
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 15, no. 3, pp. 457–482 (2011)

Generating All Triangulations of Plane Graphs

Mohammad Tanvir Parvez 1 Md. Saidur Rahman 1 Shin-ichi

Nakano 2

1Department of Computer Science and Engineering, Bangladesh University of
Engineering and Technology (BUET), Dhaka-1000, Bangladesh.

2Department of Computer Science, Gunma University, Gunma 376-8515,
Japan.

Abstract

In this paper, we deal with the problem of generating all triangulations
of plane graphs. We give an algorithm for generating all triangulations
of a triconnected plane graph G of n vertices. Our algorithm establishes
a tree structure among the triangulations of G, called the “tree of tri-
angulations,” and generates each triangulation of G in O(1) time. The
algorithm uses O(n) space and generates all triangulations of G without
duplications. To the best of our knowledge, our algorithm is the first al-
gorithm for generating all triangulations of a triconnected plane graph;
although there exist algorithms for generating triangulated graphs with
certain properties. Our algorithm for generating all triangulations of a
triconnected plane graph needs to find all triangulations of each face (a
cycle) of the graph. We give an algorithm to generate all triangulations
of a cycle C of n vertices in time O(1) per triangulation, where the ver-
tices of C are numbered. Finally, we give an algorithm for generating all
triangulations of a cycle C of n vertices in time O(n2) per triangulation,
where vertices of C are not numbered.

Key words: Triangulation; Graph; Cycle; Plane Graph; Genealogical
Tree.

Submitted:

May 2009
Reviewed:

October 2009

Revised:

July 2010
Accepted:

October 2010

Final:

November 2010

Published:

July 2011

Article type:

Regular paper
Communicated by:

S. Das and R. Uehara

E-mail addresses: tanvirparvez@cse.buet.ac.bd (Mohammad Tanvir Parvez) saidurrahman@cse.buet.ac.bd

(Md. Saidur Rahman) nakano@cs.gunma-u.ac.jp (Shin-ichi Nakano)

mailto:tanvirparvez@cse.buet.ac.bd
mailto:saidurrahman@cse.buet.ac.bd
mailto:nakano@cs.gunma-u.ac.jp


458 Parvez et al. Generating All Triangulations of Plane Graphs

1 Introduction

In this paper, we consider the problem of generating all triangulations of plane
graphs. Such triangulations have many applications in Computational Ge-
ometry [5, 11], VLSI floorplanning [14], and Graph Drawing [10]. The main
challenges in finding algorithms for generating all triangulations are as follows.
Firstly, the number of such triangulations is exponential in general, and hence
listing all of them requires huge time and computational power. Secondly, gener-
ating algorithms produce huge output, and storing these output may dominate
the running time. For this reason, reducing the amount of output is essential.
Thirdly, checking for any repetitions must be very efficient. Storing the entire
list of objects generated so far will not be efficient, since checking each new
object with the entire list to prevent repetition would require huge amount of
memory and overall time complexity would be very high.

There have been a number of methods for generating combinatorial objects.
Classical algorithms first generate combinatorial objects allowing duplications,
but output only if the object has not been output yet. These methods require
huge space to store the list and a lot of time to check duplications. Orderly
algorithms [9] do not need to store the list of objects generated so far, they
output an object only if it is a canonical representation of an isomorphism class.
Reverse search algorithms [2] also do not need to store the list. The idea is to
implicitly define a connected graph H such that the vertices of H correspond
to the objects with the given property, and the edges of H correspond to some
relation between the objects. By traversing an implicitly defined spanning tree
of H , that means by checking each possible child of each vertex recursively, one
can find all the vertices of H , which correspond to all the graphs with the given
property.

There are some well known results for triangulating simple polygons and
finding bounds on the number of operations required to transform one triangu-
lation into another [4, 7, 15]. Researchers also have focused their attention on
generating triangulated polygons and graphs with certain properties. Hurtado
and Noy [6] built a tree of triangulations of convex polygons with any number
of vertices. Their construction is primarily of theoretical interests; also all the
triangulations of convex polygons with number of vertices up to n need to be
found before finding the triangulations of a convex polygon of n vertices. Also,
in [6] the authors did not discuss the time complexity of their method for gen-
erating the tree of triangulations of convex n-gons. Li and Nakano [8] gave an
algorithm to generate all biconnected “based” plane triangulations with at most
n vertices. Their algorithm generates all graphs with some properties without
duplications. Here also, the biconnected “based” plane triangulations of n ver-
tices are generated after the biconnected based plane triangulations of less than
n vertices are generated. Hence, if we need to generate the triangulations of a
convex polygon or a plane graph of exactly n vertices, existing algorithms gen-
erate all the triangulations of convex polygons or plane graphs with less than n

vertices. This is not an efficient way of generation.
There are a number of works concerning enumeration and generation of pla-



JGAA, 15(3) 457–482 (2011) 459

3

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

2F

1F

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

3
F

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

4F

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

5F

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

6F

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

2 5

1

6

4

F

F

F

F

F
F

Figure 1: Illustration of the algorithm for generating the triangulations of a
triconnected plane graph.

nar triangulations. Triangulations of convex polygons (with k vertices) are in
bijection with binary (rooted) trees having k − 2 inner nodes. There exist a
number of efficient algorithms that generate all such trees with local perturba-
tions, allowing to run in O(1) per tree [11]. The optimal algorithm for encoding
and generating planar triangulations given in [13] may work for triangulations
without interior points. However, the algorithm in [13] deals with random tri-
angulations, rather than exhaustive generations. There also exists work [3]
concerning the generation of triangulations of n points in the plane based on a
tree of triangulations and a lexicographic way of generating triangulations, with
O(log logn) time complexity per triangulation.

We now give the idea behind our algorithm for generating all triangulations
of a triconnected plane graph G. Consider Figure 1. For a particular tricon-
nected plane graph G, we treat each face of G as a cycle and find triangulations
of those cycles. These triangulations of the cycles correspond to particular tri-
angulations of the faces of the graph G. Combining the triangulations of the
faces of G gives us a particular triangulation of G. Therefore, to generate all tri-
angulations of G we need to triangulate those intermediate cycles in all possible
ways and combine the triangulations efficiently so as to find all triangulations
of G.



460 Parvez et al. Generating All Triangulations of Plane Graphs

Therefore, in this paper, we also give an algorithm to generate all trian-
gulations of a cycle C of n vertices in O(1) time per triangulation, where the
vertices of C are numbered sequentially. In our algorithm, a new triangulation
of C is generated from an existing one by making a constant number of changes.
The main feature of our algorithm is that we define a tree structure, based on
parent-child relationships, among those triangulations. In such a “tree of tri-
angulations,” each node corresponds to a triangulation of C and each node is
generated from its parent in constant time, with unique parent-child relationship
to avoid duplications. In our algorithm, we construct the tree structure among
the triangulations in such a way that the parent-child relationship is unique, and
hence there is no chance of producing duplicate triangulations. Our algorithm
also generates the triangulations in place, that means, the space complexity is
only O(n).

Our algorithm for generating all triangulations of a triconnected plane graph
G generates each triangulation of G in O(1) time and uses our algorithm for
generating all labeled triangulations of a cycle C. We also give the idea to
generate all unlabeled triangulations of a cycle C of n vertices in time O(n2)
per triangulation, where the vertices of C are not numbered. Our algorithm for
generating all triangulations of a cycle can be used for finding all triangulations
of a simple polygon with “curved” diagonals and for finding all triangulations
of a convex polygon with “straight” diagonals. An early version of this paper is
presented at [12].

Note that, the generating algorithms proposed in this paper have some sim-
ilarities with the reverse search paradigm [2]. These similarities include the use
of an edge flipping operation, the definition of a spanning tree of the adjacency
graph of triangulations and the efficient use of memory. However, the main
feature of our algorithm for generating all triangulations of a plane graph G is
that we define a tree structure explicitly among the triangulations of G , called
“tree of triangulations”. By traversing this explicitly defined spanning tree,
that means by listing each exact child of each vertex recursively, our algorithm
output the triangulations of G. In contrast to the reverse search paradigm, our
algorithm does not need to find any “graph of triangulations” of G from which
it is necessary to find a spanning tree.

However, the reverse search paradigm could be used to design enumeration
algorithms for the triangulations of a plane graph and the triangulations of a
cycle. Avis [1] presented two algorithms based on the reverse search paradigm
[2] for enumerating all 3-connected (2-connected) r-rooted triangulations of n
vertices (with r vertices on the outer face). Such an algorithm can enumerate
all the triangulations of a cycle (the case where r = n, with no interior points).
However, the time complexity of the algorithms in [1] is O(n2g(n, r)), where
g(n, r) is the number of objects to enumerate (e.g. O(n2) per triangulation
for a cycle of n vertices). This is clearly different from the O(1) time per
triangulation of a cycle of n vertices achieved by our algorithm. This is due
to our novel way of generating a triangulation from its parent in the tree of
triangulations. Moreover, in addition to a cycle, we have achieved O(1) time
complexity per triangulation for generating all triangulations of a triconnected



JGAA, 15(3) 457–482 (2011) 461

plane graph.
The rest of the paper is organized as follows. Section 2 gives some definitions.

Section 3 gives the outline of the algorithm for generating all triangulations of a
triconnected plane graph. Section 4 deals with generating all labeled triangula-
tions of a cycle. Section 5 deals with generating all unlabeled triangulations of a
cycle, where the vertices are not numbered. Finally, Section 6 is the conclusion.

2 Preliminaries

In this section, we define some terms used in this paper.
Let G = (V,E) be a connected simple graph with vertex set V and edge

set E. An edge connecting vertices vi and vj in V is denoted by (vi, vj). The
degree of a vertex v is the number of edges incident to v in G. The connectivity

κ(G) of a graph G is the minimum number of vertices whose removal results
in a disconnected graph or a single vertex graph. A graph is k-connected if
κ(G) ≥ k.

A graph G is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding in the plane. A plane
graph divides the plane into connected regions called faces. The unbounded
face is called the outer face and the other faces are called inner faces. A plane
graph is called a plane triangulation if each face boundary contains exactly three
edges. In this paper, our notion of plane triangulation is such that the edges
are not necessarily straight lines.

A cycle C in a graph G is a sequence of distinct vertices v1, v2, · · · , vk such
that (v1, vk) ∈ E and (vi, vi+1) ∈ E for 1 ≤ i < k. A cycle C in a plane graph
G divides the plane into two regions; one region is inside of C and the other
region is outside of C. We call the region which is inside of a cycle C the inner

region of C and call the other region of C the outer region of C. If a graph G

is a cycle then both of its inner region and outer region are faces.
Let C be a cycle corresponding to the boundary of a face F of G. Let

v1, v2, · · · , vn be the labels of the vertices on C in counterclockwise order. We
represent C by listing its vertices as C =< v1, v2, · · · , vn >. We call an edge
(vi, vj) between two vertices vi and vj on C a chord of C if (vi, vj) is not on
C and contained in the face F of G. A chord (vi, vj) divides the cycle into
two cycles: vi, vi+1, · · · , vj and vj , vj+1, · · · , vi. A decomposition of a cycle into
triangles by a set of non-intersecting chords is called a triangulation of the cycle.

Figure 2 shows two different triangulations of a cycle C. In a triangulation T

of C, the set of chords is maximal, that means, every chord not in T intersects
some chord in T . The sides of triangles in the triangulation are either the
chords or the sides of the cycle. We say a vertex y is visible from a vertex x in
a triangulation T of a cycle C if there exists a chord (x, y) of C in T .

In this paper, we represent each triangulation T of C by listing its chords. For
example, the triangulation of Figure 2(a) is represented by T = {(v4, v6), (v2, v6),
(v2, v4)}. Given the list of chords, we can uniquely construct the corresponding



462 Parvez et al. Generating All Triangulations of Plane Graphs

(a)

v

v6

v3

v2

v5

v4

1v

v6
v2

v5

v4
v3

��
��
��
�� ��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
�� �

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

������
������
������
������
������

������
������
������
������
������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���
���

���
���
���
���
���

������
������
������
������
������

������
������
������
������
������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����������
����������
����������
����������

���
���
���
���

���
���
���
��� ����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����

����
����
����
����
����

(b)
1

Figure 2: Two ways of triangulating a cycle of 6 vertices.

triangulation.
A triangulation of a cycle C of n vertices is called a labeled triangulation, if

the vertices of C are numbered sequentially from v1 to vn. The triangulations
of Figures 3(a) and 3(b) are labeled triangulations. On the other hand, if the
vertices of C are not numbered, then the triangulations of C are called unlabeled

triangulations. Both the triangulations of Figures 3(c) and 3(d) are unlabeled
triangulations.

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���������������

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���

���
���
���
���

����������

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
�

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
�
�
�
�
�
�
�

�
�
�
�
�
�
����
���
���
���
���

���
���
���
���
�������������

���
���
���
���

���
���
���
���

������������

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

������������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

������������

����
����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���
�
�
�
�
�
�

�
�
�
�
�
�

����������

�
�
�
�
�
�
�

�
�
�
�
�
�
�����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

������������

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���

(c) (d)

v
v

v

v

v

v

v 1

2

3

v45

6

7

8
(a)

v
v

v

v

v

v

v 1

2

3

v45

6

7

8
(b)

Figure 3: Illustration of labeled and unlabeled triangulations.

3 Triangulations of a Triconnected Plane Graph

In this section, we give an algorithm for generating all triangulations of a tri-
connected plane graph G of n vertices. Our idea is to define a parent-child
relationship among the triangulations of G such that all the triangulations of
G form a tree structure. Our algorithm generates the triangulations of G in
the order they are present in that tree, called “tree of triangulations”, without
storing or building the entire tree at once in the memory.

Assume that G has k faces, arbitrarily labeled F1, F2, · · · , Fk. For each face



JGAA, 15(3) 457–482 (2011) 463

Fi of G, there is a cycle Ci associated with Fi. Here, Ci has equal number of
vertices as Fi and the labels of the vertices of Ci are similar to the vertices of Fi.
A particular triangulation of Fi, denoted T (Fi), corresponds to a triangulation
of Ci, denoted T (Ci). Therefore, triangulating the face Fi in all possible ways
is equivalent to triangulating the cycle Ci in all possible ways. This is true
since a triconnected plane graph has a unique embedding once the outer face
of the graph is fixed. Therefore, our algorithm for generating all triangulations
of a triconnected plane graph needs to find all triangulations of each cycle, the
details of that is given in Section 4.

Let T be a triangulation of a cycle C of n vertices. To generate a new
triangulation from T , we use the following operation. Let (vi, vj) be a shared
chord of two adjacent triangles of T which form a quadrilateral 〈vq, vi, vr, vj〉.
If we remove the chord (vi, vj) from T and add the chord (vq , vr), we get a new
triangulation T ′. The operation above is well known as flipping. Therefore, we
flip the edge (vi, vj) to generate a new triangulation T ′, which we denote by
T (vi, vj).

For example, in Figure 4(a), the two triangles 〈v1, v2, v3〉 and 〈v1, v3, v4〉 form
the quadrilateral 〈v1, v2, v3, v4〉 and (v1, v3) is the shared chord. We remove
(v1, v3) from the triangulation of Figure 4(a) and add the chord (v2, v4) to
generate the triangulation of Figure 4(b). Thus, we flip the chord (v1, v3) of the
triangulation of Figure 4(a) to generate the triangulation of Figure 4(b).

2�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
� �

�
�

�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����������

(a)

v4

v
3

v2

v
1

(b)

v
3

v4
v
1

v

�
�
�

�
�
�

Figure 4: Illustration of flipping operation; (a) old triangulation and (b) new
triangulation.

Similarly, the operation of flipping an edge of the triangulation T (Fi) is
defined as the flipping of the corresponding chord of the triangulation T (Ci).
Therefore, to generate new triangulations of the plane graph G from an existing
triangulation T of G, we flip some edges of T . In our algorithm, we define the
parent-child relationship among the triangulations of G in such a way that every
triangulation of G, except the root triangulation, is generated from its parent
by a single edge flip. Such a tree of triangulations of a triconnected plane graph
G is called a genealogical tree and denoted by T (G). The genealogical tree of
the triconnected plane graph G of Figure 5(a) is shown in Figure 5(b).

This definition of flipping requires G to be triconnected. This is because,
if G has a cut set of two vertices, then some flip operations may introduce
multi-edges. If G is triconnected then any flip operation will generate a new
triangulation of G. Note that, while generating new triangulations from an
existing triangulation T of G, the edges of the graph G cannot be flipped.



464 Parvez et al. Generating All Triangulations of Plane Graphs

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

v6
5v

5v
v6

5v

v6

5v

v6

5v
v6

5v

v6

5v

v6

v6

5v

v
3

v
1 2v

v4

2v

2v

v
3

v
3

v
1

v
1

v4

v4

v
1 2v

v4

v
3

v
1 2v

v
3

v4

v
1 2v

v
3

v4

v
3

v
1 2v

v4

v
3

v
1 2v

v4

(b)

v5

v6

v
1 2v

v
3

v4

(a)

2

1

4
53F

F
F F F

Figure 5: Illustration of (a) a triconnected plane graph G with five faces and
(b) genealogical tree T (G) of G.

Therefore, for a triangulation T of G, we need to classify edges of T as flippable
and non-flippable. We introduce the related concepts below.

Let T be a triangulation of a cycle C of n vertices. The chords of T which can
be flipped to generate new triangulations of C are called generating chords of
T . In Section 4, we describe the way to find the generating chords of T . The set
of generating chords of T is called the generating set. The triangulation T (Fi)
of the face Fi of G has a generating set of edges equivalent to the generating set
of the triangulation T (Ci). Therefore, to generate new triangulations of G, we
flip an edge from the generating set of a face Fi of G.

The rest of this section is organized as follows. In Section 3.1 we define the
root triangulations of T (G). We give the detail algorithm for generating all
triangulations of G in Section 3.2.

3.1 Finding the Root

In this section, we describe the procedure for finding the root triangulation of
the genealogical tree T (G) of a triconnected plane graph G of n vertices.

Let Fi be a face of G. We can represent Fi as a list of vertices on the
boundary of Fi. We choose a vertex vj on the boundary of Fi arbitrarily and
call it the root vertex of Fi. Let Ci be the cycle associated with Fi. Then vj is
also called the root vertex of Ci. Consider the triangulation T (Ci) of Ci where



JGAA, 15(3) 457–482 (2011) 465

all the chords of T (Ci) are incident to the root vertex vj . This triangulation
T (Ci) of Ci gives us a triangulation of the face Fi of G. Once all the faces of G
are triangulated in that way, we get a triangulation T of the graph G itself. In
our algorithm, such a triangulation T of G is taken as the root triangulation TR

of the genealogical tree T (G). Note that, the choice of the root triangulation
TR will depend on the way the root vertices are chosen.

The procedure for finding TR and corresponding generating sets is as follows.
We traverse the face Fi of G to find the generating set of T (Fi), denoted by GSi,
using the doubly connected adjacency list representation of G [10]. Face Fi can
be traversed in time proportional to the number of vertices on the boundary of
it. Assume that we traverse the face Fi clockwise starting at vertex vj and take
vj as the root vertex of Ci. Let vk, vl and vm be three consecutive vertices on
the boundary of Fi, where vk 6= vj and vm 6= vj . We add the edge (vj , vl) to the
generating set GSi of T (Fi). The generating set GSo of the root triangulation
of T (G) can be found as follows. Let GS1, GS2, · · · , GSk be the k generating
sets of the triangulations T1, T2, · · · , Tk. Initially, GSo is empty. Once we find
a generating set GSi, we concatenate GSi with the existing list GSo. When all
the GSis are generated and concatenated with GSo, we get the generating set
of the root triangulation of T (G).

For example, Figure 6(a) shows a triconnected plane graph G of eight ver-
tices. One possible root in T (G) is shown in Figure 6(b). In Figure 6(b),
GS1 = {(v1, v8)}, GS2 = {(v2, v5)}, GS3 = {(v3, v6)}, GS4 = {(v3, v8)} and
GS5 = {(v6, v8)}. Thus GS0 = {(v1, v8), (v2, v5), (v3, v6), (v3, v8), (v6, v8)}.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

(b)

v

v

v

v
v

3

2

4

1

v8
v

v

v

v

v

v
1

2

3

2
6

5

4

1

4

6

5

v8

7

v5

v6

(a)

F

F
F F

F

v7
3F

Figure 6: Illustration of (a) a triconnected plane graph G of eight vertices (b)
corresponding root in T (G).

We now have the following lemma.

Lemma 1 Let G be a triconnected plane graph of n vertices. Then the root

triangulation TR of the genealogical tree T (G) of G can be found in O(n) time.

Proof: In a triconnected plane graphG of n vertices, the number of edges is less
than 3n− 6. The number of faces of G is also bounded by a linear function of
n. Since each face Fi of G can be traversed in time proportional to the number
of edges on the boundary of Fi and each edge can be shared by at most two
faces of G, traversing all the faces of G requires time proportional to the total
number of edges of G. Thus the root of T (G) can be found in O(n) time. �



466 Parvez et al. Generating All Triangulations of Plane Graphs

3.2 The Algorithm

In this section, we give the details of the algorithm for generating all triangula-
tions of a triconnected plane graph G of n vertices.

Assume that the triconnected plane graph G has k faces. For a particular
triangulation T of G, we generate new triangulations of G from T as follows. If a
triangulation T ′ of G is a child of a triangulation T of G in the genealogical tree,
and T ′ is generated from T by flipping a generating edge in Fj , then we say that
Fj is eligible. To generate all child triangulations of a triangulation T we need
to find all eligible faces of T then flip each generating edge in each eligible face.
We can observe that if a face Fj is eligible then for each i, 1 ≤ i ≤ j, face Fi is
also eligible. This simple condition for eligibility ensures efficient generation of
the triangulations of G.

We now have the following algorithm for generating all triangulations of a
triconnected plane graph G with k faces.

Procedure find-all-child-triangulations(T, i)

{T is the current triangulation and Fi is an eligible face of T }

begin

1 Let EG be the set of generating edges of T (Fi);

2 if EG is empty then return ;

3 for each edge e ∈ EG

4 Flip e to find a new triangulation T ′;

5 Output T ′;

{For T ′, all the faces Fj , 1 ≤ j ≤ i, are eligible}

6 for j = 1 to i

7 find-all-child-triangulations(T ′, j);

end;

Algorithm find-all-triangulations(G, k)

{The triconnected plane graph G has k faces}

begin

Label the faces F1, F2, · · · , Fk arbitrarily;

Find root triangulation TR of T (G);

Output root TR;

{For the root TR, all the faces of G are eligible}

for i = 1 to k

find-all-child-triangulations(TR, i);

end.

The correctness of the algorithm find-all-triangulations depends on the
correct finding of the generating set of the triangulation T (Fi) of face Fi of
G (Step 1). We also have to ensure that flipping the edges in the generating
set of T (Fi) generates all the children of T (Fi) without duplications. Flipping
an edge of T (Fi) is equivalent to flipping a chord of the triangulation T (Ci)
of the cycle Ci associated with Fi. Therefore, we need to prove that for a
triangulation T of a cycle C: (1) flipping the generating chords of T generates
all the child triangulations of T without duplications and (2) the number of



JGAA, 15(3) 457–482 (2011) 467

generating chords in any child triangulation of T is less than in T . We prove
both of these in Section 4.

The time and space complexity of the algorithm find-all-triangulations

can be found as follows. From Lemma 1, finding the root triangulation TR takes
O(n) time. To find the time required to generate each new triangulation T ′ from
a triangulation T of G, note that the difference between the representations of
T ′ and T can be found in the triangulation of only one face, say Fi (Steps 3 - 5).
Assume that face Fi has the triangulation T (Fi) in T and T ′(Fi) in T ′. Now,
to get the representation of T ′, all we need to do is to find the representation
of T ′(Fi) from the representation of T (Fi). Equivalently, the problem reduces
to the following. Let T and T ′ be two triangulations of a cycle C and T ′ is
generated from T by flipping a generating chord of T . Then, how can we find
the representation and the generating set of T ′ from T efficiently? Section 4
shows that this can be done in O(1) time.

To find the space complexity, note that, we can represent a triangulation
T of G by listing its edges only. Therefore, it takes only O(n) space to store
a triangulation T . The height of the tree T (G) is bounded by the number
of edges in TR (since we may need to flip each generating edge TR once to
generate a triangulation of G), which is linear in n. The algorithm find-all-

triangulations needs to store (1) the representation and generating set of the
current triangulation T and (2) the information of the path from the root to the
current node of the tree. This implies that the space complexity of the entire
algorithm can be reduced to O(n).

Therefore we have the following theorem.

Theorem 1 The algorithm find-all-triangulations generates all the triangu-

lations of a triconnected plane graph G of n vertices in time O(1) per triangu-

lation, with O(n) space complexity.

In the next section, we give the algorithm for generating all triangulations
of a cycle C of n vertices, where the vertices of C are labeled.

4 Labeled Triangulations of a Cycle

In this section, we give an algorithm to generate all labeled triangulations of a
cycle C of n vertices. Here we also define a unique parent for each triangulation
of C so that it results in a tree structure among the triangulations of C, with a
suitable triangulation as the root. Once such a parent-child relationship of C is
established, we can generate all the triangulations of C using the relationship.
We need not to build or to store the entire tree of triangulations at once, rather
we generate each triangulation in the order (DFS order) it appears in the tree
structure.

In our algorithm in this section, to make the data structures easier to ma-
nipulate, we write the edge (vi, vj) such that i < j. Thus the edge incident to
vertex v4 and v1 is denoted by (v1, v4), and not by (v4, v1).



468 Parvez et al. Generating All Triangulations of Plane Graphs

(1,3)

4

v5

v6

3v

2v

1v

1v 1v 1v

1v1v

1v 1v 1v 1v

1v1v 1v

2v

2v

2v 2v

2v

2v2v

2v2v2v

2v
1v

3v

3v

3v 3v

3v

3v

3v

3v

3v

3v

3v3v

3v

2v

v4
v4

v4v4v4

v4 v4
v4

v4

v4

v4 v4

v5

v5

v5
v5

v5

v5

v5

v5
v5

v5 v5

v5

v5

v6

v6

v6 v6
v6 v6

v6v6v6

v6
v6

v6

v6

v4

2v

��
��
��
��

��
��
��
��

���� ����

��
��
��
��

��
��
��
��

������

��
��
��
��

�
�
�
�

������

�
�
�
�

��
��
��
��

��
��
��
��

��

��
��
��
��

�
�
�
�

��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

������

�� ����

����

������

��
��
��
��

��

������

������

�
�
�
�
����

��������

������

���� ��

��
��
��
��

�
�
�
�

��

�
�
�
�

��

��������

�
�
�
�

��

������

�� ����

�
�
�
�

��
��
��
��

������

��
��
��
��

��

������

��
��
��
��

������

���� ��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

���� �
�
�
�

��������

��

��

��

����

����

��
��
��
��

������

���
���
���

���
���
������
���
���

���
���
���

���
���
���
���

���
���
���
�����
��
��

��
��
��

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��������

��
��
��

��
��
�����
���
���
���

���
���
���
���

���
���
���

���
���
�����
��
��

��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

��������

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

������

��
��
��
��

��
��
��
��
���
���
���
���

���
���
���
���

���
���
���

���
���
������
���
���

���
���
���

����
����
����
����

����
����
����
����

����������

��������

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

��
��
��

��
��
�����

���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

������������

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������

��
��
��
��

��
��
��
��
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
�����
��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
���� ��������

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

�
�
�
�
�

�
�
�
�
�

�����
�����
�����

�����
�����
�����

����
����
����
����
����

����
����
����
����
���� ������

��
��
��

��
��
����
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���
��
��
��

��
��
��

�����
�����
�����

�����
�����
���������
����
����

����
����
����
����������

������

��
��
��

��
��
�����
���
���
���

���
���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

����
����
����

����
����
����

�
�
�
�
�

�
�
�
�
�

����
����
����

����
����
����

������

��
��
��
��

��
��
��
��
��
��
��

��
��
��

���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

��������

���
���
���

���
���
������
���
���

���
���
���

��
��
��

��
��
�����

���
���

���
���
���

����
����
����

����
����
���������
�����
�����

�����
�����
�����

������������

������

��
��
��

��
��
�����
���
���
���

���
���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��������

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

����
����
����
����
����

����
����
����
����
����

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�

�
�
�
�
�
�
�

������

��
��
��
��

��
��
��
��
��
��
��

��
��
��

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

����
����
����

����
����
����

�
�
�
�
�
�

�
�
�
�
�
�

�����
�����
�����
�����

�����
�����
�����
�����

�
�
�

�
�
�(1,5)
(1,4)

(1,3)

(1,4)

(1,3) (1,3) (1,5) (1,5)

(1,4) (1,5)(1,5)

(1,4)

T

T

T

1

32

v

Figure 7: Genealogical tree T (C) of a cycle C of six vertices.

One can observe that, each triangulation of the tree of triangulations in
Figure 7, except the root, is generated from its parent by flipping a single chord.
Each arrow is labeled in Figure 7 to indicate which chord has been flipped to
generate a particular child. We call a tree of triangulations of a cycle C of n
vertices a genealogical tree of C and denote it by T (C). Figure 7 illustrates one
such genealogical tree. Let T be a triangulation of C, in which all the chords of
T are incident to vertex v1. We regard T as the root Tr of T (C) and call v1 as
the root vertex of C. Note that the choice of root vertex is arbitrary in finding
Tr. We can take any of the vertices of C other than v1 as the root vertex to
find a root triangulation Tr. With this definition of the root vertex of C, we
describe the labeled triangulations of C as rooted triangulations.

Note that, in the root Tr of T (C), every vertex of C is visible from the root
vertex v1. We say that the root vertex v1 has full vision in Tr. Obviously, in a
non-root triangulation T of C, vertex v1 does not have the full vision. The reason
is that T has some “blocking chords” which are blocking some vertices of C from
being visible from the root vertex v1. A chord (vi, vj) of a triangulation T of C
is a blocking chord of T if both vi and vj are adjacent to the root vertex of C.
We say that the root vertex of C has a blocked vision in a non-root triangulation
T of C. The following lemma characterizes the non-root triangulations of C.

Lemma 2 Each triangulation T of a cycle C = 〈v1, v2, · · · , vn〉 has at least one
blocking chord, if T is not the root of T (C).

Proof: Let vj be the vertex of C such that (v1, vk) is a chord of T , for all k ≥ j.
Then there exists a vertex vi such that i < j and (vi, vj) is a chord of T (choose
i to be the minimum). Otherwise, all chords of T would be incident to v1 and
T would be the root of T (C). Since T is a triangulation of C, (v1, vi, vj) is a
triangle, and hence (vi, vj) is a blocking chord. �



JGAA, 15(3) 457–482 (2011) 469

Suppose we flip a chord (v1, vj) of T to generate a new triangulation T ′.
Let (vb, vb′), b < b′ be the newly found chord in T ′. Obviously (vb, vb′) is a
blocking chord of T ′. Similarly, if we flip a blocking chord of T to generate T ′,
the newly found chord will be non-blocking, incident to vertex v1 in T ′. For
example, if we flip the chord (v1, v4) of the triangulation of Figure 8(a), we get
the triangulation of Figure 8(b), where (v3, v6) is the newly found chord. This
new chord (v3, v6) is a blocking chord of the triangulation of Figure 8(b).

(b)

v
v6

v3

v2

v5

v4

1v
v6

v3

v2

v5

v4

��
��
��
��

��
��
��

��
��
��

��
��
��
�� �

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

����
����
����
����

����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����

����
����
����
����
����

�������
�������
�������
�������

�������
�������
�������
�������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����
����
����
����

����
����
����
����

������
������
������
������
������

������
������
������
������
������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���

���
���
���
������
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

(a)
1

Figure 8: Illustration of the generation of a blocking chord; (a) old triangulation
and (b) new triangulation.

The rest of this section is organized as follows. Section 4.1 describes child
to parent relationship among the triangulations of a cycle C of n vertices. Sec-
tion 4.2 deals with the generation of the children of a triangulation T in the
genealogical tree T (C) of C. Section 4.3 describes the data structures used to
represent a triangulation T of C. Finally, Section 4.4 describes the algorithm
to generate all triangulations of C.

4.1 Child-Parent Relationship

It is convenient to consider the child-parent relationship before considering the
parent-child relationship. Throughout the section, we denote the parent of a
triangulation T by P (T ).

We define the child-parent relationships among the triangulations of C with
two goals in mind. First, the differences between a triangulation T and its
parent P (T ) should be minimal, so that T can be generated from P (T ) with
the minimal effort. Second, every triangulation T of C must have a parent and
only one parent in the genealogical tree T (C). We achieve the first goal by
ensuring that the parent P (T ) of a triangulation T can be found by flipping a
single chord of T . That means T can also be found from its parent P (T ) by
flipping a single chord of P (T ). The second goal, that is the uniqueness of the
parent-child relationship, can be achieved as follows.

Our idea of defining a parent-child relationship is that the parent of a trian-
gulation T must have a “clearer vision” than T . Let T and T ′ be two triangula-
tions of C. We say that T ′ has a clearer vision than T if the number of vertices
visible from v1 in T ′ is greater than the number of vertices visible from v1 in T .
For example, three vertices are visible from vertex v1 in the triangulation T2 of
Figure 7, whereas four vertices are visible from vertex v1 in the triangulation
T1 of Figure 7. Therefore T1 has a clearer vision than T2 in Figure 7.



470 Parvez et al. Generating All Triangulations of Plane Graphs

We can easily get a triangulation T ′ from T , where T ′ has a clearer vision
than T , by flipping a blocking chord (vb, vb′) of T . We say that the triangulation
T ′ is the parent of T if the chord (vb, vb′) is the “leftmost blocking chord” of T .
The chord (vb, vb′), b < b′, of T is the leftmost blocking chord of T if no other
blocking chord of T is incident to a higher indexed vertex than vb′ in T . For
example, in Figure 7, (v4, v6) is the leftmost blocking chord of the triangulation
T2. Therefore we flip the chord (v4, v6) of T2 to find the parent triangulation T1

of T2, as shown in Figure 7.
The above definition of the parent of a triangulation T of C ensures that

we can always find a unique parent of a non-root triangulation T of C. From
Lemma 2, a non-root triangulation T of C has at least one blocking chord. From
these blocking chords of T we select the one which is the leftmost and flip that
chord to find the unique parent P (T ) of T . Based on the above parent-child
relationship, the following lemma claims that every triangulation of a cycle C

of n vertices is present in the genealogical tree T (C).

Lemma 3 For any triangulation T of a cycle C = 〈v1, v2, · · · , vn〉, there is

a unique sequence of flipping operations that transforms T into the root Tr of

T (C).

Proof: Let T be a triangulation other than the root of T (C). Then according
to Lemma 2, T has at least one blocking chord. Let (vb, vb′) be the leftmost
blocking chord of T . We find the parent P (T ) of T by flipping the leftmost
blocking chord of T . Since flipping a blocking chord of T results in a chord
incident to vertex v1 in the new triangulation, P (T ) has one more chord incident
to v1 than T . Now, if P (T ) is the root, then we stop. Otherwise, we apply the
same procedure to P (T ) and find its parent P (P (T )). By continuously applying
this process of finding the parent, we eventually generate the root triangulation
Tr of T (C). �

Lemma 3 ensures that there can be no omission of triangulations in the
genealogical tree T (C) of a cycle C of n vertices. Since there is a unique sequence
of operations that transforms a triangulation T of C into the root Tr of T (C), by
reversing the operations we can generate that particular triangulation, starting
at the root. We give the details in the next section.

4.2 Generating the Children of a Triangulation in T (C)

In this section, we describe the method for generating the children of a trian-
gulation T in T (C).

To find the parent P (T ) of the triangulation T , we flip the leftmost blocking
chord of T . That means P (T ) has fewer blocking chords than T . Therefore, the
operation for generating the children of T must increase the number of blocking
chords in the children of T . Intuitively if we flip a chord (v1, vj) of T , which
is incident to vertex v1 in T , and generate a new triangulation T ′, then T ′

contains one more blocking chord than T . We call all such chords (v1, vj) as the
candidate chords of T .



JGAA, 15(3) 457–482 (2011) 471

Note that, flipping a candidate chord of T may not always preserve the
parent-child relationship described in Section 4.1. For example, we generate
the triangulation of Figure 9(b) by flipping the candidate chord (v1, v3) of the
triangulation of Figure 9(a). The leftmost blocking chord of the triangulation
of Figure 9(b) is (v4, v6); therefore the parent of the triangulation of Figure 9(b)
is the triangulation of Figure 9(c), not the triangulation of Figure 9(a).

(c)

v

v6

v3

v2

v5

v4

1v

v6

v3

v2

v5

v4

1v

v6
v2

v5

v4
v3

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
��������
���
���
���

���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�����
�����
�����
�����

�����
�����
�����
��������
���
���
���

���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���

���
���
���
��� ����

����
����
����
����
����
����

����
����
����
����
����
����
����

(a) (b)

1

Figure 9: Illustration of a flipping that does not preserve parent-child relation-
ship.

Therefore to keep the parent-child relationship unique, we flip a candidate
chord (v1, vj) of T to generate a new triangulation T ′ if and only if flipping
(v1, vj) of T results in the leftmost blocking chord of T ′. We call such a can-
didate chord (v1, vj) of T as a generating chord. The generating chords of a
triangulation T of C can be found as follows. Let (vb, vb′) be the leftmost block-
ing chord of a triangulation T of a cycle C of n vertices. Then (v1, vj) is a
generating chord of T if j ≥ b. If T has no blocking chord then all chords of
T are generating chords. Thus all the chords of the root Tr of T (C) are gen-
erating chords. All other candidate chords of T are called non-generating. We
call the set of generating chords of a triangulation T as the generating set GS

of T . For example, the triangulation in Figure 10(a) is the root triangulation of
T (C) of a cycle C of 8 vertices. Therefore, all the chords of the triangulation
in Figure 10(a) are generating chords. In the triangulation of Figure 10(b),
(v1, v4), (v1, v6) and (v1, v7) are three generating chords, whereas (v1, v3) is a
non-generating chord.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

����������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����
����
����
����
����

����
����
����
����
����

��������������������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

������������������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����
����

����
����
����
����
����

������������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

v7

v8 v1

v5

v6 v3

v4

v7

v8 v1

v5

v6 v3

v4

(a) (b)

v2 v2

Figure 10: Illustration of generating chords.

We now have the following lemmas.

Lemma 4 The root Tr of the genealogical tree T (C) of a cycle C of n vertices

has n− 3 generating chords and any other triangulations in T (C) has less than

n− 3 generating chords.



472 Parvez et al. Generating All Triangulations of Plane Graphs

Proof: The number of chords in any triangulation T of a cycle C of n vertices
is n− 3. Thus the maximum number of possible generating chords is also n− 3.
Since the root triangulation Tr has all its chords as generating, Tr contains n−3
generating chords. Any triangulation T other than the root Tr contains at least
one blocking chord, which is not incident to vertex v1 in T . Since generating
chords must be incident to vertex v1, any triangulation other than Tr has less
than n− 3 generating chords. �

Lemma 5 Let (v1, vj) be a generating chord of a triangulation T of a cycle C

of n vertices. Then flipping (v1, vj) in T results in the leftmost blocking chord

of T (v1, vj).

Proof: Let (vr, vr′) be the leftmost blocking chord of T . We first consider the
case where either vj = vr or vj = vr′ .

If vj = vr, then 〈v1, vj , vr′〉 is a triangle of T (see Figure 11(a)) and after
flipping (v1, vj) of T we get (vi, vr′) as a chord in T (v1, vj), for some i < j (see
Figure 11(b)). Since every face of T (v1, vj) is a triangle, 〈v1, vi, vr′〉 is a triangle
of T (v1, vj). Therefore, (vi, vr′) is the blocking chord of T (v1, vj). Since, (vr, vr′)
is the leftmost blocking chord of T and vertex vr is not visible from vertex v1
in T (v1, vj), (vi, vr′) is the leftmost blocking chord of T (v1, vj)

If vj = vr′ , then 〈v1, vr, vj〉 is a triangle of T (see Figure 11(c)) and after
flipping (v1, vj) of T we get (vi, vr) as a chord of T (v1, vj), for some i > j (see
Figure 11(d)). Since every face of T (v1, vj) is a triangle, 〈v1, vr, vi〉 is a triangle
of T (v1, vj). Therefore, (vr , vi) is a blocking chord of T (v1, vj). Since, (vr, vr′)
is a leftmost blocking chord of T and (vr , vi) is a blocking chord of T (v1, vj),
where i > r′, (vr, vi) is the leftmost blocking chord of T (v1, vj)

We now consider the case where j > r′ (see Figure 11(e)). Let (vq, vq′ )
be the chord which appears in T (v1, vj) after flipping the chord (v1, vj) of T
(see Figure 11(f)). Every face of T (v1, vj) is a triangle. Thus, 〈v1, vq, vq′〉 is a
triangle of T (v1, vj) and (vq , vq′) is a blocking chord of T (v1, vj). Since, q

′ > j,
we have q′ > r′. Therefore, (vq, vq′ ) is the leftmost blocking chord of T (v1, vj).

�

Lemma 6 Let T be a triangulation of a cycle C of n vertices. Let T (v1, vj)
be the triangulation generated by flipping the chord (v1, vj) of T . Then T is

the parent of T (v1, vj) in the genealogical tree T (C) if and only if (v1, vj) is a

generating chord of T .

Proof: Necessity. Assume that (v1, vj) is a non-generating chord of T . It is
sufficient to show that T is not the parent of T (v1, vj). Here, we have j < r

(see Figure 12(a)). Let (vq, vq′) be the chord which appears in T (v1, vj) after
flipping (v1, vj) of T (see Figure 12(b)). Since the chord (v1, vr) of T is also
a chord of T (v1, vj), we have q′ ≤ r. Therefore, q < r′. Thus, (vr , vr′) is the
leftmost blocking chord of T (v1, vj) and T is not the parent of T (v1, vj).

Sufficiency. Assume that (v1, vj) is a generating chord of T . We show that
T is the parent of T (v1, vj) in T (C).



JGAA, 15(3) 457–482 (2011) 473

q

7

v6

v8

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

����
����
����
����
����

����
����
����
����
������������������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������������
�����
�����
�����
�����
�����

�����
�����
�����
�����
������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
���
���
���
���
���

���
���
���
���
���������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

������������
����
����
����
����
����

����
����
����
����
�����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
��������������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

��������������

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
����
���
���
���
���

���
���
���
���
���

������������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

������������
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����
����
����
����
����

����
����
����
����
�����

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
����
����
����
����
����

����
����
����
����
����������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������������������������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
�������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

�������������������
�����
�����
�����
�����

�����
�����
�����
�����
������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
��������������
����
����
����
����
����

����
����
����
����
����
����

��������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

v

v

v

v

v

v
1

2

3

5

7

8
(a)

v
4 vj

vv
6
= ’

v

v

v

v

v

v
1

2

3

5

7

8
(c)

v
4 = vr

vv
6
= r’= vj

v

v

v

vv

v

v

v
1

2

3

45

7

8
(b)

= v= v q6 ’

v

v

v

vv

v

v

v
1

2

3

45

6

8
(d)

= vq

= v
7 q’

v

v

v

v

v
1

2

3

5

8

v
4

v
6 ’

v= r

v= r

(e)
v

v

v

vv

v

1

2

3

45

7

(f)

r

= = vr

= vj

q

= vq

= v ’

v

Figure 11: Illustration of Lemma 5.

Let (vq, vq′ ) be the chord which appears in T (v1, vj) after flipping (v1, vj)
of T . To prove that T is the parent of T (v1, vj) in T (C), we must show that
(vq, vq′) is the leftmost blocking chord of T (v1, vj).

We first consider the case where T is the root of T (C). T does not have any
parent and all the chords of T are incident to vertex v1. Therefore, (vq, vq′) is
the only chord of T (v1, vj) which is not incident to vertex v1. Thus, (vq , vq′) is
the leftmost blocking chord of T (v1, vj).

We now consider the case where T is not the root of T (C). Then by Lemma
5, (vq, vq′) is the leftmost blocking chord of T (v1, vj). �

r

7

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

������������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��������������
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
������������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������������
�����
�����
�����
�����
�����

�����
�����
�����
�����
������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

v

v

v

v

v
1

2

3

5

8
(a)

v
4

v
6 ’

v

v

v

vv

v

1

2

3

45

7

(b)

v= r

v= = vj

= 

= vq

vq

v6

v8

’

v

Figure 12: Illustration of Lemma 6.

According to Lemma 5 and 6, if the generating set GS of a triangulation T is



474 Parvez et al. Generating All Triangulations of Plane Graphs

non-empty, then we can generate each of the children of T in T (C) by flipping a
generating chord of T . Therefore, the number of children of a triangulation T in
T (C) will be equal to the cardinality of the generating set. Thus, the following
lemma holds.

Lemma 7 The number of children of a triangulation T of a cycle C is equal

to the number of chords in the generating set of T . The root of T (C) has the

maximum number of children.

4.3 The Representation of a Triangulation in T (C)

In this section, we describe a data structure that we use to represent a triangula-
tion T and that enables us to generate each child triangulation of T in constant
time.

For a triangulation T of C, we maintain three lists: L, GS and O to represent
T completely. Here L is the list of chords of T and GS is the generating set
of T . For each chord (v1, vj) in the generating set GS of T , we maintain a
corresponding opposite pair (vo, vo′), such that 〈v1, vo, vj , vo′〉 is a quadrilateral
of T . Note that, o < j and o′ > j. O is the list of such opposite pairs. For
example, in Figure 10(a), the generating chord (v1, v4) has the opposite pair
(v3, v6).

Since we generate triangulations of C starting with the root Tr, we find the
representation of Tr first. The chords of Tr are listed in L in clockwise order.
That is, for Tr, L = {(v1, vn−1), (v1, vn−2), · · · (v1, v3)}. The generating set GS

is exactly similar to the list L of Tr: GS = {(v1, vn−1), (v1, vn−2), · · · , (v1, v4),
(v1, v3)}. The corresponding list of opposite pairs isO = {(vn−2, vn), (vn−3, vn−1),
· · · , (v3, v5), (v2, v4)}; that means, (vj−1, vj+1) is the opposite pair of (v1, vj) in
Tr, 3 ≤ j ≤ n− 1.

Let T (v1, vj) be a child triangulation of T in T (C) generated from T by
flipping the chord (v1, vj) of T . Let (vb, vb′) be the blocking chord which appears
in T (v1, vj) after flipping (v1, vj) of T . The list L of T (v1, vj) can be found easily
from the representation of T by removing (v1, vj) from the list L of T and adding
(vb, vb′) to it. Note that one can easily find the blocking chord (vb, vb′) of T ′,
since (vb, vb′) is the opposite pair of (v1, vj) in the representation of T .

In the next section, we give the detailed algorithm for generating the trian-
gulations of C and show that the representation of a child triangulation T ′ of
T can be found from the representation of T in constant time.

4.4 The Algorithm

In this section, we give an algorithm to generate all triangulations of a cycle C

of n vertices.
Let vj1 , vj2 , · · · , vjk , j1 > j2 > · · · > jk, be the sequence of k vertices of a

triangulation T of C. Here (v1, vj1), (v1, vj2), · · · , (v1, vjk) are the chords of T
and the chords (v1, vji ), 1 ≤ i ≤ k, are generating chords of T . Then, T has
a generating set GS = {(v1, vj1 ), (v1, vj2), · · · , (v1, vjk)} of k generating chords,



JGAA, 15(3) 457–482 (2011) 475

for 0 ≤ k ≤ n − 3. For Tr, GS = {(v1, vn−1), (v1, vn−2), · · · , (v1, v4), (v1, v3)}.
For each chord (v1, vj) of T , we keep an opposite pair (vo, vo′) in T . O is the
set of such pairs. For Tr, O = {(vn−2, vn), (vn−3, vn−1), · · · , (v3, v5), (v2, v4)} as
shown in Section 4.3. We find the sets GS and O of a child T ′ of T by updating
the lists GS and O of T while we generate T ′.

We now describe a method for generating the children of a triangulation T

in T (C). We have two cases based on whether T is the root of T (C) or not.
Case 1: T is the root of T (C).

In this case, all the chords of T are generating chords and there are a total
of n − 3 such chords in T . Any of these generating chords of T can be flipped
to generate a child triangulation of T . For example, the root of the genealogical
tree in Figure 7 has three generating chords; thus it has three children as shown
in Figure 7.

Case 2: T is not the root of T (C).
Let (vb, vb′) be the leftmost blocking chord of T . Consider a chord (v1, vj)

of T . If j ≥ b, then (v1, vj) is a generating chord of T . Therefore, according to
Lemma 6, T (v1, vj) is a child of T in T (C). Thus, for all chords (v1, vj) of T
such that j ≥ b, a new triangulation is generated by flipping (v1, vj).

If j < b, then (v1, vj) is a non-generating chord of T and according to Lemma
6, we cannot flip (v1, vj) to generate a new triangulation from T .

Based on the case analysis above, we can generate all triangulations of C.
The algorithm is as follows.

Procedure find-all-child-triangulations-cycle(T )
begin

Output T ; {output the difference in representation from the
previous triangulation}

if T has no generating chords then return ;
Let (vb, vb′) be the leftmost blocking chord of T ;

for all j ≥ b

if (v1, vj) is a chord of T then

find-all-child-triangulations-cycle(T (v1, vj)); {Case 2}
end;

Algorithm find-all-triangulations-cycle(n)
begin

Output root Tr;
T = Tr;

for j = n− 1 to 3
find-all-child-triangulations-cycle(T (v1, vj)); {Case 1}

end.
The following theorem describes the correctness and performance of the al-

gorithm find-all-triangulations-cycle.

Theorem 2 Given a cycle C of n vertices, we can generate all the triangula-

tions of C in O(1) time per triangulation, without duplications and omissions.

The space complexity of the algorithm is O(n).



476 Parvez et al. Generating All Triangulations of Plane Graphs

Proof: Let T be a triangulation of C and T (v1, vj) be the triangulation gen-
erated from T by flipping the chord (v1, vj) of T . The algorithm find-all-

triangulations-cycle generates T (v1, vj) from T if only if (v1, vj) is a generat-
ing chord of T . Therefore, according to Lemma 6, T is the parent of T (v1, vj).
That means, each triangulation T of C is generated from its parent only; there-
fore, duplication cannot occur. To prove that no omission occurs, we use Lemma
3. Lemma 3 implies that for any triangulation T of C, there is a unique path
from the root Tr to T in T (C). Thus, to show that the algorithm find-all-

triangulations-cycle does not omit any triangulation, it is sufficient to prove
that the algorithm find-all-triangulations-cycle generates all the children of
a triangulation T . By Lemma 6, to generate the children of a triangulation T ,
only the generating chords of T need to be flipped. Since the algorithm find-

all-triangulations-cycle flips all the generating chords of a triangulation T to
generate new triangulations from T , all the children of T in T (C) are generated.

The complexity of the algorithm can be found as follows. We need to store
the generating set GS for the current triangulation T of C. Since the maximum
cardinality of GS is n − 3, it takes O(n) space to store it. Along with GS,
we need to maintain for T , the set of opposite pairs O and update it while
generating children. We also need to maintain another list L for listing the
chords of T . To generate the triangulations of C, we start at the root of T (C).
For the root of T (C), GS is identical to L. When a generating chord of T is
flipped, that chord is replaced in the list L of T by its opposite pair in T to
get the list L of the child. Since we use a recursive procedure to generate the
triangulations without constructing the whole T (C), and the depth of the tree
is n− 2 (number of chords in the root plus one), the algorithm uses O(n) space.

Now the question is how can we update GS and O? By implementing these
two sets using linked lists and storing appropriate pointers at each node on the
path from the root of T (C) to the current triangulation T , we can do it in
constant time. Let (v1, vj) be the chord of T to be flipped. The updated lists
GS and O correspond to the newly generated child of T .

Flipping the generating chord (v1, vj) of T can change the opposite pairs of
maximum two other candidate chords of T in the representation of T (v1, vj). In
our algorithm, we only need to change the opposite pairs of candidate chords
of T (v1, vj). Let (v1, vi), (v1, vj) and (v1, vk) be three candidate chords of T ,
k < j < i, such that 〈v1, vk, vj , vi〉 is a quadrilateral of T , as shown in Figure 13.
We now flip (v1, vj) of T to generate the child T (v1, vj) of T . Flipping the chord
(v1, vj) of T changes the opposite pairs of the chords (v1, vi) and (v1, vk) of T
in T (v1, vj). The changes can be done as follows.

Let (vo, vo′) be the opposite pair of (v1, vj) in T . Here o = k and o′ = i, as
shown in Figure 13. Let the opposite pair of (v1, vi) in T be (vl, vl′). Then l = j

and the opposite pair of (v1, vi) in T (v1, vj) is (vo, vl′). Similarly, if the opposite
pair of (v1, vk) is (vs, vs′) in T , then s′ = j and the opposite pair of (v1, vk) in
T (v1, vj) will be (vs, vo′). Figure 14 shows the update operations. Clearly, these
updates can be done in O(1) time.

Thus, if a triangulation T has k children, all of them can be generated in
O(k) time. Therefore each child of T is generated in O(1) time. �



JGAA, 15(3) 457–482 (2011) 477

o

v’

vj =vk
v

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

v1
=v oi

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

Figure 13: Flipping (v1, vj) can affect two candidate chords.

1v
v
6
= v

l’v
6
= v

l’

�
�
�
�

��
��
��
�� �

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
�� ��

��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

������
������
������
������

������
������
������
����������
����
����
����
����

����
����
����
����
������

��
��
��
��
��

��
��
��
��
��
��

���
���
���
���

���
���
���
���

������
������
������
������
������

������
������
������
������
������

�����
�����
�����
�����

�����
�����
�����
��������
���
���
���
���

���
���
���
���
�����
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
���������
����
����
����

����
����
����
����

(a) (b)

v
5
=v

i
= vo’

v4=v =v =v
lj s’

v3=v
k
= v

o

v2=vs

v
5
=v

i
= vo’

v4=v =v =v
lj s’

v2=vs

v3=v
k
= v

1

o

v

Figure 14: Illustration of the update operations of the opposite pairs of two
affected edges; (a) parent and (b) child.

5 Generating Unlabeled Triangulations

In this section, we give the idea for generating all unlabeled triangulations of a
cycle C of n vertices.

Generating all unlabeled triangulations of a cycle C is more difficult than
generating labeled triangulations. If the vertices of C are not numbered then we
need to avoid “rotational” and “mirror repetitions” among the triangulations of
C. Two unlabeled triangulations of a cycle are rotationally equivalent to each
other, if one can be found by rotating the other one. Similarly, two unlabeled
triangulations of a cycle are mirror image of each other, if one can be found
by taking the mirror image of the other one. For example, the triangulations
of Figure 15(a) and (b) are rotationally similar if we remove the labels, since
then both of them are similar to the triangulation of Figure 15(c). The two
triangulations of Figure 16(a) and (b) are mirror images of the one another, if
no labels are used, and both of them are then similar to the triangulation of
Figure 16(c). In this section, we modify our algorithm for generating all trian-
gulations of a cycle to avoid such repetitions. For this purpose, we consider each
triangulation of C as belonging to a particular class, in which the triangulations
of C are rotationally equivalent or mirror images of one another. We choose
one representative triangulation from each class. The modified algorithm still
uses the labels while generating the triangulations, but avoids any rotational or
mirror repetitions by outputting a triangulation only if it is the representative
of a particular class. Thus, our modified algorithm constructs the tree of trian-
gulations T6 of a cycle of six vertices as shown in Figure 17. Note that, only



478 Parvez et al. Generating All Triangulations of Plane Graphs

three triangulations are there in Figure 17, while the tree of triangulations of
Figure 7 contains 14 triangulations.

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����

����������������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
��������
����
����
����
����
����

����
����
����
����
����
����

��������������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
������
���
���
���
���
���
���
���

���
���
���
���
���
���
���
�����������������

(a) (c)(b)
v

v

vv

v

v 1

2

34

5

6 v

v

vv

v

v 1

2

34

5

6

Figure 15: Two triangulations of (a) and (b) are rotationally equivalent to the
triangulation of (c), when the labels are removed.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����

����������������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
��� ���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��������������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
���
���
���
���
���
���

���
���
���
���
���
���

��������������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
�������
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

(a) (c)(b)
v

v

vv

v

v 1

2

34

5

6 v

v

vv

v

v 1

2

34

5

6

Figure 16: Two triangulations of (a) and (b) are are mirror image of each other,
similar to the triangulation of (c), when the labels are removed.

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���������������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
�������
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����

����
����
����
����
����
����
��������
����
����
����
����
����

����
����
����
����
����
����������������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

��������������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

(1,4) (1,3)

v

v

vv

v

v 1

2

34

5

6 v

v

vv

v

v 1

2

34

5

6

v

v

vv

v

v 1

2

34

5

6

Figure 17: Illustration of T (C) from Figure 7 when rotational and mirror rep-
etitions are not allowed.

We now give a new representation of each triangulation of a cycle that en-
ables us to avoid any rotational or mirror repetitions easily. Let T be a trian-
gulation of C where the vertices of C are labeled sequentially from v1 to vn.
A labeled degree sequence 〈d1, d2, · · · , dn〉 of T is the sequence of degrees of the
vertices, where di is the degree of vi in the graph associated with T . A vertex
with degree 2 is called an ear of T . We thus have the following lemma.

Lemma 8 Let T be a labeled triangulation of a cycle C of n vertices. Then T

can be represented uniquely by its labeled degree sequence.

Proof: Let 〈d1, d2, · · · , dn〉 be the labeled degree sequence of T . We note
that T has at least two ears. Let vi is the clockwise first ear. Remove it and



JGAA, 15(3) 457–482 (2011) 479

decrease the degrees of its two neighboring vertices by one. Apply the procedure
recursively until the vertices v1 and v2 are left. Thus we get a sequence of vertices
vi1 , vi2 , · · · vin−2

. Now adding the vertices in reverse order we can generate T .
�

5.1 Removing Rotational Repetitions

In this section, we describe the procedure for avoiding rotational repetitions.
The following fact is crucial for that purpose.

Fact 9 Let T and T ′ be two triangulations of a cycle C of n vertices, which

are rotationally equivalent to each other. Then, by rotating the labeled degree

sequence of T , we get the labeled degree sequence of T ′.

As an illustration of the Fact 9, the triangulations of Figure 15(a) and
(b) have the labeled degree sequences 〈3, 2, 4, 3, 2, 4〉 and 〈4, 3, 2, 4, 3, 2〉 respec-
tively. By right rotating the labeled degree sequence of the triangulation of
Figure 15(a) four times, we get the labeled degree sequence of the triangulation
of Figure 15(b).

Let T and T ′ be two triangulations of a cycle C of n vertices, which are
rotationally equivalent to each other. Let 〈d1, d2, · · · , dn〉 and 〈d′1, d

′

2, · · · , d
′

n〉
be the labeled degree sequences of T and T ′ respectively. Let d1 = d′1, d2 =
d′2, · · · , dk−1 = d′k−1 and dk > d′k for some k, 1 ≤ k ≤ n. We say that the
sequence 〈d1, d2, · · · , dn〉 is greater than the sequence 〈d′1, d

′

2, · · · , d
′

n〉 and T

has a greater sequence than T ′. For example, the triangulations of Figure 18(a)
and (b) have the degree sequences 〈5, 2, 5, 2, 3, 4, 3, 2〉 and 〈4, 2, 3, 4, 3, 3, 2, 5〉
respectively and the first sequence is greater than the second one. Thus the
triangulation of Figure 18(a) is greater than the triangulation of Figure 18(b).

(b)

5 v4 v4v5
��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

v
v

vv

v
v 1

2

36

7

8 v
v

vv

v
v 1

2

36

7

8
(a)

v

Figure 18: Illustration of two triangulations where one has greater degree se-
quence.

Let S be a set of triangulations of C where the triangulations are rotationally
equivalent to each other. Let T be the triangulation in S whose degree sequence
is greater than all other triangulations in S. Then, the labeled degree sequence
of T is the canonical representation of S. We say that T has the greatest labeled
degree sequence and T is the representative of S. We output each triangulation
T of C only if T has the greatest labeled degree sequence. Let 〈d1, d2 · · · dn〉 be
the degree sequence of T . If d1 > di for 2 ≤ i ≤ n, then T has the greatest
labeled degree sequence. This can be found in O(1) time as explained later.



480 Parvez et al. Generating All Triangulations of Plane Graphs

Otherwise, we generate n−1 other degree sequences by right rotating T ’s degree
sequence and check whether T ’s sequence is greater. In this case, it takes O(n2)
time to find whether T has the greatest labeled degree sequence.

For a triangulation T of C, we need to maintain an array D to store the
degree sequence. It takes O(n) space. Let (v1, vj) is a generating chord in T

with opposite pair (vo, vo′). Flipping (v1, vj) changes the degrees of four ver-
tices. The degrees of v1 and vj are reduced by one and the degrees of vo and
vo′ are increased by one. All these updates can be done in O(1) time. Let
〈d′1, d

′

2, · · · , d
′

n〉 be the resultant degree sequence and T ′ is the new triangula-
tion. We can easily check whether d′1 > d′i for 2 ≤ i ≤ n by storing the highest
degree dmax among nodes other than v1 and updating it while generating a new
triangulation. Now there are three cases.

Case 1. If d′1 > dmax, then output T ′.

Case 2. If d′1 = dmax, then check whether T ′ has the greatest labeled degree
sequence. If YES, then output T ′.

Case 3. If d′1 < dmax, then ignore T ′ and prune the subtree of triangulations
rooted at T ′.

5.2 Avoiding Mirror Repetitions

In this section, we describe the procedure to remove mirror image repetitions
while generating all triangulations of a cycle C of n vertices.

Let 〈d1, d2, · · · , dn〉 be the labeled degree sequence of a triangulation T of C.
Assume that T has the greatest labeled degree sequence compared to all trian-
gulations of C which are rotationally similar to T . Let T ′ be the triangulation
which is the mirror image of T . Using the following fact we can find the labeled
degree sequence of T ′.

Fact 10 Let T and T ′ be two triangulations of a cycle of n vertices, which are

mirror images of each other. Let T has the labeled degree sequence 〈d1, d2, · · · , dn〉.
Then the labeled degree sequence of T ′ is 〈dn, dn−1, · · · , d2, d1〉.

For example, the triangulation of Figure 16(a) has the degree sequence
〈4, 2, 3, 4, 2, 3〉. The triangulation of Figure 16(b), which is the mirror image of
the triangulation of Figure 16(a), has the reverse degree sequence 〈3, 2, 4, 3, 2, 4〉.

Now, using the labeled degree sequence of T ′, we can avoid mirror image
repetitions as follows. We start with the sequence 〈dn, dn−1, · · · , d2, d1〉, and
from it we generate n − 1 other sequences by right rotation. These n − 1
sequences corresponds to all the triangulations which are rotationally similar to
T ′. We compare the degree sequence of T with all these sequences to determine
whether T ’s sequence is the greatest. Thus, we have to compare T ’s sequence
with a total of n sequences. This takes O(n2) time. If T ’s sequence is found



JGAA, 15(3) 457–482 (2011) 481

greater than all these sequences, then we output T . Otherwise we discard T

and prune the subtree rooted at T . Since all we need is to store the sequence
of T , the space complexity is O(n).

Thus we have the following theorem.

Theorem 3 For a cycle C of n vertices, all triangulations of C can be found

in time O(n2) per triangulation, where the vertices of C are not numbered. The

space complexity is O(n).

6 Conclusion

In this paper we gave an algorithm to generate all triangulations of a tricon-
nected plane graph G of n vertices in O(1) time per triangulation with linear
space complexity. We also gave an algorithm to generate all triangulations of a
cycle of n labeled vertices in time O(1) per triangulation with O(n) space com-
plexity. The performance of the algorithms can be further improved by using
parallel processing. Our algorithm also works for biconnected graphs, but may
produce multi-edges occasionally. Finally, we described a method to eliminate
any rotational and mirror repetitions while generating all triangulations of a
cycle C, when the vertices of C are not numbered.

Acknowledgements

We thank the referees for their valuable comments which helped us to improve
the presentation of the paper.



482 Parvez et al. Generating All Triangulations of Plane Graphs

References

[1] D. Avis. Generating rooted triangulations without repetitions. Algorith-

mica, 16(6):618–632, 1996.

[2] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied

Mathematics, 65(1-3):21–46, 1996.

[3] S. Bespamyatnikh. An efficient algorithm for enumeration of triangulations.
Comput. Geom. Theory Appl., 23(3):271–279, 2002.

[4] B. Chazelle. Triangulating a polygon in linear time. Discrete Comput.

Geom., 6:485–524, 1991.

[5] M. de Berg, M. van Krevald, M. Overmars, and O. Schwarzkopf. Compu-

tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,
2000.

[6] F. Hurtado and M. Noy. Graph of triangulations of a convex polygon and
tree of triangulations. Computational Geometry, 13(3):179–188, 1999.

[7] H. Komuro, A. Nakamoto, and S. Negami. Diagonal flips in triangulations
on closed surfaces with minimum degree at least 4. Journal of Combinato-

rial Theory, Series B, 76(1):68–92, 1999.

[8] Z. Li and S. Nakano. Efficient generation of plane triangulations without
repetitions. In Proc. of ICALP 2001, volume 2076 of Lecture Notes in

Computer Science, pages 433–443. Springer-Verlag, 2001.

[9] B. D. McKay. Isomorph-free exhaustive generation. J. Algorithms,
26(2):306–324, 1998.

[10] T. Nishizeki and M. S. Rahman. Planar Graph Drawing. World Scientific,
Singapore, 2004.

[11] J. O’Rourke. Computational Geometry in C. Cambridge University Press,
Cambridge, 1998.

[12] M. T. Parvez, M. S. Rahman, and S. Nakano. Generating all triangulations
of plane graphs. In Proc. of WALCOM 2009, volume 5431 of Lecture Notes

in Computer Science, pages 151–164. Springer, 2009.

[13] D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangu-
lations. Algorithmica, 46(3-4):505–527, 2006.

[14] S. M. Sait and H. Youssef. VLSI Physical Design Automation: Theory and

Practice. World Scientific, Singapore, 1999.

[15] D. D. Sleator, R. E. Tarjan, and W. P. Thurston. Rotation distance, trian-
gulations, and hyperbolic geometry. J. Amer. Math. Soc, 1:647–681, 1988.


	Introduction
	Preliminaries
	Triangulations of a Triconnected Plane Graph
	Finding the Root
	The Algorithm

	Labeled Triangulations of a Cycle
	Child-Parent Relationship
	Generating the Children of a Triangulation in T(C)
	The Representation of a Triangulation in T(C) 
	The Algorithm

	Generating Unlabeled Triangulations
	Removing Rotational Repetitions
	Avoiding Mirror Repetitions

	Conclusion

