
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 16, no. 3, pp. 701–728 (2012)
DOI: 10.7155/jgaa.00276

Proportional Contact Representations of Planar

Graphs

Md. Jawaherul Alam 1 Therese Biedl 2 Stefan Felsner 3

Michael Kaufmann 4 Stephen G. Kobourov 1

1Department of Computer Science, University of Arizona
2David R. Cheriton School of Computer Science, University of Waterloo

3Institut für Mathematik, Technische Universität Berlin
4Institut für Informatik, Universität Tübingen

Abstract

We study contact representations for planar graphs, with vertices rep-
resented by simple polygons and adjacencies represented by point-contacts
or side-contacts between the corresponding polygons. Specifically, we
consider proportional contact representations, where pre-specified vertex
weights must be represented by the areas of the corresponding polygons.
Natural optimization goals for such representations include minimizing
the complexity of the polygons, and the unused area. We describe al-
gorithms for proportional contact representations with optimal polygonal
complexity for general planar graphs and planar 2-segment graphs, which
include maximal outer-planar graphs and partial 2-trees.
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1 Introduction

For both theoretical and practical reasons, there is a large body of work about
representing planar graphs as contact graphs, where vertices are represented by
geometrical objects with edges corresponding to two objects touching in some
fashion. Typical classes of objects might be curves, line segments, or polygons.

In this paper we consider contact graphs with vertices represented by simple
polygons in the plane with disjoint interiors, and adjacencies represented by
point-contacts or side-contacts between corresponding polygons; see Fig. 1. In
the weighted version of the problem, the input is not only a planar graph G =
(V,E) but also a weight function w : V (G) → R+ that assigns a weight to each
vertex. A graph G admits a proportional contact representation with the weight
function w if there exists a contact representation of G, where the area of the
polygon for each vertex v of G is proportional to w(v). Such representations
have practical applications in cartography, VLSI Layout, and floor-planning.

Using adjacency of regions to represent edges in a graph can lead to a more
compelling visualization than drawing a straight edge between two points [6].
In such representations of planar graphs it is desirable, for aesthetic, practical
and cognitive reasons, to limit how complicated the polygons are. In practical
areas such as VLSI layout, it is also desirable to minimize the unused area in
the representation. With these considerations in mind, we study the problem
of constructing proportional point-contact and side-contact representations of
planar graphs with respect to the following parameters, partially taken from the
cartography-oriented literature, e.g. [22, 31] :

• complexity: maximum number of sides in a polygon representing a vertex;

• cartographic error: maxv∈V |A(v) − w(v)|/w(v), where A(v) is v’s area,
w(v) its weight;

• holes: total area of the representation that is not used by a polygon and
not adjacent to the unbounded face.

1.1 Related Work

Koebe’s theorem [25] is an early example of point-contact representation and
shows that a planar graph can be represented by touching circles. Any planar
graph also has a contact representation, where all the vertices are represented
by triangles [11] and with cubes in 3D [16]. Badent et al. [4] show that par-
tial planar 3-trees and some series-parallel graphs also have contact represen-
tations with homothetic triangles. Recently, Gonçalves et al. [18] proved that
any 3-connected planar graph and its dual can be simultaneously represented
by touching triangles, and pointed out that 4-connected planar graphs also have
contact representations with homothetic triangles.

While the above results deal with point-contacts, there is also related work
on the problem of constructing side-contact representations. Gansner et al. [14]
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Figure 1: A general planar graph (a), its proportional point-contact represen-
tation with 4-sided non-convex polygons (b), and with its proportional side-
contact representation with 7-sided polygons (c). A 2-tree (d), its proportional
point-contact representation with triangles (e), and its proportional side-contact
representation with trapezoids (f). A maximal outer-planar graph (g), its hole-
free proportional side-contact representations with triangles (h), and with 4-
sided convex polygons (i).
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show that any planar graph G has a side-contact representation with convex
hexagons. Moreover, they show that 6 sides are necessary if convexity is re-
quired. For maximal planar graphs, the representation obtained by the algo-
rithm in [14] is hole-free. Buchsbaum et al. [6] give an overview on the state
of the art concerning rectangle contact graphs. The characterization of graphs
admitting a hole-free side-contact representation with rectangles was obtained
by Kozḿiński and Kinnen [26] or in the dual setting by Ungar [30]. There
is a also a simple linear time algorithm for constructing triangle side-contact
representations for outer-planar graphs [17].

Note that in all the contact representation results mentioned above, the
areas of the circles or polygons are not considered. That is, these results deal
with the unweighted version of the problem. Furthermore, previous works on
side-contact representations rarely focused on the presence or absence of holes,
or the actual area taken by such holes. In our work we take both the area
of regions and the presence of holes into account. For example, we show that
representations by triangles or any convex shapes are not possible for certain
planar graphs with pre-specified weights.

Motivated by the application in VLSI layouts, contact representations of
planar graphs with rectilinear polygons and no holes have also been studied.
For example, Rahman et al. give an algorithm for hole-free proportional con-
tact representation with 8-sided rectilinear polygons for a special class of plane
graphs [28]. Another application of proportional contact representations can
be found in cartograms, or value-by-area maps. Here, the goal is to redraw
an existing geographic map so that a given weight function (e.g., population)
is represented by the area of each country. Algorithms by van Kreveld and
Speckmann [31] and Heilmann et al. [22] can realize graphs obtained from ge-
ographic maps with rectangular polygons and with zero or small cartographic
errors, but occasionally compromising either the number of sides or the adja-
cencies. De Berg et al. describe an algorithm for hole-free proportional contact
representation with at most 40 sides for an internally triangulated plane graph
G (and only 20 sides when G has four vertices on the exterior face and contains
no separating triangles) [8]. This was later improved to 34 sides [24], then to
12 sides [5], and then to 10 sides [1]. It is known that 8 sides are sometimes
necessary and always sufficient for the rectilinear unweighted case [32] and it
was recently shown that 8 sides are also sufficient for the rectilinear weighted
case [3].

1.2 Our Results

In this paper we study the problem of proportional contact representation of
planar graphs, with the goal to minimize the complexity of the polygons and
the cartographic error. The main results in our paper are optimal (with respect
to polygon complexity) algorithms for proportional contact representations for
general planar graphs, and 2-segment graphs1. (G is a 2-segment graph if it

1The conference version of this paper [2] only had a construction with cartographic error
for this class.
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Class of Graphs Convexity
Complexity

Lower Bound

Complexity

Upper Bound
Hole-Free

Type of

Contact

Planar no 4 4 no point

2-segment graphs yes 3∗ 3 no point

2-segment graphs yes 4∗∗ 4 no side

Maximal outer-planar yes 3/4† 3/4† yes side

Table 1: Entries in this table correspond to results proven in this paper, except
one marked (∗), which is trivial to see since any polygon with positive area
requires at least three sides, and another marked (∗∗), which follows from [17].
All the upper bound results here are obtained with algorithms that produce
no cartographic error. Maximal outer-planar graphs marked with (†) can be
represented with convex quadrilaterals if the outer-boundary has constant com-
plexity, or with triangles if the outer-boundary has linear complexity.

can be represented by assigning interior-disjoint line segments to vertices such
that line segments share a point if and only if the corresponding vertices are
adjacent, and no 3 line segments share a point.) This class contains interest-
ing subclasses such as partial 2-trees and outer-planar graphs. We say k-sided
polygons are sometimes necessary and always sufficient for representations of a
particular class of planar graphs when there is an algorithm to construct a rep-
resentation for any graph of this class with k-sided polygons and there is at least
one example of a graph in this class that requires a (non-degenerate) k-sided
polygons for any representation. Specifically, we show that: (a) 4-sided poly-
gons are sometimes necessary and always sufficient for a point-contact propor-
tional representation of planar graphs; (b) triangles are necessary and sufficient
for point-contact proportional representation of 2-segment graphs; (c) trape-
zoids are sometimes necessary and always sufficient for side-contact proportional
representation of 2-segment graphs; (d) triangles are necessary and sufficient
for hole-free side-contact proportional representation for maximal outer-planar
graphs, while convex quadrilaterals are sometimes necessary and always suf-
ficient if the outer-boundary has constant complexity. The main results are
summarized in Table 1.

The rest of the paper is organized as follows. In Section 2, we present some
terminology and background about canonical orders and Schnyder realizers.
In Section 3 we prove that 4-sided non-convex polygons are always sufficient
and sometimes necessary for proportional point-contact representation of planar
graphs. In Section 4, we describe algorithms for proportional point-contact and
side-contact representation of 2-segment graphs. Some of their subclasses allow
stronger results than the general class, this includes partial 2-trees and maximal
outer-planar graphs. In Section 5 we conclude with a brief discussion and some
open problems.
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2 Preliminaries

In a point-contact representation of a planar graph G = (V,E), we construct
a set P of closed simple interior-disjoint polygons with an isomorphism P :
V → P , where for any two vertices u, v ∈ V , the boundaries of P(u) and P(v)
touch through at least one contact point if and only if (u, v) is an edge. A side-
contact representation of a planar graph is defined analogously, where instead
of a contact point, we have a contact side between P(u) and P(v), which is a
non-degenerate line segment in the boundary of both. A hole of such a contact
representation is a non-empty region that does not belong to any P (v) and is
not part of the infinite region.

Let Γ be a contact (point-contact or side-contact) representation of G. We
can then place a point pv inside each P (v) and for any edge (v, w) connect pv
and pw via the contact point of P (v) and P (w). This gives a planar drawing
of G. In this drawing, any face f of G contains inside either a point where all
polygons of vertices on f meet, or one (or more) holes.

In the weighted version of the problem, the input also includes a weight
function w : V (G) → R+ that assigns a positive weight to each vertex of G.
We say that G admits a proportional contact representation with the weight
function w if there exists a contact representation of G such that the area of
the polygon for each vertex v of G is proportional to its weight w(v). We define
the complexity of a polygon as the number of sides it has. In this paper, we also
consider a polygon with less than k sides to be a (degenerate) k-sided polygon
for convenience.

A plane graph is a planar graph with a fixed embedding. A plane graph
is fully triangulated or maximally planar if all its faces, including the outer-
face, are triangles. Both the concept of “canonical order” [12] and “Schnyder
realizer” [29] are defined for fully triangulated plane graphs in the context of
straight-line drawings of planar graphs on an integer grid. We briefly review
the two concepts below:

Let G = (V,E) be a fully triangulated plane graph with outer-face u, v, w
in clockwise order. Then G has a canonical order of the vertices v1 = u, v2 = v,
v3, . . ., vn = w, |V | = n, which satisfies for every 4 ≤ i ≤ n:

• The subgraph Gi−1 ⊆ G induced by v1, v2, . . ., vi−1 is biconnected, and
the boundary of its outer-face is a cycle Ci−1 containing the edge (u, v).

• The vertex vi is in the exterior face of Gi−1, and its neighbors in Gi−1

form an (at least 2-element) subinterval of the path Ci−1 − (u, v).

A Schnyder realizer of a fully triangulated graph G is a partition of the
interior edges of G into three sets T1, T2 and T3 of directed edges such that for
each interior vertex v, the following conditions hold:

• v has out-degree exactly one in each of T1, T2 and T3,

• the counterclockwise order of the edges incident to v is: entering T1, leav-
ing T2, entering T3, leaving T1, entering T2, leaving T3.
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The first condition implies that each Ti, i = 1, 2, 3 defines a tree rooted at
exactly one exterior vertex and containing all the interior vertices such that
the edges are directed towards the root. The following by now classical lemma
shows a profound connection between canonical orders and Schnyder realizers.

Lemma 1 Let G be a fully triangulated plane graph. Then a canonical order of
the vertices of G defines a Schnyder realizer of G, where the outgoing edges of a
vertex v are to its first and last predecessor (where “first” is w.r.t. the clockwise
order around v), and to its highest-numbered successor.

3 Proportional Point-Contact Representations

Recall that any planar graph can be represented by touching triangles. From
this, it is easy to create proportional point-contact representations: Scale the
representation such that the triangle T (v) of vertex v has area at least w(v),
and then “carve away” a triangular part H of T (v) near a corner to achieve the
correct area. Now the new polygon has six corners with two of them overlapping
with each other. This can be avoided by moving these two overlapped corners
a small distance away from each other and changing the area of H accordingly.
So we can easily achieve 6-sided representations.

In this section, we create point-contact representations with the optimal
number of sides. Indeed, we show that 4-sided non-convex polygons always
sufficient for a proportional contact representation of a planar graph. This is
quite easy to do for 2-segment graphs (essentially by adding a small triangle at
one end of the segment), but we show this here for all planar graphs.

We first describe an algorithm to obtain proportional point-contact repre-
sentations of planar graphs using 4-sided non-convex polygons. We then show
that there exists a planar graph with a given weight function that does not
admit a proportional point-contact representation with convex polygons, thus
making our 4-sided construction optimal.

Theorem 1 Let G = (V,E) be a planar graph and let w : V → R+ be a
weight function. Then G admits a proportional point-contact representation
with respect to w in which each vertex of V is represented by a 4-sided polygon.
It can be found in linear time.2

Proof: We first take a planar embedding of G and assume that it is fully
triangulated, for if it is not, we can add dummy vertices (and edges to these
vertices) to make it so, and later remove those dummy vertices from the obtained
proportional contact representation.

Assume (after some scaling) that w(v) ≤ 1/n2 for all v ∈ V and fix an arbi-
trary outer-face. We construct the drawing incrementally, following a canonical

2 In this paper, we assume the real RAM model, i.e., any arithmetic operation, even involv-
ing arbitrarily small coordinates, can be done in constant time. Of course this is unrealistic.
It would be of interest whether the size of coordinates can be bounded polynomially, but this
remains open.
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Figure 2: (a) The canonical order and Ti (marked by labels); (b) the placement
of 1,2,n.

ordering v1, . . . , vn. We prescribe what the polygon assigned to j looks like be-
fore even placing it (here and in the rest of the paper we use j as a shorthand for
vj). So let T1, T2, T3 be the Schnyder realizer defined by the canonical ordering,
where T1 is rooted at 1, T2 is rooted at 2 and T3 is rooted at n; see Fig. 2. Let
Φi(j) be the parent of j in tree Ti.

It is easy to show that T−1
2 ∪T1 is an acyclic graph on the vertex set V −{n},

where T−1
2 is the tree T2 with the direction of all its edges reversed. For every

vertex j 6= n, let π(j) be the index of j in a topological order of this graph. Then
n ≥ π(Φ1(j)) > π(j) > π(Φ2(j)) ≥ 1. Now for every vertex j 6= 1, 2, n, we define
the spike S(j) to be a 4-sided polygon with one reflex vertex. One segment (the
base) is horizontal with y-coordinate j. Its length will be determined later, but
it will always be at least 2/n2 ≥ 2w(j). From the left endpoint of the base, the
spike continues with the upward segment, which has slope π(j) and up to its tip
which has y-coordinate y = Φ3(j). Next comes the downward segment until the
reflex vertex, and from there to the right endpoint of the base; see Fig. 3(a).
The placement of the reflex vertex is arbitrary, as long as the resulting shape has
area w(j) and the down-segment has positive slope. Note that since the base
has length ≥ 2w(j) and y-coordinate j, the reflex vertex will have y-coordinate
at most j + 1. We first place 1, 2, n, and then add 3, . . . , n− 1 (in this order):

• Vertex 1 is represented by a triangle S(1) whose base has length 2w(1)/(n−
1), placed arbitrarily with y-coordinate 1. The tip of S(1) has y-coordinate
n.

• Vertex 2 is represented by a triangle S(2) whose base has length 2w(2)/(n−
2), placed at y-coordinate 2 and with its left endpoint abutting S(1). The
tip of S(2) has y-coordinate n.

• Vertex n is represented by a triangle whose base is at y-coordinate n and
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Figure 3: (a) Adding j; (b) computing the width of the base.

long enough to cover the tips of S(1) and S(2). We choose the height of
S(n) such that the area is correct.

We maintain the following invariant: For j ≥ 2, after vertex j has been
placed, the horizontal line with y-coordinate j + 1 intersects only the spikes of
the vertices on the outer-face of Gj , and in the order in which they occur on
the outer-face.

To place j ≥ 3, we place the base of S(j) with y-coordinate j, and extend it
from the down-segment of Φ1(j) to the up-segment of Φ2(j). Recall that Φ2(j)
and Φ1(j) are exactly the first and last predecessor of j, and j = Φ3(i) for all
other predecessors i 6= j. Hence S(j) touches S(Φ1(j)) and S(Φ2(j)) at the
ends of the base, and all other predecessors i of j have their tips at the base.
Note that this creates a contact between j and all its predecessors, as desired.
The rest of S(j) is then as described above. It is easy to verify the invariant,
and therefore S(j) does not intersect any other spikes.

To see that the base of S(j) has length ≥ 2/n2 as required, let pℓ and pr
be its left and right endpoints, and sℓ and sr be the other segments containing
them. Imagine that we extend sℓ and sr until they meet in a point p. Since sr
contains a point with y-coordinate ≤ j − 1 (at the base of S(Φ2(j)) ), triangle
∆{p, pℓ, pr} has height h ≥ 1; see Fig. 3.

Let t = π(vj) be the slope of the up-segment of S(vj). Since π(Φ2(vj)) <
π(vj) = t, we have that sr has slope at most t− 1 and x(pr) ≥ x(p) + h

t−1 . On
the other hand, the slope of sℓ is positive by construction, and must exceed the
slope of the up-segment of Φ1(vj), which has slope π(Φ1(vj)) > π(vj) = t. So
sℓ has slope ≥ t+ 1 and x(pℓ) ≤ x(p) + h

t+1 . Therefore,

x(pr)− x(pℓ) ≥
h

t− 1
−

h

t+ 1
=

h((t+ 1)− (t− 1))

t2 − 1
≥

2h

t2
≥

2

n2

as desired. Therefore the base of S(j) is wide enough, which shows the correct-
ness of our construction.
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It remains to analyze the run-time of the algorithm implicit in our construc-
tive proof. Computing the Schnyder decomposition can be done in linear time.
We claim that processing vertex j also takes constant time; the claim then fol-
lows. Note that the base of S(j) is already fixed when handling j, since Φ1(j)
and Φ2(j) are placed already, and we only need to compute the intersection of
their polygons with the horizontal line with y-coordinate j. This also fixes the
tip of S(j). All that remains to do is hence to find an appropriate point r for
the reflex vertex. Let ℓ be the line from the tip to the right end of the base of
S(j), and let C be the convex hull of S(j) (i.e., the triangle defined by the tip
and the base of S(j).) If C has area A, then r must have height 2(A−w(v))/||ℓ||
over ℓ. Draw the line ℓ′ parallel to ℓ at that distance. Also draw the vertical
line ℓ′′ through the tip of S(j). Any point that is on ℓ′, to the left of ℓ′′ and
inside C is suitable for r, and such a point exists by the above discussion of
correctness. Hence finding r takes a constant number of arithmetic operations,
and the algorithm to find the contact representation takes linear time. �

Our construction used non-convex shapes. Lemma 2 shows that this is some-
times required.

Lemma 2 There exists a planar graph and a weight function such that the
graph does not admit a proportional point-contact representation, with respect
to the weight function, with convex shapes for all vertices.

Proof: We aim to show that the graph in Fig. 4(a) has no proportional rep-
resentation with convex polygons if the small vertices (a0, a1, a2, b) have weight
δ and the larger vertices (c0, c1, c2, d) have weight D > 3δ. Assume for contra-
diction that we had such a representation. Note that this graph is 3-connected
and all faces of this graph are isomorphic (even when taking vertex weights into
account), so all planar embeddings of it are equivalent. We may assume there-
fore that d is incident to the outer-face. We will focus now on the sub-graph
defined by a0, a1, a2 and its interior. Fig. 4(b) and (c) illustrate the notation
for the following argument.

For i = 0, 1, 2, let pi be a contact point between P(ai) and P(ai+1). (All
additions and subtractions in this proof are modulo 3.) Let T0 = ∆{p0, p1, p2}
be the triangle spanned by p0, p1 and p2. Further, let qi be a point of contact
between P(ai) and P(b). Let Li be the line parallel to pi−1pi that passes through
qi, and let Hi be the half-space supported by Li that contains pi−1pi. The lines
L0, L1, L2 define a triangle T1 with corners p′0, p

′
1, p

′
2 where p′i is the corner of

T1 corresponding to the corner pi of T0.
Observe that triangle ∆{p0, p1, q1} is a subset of P(a1) by convexity, so it

has area at most δ. The trapezoid T0 ∩ H1 has less than twice the area of
∆{p0, p1, q1}, so it has area at most 2δ. Since the triangle ∆{p1, q2, q1} has to
accommodate P(c0) it has area at least D > 3δ. This implies that q2 6∈ T0∩H1.
Analogous arguments show that for any i 6= j, qi is not inside T0 ∩Hj . Hence,
qi is on Li between p′i and p′i−1. The generic situation is illustrated in Fig. 4(c).

Now consider the triangle ∆{p1, p
′
1, q1}: it has the same height and a base

that is no larger than that of ∆{p0, p1, q1}, so the area of ∆{p1, p
′
1, q1} is at
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most δ. Similarly, one can show that triangle ∆{p1, q2, p
′
1} has area at most δ.

Since the triangle ∆{p1, q2, q1} contains P(c0) it has area at least D. There-
fore triangle ∆{p′1, q2, q1} = ∆{p1, q2, q1}−∆{p1, q2, p

′
1}−∆{p1, p

′
1, q1} has area

at leastD−δ−δ > δ (by choice ofD > 3δ.) Similarly, one can show that triangle
∆{p′2, q0, q2} and triangle ∆{p′0, q1, q0} have area strictly greater than δ.

Define T2 to be the triangle ∆{q0, q1, q2}, and observe that T2 ⊆ P(b), and
hence T2 has area at most δ. But now we have a triangle T2 of area at most δ
that is circumscribed by a triangle T1 such that the three triangles of T1−T2 each
have area strictly greater than δ. This is impossible due to a classic geometric
result, which states that when a triangle T2 is inscribed in another triangle T1,
then the area of T2 is at least as much as the minimum of the areas of the three
triangles in T1 − T2. For details, see e.g. [13]. �

Lemma 2 implies that 3-sided polygons are not always sufficient for propor-
tional contact representations of planar graphs. On the other hand, Theorem
1 implies that any planar graph has a proportional contact representation with
any given weight function on the vertices so that each of the vertices is rep-
resented by a non-convex 4-sided polygon. Summarizing these two results we
have the following theorem.

Theorem 2 4-sided non-convex polygons are always sufficient and sometimes
necessary for proportional point-contact representation of a planar graph with a
given weight function on the vertices.

4 Subclasses of Planar Graphs with Convex Rep-

resentations

In this section we address the problem of proportional contact representations
with convex polygons of low complexity. The lower bound in Lemma 2 shows
that for some planar triangulations, the complexity in any proportional contact
representation must be at least 4 and the polygons must be non-convex. We
hence focus on planar graphs with fewer edges.

We first give some constructions for so-called 2-segment graphs and then dis-
cuss what these graphs are and which well-known subclasses of planar graphs
(such as series-parallel graphs and triangle-free planar graphs) fall into them. Fi-
nally we give an entirely different construction for maximal outer-planar graphs,
which (as opposed to all previous constructions) gives hole-free representations.

4.1 2-segment graphs

Call a planar graph a 2-segment graph if it can be represented by assigning
interior-disjoint line segments to vertices such that two line segments share
a point if and only if the corresponding vertices are adjacent, and no 3 line
segments share a point; see Fig. 5(a)–(b).

Given a 2-segment representation Γ of a graph G, we can easily construct
a side-contact representation for G by giving an arbitrary thickness to each
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segment of Γ. This is a side-contact representation and uses convex shapes. It
also seems intuitive that we can choose the thickness suitable so that weights
of vertices are respected. However, choosing the thickness is non-trivial for two
reasons: we must be careful not to make segments too thick (and hence created
unwanted adjacencies), and thickened segments may overlap, and removing such
overlap might create error unless we are very careful about how we thicken the
segments.

Let Γ be a 2-segment representation of G, with vertex v represented by line
segment ℓ(v). After possible rotation, we may assume that Γ has no horizontal
line segment, hence every line segment has a well-defined left and right side and
top and bottom endpoint. After lengthening segments, if necessary, we may also
assume that no two line segments end at the same point. So that if two line
segments share a point, then one of them ends on either the right or the left
side of the other.

Lemma 3 There exists an order v1, . . . , vn of the vertices in G such that for
any i, the right side of ℓ(vi) contains only ends of neighbors vj with j > i.

Proof: It is enough to show that there is an “unobstructed” segment ℓ, i.e.,
a segment for which no other segment ends on the right side. We then set vn
to be the vertex belonging to ℓ, and obtain the complete ordering by induction
after removing ℓ.

To find an unobstructed segment look at the scene from (∞, 0) and order
the visible ends of segments by increasing y-coordinate. This yields a sequence
of top and bottom ends of segments. The first point in the sequence is a bottom
endpoint and the last one is a top endpoint. Hence there are two consecutive
endpoints p1, p2 for which p1 is a bottom endpoint and p2 a top endpoint. Since
the segments in Γ do not cross, this pair of points is the pair of endpoints of an
unobstructed segment. �

Theorem 3 Let G = (V,E) be a 2-segment graph and let w : V → R+ be
a weight function. Then G admits a proportional point-contact representation
with respect to w in which each vertex of V is represented by a trapezoid. Given
a 2-segment representation of G, such a contact representation can be found in
O(n logn) time.

Proof: As before we presume that no line segment is horizontal and no two
line segments end in a point. Let δ > 0 be the minimum feature size of this
segment representation, i.e., the smallest distance between a line segment ℓ and
an endpoint of another line segment that does not end at ℓ. Next, let α be the
smallest angle between two line segments where one ends at the other. Scale
the entire drawing, if needed, such that δ > 2 and ||ℓ(v)|| ≥ w(v) + 2

sinα + 1
tanα

for all vertices v.
Compute the sequence v1, . . . , vn of vertices such that the right side of ℓ(vi)

contains only endpoints of ℓ(vj) for j > i. We thicken vertices in order v1, . . . , vn.

2A point is visible from (∞, 0) when the line segment between these two points does not
cross any segments.
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Figure 5: (a) A 2-segment graph; (b) a representation with line segments; the
numbers indicate a suitable vertex order; (c) converting ℓ(vi) into a trapezoid
T (vi) and clipping ℓ(vj). The indicated angles are all at least α, hence the
off-set is at most 1, and at most 1

sinα is cut off ℓ(vj).

At the time of handling vi, we have a contact representation where each vh, h < i
is represented as a trapezoid T (vh) of area w(vh), while each vj , j ≥ i is repre-
sented as a line segment that is a part of ℓ(vj) (but may have been shortened
a bit). We will guarantee in the following that ℓ(vj) has been shortened by at
most 1

sinα at each end, so that it still has length at least w(vj) +
1

tanα .

To thicken vi, off-set ℓ(vi) by moving a copy of it to the right in parallel while
shortening/lengthening it so that it still touches the same segments/trapezoids
as it did before. We choose the distance d for off-setting such that the trapezoid
T (vi) between the off-set line and ℓ(vi) has area w(vi). In particular, observe
that T (vi) has a base of length ||ℓ(vi)|| ≥ w(vi) +

1
tanα and the angles at the

base are at least α. Then the length of the segment parallel to ℓ(vi) is at least
(||ℓ(vi)|| − 2 d

tanα ) and the area of the newly formed trapezoid is d(||ℓ(vi)|| −
d

tanα ) ≥ d(w(vi) +
1

tanα − d
tanα ). Therefore, the required off-set d is at most

1 < δ/2, which implies that in the final representation no trapezoids intersect
unless their line segments touched.

This yields the desired contact representation, except that a line segment
ℓ(vj) that ended on the right side of ℓ(vi) now intersect T (vi). By the chosen
vertex order, j > i, ℓ(vj) has not been thickened into a trapezoid yet. We clip
ℓ(vj) so that it now ends on the right side of T (vi). Since T (vi) had height
at most 1, and ℓ(vj) attaches to ℓ(vi) with angle at least α, this clips at most

1
sinα off ℓ(vj) as desired. No segments can attach at ℓ(vj) in the clipped-off
part, since it is all within distance 1 < δ/2 of ℓ(vi). So we obtain the contacted
representation with v1, . . . , vi thickened, and the entire proportional contact
representation can be built by induction.

All operations used to compute this contact representation take constant
time per vertex, except for the computation of δ. It is easy to find the two closest
contacts of a 2-segment representation in linear time. In general, however, the
feature size may be determined by the distance from the end of one segment
to an interior point of another segment. Determining these distances in cases
where we have non-convex faces in the representation is more intricate can be
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done with a sweep-line algorithm in O(n log n) time.3 �

Theorem 4 4-sided convex polygons are always sufficient and sometimes nec-
essary for proportional side-contact representation of a 2-segment graph with a
given weight function on the vertices. Given a 2-segment representation of G,
such a contact representation can be found in O(n log n) time.

Proof: The sufficiency and the running time for the algorithm (assuming that
a 2-segment representation is given) have been discussed before.

To establish necessity, consider the graph K2,5. This is a 2-segment graph.
In this graph two vertices have five common neighbors, but as was proved in [17],
in any side-contact representation with triangles, any pair of vertices has at most
four common neighbors. Hence this graph has no side-contact representation
with triangles, let alone one that respects the weights. Another, smaller, ex-
ample consists of the graph obtained from K2,4 by adding an edge between the
vertices v1, v2 of the partition of size two. This graph is a 2-segment graph.
The two vertices v1, v2 have four common neighbors, but as was proved in [17],
in any side-contact representation with triangles, any pair of adjacent vertices
has at most three common neighbors. So again this graph has no side-contact
representation with triangles. �

If we switch from side-contact representations to point-contact representa-
tions, however, we can reduce the complexity of the regions from four to three.
Specifically, we can replace line-segments by triangles.

The construction of the triangle P (v) of a vertex v can be done very much
like the construction of the trapezoids in the previous proof. Instead of taking
a parallel shift of the segment ℓ(v) we now fix the lower endpoint and rotate a
copy of ℓ(v) clockwise, lengthening/shortening it as needed to maintain contact
with the neighbor, until the area of the triangle between the two copies of ℓ(v)
is w(v). Then clip neighbors that ended on the right side of ℓ(v) as before. Note
that this construction guarantees that at least one half of the edges of G are
realized by side contacts.

Theorem 5 Triangles are always sufficient (and of course necessary) for a pro-
portional point-contact representation of a 2-segment graph with a given weight
function on the vertices. Given a 2-segment representation of G, such a contact
representation can be found in O(n log n) time.

4.1.1 Constructing 2-segment representations

The constructions for Theorem 4 and 5 are based on a 2-segment representa-
tion. In this subsection we review the characterization of 2-segment graphs and
discuss issues of constructing such a representation.

3A lower bound δ′ for the minimum feature size can be computed in linear time using
Chazelle’s triangulation algorithm for polygons [7]. Since Chazelle’s algorithm is rather com-
plex and the resulting δ′ can be arbitrarily smaller than the true δ we stick to the O(n logn)
time bound.
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Thomassen presented the characterization (Theorem 6) of 2-segment graphs
at Graph Drawing 1993 but never published his proof. A proof of the theorem
is part of [10].

The characterization theorem together with results by Lee and Streinu imply
that one can test in quadratic time whether a given graph is a 2-segment graph.
In contrast, Hliněný [23] showed that the recognition of general contact graphs
of segments is NP-complete.

Theorem 6 [10] A planar graph G = (V,E) is a 2-segment graph if and only
if it is (2, 3)-sparse, i.e., for any W ⊆ V the set E[W ] of edges induced by W
must satisfy |E[W ]| ≤ 2|W | − 3.

The necessity is quite straightforward to see. Let S be the set of segments
of a 2-segment representation of G. For W ⊂ V let XW be the set of end-points
of segments in S corresponding to vertices of W . Since we have a 2-segment
representation we may assume that |XW | = 2|W |. There is an injection φ from
edges in E[W ] to points in XW , but points belonging to the convex hull of XW

cannot be in the image of φ. Since the convex hull contains at least three points
we get |E[W ]| ≤ |XW | − 3 = 2|W | − 3. So if G is a 2-segment graph, then it is
(2, 3)-sparse.

Below we give a new proof of the sufficiency, which has three advantages:
(a) It is shorter and more direct than the proof in [10], (b) it uses an interesting
detour into rigidity theory to prove the result, and most importantly (c) it is
constructive and allows us to construct a 2-segment representation in quadratic
time.

Theorem 7 Given a planar graph G, we can test in quadratic time whether it
is a 2-segment graph, and if so, construct a 2-segment representation.

Proof: We will give an algorithm that either detects that G is not (2, 3)-
sparse (which by Theorem 6 means it is not a 2-segment graph), or construct
a 2-segment representation of G in quadratic time. This implies that every
(2, 3)-sparse graph is a 2-segment graph, i.e., the sufficiency for Theorem 6.

We need some prerequisites. A Laman graph (also called a (2, 3)-tight graph)
is a (2, 3)-sparse graph with the maximum number (2n − 3) of edges. Laman
graphs are of interest in rigidity-theory, see e.g. [15, 19]. Laman graphs admit
a Henneberg construction, i.e., an ordering v1, . . . , vn of the vertices such that if
Gi is the graph induced by the vertices v1, . . . , vi then G3 is a triangle and Gi

is obtained from Gi−1 by one of the following two operations:

(H1) Choose two vertices x, y from Gi−1 and add vi together with the edges
(vi, x) and (vi, y).

(H2) Choose an edge (x, y) and a third vertex z from Gi−1, remove (x, y) and
add vi together with the three edges (vi, x), (vi, y), and (vi, z).

In [20] it is shown that planar Laman graphs admit a planar Henneberg
construction, in the sense that the graph is constructed together with a plane
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straight-line embedding and vertices stay at their position once they have been
inserted.

Now let G be a planar graph. First apply the algorithm by Lee and Streinu
[27] to test in quadratic time whether G is a (2, 3)-sparse graph. If not, then we
are done, so presume in the following that G is (2, 3)-sparse.

Claim: We can add edges to G such that the resulting graph G′ is a planar
Laman graph. Proof of Claim: Find the components of G, which are the
maximal subgraphs that are (2, 3)-tight. From [27], it is known that components
are a partition of the edges and two components share at most one vertex. If G
has only one component, then G is a Laman graph and we are done. Otherwise,
find a face f with three consecutive vertices v1, v2, v3 such that edges (v1, v2)
and (v2, v3) belong to different components C1 and C2. Then no component C
contains both v1 and v3, otherwise C ∪{v2} would be an even bigger (2, 3)-tight
graph, contradicting the definition of component. Therefore, the pair (v1, v3)
is not an edge of the graph. Add edge (v1, v3); this maintains planarity. Also,
the resulting graph is again (2, 3)-sparse since the endpoints of the new edge
did not reside within one component. Finally, the components of the resulting
graph are the same as before, except that (as a simple counting-argument shows)
C1 ∪C2 ∪ (v1, v3) becomes one new component. Hence the new graph has fewer
components and the claim follows by induction.

Observe that the edges in the above claim can be found in quadratic time:
We once compute components with the algorithm of [27], and then spend at most
O(n) time per added edge to find the edge to add and to update components.

So in the following we will create a 2-segment representation of the planar
supergraph G′ that is a Laman-graph; we can obtain one for G from it by
retracting segments at the added edges. Since G′ is a Laman-graph, it has a
Henneberg sequence G3, . . . , Gn (which we can find with the algorithm of Lee
and Streinu in quadratic time.) We build the 2-segment representation following
this sequence. Starting from three pairwise touching segments representing G3,
we add segments one by one. For the induction we need the invariant that after
adding the ith segment si we have a 2-segment representation of Gi for which
all cells (connected components that are not on the infinite face) are convex.
Moreover, there is a correspondence between the cells and the interior faces of
Gi which preserves edges, i.e., if (x, y) is an edge of the face, then one of the
corners of the corresponding cell is a contact between sx and sy. Fig. 6 indicates
how to add segment si in the cases where vi is added by H1, resp. H2. It is
easy to see that the invariant for the induction is maintained.

Directly from the construction it should be clear that we can find the 2-
segment representation (given the Henneberg sequence) in linear time. So the
running time is dominated by making the graph into a planar Laman graph and
finding the Henneberg sequence, which takes O(n2) time. �
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Figure 6: The addition of segment si.

4.1.2 Subclasses of 2-segment graphs

Planar and triangle-free

Let G be planar and triangle-free. Then m ≤ 2n − 4 by the usual counting-
argument using Euler’s formula and since every face has at least 4 edges on it.
By Theorem 6, hence G is a 2-segment graph. (This was already known by a
direct construction that uses only three slopes, see [9].)

Planar bipartite

Planar bipartite graphs are a subclass of planar triangle-free graphs, in partic-
ular they are 2-segment graphs. In fact, the segments can be restricted to be
horizontal or vertical [21], and the segments can be found in linear time and have
minimum feature size 1. Hence for planar bipartite graphs, we can construct in
linear time proportional side-contact representations with trapezoids. In fact,
the trapezoids used in such a representation are rectangles. On the other hand,
side-contact representations with triangles are not possible since K2,5 does not
have one, as discussed in Theorem 4.

Planar 4-connected 3-colorable

Any 4-connected 3-colorable planar graph is also a 2-segment graph [10]. By
Theorem 7 we can find such a 2-segment representation, and hence the propor-
tional contact representations in quadratic time.

Planar 2-shellable

A graph G is 2-shellable if G has a vertex order v1, . . . , vn such that for i ≥
3 vertex vi has at most two neighbors in v1, . . . , vi−1. (Other names in the
literature for such graphs include 2-degenerate graphs, 2-strippable graphs, and
2-regular acyclic orientable graphs.). From the definition it follows that a 2-
shellable graph has at most 2n− 3 edges. Since the property is hereditary, the
class is (2, 3)-sparse. By Theorem 7 we can find a 2-segment representation,
and hence the proportional contact representations of 2-shellable planar graphs
in quadratic time.
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Partial 2-trees

A 2-tree is defined as follows: It is either an edge or a graph G with a vertex
v of degree two in G such that G − v is a 2-tree and the neighbors of v are
adjacent. A partial 2-tree is a subgraph of a 2-tree. Every partial 2-tree is
planar. Partial 2-trees are the same as series-parallel graphs and include all
outer-planar graphs.

Partial 2-trees are 2-shellable, hence 2-segment graphs. However, we can
construct the 2-segment representation for them more efficiently.

Let G be a partial 2-tree. It is well-known that we can find in linear time a
supergraph G′ of G that is a 2-tree, and with it an elimination order v1, . . . , vn,
where for any i ≥ 3, vertex vi has exactly two earlier neighbors and they are
adjacent. In the following we review the very simple construction of a 2-segment
representation of G′.

Lemma 4 Let G′ be a 2-tree with vertex elimination order v1, . . . , vn. Then G′

has a 2-segment representation with convex interior faces and positive feature
size. Moreover, for any i line segment ℓ(vi) ends at the line segments of the
predecessors of vi. It can be found in linear time.

Proof: Vertices {v1, v2, v3} form a triangle and it is easy to find three line
segments for them that satisfy the claim. See Fig. 7. Now consider vi, i ≥ 4
and presume we found line segments for v1, . . . , vi−1 already. Let vh, vj be the
predecessors of vi, h < j. By definition of a 2-tree edge (vj , vh) exists, and by
our invariant ℓ(vj) ends at ℓ(vh). Cut off a small triangle near the contact point
of ℓ(vj) and ℓ(vh) and assign the segment to vi; this satisfies all requirements.

�

So for every partial 2-tree G, we can find a supergraph that is a 2-tree, find
its 2-segment representation in linear time, retract segments to obtain one for
G (and at the same time compute the minimum feature size), and then apply
the above constructions. So every partial 2-tree has a proportional side-contact
representation with trapezoids and a proportional point-contact representation
with triangles, and they can be found in linear time.

On the other hand, side-contact representations with triangles are not possi-
ble sinceK2,4 with an added edges is a 2-tree, but does not have one as discussed
in Theorem 4.

4.2 Maximal Outer-planar Graphs

In this section, we study maximal outer-planar graphs, i.e., planar graphs whose
outer-face is a cycle and all interior faces are triangles. These are 2-trees, so
the results from the previous subsection apply, but with a different construction
we can generate hole-free side-contact representations. First we show how to
generate hole-free proportional side-contact representations using quadrilaterals
so that the entire representation fits inside a triangle, that is, the outer-boundary
has constant complexity. At the cost of an outer-boundary of high complexity,
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Figure 7: The 2-segment representation for 2-trees.

we can construct hole-free proportional side-contact representations using only
triangles. We also show that the use of triangles might also require a boundary
of linear complexity in the size of the graph.

Let G be a maximal outer-planar graph. For any two vertices u, v, denote
by G(u, v) the graph induced by the vertices that are between u to v (ends
excluded) while walking along the outer-face in counterclockwise order, and let
w(G(u, v)) be the sum of the weights of all these vertices; see Fig. 8. Define
an aligned triangle to be one with horizontal base and tip below the base. This
naturally defines a left and right side of the triangle. The next lemma shows
that an outer-planar graph can be represented inside any aligned triangle of
suitable area.

Lemma 5 Let G = (V,E) be a maximal outer-planar graph and let w : V → R+

be a weight-function. Then for any aligned triangle T of area w(G(v, u)), there
exists a hole-free proportional side-contact representation of G(v, u) inside T
such that the left [right] side of T contains segments of the neighbors of u [v]
and of no other vertices. It can be found in linear time.

Proof: We proceed by induction on the number of vertices in G. In the base
case, G is a 3-cycle {u, v, x}. Use T itself to represent x; this satisfies all
conditions.

In the inductive step, let x be the unique common neighbor of u and v.
Divide T with a segment s from the tip to the base such that the region Tℓ

left of s has area w(G(x, u)) + 1
2w(x), and the region Tr right of ℓ has area

w(G(v, x)) + 1
2w(x). Cut off triangles of area 1

2w(x) each from the tips of Tℓ

and Tr; the combination of these two triangles forms a convex quadrilateral of
area w(x) which we use for x; see Fig. 8. Recursively place G(x, u) and G(v, x)
(if non-empty) in the remaining triangles of T ; it is easy to verify that these
have the correct area, which yields the desired side-contact representation.

As for the linear time, this can be achieved with a 2-pass approach. In the
first pass, split G(u, v) into graph G(v, x) and G(x, u), and so on recursively
until all graphs are triangles. While returning from the recursing, we can hence
compute w(G(y, z)) for all those subgraphs G(y, z) where it will be needed later
(which is exactly those subgraphs where (y, z) is an edge not on the outer-face,
hence O(m) many.) This takes linear time in total. With these values readily
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Figure 8: The construction for maximal outer-planar graphs: (a) the graph; (b)
splitting triangle T suitably; (c) adding u and v in the outer-most recursion.

available, computing the positions of corners of P (x) involves only elementary
arithmetic operations and takes constant time, hence the algorithm has linear
run-time overall. �

Apply this lemma for an arbitrary edge (u, v) on the outer-face of a maximal
outer-planar graph G and an arbitrary triangle T with area w(G(v, u)). We can
then add triangles for u and v to it to complete the drawing into a contact
representation of G; see Fig. 8(c). So we obtain:

Corollary 8 Let G = (V,E) be a maximal outer-planar graph and let w : V →
R+ be a weight function. Then G admits a hole-free proportional side-contact
representation where vertices are represented by triangles or convex quadrilater-
als and the outer boundary is a triangle. It can be found in linear time.

Next, we restrict ourselves to representations with triangles.

Lemma 6 Let G = (V,E) be a maximal outer-planar graph and (u, v) an edge
on the outer-face of G, with u before v in counterclockwise order. Let w : V →
R+ be a weight-function. Then there exists a hole-free proportional side-contact
representation of G(v, u) with triangles that can be placed inside an an axis-
aligned rectangle R such that:

(i) From the bottom left corner of R upward, we encounter boundaries of all
neighbors of u (in order), followed by unused space.

(ii) From the bottom left corner of R rightward, we encounter boundaries of
all neighbors of v (in order), followed by unused space.

It can be found in linear time.

Proof: The idea for the construction is illustrated in Fig. 9. We proceed
by induction on the number of vertices in G. In the base case, G is a 3-cycle
{u, v, x}. Represent x as a cut-off corner (of appropriate area) of an axis-aligned
rectangle; this satisfies both conditions of the lemma; see Fig. 9(b).
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Figure 9: The construction for maximal outer-planar graphs: (a) requirements
on drawing; (b) the base case; (c) combining the drawings.

In the inductive step, let x be the unique common neighbor of u and v.
Recursively draw G(x, u) and G(v, x) inside axis-aligned rectangles Ru and Rv.
Rotate the drawing inside Rv such that the neighbors of x are now on the
bottom side of Rv, while the neighbors of v are on the right side of v.

The crucial operation to apply now is a shear. A horizontal shear maps a
point (x, y) to point (x+k ·y, y) for some constant k. A shear preserves straight
lines and areas (but it changes angles.)

We apply a horizontal shear to Rv for some positive k, turning Rv into a
parallelogram R′

v whose slope depends on k. We chose k such that the area of x
is correct in the resulting drawing. Specifically, consider the triangle Tx formed
by the extension of the left side of Ru, the bottom sides of Ru and R′

v (placed
next to each other) and the extension of the right side of R′

v; see Fig. 9(c).
If we choose k = 0 (i.e., no shear has been applied), then Tx has infinite

area. If we choose k = ∞ (i.e., Rv is flattened into horizontal ray), then Tx

has zero area. By the intermediate value theorem, there exists some horizontal
shear such that the area of Tx is exactly the weight of x, and we use this shear.
(In fact, the correct value can easily be computed; it needs to be such that the
slanted edge has slope s = 2A(x)/b, where b is the length of the base of Tx.)
Then use Tx to represent vertex x.

Consider the two rays that emanate from the tip of Tx. Along the vertical
ray, we encounter (in order) first the boundary of x, then all other neighbors of
u (which were on Ru), and finally free space. Hence we encounter all neighbors
of u in order. Similarly we encounter all neighbors of v in order along the other
ray. The drawing then satisfies all conditions, except that it is contained inside
a triangle, rather than a rectangle. But this is easily fixed with a vertical shear
that maps (x, y) to (x, y − s · x), where s = 2A(x)/b is the slope of the slanted
edge of the triangle. The drawing is then contained in a rectangle as desired.

To achieve linear run-time, we use a 2-pass approach. In the first pass,
we break each graph G(u, v) into subgraphs G(x, u) and G(v, x) and recurse.
When returning from the recursion, each subgraph reports the enclosing rect-
angle that can be achieved, but does not actually have final coordinates yet.
Instead, G(u, v) stores what translations and shares need to be applied to the
two subgraphs G(x, u) and G(v, x), which in turn store which translations and
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shears must be applied inside, and so on.
On the second pass, we compute final coordinates, by combining all the

translations and shears to be applied in the subgraph into one affine transfor-
mation, applying it for x to compute the final coordinates of P (x), and recursing
in the subgraphs. This computes all final coordinates in linear time. �

Let G be a maximal outer-planar graph. Apply Lemma 6 for an arbitrary
edge (u, v) on the outer-face of G. We can then add triangles for u and v to it
to complete the drawing into a contact representation of G. We thus obtain the
following result.

Corollary 9 Let G = (V,E) be a maximal outer-planar graph and let w : V →
R+ be a weight function. Then G admits a hole-free proportional side-contact
representation where vertices are represented by triangles.

Note that in this construction, even though each vertex is represented by a
triangle, the outer-face may have complexity Ω(n). Moreover, in some cases this
high complexity is unavoidable, even for unweighted contact representations, as
shown in the following lemma.

Lemma 7 There exists a maximal outer-planar graph with n vertices for which
any hole-free side-contact representation with triangles requires Ω(n) sides on
the outer-face.

Proof: Consider the snowflake graph G = Gk with n = 3 · 2k vertices, which is
an outer-planar 2-tree obtained from a triangle by repeatedly walking around
the outer-face and adding a vertex of degree 2 at each edge; see Fig. 10(a). The
vertices added in the last round form an independent set S of n/2 vertices such
that each vertex of S has degree two.

Assume we have a contact representation Γ of G that has no holes and uses
triangles. The n triangles then have 3n corners. Of these 3n corners, at least
2n−4 must have their tip at a point that is not on the outer-boundary of Γ. This
holds since each of the n−2 inner faces of G corresponds to a point where three
polygons meet in Γ (recall that there are no holes.) Of these three polygons, at
least two have a strictly convex angle and hence a corner; see Fig. 10(b).

Also, each vertex v in S has at least two of its corners on the outer-boundary
of Γ. As deg(v) = 2, at most two sides of v can be shared with neighbors of v,
and one entire side of v (and hence the two corners at its ends) belongs to the
outer-boundary of Γ.

We now have that at least 2n− 4 corners of triangles are not on the outer-
boundary and 2|S| = n corners of triangles of S are on the outer-boundary.
This leaves at most 4 corners that could be on the outer-boundary and belong
to a vertex not in S. Put differently, there are n − |S| − 4 vertices w that are
not in S and do not have a corner on the outer-boundary.

Consider one such vertex w 6∈ S, and let v1, v2 ∈ S be its neighbors on the
outer-boundary. Vertex w must have at least a point on the outer-boundary,
otherwise v1 and v2 would be adjacent. So some point on one side s of w belongs
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to the outer-boundary, but the corners at the ends of s do not belong to the
outer-boundary; see Fig. 10(c). Therefore the outer-boundary must touch and
then leave s, which means it has a reflex vertex somewhere along s.

As a result, the outer-face has at least n− |S| − 4 ≥ n/2− 4 reflex vertices,
which completes the claim. �

triangle of w

outer−face
s

(b)

(c)(a)

Figure 10: (a) The snowflake graph G3; (b)–(c) illustration for the proof of
Lemma 7.

Lemma 7 shows that proportional side-contact representations with triangles
requires the outer-boundary to have linear complexity for some maximal outer-
planar graphs. Corollary 8 shows that we can also have a triangle as the outer-
boundary, but at the cost of using convex quadrilaterals for vertices. These
results are summarized in the last theorem.

Theorem 10 Convex quadrilaterals are always sufficient and sometimes nec-
essary for hole-free proportional side-contact representations of maximal outer-
planar graphs when an outer-boundary of constant complexity is required. Hole-
free proportional contact representation with triangles can also be computed but
at the expense of linear complexity of the outer boundary. Both types of contact
representations can be computed in linear time.

5 Conclusion and Open Problems

We described algorithms for proportional point-contact and side-contact repre-
sentations of planar graphs, 2-segment graphs, outer-planar graphs, and 2-trees.
We focused on the complexity of the polygons representing vertices, and pro-
vided bounds on this complexity that are tight, for a variety of graph classes
and drawing models.

However, many problems still remain open. What is the complexity of side-
contact proportional representations of maximal planar graphs? We can achieve
7-sided polygons easily (essentially by cutting the convex corners of the 4-sided
spikes), but can we do better? Likewise, what is the complexity for hole-free
proportional representations of maximal planar graphs? Here, a bound of 8 is
known (and the polygons are orthogonal) [3], but can we do better if polygons
need not be orthogonal?
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