
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 15, no. 6, pp. 703–726 (2011)

Triangle Sparsifiers

Charalampos E. Tsourakakis 1 Mihail N. Kolountzakis 2

Gary L. Miller 3

1Department of Mathematical Sciences, Carnegie Mellon University, USA
2Department of Mathematics, University of Crete, Greece

3School of Computer Science, Carnegie Mellon University, USA

Abstract

In this work, we introduce the notion of triangle sparsifiers, i.e., sparse
graphs which are approximately the same to the original graph with re-
spect to the triangle count. This results in a practical triangle counting
method with strong theoretical guarantees. For instance, for unweighted
graphs we show a randomized algorithm for approximately counting the
number of triangles in a graph G, which proceeds as follows: keep each
edge independently with probability p, enumerate the triangles in the spar-
sified graph G′ and return the number of triangles found in G′ multiplied
by p−3. We prove that under mild assumptions on G and p our algorithm
returns a good approximation for the number of triangles with high proba-
bility. Specifically, we show that if p ≥ max (polylog(n)∆

t
, polylog(n)

t1/3
), where

n, t, ∆, and T denote the number of vertices in G, the number of triangles
in G, the maximum number of triangles an edge of G is contained and
our triangle count estimate respectively, then T is strongly concentrated
around t:

Pr [|T − t| ≥ εt] ≤ n−K .

We illustrate the efficiency of our algorithm on various large real-world
datasets where we obtain significant speedups. Finally, we investigate cut
and spectral sparsifiers with respect to triangle counting and show that
they are not optimal.

Submitted:
January 2011

Reviewed:
July 2011

Revised:
September 2011

Accepted:
October 2011

Final:
October 2011

Published:
October 2011

Article type:
Regular paper

Communicated by:
D. Wagner

We would like to thank Prof. Alan Frieze and Richard Peng for helpful discussions and the

anonymous referees for their valuable comments. Research supported by NSF Grants No.

CCF-1013110, No. IIS-0705359, No. CCF-0635257 and by the University of Crete Grant No.

2569.

E-mail addresses: ctsourak@math.cmu.edu (Charalampos E. Tsourakakis) kolount@math.uoc.gr

(Mihail N. Kolountzakis) glmiller@cs.cmu.edu (Gary L. Miller)

mailto:ctsourak@math.cmu.edu
mailto:kolount@math.uoc.gr
mailto:glmiller@cs.cmu.edu

704 Tsourakakis et al. Triangle Sparsifiers

1 Introduction

In recent years, a considerable amount of research has focused on the study
of graph structures arising from technological, biological and sociological sys-
tems. Graphs are the tool of choice in modeling such systems since the latter
are typically described as a set of pairwise interactions. Important examples
of such datasets are the Internet graph (vertices are routers, edges correspond
to physical links), the Web graph (vertices are web pages, edges correspond to
hyperlinks), social networks (vertices are humans, edges correspond to friend-
ships), information networks like Facebook and LinkedIn (vertices are accounts,
edges correspond to online friendships), biological networks (vertices are pro-
teins, edges correspond to protein interactions), math collaboration network
(vertices are mathematicians, edges correspond to collaborations) and many
more.

The number of triangles is a computationally expensive, crucial graph statis-
tic in complex network analysis, in random graph models and in various impor-
tant applications. In Section 2.2 we provide an extensive list of applications
involving triangles. It is worth mentioning that triangles play an important role
in theoretical computer science. Specifically, the problem of detecting whether a
graph is triangle-free [3] arises in numerous combinatorial problems such as the
minimum cycle detection problem [26], the approximate minimum vertex cover
in planar graphs [5] and recognition of median graphs [25]. Recently, it was
shown that detecting a triangle is equivalent to Boolean matrix multiplication
under the notion of subcubic reductions [60] contrary to common belief [48].

In this paper, we contribute to the problem of counting triangles in large
graphs. Specifically, we present a new randomized algorithm for approximately
counting the number of triangles in a graph G. The algorithm proceeds as
follows: keep each edge independently with probability p, enumerate the tri-
angles in the sparsified graph G′ and return the number of triangles found in
G′ multiplied by p−3. We prove that under mild assumptions on G and p our
algorithm returns a good approximation for the number of triangles with high

probability. Specifically, we show that if p ≥ max (polylog(n)∆
t , polylog(n)

t1/3
), where

n, t, ∆, and T denote the number of vertices in G, the number of triangles in
G, the maximum number of triangles an edge of G is contained and our triangle
count estimate respectively, then T is strongly concentrated around t:

Pr [|T − t| ≥ εt] ≤ n−K

We illustrate the efficiency of our algorithm on various large real-world
datasets where we achieve significant speedups. Furthermore, we investigate
the performance of existing sparsification procedures namely the Spielman-
Srivastava spectral sparsifier [46] and the the Benczúr-Karger cut sparsifier [8, 9]
and show that they are not optimal/suitable with respect to triangle counting.

Our paper is organized as follows: Section 2 presents work related to triangle
counting and provides the necessary theoretical preliminaries for the analysis of
our algorithm. Section 3 presents our algorithm and our main theoretical result.

JGAA, 15(6) 703–726 (2011) 705

Section 4 shows the efficiency of our method on several large networks. Section 5
discusses properties of existing sparsification methods (cut sparsifiers [9] and
spectral sparsifiers [46]) with respect to triangle counting. Finally, Section 6
concludes and provides future research directions.

2 Background

In Section 2.1 we introduce the notation that we use in this work. In Sec-
tion 2.2 we present an extensive list of applications which involves triangles. In
Section 2.3 we present existing work on the triangle counting problem. Finally
in Section 2.4 we briefly present theoretical preliminaries for our work. Namely,
the Kim-Vu concentration theorem, the Benczúr-Karger and the Spielman-
Srivastava sparsifier and finally Foster’s theorem.

2.1 Notation

For the rest of the paper we use the following symbols: G([n], E) stands for
an undirected simple graph with n vertices labeled as 1, 2, .., n and edge set E.
Let m = |E| be the number of edges in G. Furthermore, let t be the number
of triangles, deg(u) be the degree of vertex u, ∆(e) be the number of triangles
edge e is contained in and ∆(v) be the number of triangles vertex v participates
in. From the context, it shall always be clear whether we refer to a vertex or an
edge. We define ∆ to be equal to the maximum number of triangles that any
edge e is contained in, i.e., ∆ = maxe∈E(G) ∆(e). Finally, p is the sparsification
parameter.

2.2 Applications

There are two main processes that generate triangles in a social network: ho-
mophily and transitivity. According to the former, people tend to choose friends
with similar characteristics to themselves (e.g., race, education) [61, 55] and
according to the latter friends of friends tend to become friends themselves [55].
These facts have several implications which we present in the following together
with other applications of triangle counting. For example, recently Bonato,
Hadi, Horn, Pra lat and Wang [13] proposed the iterated local transitivity model
which has several properties matching empirical properties of “real-world” net-
works such as skewed degree distribution, communities etc. In the following
we provide an extensive list of applications which involves triangles and ranges
from social networks to Computer Aided Design applications.

Clustering Coefficients and Transitivity of a Graph

Watts and Strogatz [57] in their influential paper proposed a simple model which
explains several properties in social networks such as the abundance in triangles
and the short paths among any pair of nodes. Their model combines the idea
of homophily which leads to the wealth of triangles in the network and the

706 Tsourakakis et al. Triangle Sparsifiers

idea of weak ties which create short paths. In order to quantify the homophily,
they introduce the definitions of the clustering coefficient of a vertex and the
graph, see Definition 1. The definition of the transitivity T (G) of a graph G,
introduced by Newman et al. [39] is closely related to the clustering coefficient
and measures the probability that two neighbors of any vertex are connected.
It is worth pointing out that the authors of [39] erroneously claim that C(G) is
the same with T (G), see also [45].

Definition 1 (Clustering Coefficient) The clustering coefficient C(v) of ver-
tex v ∈ V (G) is defined as

C(v) =
∆(v)(
deg(v)

2

) . (1)

The clustering coefficient C(G) of graph G is the average of C(v) over all
v ∈ V (G).

Definition 2 (Transitivity) The transitivity T (G) of a graph G is defined as

T (G) =
3× t∑

v∈V (G)

(
deg(v)

2

) . (2)

Uncovering Hidden Thematic Structures

Eckmann and Moses [20] propose the use of the clustering coefficient for detect-
ing subsets of web pages with a common topic. The key idea is that reciprocal
links between pages indicate a mutual recognition/respect and then triangles due
to their transitivity properties can be used to extend “seeds” to larger subsets
of vertices with similar thematic structure in the Web graph. In other words,
regions of the World Wide Web with high triangle density indicate common
thematic structure, allowing the authors to extract useful meta-information.
This idea has found applications in other scientific domains as well, e.g., in
bioinformatics [43].

Exponential Random Graph Model

Frank and Strauss [21] proved under the assumption that two edges are de-
pendent only if they share a common vertex that the sufficient statistics for
Markov graphs are the counts of triangles and stars. Wasserman and Pattison
[56] proposed the exponential random graph (ERG) model which generalized
the Markov graphs [42]. In this model, the probability space is the set of all
possible graphs on n vertices and the probability of a given graph g is given by

Pr [g] ∝ exp
(
θ · s(g)

)
where s(g) is a vector of graph statistics, typically counts of certain subgraphs
(e.g., s(g) = (m, t)) and θ is a vector of parameters. Triangles are frequently
used as one of the graph statistics of the ERG model and counting them is
necessary for parameter estimation, e.g., using MCMC procedures [11].

JGAA, 15(6) 703–726 (2011) 707

Spam Detection

Becchetti et al. [7] show that the distribution of triangles among spam hosts
and non-spam hosts can be used as a feature for classifying a given host as
spam or non-spam. The same result holds also for web pages, i.e., the spam
and non-spam triangle distributions differ at a detectable level using standard
statistical tests from each other.

Content Quality and Role Behavior Identification

Nowadays, there exist many online forums where acknowledged scientists par-
ticipate, e.g., MathOverflow, CStheory Stackexchange and discuss problems of
their fields. This yields significant information for researchers. Several inter-
esting questions arise such as which participants comment on each other. This
question including several others were studied in [58]. The number of triangles
that a user participates was shown to play a critical role in answering these
questions. For further applications in assessing the role behavior of users see
[7].

Structural Balance and Status Theory

Balance theory appeared first in Heider’s seminal work [24] and is based on the
concept “the friend of my friend is my friend”, “the enemy of my friend is my
enemy” etc. [55]. To quantify this concept edges become signed, i.e., there is
a function c : E(G) → {+,−}. If all triangles are positive, i.e., the product
of the signs of the edges is +, then the graph is balanced. Status theory is
based on interpreting a positive edge (u, v) as u having lower status that v,
while the negative edge (u, v) means that u regards v as having a lower status
than himself/herself. Recently, Leskovec et al. [35] have performed experiments
to quantify which of the two theories better apply to online social networks
and predict signs of incoming links. Their algorithms require counts of signed
triangles in the graph.

Microscopic Evolution of networks

Leskovec et al. [36] present an extensive experimental study of network evolution
using detailed temporal information. One of their findings is that as edges arrive
in the network, they tend to close triangles, i.e., connect people with common
friends.

Community Detection

Counting triangles is also used in community detection algorithms. Specifically
Berry et al. use triangle counting to deduce the edge support measure in their
community detection algorithm [10].

708 Tsourakakis et al. Triangle Sparsifiers

Link Recommendation

Online social networks (e.g.,Facebook, LinkedIn) typically have link recommen-
dation applications. Proposing edges which create as many triangles as possible
is a possible link recommendation mechanism [53].

Motif Detection

Triangles are abundant not only in social networks but in biological networks
[37, 62]. This fact can be used e.g., to correlate the topological and functional
properties of protein interaction networks [62].

CAD applications

Fudos and Hoffman [23] introduced a graph-constructive approach to solving
systems of geometric constraints, a problem which arises frequently in Computer
Aided Design (CAD) applications. One of the steps of their algorithm computes
the number of triangles in an appropriately defined graph.

2.3 Existing work

There exist two categories of triangle counting algorithms, exact and approx-
imate ones. It is worth noting that for most of the applications described in
Section 2.2 the exact number of triangles in not crucial. Hence, approximate
counting algorithms which are fast and output a high quality estimate are de-
sirable for the practical applications in which we are interested in this work.

2.3.1 Exact Counting

Naive triangle counting by checking all triples of vertices takes O(n3) units of
time. The state of the art algorithm is due to Alon, Yuster and Zwick [2] and

runs in O(m
2ω

ω+1), where currently the fast matrix multiplication exponent ω
is 2.371 [18]. Thus, the Alon, Yuster, Zwick (AYZ) algorithm currently runs
in O(m1.41) time. It is worth mentioning that from a practical point of view
algorithms based on matrix multiplication are not used due to the high memory
requirements. Even for medium sized networks, matrix-multiplication based
algorithms are not applicable. We use this partitioning idea in Section 3 to
obtain state of the art results on approximate triangle counting. Itai and Rodeh
in 1978 showed an algorithm which finds a triangle in any graph in O(m

3
2) [26].

This algorithm can be extended to list the triangles in the graph with the same
time complexity. Chiba and Nishizeki showed that triangles can be found in
time O(mα(G)) where α(G) is the arboricity of the graph. Since α(G) is at
most O(

√
m) their algorithm runs in O(m3/2) in the worst case [16]. For special

types of graphs more efficient triangle counting algorithms exist. For instance
in planar graphs, triangles can be found in O(n) time [16, 26, 41].

Even if listing algorithms solve a more general problem than the counting
one, they are preferred in practice for large graphs, due to the smaller memory

JGAA, 15(6) 703–726 (2011) 709

requirements compared to the matrix multiplication based algorithms. Simple
representative algorithms are the node- and the edge-iterator algorithms. The
former counts for each node number of triangles it is involved in, which is
equivalent to the number of edges among its neighbors, whereas in the latter,
the algorithm counts for each edge (i, j) the common neighbors of nodes i, j.
Both of these algorithms have the same asymptotic complexity O(mn), which
in dense graphs results in O(n3) time, the complexity of the naive counting
algorithm. Practical improvements over this family of algorithms have been
achieved using various techniques, such as hashing and sorting by the degree
[34, 44].

2.3.2 Approximate Counting

On the approximate counting side, most of the triangle counting algorithms
have been developed in the streaming setting. In this scenario, the graph is
represented as a stream. Two main representations of a graph as a stream
are the edge stream and the incidence stream. In the former, edges arrive
one at a time. In the latter scenario all edges incident to the same vertex
appear successively in the stream. The ordering of the vertices is assumed to be
arbitrary. A streaming algorithm produces a (1+ε) approximation of the number
of triangles with high probability by making only a constant number of passes
over the stream. However, sampling algorithms developed in the streaming
literature can be applied in the setting where the graph fits in the memory
as well. Monte Carlo sampling techniques have been proposed to give a fast
estimate of the number of triangles. According to such an approach, a.k.a.
naive sampling [45], we choose three nodes at random repetitively and check if
they form a triangle or not. If one makes

r = log(
1

δ
)

1

ε2
(1 +

T0 + T1 + T2

T3
)

independent trials where Ti is the number of triples with i edges and outputs
as the estimate of triangles the random variable T ′3 equaling to the fractions of
triples picked that form triangles times the total number of triples (

(
n
3

)
), then

(1− ε)T3 < T ′3 < (1 + ε)T3

with probability at least 1− δ. This is not suitable when T3 = o(n2).
In [6] the authors reduce the problem of triangle counting efficiently to esti-

mating moments for a stream of node triples. Then, they use the Alon-Matias-
Szegedy algorithms [1] (a.k.a. AMS algorithms) to proceed. The key is that
the triangle computation reduces to estimating the zero-th, first and second
frequency moments, which can be done efficiently. Furthermore, as the authors
suggest their algorithm is efficient only on graphs with Ω(n2/ log log n) triangles,
i.e., triangle dense graphs as in the naive sampling. The AMS algorithms are
also used by [28], where simple sampling techniques are used, such as choosing
an edge from the stream at random and checking how many common neigh-
bors its two endpoints share considering the subsequent edges in the stream.

710 Tsourakakis et al. Triangle Sparsifiers

Along the same lines, Buriol et al. [15] proposed two space-bounded sampling
algorithms to estimate the number of triangles. Again, the underlying sampling
procedures are simple. For instance, in the case of the edge stream represen-
tation, they sample randomly an edge and a node in the stream and check if
they form a triangle. Their algorithms are the state-of-the-art algorithms to
the best of our knowledge. The three-pass algorithm presented therein, counts
in the first pass the number of edges, in the second pass it samples uniformly
at random an edge (i, j) and a node k ∈ V − {i, j} and in the third pass it
tests whether the edges (i, k), (k, j) are present in the stream. The number of
samples r needed to obtain an ε-approximation with probability 1− δ is

r = O

(
log
(1

δ

)T1 + 2T2 + 3T3

T3ε2

)
= O

(
log
(1

δ

)mn
tε2

)
.

Even if the term T0 in the nominator is missing1 compared to the naive
sampling, the graph has still to be fairly dense with respect to the number of
triangles in order to get an ε approximation with high probability. Buriol et al.
[15] show how to turn the three-pass algorithm into a single pass algorithm for
the edge stream representation and similarly they provide a three- and one-pass
algorithm for the incidence stream representation. In [52] an algorithm which
tosses a coin independently for each edge with probability p to keep the edge
and probability q = 1−p to throw it away is proposed, which however sets p to a
constant. The sampling scheme of [52] can be combined with existing sampling
schemes [15] via a degree based partitioning to yield improved theoretical and
practical performance as it was shown in [31]. Recently, a more efficient sampling
scheme was proposed by Pagh and Tsourakakis [40].

Another line of work is based on linear algebraic arguments. Specifically, in
the case of “power-law” networks it was shown in [50] that the spectral counting
of triangles can be efficient due to their special spectral properties [17]. This
idea was further extended in [51] using the randomized SVD approximation
algorithm by [19]. In [7] the semi-streaming model for counting triangles is
introduced, which allows log n passes over the edges. The key observation is
that since counting triangles reduces to computing the intersection of two sets,
namely the induced neighborhoods of two adjacent nodes, ideas from locality
sensitivity hashing [14] are applicable to the problem. More recently, Avron
proposed a new approximate triangle counting method based on a randomized
algorithm for trace estimation [4].

2.4 Theoretical Preliminaries

2.4.1 Kim-Vu Concentration of Measure

For the purposes of this work, let Y = Y (t1, . . . , tm) be a positive polynomial
of m Boolean variables [ti]i=1..m which are independent. A common task in
combinatorics is to show that Y is concentrated around its expected value,

1Notice that m(n− 2) = T1 + 2T2 + 3T3 and t = T3.

JGAA, 15(6) 703–726 (2011) 711

e.g., [30]. In the following we state the necessary definitions and the main
concentration result which we will use in our method. Y is totally positive if
all of its coefficients are non-negative. Y is homogeneous if all of its monomials
have the same degree and we call this value the degree of the polynomial. Given
any multi-index α = (α1, . . . , αm) ∈ Zm+ , define the partial derivative ∂αY =

(∂
∂t1

)α1 . . . (∂
∂tm

)αmY (t1, . . . , tm) and denote by |α| = α1 + · · ·αm the order of
α. For any order d ≥ 0, define Ed(Y) = maxα:|α|=d E(∂αY) and E≥d(Y) =
maxd′≥d Ed′(Y).

Now, we refer to the main theorem of Kim and Vu of [29, §1.2] as phrased
in Theorem 1.1 of [54] or as Theorem 1.36 of [49].

Theorem 1 There is a constant ck depending on k such that the following
holds. Let Y (t1, . . . , tm) be a totally positive polynomial of degree k, where ti
can have arbitrary distribution on the interval [0, 1]. Assume that:

E [Y] ≥ E≥1(Y) (3)

Then for any λ ≥ 1:

Pr
[
|Y − E [Y]| ≥ ckλk(E [Y]E≥1(Y))1/2

]
≤ e−λ+(k−1) logm. (4)

The Kim-Vu theorem is an important concentration result since it allows us
to obtain strong concentration when the polynomial of interest is not smooth.
Typically, when a polynomial Y is smooth, it is strongly concentrated. By
smoothness one usually means a small Lipschitz coefficient or in other words,
when one changes the value of one variable tj , the value Y changes no more than
a constant. However, as stated in [54] this is restrictive in many cases. Thus
one can demand “average smoothness” as defined in [54] which is quantified via
the expectation of partial derivatives of any order.

2.4.2 Graph Sparsifiers

A sparsifier of a graph G(V,E,w) is a sparse graph H that is similar to G
in some useful notion. In Section 2.4.2 we describe the Benczúr-Karger cut
sparsifier [8, 9] and in Section 2.4.2.the Spielman-Srivastava spectral sparsifier
[46].

Benczúr-Karger Sparsifier Benczúr and Karger introduced in [8] the notion
of cut sparsification to accelerate cut algorithms whose running time depends
on the number of edges. Using a non-uniform sampling scheme they show that
given a graph G(V,E,w) with |V | = n, |E| = m and a parameter ε there exists
a graph H(V,E′, w′) with O(n log (n)/ε2) edges such that the weight of every
cut in H is within a factor of (1 ± ε) of its weight in G. Furthermore, they
provide a nearly-linear time algorithm which constructs such a sparsifier. The
key quantity used in the sampling scheme of Benczúr and Karger is the strong
connectivity c(u,v) of an edge (u, v) ∈ E [8, 9]. The latter quantity is defined
to be the maximum value k such that there is an induced subgraph G0 of G
containing both u and v, and every cut in G0 has weight at least k.

712 Tsourakakis et al. Triangle Sparsifiers

Spielman-Srivastava Sparsifier In [47] Spielman and Teng introduced the
notion of a spectral sparsifier in order to strengthen the notion of a cut sparsifier.
A quantity that plays a key role in spectral sparsifiers is the effective resistance.
The term effective resistance comes from electrical network analysis, see Chapter
IX in [12]. In a nutshell, let G(V,E,w) be a weighted graph with vertex set V ,
edge set E and weight function w. We call the weight w(e) resistance of the edge
e. We define the conductance r(e) of e to be the inverse of the resistance w(e).
Let G be the resistor network constructed from G(V,E,w) by replacing each
edge e with an electrical resistor whose electrical resistance is w(e). Typically,
in G vertices are called terminals, a convention that emphasizes the electrical
network perspective of a graph G. The effective resistance R(i, j) between two
vertices i, j is the electrical resistance measured across vertices i and j in G.
Equivalently, the effective resistance is the potential difference that appears
across terminals i and j when we apply a unit current source between them.
Finally, effective conductance C(i, j) between two vertices i, j is defined to by
C(i, j) = R(i, j)−1.

Spielman and Srivastava in their seminal work [46] proposed to include each
edge of G in the sparsifier H with probability proportional to its effective re-
sistance. They provide a nearly-linear time algorithm that produces spectral
sparsifiers with O(n log n) edges.

2.4.3 Foster’s theorem

In Section 5 we use the following theorem, proved by Foster [22].

Theorem 2 Let G be a connected graph of order n. Then∑
(u,v)∈E(G)

R(u, v) = n− 1.

3 Proposed Algorithm

Algorithm 1 Triangle Sparsifier

Require: Set of edges E ⊆
(

[n]
2

)
{Unweighted graph G([n], E)}

Require: Sparsification parameter p
Pick a random subset E′ of edges such that the events {e ∈ E′}, for all e ∈ E
are independent and the probability of each is equal to p.
t′ ← count triangles on the graph G′([n], E′)

Return T ← t′

p3

Our proposed algorithm Triangle Sparsifier is shown in Algorithm 1 (see
also for a preliminary version [52]). The algorithm takes an unweighted, simple
graph G(V,E), where without loss of generality we assume that the nodes are
numbered from 1, . . . , n, i.e., V = [n] and a sparsification parameter p ∈ (0, 1)

JGAA, 15(6) 703–726 (2011) 713

as input. The algorithm first chooses a random subset E′ of the set E of edges.
The random subset is such that the events

{e ∈ E′}, for all e ∈ E,

are independent and the probability of each is equal to p. Then, any triangle
counting algorithm can be used to count triangles on the sparsified graph with
edge set E′. Clearly, the expected size of E′ is pm where m = |E|. The output
of our algorithm is the number of triangles in the sparsified graph multiplied by
1
p3 , or equivalently we are counting the number of weighted triangles in G′ where

each edge has weight 1
p . It follows immediately that the expected value E [T] of

our estimate is the number of triangles in G, i.e., t. Our main theoretical result
is the following theorem:

Theorem 3 Suppose G is an undirected graph with n vertices, m edges and t
triangles. Let also ∆ denote the size of the largest collection of triangles with a
common edge. Let G′ be the random graph that arises from G if we keep every
edge with probability p and write T for the number of triangles of G′. Suppose
that γ > 0 is a constant and

pt

∆
≥ log6+γ n, if p2∆ ≥ 1, (5)

and
p3t ≥ log6+γ n, if p2∆ < 1. (6)

for n ≥ n0 sufficiently large. Then

Pr [|T − E [T]| ≥ εE [T]] ≤ n−K

for any constants K, ε > 0 and all large enough n (depending on K, ε and n0).

Proof: Write Xe = 1 or 0 depending on whether the edge e of graph G survives
inG′. Then T =

∑
∆(e,f,g)XeXfXg where ∆(e, f, g) = 1 (edges e, f, g form a triangle).

Clearly E [T] = p3t.
Refer to Theorem 1. We use T in place of Y , k = 3.
We have

E
[
∂T

∂Xe

]
=

∑
∆(e,f,g)

E [XfXg] = p2|∆(e)|.

We first estimate the quantities Ej(T), j = 0, 1, 2, 3, defined before Theorem 1.
We get

E1(T) = p2∆. (7)

We also have

E
[

∂2T

∂Xe∂Xf

]
= p1 (∃g : ∆(e, f, g)) ,

hence
E2(T) ≤ p. (8)

714 Tsourakakis et al. Triangle Sparsifiers

Obviously, E3(T) ≤ 1.

Hence

E≥3(T) ≤ 1, E≥2(T) ≤ 1,

and

E≥1(T) ≤ max
{

1, p2∆
}
, E≥0(T) ≤ max

{
1, p2∆, p3t

}
.

• Case 1 (p2∆ < 1):
We get E≥1(T) ≤ 1, and from (6), E [T] ≥ E≥1(T).

• Case 2 (p2∆ ≥ 1):

We get E≥1(T) ≤ p2∆ and, from (5), E [T] ≥ E≥1(T).

We get, for some constant c3 > 0, from Theorem 1:

Pr
[
|T − E [T]| ≥ c3λ3(E [T]E≥1(T))1/2

]
≤ e−λ+2 logn. (9)

Notice that since in both cases we have E [T] ≥ E≥1(T).

We now select λ so that the lower bound inside the probability on the left-
hand side of (9) becomes εE [T]. In Case 1 we pick

λ =
ε1/3

c
1/3
3

(p3t)1/6

while in Case 2

λ =
ε1/3

c
1/3
3

(
pt

∆

)1/6

to get

Pr [|T − E [T]| ≥ εE [T]] ≤ exp(−λ+ 2 log n) (10)

Since λ ≥ (K + 2) log n follows from our assumptions (5) and (6) if n is suffi-
ciently large, we get Pr [|T − E [T]| ≥ εE [T]] ≤ n−K , in both cases. �

Complexity Analysis The expected running time of edge sampling is sub-
linear, i.e., O(pm), see Claim 1. The complexity of the counting step depends
on which algorithm we use to count triangles2. For instance, if we use [2] as our
triangle counting algorithm, the expected running time of Triangle Sparsifier is

O(pm + (pm)
2ω

ω+1), where ω currently is 2.371 [18]. If we use the node-iterator
(or any other standard listing triangle algorithm) the expected running time is
O(pm+ p2

∑
i d

2
i).

Claim 1 (Sparsification in sublinear expected time) The edge sampling
can run in O(pm) expected time.

2We assume for fairness that we use the same algorithm in both the original graph G and
the sparsified graph G′ to count triangles.

JGAA, 15(6) 703–726 (2011) 715

Proof: We do not “toss a p-coin” m times in order to construct E′. This would
be very wasteful if p is small. Instead we construct the random set E′ with
the following procedure which produces the right distribution. Observe that the
numberX of unsuccessful events, i.e., edges which are not selected in our sample,
until a successful one follows a geometric distribution. Specifically, Pr [X = x] =
(1−p)x−1p. To sample from this distribution it suffices to generate a uniformly

distributed variable U in [0, 1] and set X ←
⌈

lnU
1−p

⌉
. Clearly the probability that

X = x is equal to Pr
[
(1− p)x−1 > U ≥ (1− p)x

]
= (1 − p)x−1 − (1 − p)x =

(1− p)x−1p as required. This provides a practical and efficient way to pick the
subset E′ of edges in subliner expected time O(pm). For more details see [33].

�

Expected Speedup: The expected speedup with respect to the triangle count-
ing task depends on the triangle counting subroutine that we use. If we use [2]
as our subrouting which is the fastest known algorithm the expected speedup is

p−
2ω

ω+1 , i.e., currently p−1.41 where ω currently is 2.371 [18]. As already outlined,

in practice p−
2ω

ω+1 , i.e., currently p−1.41, and p−2 respectively.

Discussion: This theorem states the important result that the estimator of
the number of triangles is concentrated around its expected value, which is equal
to the actual number of triangles t in the graph under mild conditions on the
triangle density of the graph. The mildness comes from condition (5): picking
p = 1, given that our graph is not triangle-free, i.e., ∆ ≥ 1, gives that the number
of triangles t in the graph has to satisfy t ≥ ∆ log6+γ n. This is a mild condition
on t since ∆ ≤ n and thus it suffices that t ≥ n log6+γ n (after all, we can always
add two dummy connected nodes that connect to every other node, as in Figure
1(a), even if in empirically ∆ is smaller than n). The critical quantity besides
the number of triangles t, is ∆. Intuitively, if the sparsification procedure throws
away the common edge of many triangles, the triangles in the resulting graph
may differ significantly from the original. A significant problem is the choice
of p for the sparsification. Conditions (5) and (6) tell us how small we can
afford to choose p, but the quantities involved, namely t and ∆, are unknown.
We discuss a practical algorithm using a doubling procedure in Section 4.4.
Furthermore, our method justifies significant speedups. For a graph G with
t ≥ n3/2+ε and ∆ ∼ n , we get p = n−1/2 implying a linear expected speedup
if we use a practical exact counting method as the node iterator. Finally, it is
worth pointing out that Triangle Sparsifier essentially outputs a sparse graph
H(V,E′, w) with w = 1/p for all edges e ∈ E′ which approximates G(V,E) with
respect to the count of triangles (a triangle formed by the edges (e1, e2, e3) in a
weighted graph counts for w(e1)w(e2)w(e3) unweighted triangles). As we shall
see in Section 6 Triangle Sparsifier is not recommended for weighted graphs.

716 Tsourakakis et al. Triangle Sparsifiers

Description Availability
SNAP http://snap.stanford.edu/

UF Sparse Matrix Collection http://www.cise.ufl.edu/research/sparse

Max Planck [38] http://socialnetworks.mpi-sws.org/

Table 1: Dataset sources.

4 Experimental Results

In this Section we present our experimental findings. Specifically, in Section 4.1
we describe the datasets we used, in Section 4.2 we give details with respect to
the experimental setup and in Section 4.3 the experimental results.

4.1 Datasets

The graphs we used with the exceptions of Livejournal-links and Flickr are avail-
able on the Web. Table 1 summarizes the data resources. We preprocessed the
graphs by first making them undirected and removing all self-loops. Further-
more, a common phenomenon was to have multiple edges in the edge file, i.e., a
file whose each line corresponds to an edge, despite the fact that the graphs were
claimed to be simple. Those multiple edges were removed. Table 2 summarizes
the datasets we used after the preprocessing.

Name (Abbr.) Nodes Edges Triangle Count
� AS-Skitter (AS) 1,696,415 11,095,298 28,769,868
?Flickr (FL) 1,861,232 15,555,040 548,658,705
?Livejournal-links (LJ) 5,284,457 48,709,772 310,876,909
?Orkut-links (OR) 3,072,626 116,586,585 621,963,073
?Soc-LiveJournal (SL) 4,847,571 42,851,237 285,730,264
?Youtube (YOU) 1,157,822 2,990,442 4,945,382
�Web-EDU (WE) 9,845,725 46,236,104 254,718,147
�Web-Google (WG) 875,713 3,852,985 11,385,529
�Wikipedia 2005/11 (W0511) 1,634,989 18,540,589 44,667,095
�Wikipedia 2006/9 (W0609) 2,983,494 35,048,115 84,018,183
�Wikipedia 2006/11 (W0611) 3,148,440 37,043,456 88,823,817
�Wikipedia 2007/2 (W0702) 3,566,907 42,375,911 102,434,918

Table 2: Datasets used in our experiments. Abbreviations are included. Symbol
� stands for Autonomous Systems graphs, ? for online social networks and �
for Web graphs. Notice that the networks with the highest triangle counts are
online social networks (Flickr, Livejournal, Orkut), verifying the folklore that
online social networks are abundant in triangles.

http://snap.stanford.edu/
http://www.cise.ufl.edu/research/sparse
http://socialnetworks.mpi-sws.org/

JGAA, 15(6) 703–726 (2011) 717

4.2 Experimental Setup

The experiments were performed on a single machine, with Intel Xeon CPU at
2.83 GHz, 6144KB cache size and and 50GB of main memory. The algorithm
was implemented in C++, and compiled using gcc version 4.1.2 and the -O3
optimization flag. Time was measured by taking the user time given by the
linux time command. IO times are included in that time since the amount of
memory operations performed in setting up the graph is non-trivial. However,
we use a modified IO routine that’s much faster than the standard C/C++
scanf. Furthermore, as we mentioned in Section 3 picking a random subset of
expected size p|S| from a set S can be done in expected sublinear time [33]. A
simple way to do this in practice is to generate the differences between indices
of entries retained. This allows us to sample in a sequential way and also results
in better cache performance. As a competitor we use an implementation of ours
of the 1 pass algorithm of [15, §2.2].

4.3 Experimental Results

Table 2 shows the count of triangles for each graph used in our experiments.
Notice that Orkut, Flickr and Livejournal graphs have ∼622M, 550M and 311M
triangles respectively. This confirms the folklore that online social networks
are abundant in triangles. Table 3 shows the results we obtain for p = 0.1
over 5 trials. All running times are reported in seconds. The first column
shows the running time for the exact counting algorithm over 5 runs. Standard
deviations are neglibible for the exact algorithm and therefore are not reported.
The second and third column show the error and running time averaged over
5 runs for each dataset (two decimal digits of accuracy). Standard deviations
are also included (three decimal digits of accuracy). The last column shows
the running time averaged over 5 runs for the 1-pass algorithm as stated in
[15, §2.2] and the standard deviations. For each dataset the number of samples
needed by the 1-pass algorithm was set to a value that achieves at most as good
accuracy as the ones achieved by our counting method. Specifically, for any
dataset, if α, β(%) are the errors obtained by our algorithm and the Buriol et
al. algorithm, we “tune” the number of samples in the latter algorithm in such
way that α ≤ β ≤ α+ 1%. Even by favoring in this way the 1-pass algorithm of
Buriol et al. [15], one can see that the running times achieved by our method
are consistently better. However, it is important to outline once again that our
method and other triangle counting methods can be combined. For example, in
[31] it was shown that Triangle Sparsifiers and other sampling methods can be
combined to obtain a superior performance both in practice and theoretically
by improving the sampling scheme of Buriol et al. [15]. This was achieved by
distinguish vertices into two subsets according to their degree and using two
sampling schemes, one for each subset [31]. We also tried other competitors,
but our running times outperform them significantly. For example, even the
exact counting method outperforms other approximate counting methods. As
we show in Section 4.4 smaller values of p values work as well and these can be

718 Tsourakakis et al. Triangle Sparsifiers

found by a simple doubling-like procedure.

Results
Exact Triangle Sparsifier Buriol et al. [15]

Avg. time Avg. err.% (std) Avg. time (std) Avg. time (std)
AS 4.45 2.60 (0.022) 0.79 (0.023) 2.72 (0.128)
FL 41.98 0.11 (0.003) 0.96 (0.014) 3.40 (0.175)
LJ 50.83 0.34 (0.001) 2.85 (0.054) 12.40 (0.250)
OR 202.01 0.60 (0.004) 5.60 (0.159) 11.71 (0.300)
SL 38.27 8.27 (0.006) 2.50 (0.032) 8.92 (0.115)
YOU 1.35 1.50 (0.050) 0.30 (0.002) 10.91 (0.130)
WE 8.50 0.70 (0.005) 2.79 (0.090) 6.56 (0.025)
WG 1.60 1.58 (0.011) 0.40 (0.004) 1.85 (0.047)
W0511 32.47 1.53 (0.010) 1.19 (0.020) 3.71 (0.038)
W0609 86.62 0.40 (0.055) 2.07 (0.014) 8.10 (0.040)
W0611 96.11 0.62 (0.008) 2.16 (0.042) 7.90 (0.090)
W0702 122.34 0.80 (0.015) 2.48 (0.012) 11.00 (0.205)

Table 3: Results of experiments averaged over 5 trials using p = 0.1. All
running times are reported in seconds. The first column shows the running
time for the exact counting algorithm averaged over 5 runs. The second and
third column show the error and running time averaged over 5 runs for each
dataset (two decimal digits of accuracy). Standard deviations are also included
(three decimal digits of accuracy). The last column shows the running time
averaged over 5 runs for the 1-pass algorithm as stated in [15, §2.2] and the
corresponding standard deviations. The number of samples for each dataset
was set to a value that achieves at most as good accuracy as the ones achieved
by our counting method. See Section 4.3 for all the details.

4.4 The “Doubling” Algorithm

As we saw in Section 3, setting optimally the parameter p requires knowledge of
the quantity we want to estimate, i.e., the number of triangles. To overcome this
problem we observe that when we have concentration, the squared coefficient of

variation Var[T]

E[T]2
is “small”. Furthermore, by the Bienayme-Chebyshev inequality

and by the median boosting trick [27] it suffices to sample {T1, . . . , Ts} where

s = O(Var[T]

E[T]2
1
ε2 ln 1

δ) in order to obtain a (1 ± ε) approximation E [T] = t with

probability at least 1-δ. Hence, one can set a desired value for the number
of samples s and of the failure probability δ and calculate the expected error

ε = O(
√

Var[T]

E[T]2
1
s ln 1

δ). If this value is significantly larger than the desired error

threshold then one increases p and repeats the same procedure until the stopping
criterion is satisfied. One way one can change p is to use the multiplicative rule
p ← cp, where c > 1 is a constant. For example, if c = 2 then we have a

JGAA, 15(6) 703–726 (2011) 719

doubling procedure. Notice that we’ve placed the word doubling in the title
of this section in quotes in order to emphasize that one may use any c > 1 to
change p from one round to the next.

For how many rounds can this procedure run? Let’s consider the realistic
scenario where one wishes to be optimistic and picks as an initial guess for
p a value p0 = n−α where α is a positive constant, e.g., α = 1/2. Let p∗
be the minimum value over all possible p with the property that for p∗ we
obtain a concentrated estimate of the true number of triangles. Clearly, p∗ ≤ 1
and hence the number of rounds performed by our procedure is less that r
where p0c

r = 1. Hence, for any constant c > 1 we obtain that the number
of rounds performed by our algorithm is O(log n). Furtermore, note that the
running time of the doubling procedure is dominated by the last iteration. To
see why, consider for simplicity the scenario where r + 1 rounds are needed to
deduce concentration, c =

√
2 and the use of the node-iterator algorithm to

count triangles in the triangle sparsifier. Then, the total running time shall be

p2
0

∑
v∈V (G) deg

2
v

(
1+2+. . .+2r−1+2r

)
. Finally, observe that 1+2+...+2r−1 =

O(2r). In practice, this procedure works even for small values of s. An instance
of this procedure with s = 2, δ = 1/100 and error threshold equal to 3% is
shown in Table 4.

p {T1, T2}
√

Var[T]

E[T]2
1
s ln 1

δ err(%)

0.01 {42, 398, 007&50, 920, 488} 0.1960 4.46
0.02 {42, 540, 941&43, 773, 753} 0.0307 3.38
0.04 {44, 573, 294&43, 398, 549} 0.0287 1.52

Table 4: Doubling procedure for the Wikipedia 2005 graph with 44,667,095
triangles.

5 Theoretical Ramifications

In Section 5.1 we investigate the performance of the Benczúr-Karger cut spar-
sifier and the Spielman-Srivastava spectral sparsifier with respect to triangle
counting.

5.1 Cut and Spectral Sparsifiers

Consider the graph G shown in Figure 1. The strong edge connectivity of
any edge in the graph is 2 and therefore the Benczúr-Karger algorithm does
not distinguish the importance of the edge e = (1, 2) with respect to triangle
counting. The Spielman-Srivastava sparsifier with probability 1 − o(1) throws
away the critical edge e = (1, 2) as the number of vertices n tends to infinity.
To prove this claim, we need use Foster’s theorem, see Section 2.4.3.

720 Tsourakakis et al. Triangle Sparsifiers

Figure 1: Graph with linear number O(n) of triangles.

Claim 2 The effective resistance R(1, 2) of the edge (1, 2) tends to 0 as n grows
to infinity, i.e., R(1, 2) = o(1). Furthermore, all other edges have constant
effective resistance.

Proof:
Using the in-series and in-parallel network simplification rules [12], the ef-

fective conductance of the edge (1, 2) is 1 +
∑n−2
i=1

1
2 = n

2 . Hence, the effective
resistance of the edge e = (1, 2) is 2/n, which also proves the first part of our
claim. By Foster’s theorem, the sum of the effective resistances of the edges of
G is n−1. Due to symmetry, we obtain that R(1,3) = R(2,3) = R(1,4) = R(2,4) =

. . . = R(1,n) = R(2,n) = Rn. Therefore we obtain 2
n + 2(n − 2)Rn = n − 1 →

Rn = n2−n−2
2n2−4n . Asymptotically as n→ +∞, Rn → 1

2 . �

Clearly, the Spielman-Srivastava sparsifier fails to capture the importance of
the edge (1, 2) with respect to triangle counting. Finding an easy-to-compute
quantity which allows a sparsification that preserves triangles more efficiently is
an interesting problem. It is worth outlining that our analysis does not exclude
effective resistances which can be computed very efficiently [32], but the use of
them as is typically done in the context of spectral sparsifiers.

6 Conclusions

In this paper, we introduce the notion of a triangle sparsifier, i.e., a sparse
graph which preserve the total number of triangles with respect to the input
graph G. This notion naturally introduces a new randomized algorithm for
counting triangles in a graph G, a problem with various real-world applications
as outlined in Section 1.

Using a theorem on the concentration of multivariate polynomials due to
Kim and Vu [29] we proved that under mild conditions on G and p our estimate
T is concentrated around t with high probability, thus making our algorithm a
reliable choice for counting triangles in large social networks with millions and
billions of edges. By choosing a straightforward triangle counting algorithm as

JGAA, 15(6) 703–726 (2011) 721

Figure 2: Weighted Graph

the node or the edge-iterator we obtain quadratic speedups 1
p2 . We can justify

significant speedups: for example if we know t ≥ n3/2+ε and assume ∆ ∼ n, we
get p = n−1/2 resulting in a O(n) speedup. As it was shown in [31], Triangle
Sparsifiers can also be used in combination with approximate triangle counting
methods to yield better practical and theoretical performance.

We believe that a tighter theoretical analysis is possible. Specifically we
conjecture that if t ≥ n log (n) we can obtain concentration using our method.
Also, our sampling scheme can be adapted to weighted graphs: multiply the
weight of sampled edge by 1

p and count weighted triangles. However this can
be problematic as the graph shown in Figure 2 indicates. Specifically, for a
sufficiently large w, throwing out any weighted edge results in an arbitrarily
bad estimate of the count of triangles. Finding a better sampling scheme for
weighted graphs is left as a problem for future work. Finally, finding an easy-
to-compute quantity which gives us an optimal way to sparsify the graph with
respect to triangles is an interesting research problem.

722 Tsourakakis et al. Triangle Sparsifiers

References

[1] Alon, N., Yossi, M., Szegedy, M.: The space complexity of approximating the
frequency moments. ACM Symposium on Theory of Computing (1996)

[2] Alon, N., Yuster, R., Zwick, U.: Finding and Counting Given Length Cycles.
Algorithmica, Volume 17, Number 3, 209–223 (1997)

[3] Alon, N., Kaufman, T., Krilevich, M., Ron, D.: Testing triangle-freeness in
general graphs Proceedings of the seventeenth annual ACM-SIAM sympo-
sium on Discrete algorithm (SODA), pp. 279-288 (2006)

[4] Avron, H.: Counting triangles in large graphs using randomized matrix trace
estimation. Workshop on Large-scale Data Mining: Theory and Applications
(2010)

[5] Bar-Yehuda, R. and Even, S.: On approximating a vertex cover for planar
graphs. Proceedings of the fourteenth annual ACM symposium on Theory
of computing, pp. 303-309 (1982)

[6] Bar-Yosseff, Z., Kumar, R., Sivakumar, D.: Reductions in streaming al-
gorithms, with an application to counting triangles in graphs. ACM-SIAM
Symposium on Discrete Algorithms (2010)

[7] Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient Semi-Streaming
Algorithms for Local Triangle Counting in Massive Graphs. ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (2008)

[8] Benczúr, A., Karger, D.: Approximating -t Minimum Cuts in Otilde;(2)
Time ACM Symposium on Theory of Computing, pp. 47-55 (1998)

[9] Benczúr, A., Karger, D.: Randomized Approximation Schemes for Cuts and
Flows in Capacitated Graphs. Arxiv Preprint, available at http://arxiv.

org/abs/cs.DS/0207078 (2002)

[10] Berry, J.W., Hendrickson, B., LaViolette, R., Phillips, C.A.: Tolerating
the Community Detection Resolution Limit with Edge Weighting. Arxiv
Preprint, available at http://arxiv.org/abs/0903.1072

[11] Bhamidi, S., Bresler, G., Sly, A.: Mixing Time of Exponential Random
Graphs., Proceedings of the 49th Annual IEEE Symposium on Foundations
of Computer Science, pp. 803-812, (2008)

[12] Bollobás, B.: Modern Graph Theory Springer Verlag (1998)

[13] Bonato, A., Hadi, N, Horn, P., Pralat, P., Wang, C.: Models of Online
Social Networks. Internet Mathematics, Vol. 6(3), 285-313, (2009)

[14] Broder, A.Z., Charikar, M., Frieze, A., Mitzenmacher, M.: Min-wise inde-
pendent permutations. ACM Symposium on Theory of Computing (1998)

http://arxiv.org/abs/cs.DS/0207078
http://arxiv.org/abs/cs.DS/0207078
http://arxiv.org/abs/0903.1072

JGAA, 15(6) 703–726 (2011) 723

[15] Buriol, L., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.:
Counting Triangles in Data Streams. Symposium on Principles of Database
Systems (2006)

[16] Chiba, N., Nishizeki, T.: Arboricity and Subgraph Listing Algorithms.
SIAM Journal on Computing, Vol. 14(1), pp. 210-223 (1985)

[17] Chung Graham, F., Lu, L., Vu, V.: The Spectra of Random Graphs with
Given Expected Degrees. Internet Mathematics, Vol.1(3) (2003)

[18] Coppersmith D., Winograd S.: Matrix multiplication via arithmetic pro-
gressions. ACM Symposium on Theory of Computing (1987)

[19] Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering
in Large Graphs and Matrices ACM Symposium on Discrete Algorithms
(1999)

[20] Eckmann, J.-P., Moses, E.: Curvature of co-links uncovers hidden thematic
layers in the World Wide Web. Proceedings of the National Academy of
Sciences (2002)

[21] Frank, O., Strauss, D.: Markov Graphs. Journal of the American Statistical
Association, Vol. 81(395), pp. 832-842 (1986)

[22] Foster, R.M.: The Average Impedance of an Electrical Network. Contri-
butions to Applied Mechanics (Reissner Anniversary Volume), pp. 333-340
(1949)

[23] Fudos, I., Hoffman, C.: A Graph-Constructive Approach to Solving Systems
of Geometric Constraints ACM Trans. Graph., Vol. 16, pp. 179-216 (1997)

[24] Heider, F.: Attitudes and Cognitive Organization Journal of Psychology,
Vol. 21, 107-112 (1946)

[25] Imrich, W., Klavzar, S., Mulder, H.M.: Median Graphs and Triangle-Free
Graphs SIAM Journal on Discrete Mathematics,12(1) pp. 111-118 (1999)

[26] Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. ACM Sympo-
sium on Theory of Computing (1977)

[27] Jerrum, M., Valiant, L., Vazirani, V.: Random generation of cominatorial
structures from a uniform distribution Theoretical Computer Science, Vol.
43, pp.169-188 (1986)

[28] Jowhari, H., Ghodsi, M.: New Streaming Algorithms for Counting Trian-
gles in Graphs. Computing and Combinatorics (2005)

[29] Kim, J.H., Vu, V.H: Concentration of multivariate polynomials and its ap-
plications. Combinatorica, Vol. 20(3), pp. 417-434 (2000)

724 Tsourakakis et al. Triangle Sparsifiers

[30] Kim, J. H., Vu, V. H.: Divide and conquer martingales and the number of
triangles in a random graph. Journal of Random Structures and Algorithms,
24(2), pp. 166-174 (2004)

[31] Kolountzakis, M.N., Miller, G.L., Peng, R., Tsourakakis, C.E.: Efficient
Triangle Counting in Large Graphs via Degree-based Vertex Partitioning.
7th Workshop on Algorithms and Models for the Web Graph, (2010)

[32] Koutis, I., Miller, G.L., Peng, R.: Solving SDD linear systems in time
Õ(m log n log 1/ε). Arxiv Preprint, available at http://arxiv.org/abs/

1102.4842

[33] Knuth, D.: Seminumerical Algorithms Addison-Wesley Professional; 3 edi-
tion (1997)

[34] Latapy, M.: Main-memory triangle computations for very large (sparse
(power-law)) graphs. Theoretical Computer Science, 407, pp. 458-473 (2008)

[35] Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and nega-
tive links in online social networks. International conference on World wide
web, pp. 641-650 (2010)

[36] Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolu-
tion of social networks. ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 462-470 (2008)

[37] Li, S., Armstrong, C.M., Bertin, N., Ge. H., Miltein,. S., Boxem, M., Vi-
dalain, P.O, Han, J.D., Chesneau, A., Hao, T., Goldberg, D., Li, N., Mar-
tinez, M., Rual, J.F., Lamesch, P., Xu, Lai, Tewari, M., Wong, S., Zhang,
L., Berriz, G., Jacotot, L., Vaglio, P., Reboul, J., Hirozane-Kishikawa, T.,
Li, Q., Gabel, H., Elewa, A., Baumgartner, B., Rose, D., Yu, H., Bosak,
S., Sequerra, R., Fraser, A., Mango, S., Saxton, W., Strome, S., Van Den
Heuvel, S., Piano, F., Vandenhaute, J., Sardet, C., Gerstein, M., Doucette-
Stamm, L., Gunsalus, K., Harper, J., Cusick, M., Roth, F. Hill, D., Vidal,
M.: A map of the interactome network of the metazoan C. elegans. Science,
Vol. 303, pp/ 540-543 (2004)

[38] Mislove, A., Massimiliano, M., Gummadi, K., Druschel, P., Bhattacharjee,
B.: Measurement and Analysis of Online Social Networks. Internet Mea-
surement Conference (2007)

[39] Newman, M. E. J. and Watts, D. J. and Strogatz, S.: Random graph models
of social networks. Proceedings of the National Academy of Sciences of the
United States of America, Vol. 99, pp. 2566-2572 (2002)

[40] Pagh, C., Tsourakakis, C.E.: Colorful Triangle Counting and a MapRe-
duce Implementation. Arxiv Preprint, available at http://arxiv.org/abs/
1103.6073

http://arxiv.org/abs/1102.4842
http://arxiv.org/abs/1102.4842
http://arxiv.org/abs/1103.6073
http://arxiv.org/abs/1103.6073

JGAA, 15(6) 703–726 (2011) 725

[41] Papadimitriou, C., Yannakakis, M.: The clique problem for planar graphs.
Information Processing Letters, 13, 131–133 (1981).

[42] Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to expo-
nential random graph (p*) models for social networks. Social Networks Jour-
nal, Special Section: Advances in Exponential Random Graph (p*) Models,
Vol. 29, pp. 173-191 (2007)

[43] Rougemont, J. and Hingamp, P: DNA microarray data and contextual anal-
ysis of correlation graphs. BMC Bioinformatics, Vol. 4 (2003)

[44] Schank, T., Wagner, D.: Finding, Counting and Listing all Triangles in
Large Graphs, An Experimental Study. Workshop on Experimental and Ef-
ficient Algorithms (2005)

[45] Schank, T., Wagner, D.: Approximating Clustering Coefficient and Tran-
sitivity. Journal of Graph Algorithms and Applications, Vol. 9, pp. 265-275
(2005)

[46] Spielman, D., Srivastava, N.: Graph Sparsification by Effective Resistances.
Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC), pp. 563-568 (2008)

[47] Spielman, D., Teng, S.H.: Spectral Sparsification of Graphs. Arxiv Preprint,
available at http://arxiv.org/abs/0808.4134

[48] Spinrad, J.P.: Efficient graph representations Fields Institute Monographs,
19, 2003

[49] Tao, T., Vu, V.H.: Additive Combinatorics. Cambridge Studies in Ad-
vanced Mathematics (2006)

[50] Tsourakakis, C.E.: Fast Counting of Triangles in Large Real Networks,
without counting: Algorithms and Laws. International Conference on Data
Mining (2008)

[51] Tsourakakis, C.E.: Counting Triangles Using Projections. Knowledge and
Information Systems (2011)

[52] Tsourakakis, C.E., Kang, U, Miller, G.L., Faloutsos, C.: Doulion: Counting
Triangles in Massive Graphs with a Coin. ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (2009)

[53] Tsourakakis, C.E., Drineas, P., Michelakis, E., Koutis, I., Faloutsos,
C.: Spectral Counting of Triangles via Element-Wise Sparsification and
Triangle-Based Link Recommendation. Advances in Social Networks Analy-
sis and Mining (2010)

[54] V.H. Vu, On the concentration of multivariate polynomials with small ex-
pectation. Random Structures and Algorithms, Vol. 16, pp. 344-363 (2000)

http://arxiv.org/abs/0808.4134

726 Tsourakakis et al. Triangle Sparsifiers

[55] Wasserman, S., Faust, K.: Social Network Analysis : Methods and Appli-
cations (Structural Analysis in the Social Sciences). Cambridge University
Press (1994)

[56] Wasserman, S., Pattison, P.: Logit models and logistic regressions for social
networks: I. An introduction to Markov graphs and p*. Psychometrika, Vol.
61, pp. 401-425 (1996)

[57] Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Na-
ture, Vol. 393, pp. 440-442 (1998)

[58] Wesler, H., Gleave, E., Fisher, D., Smith, M.: Visualizing the Signatures of
Social Roles in Online Discussion Groups. The Journal of Social Structure,
Vol. 8, (2007)

[59] Wimmer, A., Lewis, K.: Beyond and Below Racial Homophily: ERG Mod-
els of a Friendship Network Documented on Facebook. American Journal of
Sociology, Vol. 2, pp. 583–642 (2010)

[60] Vassilevska Williams, V., Williams, R.: Subcubic Equivalences between
Path, Matrix and Triangle Problems Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science, pp. 645-654 (2010)

[61] Wimmer, A., Lewis, K.: Beyond and Below Racial Homophily: ERG Mod-
els of a Friendship Network Documented on Facebook. American Journal of
Sociology, Vol. 2, pp. 583–642 (2010)

[62] Yook, S., Oltvai, Z., Barabasi, A.L.: Functional and topological charac-
terization of protein interaction networks. Proteomics, Vol. 4, pp. 928-942
(2004)

	Introduction
	Background
	Notation
	Applications
	Existing work
	Exact Counting
	Approximate Counting

	Theoretical Preliminaries
	Kim-Vu Concentration of Measure
	Graph Sparsifiers
	Foster's theorem

	Proposed Algorithm
	Experimental Results
	Datasets
	Experimental Setup
	Experimental Results
	The ``Doubling'' Algorithm

	Theoretical Ramifications
	Cut and Spectral Sparsifiers

	Conclusions

