decomposi-
tion D(G) of G is defined to be the total order {o1, . . . , oλ} induced by relation
∠p on its maximal st-Polygons and its free vertices, that is, oi, 1 ≤ i ≤ λ, is
either a maximal st-Polygon or a free vertex of G and oi∠poi+1, 1 ≤ i < λ.

The following theorem follows directly from Lemma 7, Lemma 8 and Lemma 13.

Theorem 3 An st-Polygon decomposition of an n-vertex outerplanar st-digraph
G can be computed in O(n) time.

3.3 Properties of a crossing-optimal acyclic HP-completion

set

In this section, we present three properties of crossing-optimal acyclic HP-
completion sets for an outerplanar st-digraph that will be taken into account
by our algorithm. Let G = (V l ∪ V r ∪ {s, t}, E) be an outerplanar st-digraph
and D(G) = {o1, . . . , oλ} its st-Polygon decomposition. As Gi we denote the
graph induced by the vertices of elements o1, . . . , oi, i ≤ λ.

Property 1 Let G = (V l∪V r∪{s, t}, E) be an outerplanar st-digraph. Then,
no edge of E is crossed by more than 2 edges of a crossing-optimal acyclic HP-
completion set for G.
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Figure 23: The configurations of crossing edges used in the proof of Property 1.

Proof: For the sake of contradiction, assume that Popt is a crossing-optimal
acyclic HP-completion set forG, the edges of which cross some edge e = (w1, w2)
of G three times. We will show that we can obtain an acyclic HP-completion set
forG that induces a smaller number of crossings than Popt, a clear contradiction.
We assume that all edges of Popt participate in the hamiltonian path of G;
otherwise they can be discarded.

We distinguish two cases based on whether edge e is one-sided or two-sided.

Case 1: The edge e is one-sided. Suppose without loss of generality that e
is on the right side. We further distinguish two cases based on the orientation
of the edge, say e1, which appears first on the hamiltonian path of G (out of
the 3 edges crossing edge e).

Case 1a: Edge e1 is directed from right to left. Let e1 be edge (v1, u1) and
let (u2, v2) and (v3, u3) be the other two edges on the hamiltonian path which
cross e (see Figure 23.a). It is clear that these three edges have alternating
direction. Observe that the path Pv1,u3

= (v1 → u1 99K u2 → v2 99K v3 → u3)
is a sub-path of the hamiltonian path of G. Also, by Lemma 3, vertex u2 is
immediately below vertex u3 on the left side of G and vertex v2 is immediately
above vertex v1 on the right side of G.

Now, we show that the substitution of path Pv1,u3
of the hamiltonian path of

G by path P ′
v1,u3

= (v1 → v2 99K v3 → u1 99K u2 → u3) results in a reduction of
the total number of crossings by at least 2. Thus, there exists an HP-completion
set that crosses edge e only once and causes 2 crossings less with edges of G
compared to Popt, a clear contradiction.

Let us examine the edges of G that are crossed by the new edge (v3, u1).
These edges can be grouped as follows: (i) The one-sided edges on the right side
of G that have their source below v3 and their sink above v3. Note that these
edges are also crossed by edge (v3, u3). In addition, the edges that belong to
this group and have their origin below w1 and their sink above w2 are crossed
by all three edges (v1, u1), (u2, v2) and (v3, u3) in the original HP-completion
set. (ii) The two-sided edges that have their source below w1 on the right side
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of G and their sink above v1 on the left side of G. These edges are also crossed
by at least edge (v1, u1) (and possibly by one or both of edges (u2, v2) and
(v3, u3)). (iii)The one-sided edges on the left side of G that have their source
below u1 and their sink above u1. Note that these edges are also crossed by at
least edge (v1, u1) (and possibly by one or both of edges (u2, v2) and (v3, u3)).
(iv) The two sided edges that have their source below u1 on the left side of G
and their sink above w2 on the right side of G. These edges are also crossed
by all three edges (v1, u1) (u2, v2) and (v3, u3). Thus, we have shown that edge
(v3, u1) crosses at most as many edges of G as the three edges (v1, u1), (u2, v2),
(v3, u3) taken together.

Case 1b: Edge e1 is directed from left to right. Let e1 be edge (u1, v1) and
let (v2, u2) and (u3, v3) be the next two edges on the hamiltonian path which
cross e (see Figure 23.b). Observe that the path Pu1,v3 = (u1 → v1 99K v2 →
u2 99K u3 → v3) is a sub-path of the hamiltonian path of G. Also, by Lemma 3,
vertex u2 is immediately above vertex u1 on the left side of G and vertex v2
is immediately below vertex v3 on the right side of G. By arguing in a way
similar to that of Case 1a, we can show that the substitution of path Pu1,v3 of
the hamiltonian path of G by path P ′

u1,v3
= (u1 → u2 99K u3 → v1 99K v2 → v3)

results in a reduction of the total number of crossings by at least 2.

Case 2: Edge e is two-sided. Assume without loss of generality that e

is directed from right to left. We again distinguish two cases based on the
orientation of the edge, say e1, which appears first on the hamiltonian path of
G (out of the 3 edges crossing edge e).

Case 2a: Edge e1 is directed from right to left. The proof is identical to
that of Case 1a.

Case 2b: Edge e1 is directed from left to right. The proof is identical to
that of Case 1b.

�

Property 2 Let G = (V l ∪ V r ∪ {s, t}, E) be an outerplanar st-digraph and
let D(G) = {o1, . . . , oλ} be its st-Polygon decomposition. Then, there exists a
crossing-optimal acyclic HP-completion set for G such that, for every maximal
st-Polygon oi ∈ D(G), i ≤ λ, the HP-completion set does not contain any edge
that crosses the upper limiting edge of oi and leaves Gi.

Proof: Let e = (x, ti) be the upper limiting edge of oi and assume without
loss of generality that it is directed from right to left. Also assume a crossing-
optimal acyclic HP-completion set Popt that violates the stated property, that
is, it contains an edge ẽ = (u, v), u ∈ Gi, that crosses the limiting edge e. Based
on Lemma 3, we conclude that edge ẽ is a two-sided edge, otherwise the vertices
of a single side appear out of order in the hamiltonian path induced by Popt.
We distinguish two cases based on direction of the two-sided edge ẽ.
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Figure 24: The configurations of crossing edges used in the proof of Property 2.

Case 1: Edge ẽ = (u, v) is directed from right to left. See Figure 24.a.
By Lemma 3, in the hamiltonian path induced by Popt vertex x is visited after
vertex u . So, in the resulting HP-completed digraph, there must be a path from
v to x which, together with (x, ti) and the path (ti 99K v) on the left side of G
forms a cycle. This contradicts the fact that Popt is an acyclic HP-completion
set.

Case 2: Edge ẽ = (u, v) is directed from left to right. See Figure 24.b.
Denote by v′ the vertex positioned immediately below vertex v (note that v′

may coincide with x) and by u′ the vertex that is immediately above u (note
that u′ may coincide with ti).

Consider the hamiltonian path induced by Popt. By Lemma 3 it follows
that before crossing to the right side of G using edge (u, v) it had visited all
vertices on the right side which are placed below v, and thus, there is an edge
(v′, u′′) ∈ Popt, where u

′′ is some vertex below u on the left side of G. Now note
that, by Lemma 3, vertex u′ has to appear in the hamiltonian path after vertex
u, and thus, there exists an edge (v′′, u′) ∈ Popt where v

′′ is a vertex above v on
the right side of G.

By arguing in a way similar to that of Property 1, we can show that the
substitution of path Pv′,u′ = (v′ → u′′

99K u → v 99K v′′ → u′) of the hamil-
tonian path of G by path P ′

v′,u′ = (v′ 99K v′′ → u′′
99K u′) does not result in

an increase of the number of edge crossings. More specifically, when v′ does
not coincide with x and/or u′ does not coincide with ti, the resulting new path
causes at least one less crossing, contradiction the optimality of Popt. In the
case where v′ coincides with x and u′ coincides with ti and the two hamiltonian
paths cause the same number of crossings, the new HP-completion set has the
desired property, that is, none of its edges crosses the limiting edge (x, ti) and
leaves Gi. �

Property 3 Let G = (V l∪V r ∪{s, t}, E) be an outerplanar st-digraph and let
D(G) = {o1, . . . , oλ} be its st-Polygon decomposition. Then, in every crossing-
optimal acyclic HP-completion set for G and for every maximal st-Polygon oi ∈
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D(G), i ≤ λ, at most one edge crosses the upper limiting edge of oi.

Proof: Let edge e = (x, ti) be the upper limiting edge of oi. Without loss of
generality assume that it is directed from the right to the left side of G, and let
v be the vertex immediately above x on the right side of G and u be the vertex
immediately below ti on the left side of G. By Property 1, we have that the
edges of a crossing-optimal acyclic HP-completion set for G do not cross e three
or more times.

For the sake of contradiction assume that there is a crossing-optimal acyclic
HP-completion set Popt for G that crosses edge e twice. Let e1, e2 ∈ Popt be the
edges which cross e. Clearly, these two edges cross e in the opposite direction
and do not cross each other. Let e1 be the edge that crosses e and leaves Gi.
Observe that e1 has opposite direction to that of e, otherwise a cycle is created.
Then, since e1 does not cross e2, edge e1 does not coincide with (u, v). However,
for the case where e1 6= (u, v), we established in the proof of Property 2 (Case 2)
that we are always able to build an acyclic HP-completion set that induced less
crossings than Popt, a clear contradiction.4 �

The following theorem states that there always exists a crossing-optimal
acyclic HP-completion set for outerplanar st-digraphs that has certain proper-
ties. The algorithm which we present in the next section, focuses only on an
HP-completion set satisfying these properties.

Theorem 4 Let G = (V l ∪ V r ∪ {s, t}, E) be an outerplanar st-digraph and
let D(G) = {o1, . . . , oλ} be its st-Polygon decomposition. Then, there exists a
crossing-optimal acyclic HP-completion set Popt for G such that it satisfies the
following properties:
a) Each edge of E is crossed by at most two edges of Popt.

b) Each upper limiting edge ei of any maximal st-Polygon oi, i ≤ λ, is crossed
by at most one edge of Popt. Moreover, the edge crossing ei, if any, enters
Gi.

Proof: Follows directly from Properties 1, 2 and 3. �

3.4 The Algorithm

The algorithm for obtaining a crossing-optimal acyclic HP-completion set for
an outerplanar st-digraph G is a dynamic programming algorithm based on the
st-Polygon decomposition D(G) = {o1, . . . , oλ} of G. The following lemmata
allow us to compute a crossing-optimal acyclic HP-completion set for an st-
Polygon and to obtain a crossing-optimal acyclic HP-completion set for Gi+1

by combining an optimal solution for Gi with an optimal solution for oi+1.
Let G be an outerplanar st-digraph. We denote by S(G) the hamiltonian

path on the HP-extended digraph of G obtained when a crossing-optimal HP-
completion set is added to G. Note that if we are only given S(G) we can infer

4The proof is identical and for this reason it is not repeated
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the size of the HP-completion set and the number of edge crossings. Denote by
c(G) the number of edge crossings caused by the HP-completion set inferred by
S(G). If we are restricted to Hamiltonian paths that enter the sink of G from a
vertex on the left (respectively right) side ofG, then we denote the corresponding
size of HP-completion set by c(G,L) (respectively c(G,R)). Obviously, c(G) =
min{c(G,L), c(G,R)}. Moreover, the notation can be extended so that we
denote by ci(G,L) (ci(G,R)) the number of crossings for HP-completion sets
that contain exactly i edges, provided they exist. By Theorem 2, we know that
the size of a crossing-optimal acyclic HP-completion set for an st-Polygon is at
most 2. This notation that restricts the size of the HP-completion set will be
used only for st-Polygons and thus, only the terms c1(G,L), c1(G,R), c2(G,L)
and c2(G,R) will be utilized.

We use the operator ⊕ to indicate the concatenation of two paths. By
convention, the hamiltonian path of a single vertex is the vertex itself.

Lemma 14 Let o = (V l∪V r∪{s, t}, E) be an n-vertex st-Polygon. A crossing-
optimal acyclic HP-completion set for o and the corresponding number of cross-
ings can be computed in O(n) time.

Proof: From Lemma 5 and Lemma 6 it follows that it is sufficient to look
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Figure 25: The two single-edge HP-completion sets of an st-Polygon.

through all HP-completion sets with one or two edges in order to find a crossing-
optimal acyclic HP-completion set. Let V l = {vl1, . . . , vlk} and V r = {vr1, . . . , vrm},
where the subscripts indicate the order in which the vertices appear on the left
(right) boundary of o. Suppose that I : V ×V → {0, 1} is an indicator function
such that I(u, v) = 1 if and only if (u, v) ∈ E.

The only two possible HP-completion sets consisting of exactly one edge are
{

(vlk, v
r
1)
}

and
{

(vrm, vl1)
}

.
Edge (vlk, v

r
1) crosses all edges connecting t with vertices in Vl \ {vlk}, the

median (provided it exists), and all edges connecting s with vertices in Vr \{vR1 }
(see Figure 25.a). It follows that:

c1(o,R) = I(s, t) +

k−1
∑

i=2

I(vℓi , t) +

m−1
∑

i=2

I(s, vri ).

Similarly, edge (vrm, vl1) crosses all edges connecting t with vertices in Vr \
{vrm}, the median (provided it exists), and all edges connecting s with vertices
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in Vl \ {vl1} (see Figure 25.b). It follows that:

c1(o, L) = I(s, t) +

m−1
∑

i=2

I(vri , t) +

k−1
∑

i=2

I(s, vℓi ).
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Figure 26: The two-edge HP-completion sets of an st-Polygon.

Consider now an acyclic HP-completion set of size 2. Assume that the
lowermost edge leaves vertex vrq on the right side of o (see Figure 26.a). Then,

it must enter vertex vl1. Moreover, the second edge of the acyclic HP-completion
set must leave vertex vlk and enter vertex vrq+1. Thus, the HP-completion set

is
{

(vrq , v
l
1), (vlk, v

r
q+1)

}

and, as we observe, it can be put into correspondence
with edge (vrq , v

r
q+1) on the right side of o. In addition, we observe that the

hamiltonian path enters t from the right side. An analogous situation occurs
when the lowermost edge leaves the left side of o (see Figure 26.b).

We denote by c2q(o,R) the number of crossings caused by the completion set

associated with the edge originating at the qth lowermost vertex on the right
side of o. Similarly we define c2q(o, L). c

2
q(o,R) can be computed as follows:

c2q(o,R) = 2 · I(s, t) +
∑k−1

i=1 I(vℓi , t) +
∑k

i=2 I(s, v
ℓ
i ) + 2 ·

∑q−1

i=1 I(vri , t)+
2 ·

∑m

i=q+2 I(s, v
r
i ) + I(vrq , t) + I(s, vrq+1)

Then, the optimal solution where the hamiltonian path terminates on the
right side of o can be taken as the minimum over all c2q(o,R), 1 ≤ q ≤ m− 1:

c2(o,R) = min
1≤q≤m−1

{c2q(o,R)}.

Similarly, c2q(o, L) can be computed as follows:

c2q(o, L) = 2 · I(s, t) +
∑m−1

i=1 I(vri , t) +
∑m

i=2 I(s, v
r
i ) + 2 ·

∑q−1

i=1 I(vℓi , t)+

2 ·
∑k

i=q+2 I(s, v
ℓ
i ) + I(vℓq, t) + I(s, vℓq+1).

Then, the optimal solution where the hamiltonian path terminates on the
left side of o can be taken as the minimum over all c2q(o,R), 1 ≤ q ≤ k − 1:

c2(o, L) = min
1≤q≤k−1

{c2q(o, L)}.
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So, now, the number of crossings that corresponds to the optimal solution
can be computed as follows:

c(o) = min{c1(o, L), c1(o,R), c2(o, L), c2(o,R)}.

It is clear that c1(o,R) and c1(o, L) can be computed in time O(n). It is
also easy to see that any c2q(o,R) can be computed from c2q−1(o,R) in constant
time, while c21(o,R) can be computed in time O(n). Therefore, c2(o,R), as
well as c2(o, L), can be computed in linear time. Thus, we conclude that a
crossing-optimal acyclic HP-completion set for any n-vertex st-Polygon o and
its corresponding number of crossings can be computed in O(n) time. �

Let D(G) = {o1, . . . , oλ} be the st-Polygon decomposition of G, where el-
ement oi, 1 ≤ i ≤ λ, is either an st-Polygon or a free vertex. Recall that,
we denote by Gi, 1 ≤ i ≤ λ, the graph induced by the vertices of elements
o1, . . . , oi. Graph Gi is also an outerplanar st-digraph. The same holds for the
subgraph of G that is induced by any number of consecutive elements of D(G).

Lemma 15 Let G be an outerplanar st-digraph and D(G) = {o1, . . . , oλ} be
its st-Polygon decomposition. Consider any two consecutive elements oi and
oi+1 of D(G) that share at most one vertex. Then, the following statements
hold:

(i) S(Gi+1) = S(Gi)⊕ S(oi+1), and

(ii) c(Gi+1) = c(Gi) + c(oi+1).

Proof: We proceed to prove first statement (i). There are three cases to con-
sider in which 2 consecutive elements of D(G) share at most 1 vertex.

Case 1: Element oi+1 = v is a free vertex (see Figure 27.a). By Lemma 12,
if oi is either a free vertex or an st-Polygon, there is an edge connecting the
sink of oi to v. Also observe that if v was not the last vertex of S(Gi+1) then
the crossing-optimal HP-completion set had to include an edge from v to some
vertex of Gi. This is impossible since it would create a cycle in the HP-extended
digraph of S(Gi+1).
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Algorithm 1: Acyclic-HPC-CM(G)

input : An Outerplanar st-digraph G(V l ∪ V r ∪ {s, t}, E).
output : The minimum number of edge crossings c(G) resulting from the

addition of a crossing-optimal acyclic HP-completion set to G.

1. Compute the st-Polygon decomposition D(G) = {o1, . . . , oλ} of G;

2. For each element oi ∈ D(G), 1 ≤ i ≤ λ, compute c1(oi, L), c
1(oi, R) and

c2(oi, L), c
2(oi, R):

if oi is a free vertex, then c1(oi, L) = c1(oi, R) = c2(oi, L) = c2(oi, R) = 0.
if oi is an st-Polygon, then c1(oi, L), c

1(oi, R), c2(oi, L), c
2(oi, R) are

computed based on Lemma 14.

3. if o1 is a free vertex, then c(G1, L) = c(G1, R) = 0;
else c(G1, L) = min{c1(o1, L), c

2(o1, L)} and
c(G1, R) = min{c1(o1, R), c2(o1, R)};

4. For i = 1 . . . λ− 1, compute c(Gi+1, L) and c(Gi+1, R) as follows:
if oi+1 is a free vertex, then

c(Gi+1, L) = c(Gi+1, R) = min{c(Gi, L), c(Gi, R)};

else-if oi+1 is an st-Polygon sharing at most one vertex with Gi, then
c(Gi+1, L) = min{c(Gi, L), c(Gi, R)}+min{c1(oi+1, L), c

2(oi+1, L)};
c(Gi+1, R) = min{c(Gi, L), c(Gi, R)}+min{c1(oi+1, R), c2(oi+1, R)};

else { oi+1 is an st-Polygon sharing exactly two vertices with Gi},
if ti ∈ V l, then

c(Gi+1, L) = min{c(Gi, L)+ c1(oi+1, L)+ 1, c(Gi, R)+ c1(oi+1, L),
c(Gi, L) + c2(oi+1, L), c(Gi, R) + c2(oi+1, L)}

c(Gi+1, R) = min{c(Gi, L) + c1(oi+1, R), c(Gi, R) + c1(oi+1, R),
c(Gi, L)+c2(oi+1, R)+1, c(Gi, R)+c2(oi+1, R)}

else { ti ∈ V r }
c(Gi+1, L) = min{c(Gi, L) + c1(oi+1, L), c(Gi, R) + c1(oi+1, L),

c(Gi, L)+c2(oi+1, L), c(Gi, R)+c2(oi+1, L)+1}
c(Gi+1, R) = min{c(Gi, L)+c1(oi+1, R), c(Gi, R)+c1(oi+1, R)+1,

c(Gi, L) + c2(oi+1, R), c(Gi, R) + c2(oi+1, R)}

5. return c(G) = min{c(Gλ, L), c(Gλ, R)}

Case 2: Element oi+1 is an st-Polygon that shares no common vertex

with Gi (see Figure 27.b). Without loss of generality, assume that the sink of
Gi is located on its left side. We first observe that edge (ti, si+1) exists in G.
If si+1 is on the left side of G, we are done. Note that there can be no other
vertex between ti and si+1 in this case, because then oi and oi+1 would not be
consecutive. If si+1 is on the right side of G, realize that the area between two
st-Polygons oi and oi+1 cannot be free of edges, as it is a weak st-Polygon. Note
also that the edge (u, a) cannot exist in G, since, if it existed, the area between
the two polygons would be a strong st-Polygon with (u, a) as its median. Thus,
that area can only contain the edge (ti, si+1). Thus, as indicated in Figure 27.b,
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each of the end-vertices of the lower limiting edge of oi+1 can be its source.
Since edge (ti, si+1) exists, the solution S(oi+1) can be concatenated to S(Gi)
and yield a valid hamiltonian path for Gi+1. Now notice that in S(Gi+1) all
vertices of Gi have to be placed before the vertices of oi+1. If this was not the
case, then the crossing-optimal HP-completion set had to include an edge from
a vertex v of oi+1 to some vertex u of Gi. This is impossible since it would
create a cycle in the HP-extended digraph of S(Gi+1).

Case 3: Element oi+1 is an st-Polygon that shares one common vertex

with Gi (see Figure 27.c). Without loss of generality, assume that the sink ti
of Gi is located on its left side. Firstly, notice that the vertex shared by Gi

and oi+1 has to be vertex ti. To see that, let a be the upper vertex at the
right side of Gi. Then, edge (a, ti) exists since ti is the sink of Gi. For the
sake of contradiction assume that a was the vertex shared between Gi and oi+1.
If a was also the source of oi+1 (see Figure 27.d) then oi+1 wouldn’t be max-
imal (edge (a, ti) should also belong to oi+1). If si+1 was on the left side (see
Figure 27.e), then a cycle would be formed involving edges (ti), (t1, si+1) and
(si+1, a), which is impossible since G is acyclic. Thus, the vertex shared by Gi

and oi+1 has to be vertex ti. Secondly, observe that ti must coincide with vertex
si+1 (see Figure 27.c). If si+1 coincided with vertex b, then the st-Polygon oi
wouldn’t be maximal since edge (b, ti) should also belong to oi. We conclude
that ti coincides with si+1 and, thus, the solution S(oi+1) can be concatenated
to S(Gi) and yield a valid hamiltonian path for Gi+1. To complete the proof
for this case, we can show by contradiction (on the acyclicity of G; as in Case 2)
that in S(Gi+1) all vertices of Gi have to be placed before the vertices of oi+1.

Now observe that statement (ii) is trivially true since, in all three cases, the
hamiltonian paths S(Gi) and S(oi+1) were concatenated by using at most one
additional edge of graph G. Since G is planar, no new crossings are created. �

Lemma 16 Let G be an outerplanar st-digraph and D(G) = {o1, . . . , oλ} be
its st-Polygon decomposition. Consider any two consecutive elements oi and
oi+1 of D(G) that share an edge. Then, the following statements hold:

1. ti ∈ V l ⇒ c(Gi+1, L) = min{ c(Gi, L) + c1(oi+1, L) + 1, c(Gi, R) + c1(oi+1, L),
c(Gi, L) + c2(oi+1, L), c(Gi, R) + c2(oi+1, L)}.

2. ti ∈ V l ⇒ c(Gi+1, R) = min{ c(Gi, L) + c1(oi+1, R), c(Gi, R) + c1(oi+1, R),
c(Gi, L) + c2(oi+1, R) + 1, c(Gi, R) + c2(oi+1, R)}.

3. ti ∈ V r ⇒ c(Gi+1, L) = min{ c(Gi, L) + c1(oi+1, L), c(Gi, R) + c1(oi+1, L),
c(Gi, L) + c2(oi+1, L), c(Gi, R) + c2(oi+1, L) + 1}.

4. ti ∈ V r ⇒ c(Gi+1, R) = min{ c(Gi, L) + c1(oi+1, R), c(Gi, R) + c1(oi+1, R) + 1,
c(Gi, L) + c2(oi+1, R), c(Gi, R) + c2(oi+1, R)}.

Proof: We first show how to build hamiltonian paths that infer HP-completion
sets of the specified size. For each of the statements, there are four cases to
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Figure 29: The hamiltonian paths for statement (2) of Lemma 16.

consider. The minimum number of crossings, is then determined by taking the
minimum over the four sub-cases.

(1)
ti ∈ V l ⇒ c(Gi+1, L) = min {c(Gi, L) + c1(oi+1, L) + 1, c(Gi, R) + c1(oi+1, L)

c(Gi, L) + c2(oi+1, L), c(Gi, R) + c2(oi+1, L)}

Case 1a. The hamiltonian path enters ti from a vertex on the left side of Gi

and the size of the HP-completion of Gi+1 is one. Figure 28.a shows the hamil-
tonian paths for Gi (lower dashed path) and oi+1 (upper dashed path) as well
as the resulting hamiltonian path for Gi+1 (shown in bold). From the figure, it
follows that c(Gi+1, L) = c(Gi, L) + c1(oi+1, L) + 1. To see that, just follow the
edge (vrm, u) that becomes part of the completion set of Gi+1. Edge (vrm, u) is
involved in as many edge crossings as edge (vrm, ti) (the only edge in the HP-
completion set of oi+1), plus as many edge crossings as edge (si+1, u) (an edge
in the HP-completion set of Gi), plus one (1) edge crossing of the lower limiting
edge of oi+1.

Case 1b. The hamiltonian path reaches ti from a vertex on the right side of Gi

and the size of the HP-completion of Gi+1 is one. Figures 28.b shows the result-
ing path. From the figure, it follows that c(Gi+1, L) = c(Gi, R) + c1(oi+1, L),
that is, the simple concatenation of two solutions.

Case 1c. The hamiltonian path enters ti from a vertex on the left side of Gi

and the size of the HP-completion of Gi+1 is two. Figure 28.c shows the result-
ing path. From the figure, it follows that c(Gi+1, L) = c(Gi, L) + c2(oi+1, L),
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Figure 30: The hamiltonian paths for statement (3) of Lemma 16.

which is just concatenation of two solutions.

Case 1d. The hamiltonian path reaches ti from a vertex on the right side of Gi

and the size of the HP-completion of Gi+1 is two. Figure 28.d shows the result-
ing pathes. From the figure, it follows that c(Gi+1, L) = c(Gi, R) + c2(oi+1, L),
which is again a simple concatenation of two solutions.

(2)
ti ∈ V l ⇒ c(Gi+1, R) = min {c(Gi, L) + c1(oi+1, R), c(Gi, R) + c1(oi+1, R)

c(Gi, L) + c2(oi+1, R) + 1, c(Gi, R) + c2(oi+1, R)}

Case 2a. The hamiltonian path enters ti from a vertex on the left side of Gi

and the size of the HP-completion of Gi+1 is one. Figure 29.a shows the result-
ing path. From the figure, it follows that c(Gi+1, R) = c(Gi, L) + c1(oi+1, R),
that is, a simple concatenation of the two solutions.

Case 2b. The hamiltonian path reaches ti from a vertex on the right side of Gi

and the size of the HP-completion of Gi+1 is one. Figure 29.b shows the result-
ing path. From the figure, it follows that c(Gi+1, R) = c(Gi, R) + c1(oi+1, R),
that is, a simple concatenation of the two solutions.

Case 2c. The hamiltonian path enters ti from a vertex on the left side of Gi and
the size of HP-completion set of Gi+1 is two. Figure 29.c shows the resulting
path. From the figure, it follows that c(Gi+1, R) = c(Gi, L) + c2(oi+1, R) + 1.
Note that the added edge (vri , u) creates one more crossing than the number
of crossings caused by edges (vri , v

l
1), (si+1, u) taken together. The additional

crossing is due to the crossing of the lower limiting edge of oi+1.

Case 2d. The hamiltonian path reaches ti from a vertex on the right side of Gi

and the size of HP-completion set of Gi+1 is two. Figure 29.d shows the result-
ing path. From the figure, it follows that c(Gi+1, R) = c(Gi, R) + c2(oi+1, R),
that is, a simple concatenation of the two solutions.

The proofs for statements (3) and (4) are symmetric to those of statements (2)
and (1), respectively. Figures 30 and 31 show how to construct the correspond-
ing hamiltonian paths in each case.

In order to complete the proof, we need to also show that the constructed
hamiltonian paths which cause the stated number of crossings are optimal. The
basic idea of the proof is the following: we assume P

opt

Gi+1
is a crossing-optimal
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Figure 32: The configuration used in proving that the Hamiltonian paths obtained
as described in Lemma 16 are optimal.

solution for Gi+1 and, based on P
opt

Gi+1
, we identify two solutions PGi

and Poi+1

for Gi and oi+1, respectively, such that (i) they are crossing-optimal and (ii)
P

opt

Gi+1
can be obtained from PGi

and Poi+1
as one of the four cases in the

statement of the Lemma. We proceed by distinguishing cases based on the
structure of P opt

Gi+1
.

We denote by ẽ the common edge of Gi and oi+1. Note that ẽ is the lower
limiting edge of oi+1 (refered in the rest of the proof as, simply, limiting edge).

Without loss of generality, we assume that the limiting edge ẽ is directed
from the right to the left side of the outerplanar graph. From Lemma 11 it
follows that ẽ = (si+1, ti). So, by our assumption, si+1 is on the right side,
while ti is on the left.

Case 1. P
opt

Gi+1
contains an edge e crossing the limiting edge ẽ. By

Property 3, there can be only one such edge in P
opt

Gi+1
, denote it by e = (u, v).

By Property 2, we can assume that e does not leave Gi and, thus, vertex u is
above edge (si+1, ti) while v is below it. In addition, u must be on the right
side while v is on the left. To see that, simply observe that if u was on the left
side and v was on the right or, if they were both on the same side, then a cycle
would be created.

Next, we construct two solutions, PGi
and Poi+1

forGi and oi+1, respectively,
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from the given optimal solution P
opt

Gi+1
and show that they are both also optimal.

Suppose, as showed in Figure 32.a, that u = vrf and let x be the vertex

positioned just below vertex v. Since there can exist only one edge in P
opt

Gi+1

crossing the limiting edge ẽ (by Property 2), P opt

Gi+1
approaches vertex u from

the right side. Follow the hamiltonian path backwards from u on the right
side and let w be the last vertex we visit before we switch to the left side (see
Figure 32.a). By Lemma 3, the vertex on the left side has to be located just
below v, that is, it coincides with vertex x. Consider now the structure of P opt

Gi+1

following edge e. It surely continues on the left side and leaves the left side
above ti, since e is the only edge connecting Gi and oi+1. In Figure 32.a the
solution P

opt

Gi+1
is shown by a dashed bold line. Now, we can set path PGi

and

Poi+1
as follows: PGi

is identical to P
opt

Gi+1
till vertex x on the left side of Gi (see

Figure 32.b), then it switches to the right, as P
opt

Gi+1
does, to vertex w and it

continues on the right side till vertex si+1, then it switches to the left to vertex
v and continues on the left side till vertex ti. Poi+1

starts on the right side at
vertex si+1 and continues till vertex u, then it switches to the left side to vertex
ti and continues identical to P

opt

Gi+1
. Note that if vertex u coincides with the

last vertex of the right side, then solution Poi+1
terminates on the left side (see

Figure 32.c). Observe now that P opt

Gi+1
can be obtained from PGi

and Poi+1
by

cases 1.a and 2.c of the Lemma (Figures: 28.a and 29.c).
Next we show that PGi

and Poi+1
are the optimal solutions for Gi and oi+1,

respectively. Suppose first that Poi+1
is not an optimal solution. Then, there

is a solution P ′
oi+1

which has a smaller number of crossings than Poi+1
. So,

if we combine P ′
oi+1

with PGi
using one of the rules of the Lemma we get a

better solution than P
opt

Gi+1
, a contradiction. Similarly, suppose that PGi

is not

an optimal solution and let P ′
Gi

which one with a smaller number of crossings.

Then, by combining P ′
Gi

with Poi+1
we get a better solution than P

opt

Gi+1
, a

contradiction.

Case 2. P
opt

Gi+1
does not contain any edge crossing the limiting edge ẽ.

In this case, by Lemma 3, P opt

Gi+1
visits first all the vertices of Gi and then all

the vertices of oi+1. We will split P opt

Gi+1
into two paths PGi

and Poi+1
which are

solutions for Gi and oi, respectively.

Case 2a. The last vertex of P opt

Gi+1
before ti is on the left side. Hence, the last

visited vertex before ti is the vertex placed just below the vertex ti on the left
side. Set PGi

to be the subpath of P opt

Gi+1
terminating to vertex ti and Poi+1

to

consist of edge (si+1, ti) followed by the subpath of P opt

Gi+1
starting from vertex

ti. Now, note that P opt

Gi+1
can be obtained from PGi

and Poi+1
by cases 1.c and

2.a (see Figures: 28.c and 29.a). It is easy to see that PGi
and Poi+1

are optimal.
If we suppose that one of P ′

Gi
or P ′

oi+1
is better than PGi

or Poi+1
, respectively,

then, combining P ′
Gi

with Poi+1
, or PGi

with P ′
oi+1

gives us a better solution, a
clear contradiction.

Case 2b. The last vertex of P opt

Gi+1
before ti is on the right side. We distinguish
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two cases based on the vertex before ti:

• The vertex before ti is si+1. This case corresponds to cases 1.d and 2.b (see
Figures: 28.d and 29.b). The figures describe how to construct optimal
solutions for Gi and oi+1 from P

opt

Gi+1
. Proving that these solutions are

optimal, proceeds in a way identical of that in Case 2a.

• The vertex before ti is a vertex vri on the right side which is above si+1.
This case corresponds to the cases 1.b and 2.d (see Figures: 28.b and 29.d).
The figures describe how to construct optimal solutions for Gi and oi+1

from P
opt

Gi+1
.

Note that, there is not necessarily a unique hamiltonian path that yields an
optimal solution. Since in our construction we apply a “minimum” operator,
more than one of the involved hamiltonian paths yield the same number of
crossings, and thus, we might have more than one different equivalent (with
respect to edge crossings) hamiltonian paths. �

Algorithm 1 is a dynamic programming algorithm, based on Lemmata 15
and 16, which computes the minimum number of edge crossings c(G) resulting
from the addition of a crossing-optimal HP-completion set to an outerplanar
st-digraph G. The algorithm can be easily extended to also compute the corre-
sponding hamiltonian path S(G).

Theorem 5 Given an n-vertex outerplanar st-digraph G, a crossing-optimal
HP-completion set for G and the corresponding number of edge-crossings can be
computed in O(n) time.

Proof: Algorithm 1 computes the number of crossings in an acyclic HP-completion
set. Note that it can be easily extended so that it computes the actual hamilto-
nian path (and, as a result, the acyclic HP-completion set). To achieve this, we
only need to store in an auxiliary array the term that resulted to the minimum
values in Step 4 of the algorithm, together with the endpoints of the edge that
is added to the HP-completion set for each st-Polygon in the st-Polygon decom-
position D(G) = {o1, . . . , oλ} of G. The correctness of the algorithm follows
immediately from Lemmata 15 and 16.

From Lemma 7 and Theorem 3, it follows that Step 1 of the algorithm
needs O(n) time. The same holds for Step 2 (due to Lemma 14). Step 3 is
an initialization step that needs O(1) time. Finally, Step 4 requires O(λ) time.
In total, the running time of Algorithm 1 is O(n). Observe that O(n) time is
enough to also recover the acyclic HP-completion set. �

4 Spine Crossing Minimization for Upward Topo-

logical 2-Page Book Embeddings of Outerpla-

nar st-Digraphs

In this section, we establish for the class of planar st-digraphs an equivalence
(through a linear time transformation) between the acyclic-HPCCM problem
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Figure 33: (a) A drawing of an HP-extended digraph for an st-digraphG. The dotted
segments correspond to the single edge (v2, v3) of the HP-completion set
for G. (b)An upward topological 2-page book embedding of Gc with its
vertices placed on the spine in the order they appear on a hamiltonian
path of Gc. (c)An upward topological 2-page book embedding of G.

and the problem of obtaining an upward topological 2-page book embeddings
with minimum number of spine crossings. We exploit this equivalence to develop
an optimal (with respect to spine crossings) book embedding for outerplanar st-
digraphs.

Theorem 6 Let G = (V,E) be an n-vertex planar st-digraph. G has a crossing-
optimal HP-completion set Ec with Hamiltonian path P = (s = v1, v2, . . . , vn =
t) such that the corresponding optimal drawing Γ(G′) of G′ = (V,E ∪ Ec) has
c crossings if and only if G has an optimal (with respect to the number of
spine crossings) upward topological 2-page book embedding with c spine crossings
where the vertices appear on the spine in the order Π = (s = v1, v2, . . . , vn = t).

Proof: We show how to obtain from an HP-completion set with c edge crossings
an upward topological 2-page book embedding with c spine crossings and vice
versa. It then follows that a crossing-optimal HP-completion set for G with c

edge crossings corresponds to an optimal upward topological 2-page book em-
bedding with the same number of spine crossings.
“⇒” We assume that we have an HP-completion set Ec that satisfies the
conditions stated in the theorem. Let Γ(G′) of G′ = (V,E ∪ Ec) be the corre-
sponding drawing that has c crossings and let Gc = (V ∪ Vc, E

′ ∪ E′
c) be the

acyclic HP-extended digraph of G with respect to Γ(G′). Vc is the set of new
vertices placed at each edge crossing. E′ and E′

c are the edge sets resulting
from E and Ec, respectively, after splitting their edges involved in crossings and
maintaining their orientation (see Figure 33(a)). Note that Gc is also a planar
st-digraph.

Observe that in Γ(G′) we have no crossing involving two edges of G. If this
was the case, then Γ(G′) would not preserve G. Similarly, in Γ(G′) we have no
crossing involving two edges of the HP-completion set Ec. If this was the case,
then Gc would contain a cycle.
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The hamiltonian path P on G′ induces a hamiltonian path Pc on the HP-
extended digraph Gc. This is due to the facts that: (i) all edges of Ec are used
in the hamiltonian path P and (ii) all vertices of Vc correspond to crossings
involving edges of Ec. We use the hamiltonian path Pc to construct an upward
topological 2-page book embedding for graph G with exactly c spine crossings.
We place the vertices of Gc on the spine in the order of hamiltonian path Pc,
with vertex s = v1 being the lowest. Since the HP-extended digraph Gc is a
planar st-digraph with vertices s and t on the external face, each edge of Gc

appears either to the left or to the right of the hamiltonian path Pc. We place
the edges of Gc on the left (respectively right) page of the book embedding if
they appear to the left (respectively right) of path Pc. The edges of Pc are
drawn on the spine (see Figure 33(b)). Later on they can be moved to any of
the two book pages.

Note that all edges of Ec appear on the spine. Consider any vertex vc ∈ Vc.
Since vc corresponds to a crossing between an edge of E and an edge of Ec, and
the edges of E′

c incident to it have been drawn on the spine, the two remaining
edges of E′ correspond to (better, they are parts of) an edge e ∈ E and drawn
on different pages of the book. By removing vertex vc and merging its two
incident edges of E′ we create a crossing of edge e with the spine. Thus, the
constructed book embedding has as many spine crossings as the number of edge
crossings of HP-completed graph G′ (see Figure 33(c)).

It remains to show that the constructed book embedding is upward. It is
sufficient to show that the constructed book embedding of Gc is upward. For the
sake of contradiction, assume that there exists a downward edge (u,w) ∈ E′

c.
By construction, the fact that w is drawn below u on the spine implies that
there is a path in Gc from w to u. This path, together with edge (u,w) forms
a cycle in Gc, a clear contradiction since Gc is acyclic.

“⇐” Assume that we have an upward 2-page topological book embedding of
st-digraph G with c spine crossings where the vertices appear on the spine in the
order Π = (s = v1, v2, . . . , vn = t). Then, we construct an HP-completion set Ec

forG that satisfies the condition of the theorem as follows: Ec = {(vi, vi+1) | 1 ≤
i < n and (vi, vi+1) 6∈ E}, that is, Ec contains an edge for each consecutive pair
of vertices of the spine that (the edge) was not present in G. By adding/drawing
these edges on the spine of the book embedding we get a drawing Γ(G′) of
G′ = (V,E ∪Ec) that has c edge crossings. This is due to the fact that all spine
crossing of the book embedding are located, (i) at points of the spine above
vertex s and below vertex t, and (ii) at points of the spine between consecutive
vertices that are not connected by an edge. By inserting at each crossing of
Γ(G′) a new vertex and by splitting the edges involved in the crossing while
maintaining their orientation, we get an HP-extended digraph Gc. It remains
to show that Gc is acyclic. For the sake of contradiction, assume that Gc

contains a cycle. Then, since graph G is acyclic, each cycle of Gc must contain
a segment resulting from the splitting of an edge in Ec. Given that in Γ(G′)
all vertices appear on the spine and all edges of Ec are drawn upward, there
must be a segment of an edge of G that is downward in order to close the cycle.
Since, by construction, the book embedding of G is a sub-drawing of Γ(G′), one
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of its edges (or just a segment of it) is downward. This is a clear contradiction
since we assume that the topological 2-page book embedding of G is upward. �

Theorem 7 Given an n-vertex outerplanar st-digraph G, an upward 2-page
topological book embedding for G with minimum number of spine crossings and
the corresponding number of spine-crossings can be computed in O(n) time.

Proof: By Theorem 6 we know that by solving the acyclic-HPCCM problem
on G, we can deduce the wanted upward 2-page topological book embedding.
By Theorem 5, the acyclic-HPCCM problem can be solved in O(n) time. �

5 Conclusions and Open Problems

We have studied the problem of acyclic-HPCCM and we have presented a linear
time algorithm that computes a crossing-optimal acyclic HP-completion set, and
hence an upward topological book embedding with a minimum number of spine
crossings, for outerplanar st-digraphs.

We emphasize that there exist outerplanar st-digraphs that can be upward
book embedded with a constant number of spine crossings for which the previ-
ously known algorithm [13] required O(n) spine crossings. This is demonstrated
by the graph of Figure 4.a (slightly modified so that at its left side it has O(n)
vertices) that can be upward book embedded with only four spine crossings since
the corresponding crossing-optimal HP-completion set creates four crossings (see
Figure 4.d). Figure 4.b (respectively Figure 4.c) shows the HP-completion set
that corresponds to the upward topological book embedding produced by the
algorithm presented in [13] if the ”left-to-right” dual (respectively the ”rigth-
to-left” dual) is used. It is clear that the number of edge crossings, and hence
the number of spine crossings in the corresponding upward topological book
embedding, of the modified graph (with O(n) vertices on its left side) is O(n).

The outerplanar st-digraphs studied in this paper is the first class of st-
digraphs for which we were able to determine a crossing-optimal HP-completion
set. While recently, the acyclic-HPCCM problem has been solved efficiently for
classes of N -free and bounded-width upward planar digraphs [21], the complex-
ity of the general case still remains an open problem.

The outerplanar st-digraphs studied in this paper, as well as the N -free and
bounded-width upward planar digraphs [21] are the first classes of st-digraphs
for which we were able to determine a crossing-optimal HP-completion set. A
natural research direction is to study the acyclic-HPCCM problem on the larger
class of st-digraphs. For this case, no polynomial time algorithm is known.
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