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Abstract

We study a new standard for visualizing graphs: A monotone drawing

is a straight-line drawing such that, for every pair of vertices, there exists

a path that monotonically increases with respect to some direction. We

show algorithms for constructing monotone planar drawings of trees and

biconnected planar graphs, we study the interplay between monotonicity,

planarity, and convexity, and we outline a number of open problems and

future research directions.
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1 Introduction

A traveler that consults a road map to find a route from a site u to a site v would
like to easily spot at least one path connecting u and v. Such a task is harder if
each path from u to v on the map has legs moving away from v. Travelers rotate
maps to better perceive their content. Hence, even if in the original orientation
of the map all the paths from u to v have annoying back and forth legs, the
traveler might be happy to find at least one orientation where a path from u to
v smoothly flows from left to right.

Leaving the road map metaphora for the Graph Drawing terminology, we
say that a path P in a straight-line drawing of a graph is monotone if there
exists a line l such that the orthogonal projections of the vertices of P on l
appear along l in the order induced by P . A straight-line drawing of a graph
is monotone if it contains at least one monotone path for each pair of vertices.
Having at disposal a monotone drawing (map), a user (traveler) can find for
each pair of vertices u and v a rotation of the drawing such that there exists a
path from u to v always increasing in the x-coordinate.

Upward drawings [8, 11] are related to monotone drawings, as in an upward
drawing every directed path is monotone. Notice that, in this case, such paths
are monotone with respect to the same (vertical) line, while in a monotone
drawing each monotone path, in general, is monotone with respect to a different
line. Even more related to monotone drawings are greedy drawings [14, 13, 1].
Namely, in a greedy drawing, between any two vertices a path exists such that
the Euclidean distance from an intermediate vertex to the destination decreases
at every step, while, in a monotone drawing, between any two vertices a path
and a line l exist such that the Euclidean distance from the projection of an
intermediate vertex on l to the projection of the destination on l decreases at
every step.

Monotone drawings have a strict correlation with an important problem in
Computational Geometry: Arkin, Connelly, and Mitchell [2] studied how to find
monotone trajectories connecting two given points in the plane avoiding convex
obstacles. As a corollary of their study, it is possible to conclude that every
planar convex drawing is monotone. Hence, the graphs admitting a convex
drawing [5] have a planar monotone drawing. Such a class of graphs is a super-
class (sub-class) of the triconnected (biconnected) planar graphs.

In this paper we first deal with trees (Sect. 4). We prove several proper-
ties relating the monotonicity of a tree drawing to its planarity and “convex-
ity” [4]. Moreover, we show two algorithms for constructing monotone planar
grid drawings of trees. The first one constructs drawings lying on a grid of size
O(n1.6)×O(n1.6). The second one has a better area requirement, namely O(n3),
but a worse Ω(n) aspect ratio.

The existence of monotone drawings of trees allows us to construct a mono-
tone drawing of any graph G by drawing any of its spanning trees, by adding
the edges not belonging to the spanning tree, and by slightly perturbing the po-
sition of the vertices in order to avoid possible overlappings between edges and
vertices. However, in the obtained monotone drawing there could be crossings
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between edges that cannot be avoided by a slight perturbation of the vertices,
even if G is a planar graph. Motivated by this and since every triconnected
planar graph admits a planar monotone drawing, we devise an algorithm to
construct planar monotone drawings of biconnected planar graphs (Sect. 5).
Such an algorithm exploits the SPQR-tree decomposition [9] of a biconnected
planar graph.

We conclude the paper discussing several open problems (Sect. 6).

2 Definitions and Preliminaries

A straight-line drawing of a graph is a mapping of each vertex to a distinct point
of the plane and of each edge to a segment connecting its endpoints. A drawing
is planar if the segments representing its edges do not cross but, possibly, at
common endpoints. A graph is planar if it admits a planar drawing. A planar
drawing partitions the plane into topologically connected regions, called faces.
The unbounded face is the outer face. A strictly convex drawing (resp. a (non-
strictly) convex drawing) is a straight-line planar drawing in which each face is
delimited by a strictly (resp. non-strictly) convex polygon.

We denote by P (v1, vm) a path between vertices v1 and vm. A graph G
is connected if every pair of vertices is connected by a path and is biconnected
(resp. triconnected) if removing any vertex (resp. any two vertices) leaves G
connected.

A subdivision of G is the graph obtained by replacing each edge of G with a
path. A subdivision of a drawing Γ of G is a drawing Γ′ of a subdivision G′ of
G such that, for every edge (u, v) of G that has been replaced by a path P (u, v)
in G′, u and v are drawn at the same point in Γ and in Γ′, and all the vertices
of P (u, v) lie on the segment between u and v.

2.1 Monotone Drawings

Let p be a point in the plane and l a half-line starting at p. The slope of l,
denoted by slope(l), is the angle spanned by a counter-clockwise rotation that
brings a horizontal half-line starting at p and directed towards increasing x-
coordinates to coincide with l. We consider slopes that are equivalent modulo
2π as the same slope (e.g., 3

2π is regarded as the same slope as -π2 ).
Let Γ be a drawing of a graph G and let (u, v) be an edge of G. The half-

line starting at u and passing through v, denoted by d(u, v), is the direction of
(u, v). The slope of edge (u, v), denoted by slope(u, v), is the slope of d(u, v).
The direction and the slope of an edge (u, v) are depicted in Fig. 1(a). Observe
that slope(u, v) = slope(v, u)− π. When comparing directions and their slopes,
we assume that they are applied at the origin of the axes.

An edge (u, v) is monotone with respect to a half-line l if it has a “positive
projection” on l, i.e., if slope(l) − π

2 < slope(u, v) < slope(l) + π
2 . A path

P (u1, un) = (u1, . . . , un) is monotone with respect to a half-line l if (ui, ui+1) is
monotone with respect to l, for each i = 1, . . . , n− 1; P (u1, un) is a monotone
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path if there exists a half-line l such that P (u1, un) is monotone with respect to l.
Fig. 1(b) shows a path that is monotone with respect to a half-line. Observe
that, as shown in the figure, if a path P (u1, un) = (u1, . . . , un) is monotone
with respect to l, then the orthogonal projections on l of u1, . . . , un appear in
this order along l. A drawing Γ of a graph G is monotone if, for each pair of
vertices u and v in G, there exists a monotone path P (u, v) in Γ. Observe that
monotonicity implies connectivity.

u

v

d(u, v)

slope(u, v)

u1

p l

u2

u3

u4

(a) (b)

Figure 1: (a) The direction d(u, v) of an edge (u, v) and its slope slope(u, v).
(b) A path P (u1, u4) that is monotone with respect to a half-line l.

2.2 The Stern-Brocot Tree

The Stern-Brocot tree [15, 3] is an infinite tree whose nodes are in bijective
mapping with the irreducible positive rational numbers. The Stern-Brocot tree
SB has two nodes 0/1 and 1/0 that are connected to the same node 1/1, where
1/1 is the right child of 0/1 and the left child of 1/0. An ordered binary tree
rooted at 1/1 is then constructed as follows (see Fig. 2). Consider a node y/x
of the tree. The left child of y/x is the node (y + y′)/(x + x′), where y′/x′ is
the ancestor of y/x that is closest to y/x (in terms of graph-theoretic distance
in SB) and that has y/x in its right subtree. The right child of y/x is the node
(y+ y′′)/(x+ x′′), where y′′/x′′ is the ancestor of y/x that is closest to y/x and
that has y/x in its left subtree. Not considering nodes 0/1 and 1/0, the first
level of SB is composed of node 1/1. The i-th level of SB is composed of the
children of the nodes of the (i− 1)-th level of SB. The following property of the
Stern-Brocot tree is well-known and easy to observe:

Property 1 The sum of the numerators of the elements of the i-th level of SB
is 3i−1 and the sum of the denominators of the elements of the i-th level of SB
is 3i−1.

2.3 The SPQR-Tree Decomposition

To decompose a biconnected graph into its triconnected components, we use the
SPQR-tree, a data structure introduced by Di Battista and Tamassia [9, 10].
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Figure 2: Construction of the Stern-Brocot tree.

A graph is st-biconnectible if adding edge (s, t) to it yields a biconnected
graph. Let G be an st-biconnectible graph. A separation pair of G is a pair
of vertices whose removal disconnects the graph. A split pair of G is either a
separation pair or a pair of adjacent vertices. A maximal split component of
G with respect to a split pair {u, v} (or, simply, a maximal split component
of {u, v}) is either an edge (u, v) or a maximal subgraph G′ of G such that G′

contains u and v, and {u, v} is not a split pair of G′. A vertex w 6= u, v belongs
to exactly one maximal split component of {u, v}. We say that the union of any
number of maximal split components of {u, v} is a split component of {u, v}.

In the paper, we assume that any SPQR-tree of a graph G is rooted at one
edge of G, called reference edge.

The rooted SPQR-tree T of a biconnected graph G, with respect to a refer-
ence edge e, describes a recursive decomposition of G induced by its split pairs.
The nodes of T are of four types: S, P, Q, and R. Their connections are called
arcs, in order to distinguish them from the edges of G.

Each node µ of T has an associated st-biconnectible multigraph, called the
skeleton of µ and denoted by skel(µ). Skeleton skel(µ) shows how the children
of µ, represented by “virtual edges”, are arranged into µ. The virtual edge in
skel(µ) associated with a child ν, is called the virtual edge of ν in skel(µ).

For each virtual edge ei of skel(µ), recursively replace ei with the skeleton
skel(µi) of its corresponding child µi. The subgraph of G that is obtained in
this way is the pertinent graph of µ and is denoted by pert(µ).

Given a biconnected graph G and a reference edge e = (u′, v′), tree T is
recursively defined as follows. At each step, a split component G∗, a pair of
vertices {u, v}, and a node ν in T are given. A node µ corresponding to G∗ is
introduced in T and attached to its parent ν. Vertices u and v are the poles
of µ and denoted by u(µ) and v(µ), respectively. The decomposition possibly
recurs on some split components of G∗. At the beginning of the decomposition
G∗ = G− {e}, {u, v} = {u′, v′}, and ν is a Q-node corresponding to e.

Base Case: If G∗ consists of exactly one edge between u and v, then µ is a
Q-node whose skeleton is G∗ itself.
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Parallel Case: If G∗ is composed of at least two maximal split components
G1, . . . , Gk (k ≥ 2) of G with respect to {u, v}, then µ is a P-node. Graph
skel(µ) consists of k parallel virtual edges between u and v, denoted by
e1, . . . , ek and corresponding to G1, . . . , Gk, respectively. The decomposi-
tion recurs on G1, . . . , Gk, with {u, v} as pair of vertices for every graph,
and with µ as parent node.

Series Case: If G∗ is composed of exactly one maximal split component of
G with respect to {u, v} and if G∗ has cutvertices c1, . . . , ck−1 (k ≥ 2),
appearing in this order on a path from u to v, then µ is an S-node. Graph
skel(µ) is the path e1, . . . , ek, where virtual edge ei connects ci−1 with ci
(i = 2, . . . , k − 1), e1 connects u with c1, and ek connects ck−1 with v.
The decomposition recurs on the split components corresponding to each
of e1, e2, . . . , ek−1, ek with µ as parent node, and with {u, c1}, {c1, c2}, . . . ,
{ck−2, ck−1}, {ck−1, v} as pair of vertices, respectively.

Rigid Case: If none of the above cases applies, the purpose of the decompo-
sition step is that of partitioning G∗ into the minimum number of split
components and recurring on each of them. We need some further defi-
nition. Given a maximal split component G′ of a split pair {s, t} of G∗,
a vertex w ∈ G′ properly belongs to G′ if w 6= s, t. Given a split pair
{s, t} of G∗, a maximal split component G′ of {s, t} is internal if neither
u nor v (the poles of G∗) properly belongs to G′, external otherwise. A
maximal split pair {s, t} of G∗ is a split pair of G∗ that is not contained
in an internal maximal split component of any other split pair {s′, t′} of
G∗. Let {u1, v1}, . . . , {uk, vk} be the maximal split pairs of G∗ (k ≥ 1)
and, for i = 1, . . . , k, let Gi be the union of all the internal maximal split
components of {ui, vi}. Observe that each vertex of G∗ either properly
belongs to exactly one Gi or belongs to some maximal split pair {ui, vi}.
Node µ is an R-node. Graph skel(µ) is the graph obtained from G∗ by
replacing each subgraph Gi with the virtual edge ei between ui and vi.
The decomposition recurs on each Gi with µ as parent node and with
{ui, vi} as pair of vertices.

For each node µ of T , the construction of skel(µ) is completed by adding a
virtual edge (u, v) representing the rest of the graph.

The SPQR-tree T of a graph G with n vertices and m edges has m Q-nodes
and O(n) S-, P-, and R-nodes. Also, the total number of vertices of the skeletons
stored at the nodes of T is O(n). Finally, SPQR-trees can be constructed and
handled efficiently. Namely, given a biconnected planar graph G, the SPQR-tree
T of G can be computed in linear time [9, 10, 12].

3 Properties of Monotone Drawings

In this section we give some basic properties of monotone drawings.

Property 2 Any sub-path of a monotone path is monotone.
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Property 3 A path P (u1, un) = (u1, u2, . . . , un) is monotone if and only if it
contains two edges e1 and e2 such that the closed wedge centered at the origin
of the axes, delimited by the two half-lines d(e1) and d(e2), and having an angle
smaller than π, contains all the half-lines d(ui, ui+1), for i = 1, . . . , n− 1.

Refer to Fig. 3(a)–(b). Edges e1 and e2 as in Property 3 are the extremal
edges of P (u1, un). The closed wedge delimited by d(e1) and d(e2) and contain-
ing all the half-lines d(ui, ui+1), for i = 1, . . . , n−1, is the range of P (u1, un) and
is denoted by range(P (u1, un)), while the closed wedge delimited by d(e1)− π
and d(e2) − π, and not containing d(e1) and d(e2), is the opposite range of
P (u1, un) and is denoted by opp(P (u1, un)).

u1

e1
e2

u2

u3

u4

l(u1, u4)

d(e1)

d(e2)=d(u2, u3)

d(u3, u4)

l(u1, u4)

d(u1, u2)
=

(a) (b)

Figure 3: (a) A monotone path P (u1, u4) with extremal edges e1 and e2. (b)
The light-gray shaded region represents the range of P (u1, u4) defined by d(e1)
and d(e2) and the dark-gray shaded region represents the opposite range of
P (u1, u4). Observe that range(P (u1, u4)) contains the half-line l(u1, u4) from
u1 through u4 (Property 4).

Property 4 The range of a monotone path P (u1, un) contains the half-line
from u1 through un.

Proof: Draw the closed wedge range(P (u1, un)) centered at u1. Observe that
a sequence of edges whose directions are d(ui, ui+1), with i = 1, . . . , n− 1, allow
to reach from u1 only points contained in range(P (u1, un)). Hence, un and the
half line from u1 through un are contained in range(P (u1, un)).

Lemma 1 Let P (u1, un) = (u1, . . . , un) be a monotone path and let (un, un+1)
be an edge. Then, path P (u1, un+1) = (u1, u2, . . . , un, un+1) is monotone if and
only if d(un, un+1) is not contained in opp(P (u1, un)). Further, if P (u1, un+1)
is monotone, then range(P (u1, un)) ⊆ range(P (u1, un+1)).
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Proof: Denote by e1 and e2 the extremal edges of P (u1, un).
If d(un, un+1) is in opp(P (u1, un)), then no wedge having an angle smaller

than π contains all of d(e1), d(e2), and d(un, un+1). By Property 3, P (u1, un+1)
is not monotone. See Fig. 4.

If d(un, un+1) is in range(P (u1, un)), then P (u1, un+1) is monotone by Prop-
erty 3; further, we have that range(P (u1, un+1)) = range(P (u1, un)). See
Fig. 5.

If d(un, un+1) is contained in the smallest wedge delimited by d(e1) and by
d(e2) − π (the case in which d(un, un+1) is contained in the smallest wedge
delimited by d(e2) and by d(e1) − π being symmetric), then d(un, un+1) and
d(e2) delimit a wedge having an angle smaller than π and all the half-lines
d(ui, ui+1), for i = 1, . . . , n, are contained in such a wedge (hence such a wedge
contains range(P (u1, un)); by Property 3, P (u1, un+1) is monotone. Further,
we have range(P (u1, un)) ⊂ range(P (u1, un+1)). See Fig. 6.

u1

e1

e2

u2

u3

u4

u5

d(e1)=d(u1, u2)

d(e2)=d(u2, u3)

d(u4, u5)

(a) (b)

Figure 4: (a) A path P (u1, u4) and an edge (u4, u5) whose direction is in
opp(P (u1, u4)). (b) There exists no wedge having an angle smaller than π con-
taining all of d(e1), d(e2), and d(u4, u5).

Corollary 1 Let P (u1, un) = (u1, . . . , un) and P (un, un+k) = (un, . . . , un+k)
be monotone paths. Then, path P (u1, un+k) = (u1, . . . , un, un+1, . . . , un+k) is
monotone if and only if range(P (u1, un)) ∩ opp(P (un, un+k)) = ∅. Further,
if P (u1, un+k) is monotone, then range(P (u1, un)) ∪ range(P (un, un+k)) ⊆
range(P (u1, un+k)).

The following properties relate monotonicity to planarity and convexity.

Property 5 A monotone path is planar.

Proof: Rotate the path so that it is monotone with respect to the x-axis.
Then, the x-coordinates of the vertices are strictly increasing along the path.
This implies that the path cannot cross itself.
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u1

e1

e2

u2

u3

u4

u5

d(e1)=d(u1, u2)

d(e2)=d(u2, u3)

d(u4, u5)

(a) (b)

Figure 5: (a) A path P (u1, u4) and an edge (u4, u5) whose direction is in
range(P (u1, u4)). (b) range(P (u1, u4)) = range(P (u1, u5)).

u1

e1

e2 = e
′

2

u2

u3

u4

u5

e
′

1

d(e′
1
)=d(u4, u5)

d(e′
2
)=d(e2)

(a) (b)

Figure 6: (a) A path P (u1, u4) and an edge (u4, u5) whose direction is contained
in the smallest wedge delimited by d(e1) and by d(e2) − π (b) Extremal edges
e′1 = (u4, u5) and e′2 = e2 delimit range(P (u1, u5)) ⊃ range(P (u1, u4)).
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Lemma 2 [2] Any strictly convex drawing of a planar graph is monotone.

When proving that every biconnected planar graph admits a planar mono-
tone drawing, we will need to construct non-strictly convex drawings of graphs.
Observe that any graph containing a degree-2 vertex does not admit a strictly
convex drawing, while it might admit a non-strictly convex drawing. While
not every non-strictly convex drawing is monotone, we can relate non-strict
convexity and monotonicity:

Lemma 3 Any non-strictly convex drawing of a graph such that each maximal
set of parallel edges induces a collinear path is monotone.

Proof: In order to prove the lemma, we directly apply to a non-strictly-convex
drawing of a graph a technique which is similar to the one used in [2] to prove
the existence of a monotone path between any two points of the plane in the
presence of convex obstacles.

First observe that, given a (not necessarily strictly) convex drawing Γ of a
graph G and a direction d which is not orthogonal to any edge of Γ, orienting
the edges of G in Γ according to d yields an upward drawing Γd of the directed
graph Gd with a single source sd and a single sink td (see Fig. 7(a)). Since any
directed path in Γd is a monotone path with respect to d, for each two vertices
u and v, we aim at finding a direction d∗ such that there is a directed path from
u to v in Γd∗ .

d

td

sd

u

L(d)

S(L(d), R(d))

R(d)d

td

sd

(a) (b)

Figure 7: (a) The directed graph Gd induced by direction d on a convex drawing
of a graph. (b) Paths L(d) and R(d) and the region S(L(d), R(d)).
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Given a direction d and the corresponding upward drawing Γd, the leftmost
path (resp. rightmost path), denoted by L(d) (resp. R(d)), is the directed path
of Γd that starts from u, traverses Γd by taking the last (resp. first) exiting
edge of each vertex in the counter-clockwise direction, and terminates on td
(see Fig. 7(b) for an example). Since Γ is convex, such paths always exist.
Further, the slice of L(d) and R(d), denoted by S(L(d), R(d)), is the closed
region enclosed by the clockwise cycle composed of L(d), traversed forward,
and of R(d), traversed backward. Note that a vertex v is reachable from u by a
path monotone with respect to d if and only if v is inside S(L(d), R(d)).

We show how to find the direction d∗ such that there is a directed path from
u to v in Γd∗ . Start by choosing any direction d. Consider the corresponding
upward drawing Γd. If v is inside S(L(d), R(d)), then there exists a monotone
path between u and v. Otherwise, continuously rotate counter-clockwise d until
a direction d′ is found that produces an upward drawing Γd′ 6= Γd. Again, if
v is inside S(L(d′), R(d′)), a monotone path is found. Otherwise, carry on the
rotation process until a direction d∗ is found such that S(L(d∗), R(d∗)) contains
v. To prove that such a direction d∗ always exists, it suffices to show that, for
any two (counter-clockwise) consecutive directions d′ and d′′, S(L(d′), R(d′)) ∪
S(L(d′′), R(d′′)) contains all the vertices of the closed region S+(L(d′′), R(d′))
delimited by L(d′′), by R(d′), and by the path delimiting the outer face of G
clockwise connecting td′′ to td′ . Observe that such a path could be composed of
a single vertex, in the case in which td′′ = td′ .

First observe that, as each maximal set of parallel edges induces a collinear
path in Γ, Gd′′ differs from Gd′ in the fact that the direction of a single edge or
a single collinear path is reversed.

Suppose that only one among L(d′) and R(d′) changes, that is, that either
L(d′′) = L(d′) or R(d′′) = R(d′). Observe that this implies that td′′ = td′ . In
both cases, the statement is trivially true.

Suppose that both L(d′) and R(d′) change into L(d′′) and R(d′′), respec-
tively. Observe that, since Gd′′ differs from Gd′ in the fact that the direction
of a single edge or of a single collinear path is reversed, this can only happen if
L(d′) and R(d′) have a common subpath and such a subpath contains at least
one of the reversed edges.

In this case, a closed region ∆ of S+(L(d′′), R(d′)) which is not contained
in S(L(d′), R(d′)) or in S(L(d′′), R(d′′)) might exist. We show that ∆ does not
contain any internal vertex. This implies that S(L(d′), R(d′))∪S(L(d′′), R(d′′))
contains all the vertices of S+(L(d′′), R(d′)).

If ∆ is not a degenerate region, in which case the statement is trivial, then
there exists a vertex w belonging to both R(d′′) and L(d′) such that, denoting
by wr and by wl the neighbors of w in R(d′′) and in L(d′), respectively, that
are farther from u than w, we have that wr follows wl in the counter-clockwise
order of the edges around w (See Fig. 8).

Since L(d′) contains (w,wl), in Gd′ edge (w,wl) is directed from w to wl and
edge (w,wr) is directed from wr to w. On the other hand, since R(d′′) contains
(w,wr), in Gd′′ edge (w,wl) is directed from wl to w and edge (w,wr) is directed
from w to wr . Hence, (w,wl) and (w,wr) belong to a collinear path P (wl, wr),
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u

w

wr
wl

L(d′′) L(d′)

R(d′)

td′(f ) = td′′(f )
∆

L(d′) R(d′′)

R(d′′)

Figure 8: Illustration for the case in which L(d′) and R(d′) change into L(d′′) and
R(d′′), respectively. The boundary of slice S(L′

d, R
′

d) is fat, while the boundary
of S(L′′

d , R
′′

d) is normal.

and such a path contains all and only the edges whose direction changes when
passing from d′ to d′′. Also, (w,wr) directly precedes (w,wl) in the clockwise
order of the edges around w, as otherwise any edge exiting w between (w,wr)
and (w,wl) would have been contained in R(d′′) instead of (w,wr). Hence,
(w,wr) and (w,wl) are on the same face f . Also, L(d′) traverses the right
border of face f until the sink td′(f) of f in Gd′ is reached. Analogously, R(d′′)
traverses the left border of f until the sink td′′(f) of f in Gd′′ is reached.

We prove that td′(f) = td′′(f). This implies that region ∆ coincides with
face f and hence does not contain internal vertices.

If td′(f) does not belong to P (wl, wr) then, since all and only the edges of
P (wl, wr) change direction when passing from d′ to d′′, vertex td′(f) is also a
sink in Gd′′ . By convexity, td′(f) = td′′(f).

Otherwise, td′(f) belongs to P (wl, wr). We show that this case does not
occur under the current assumptions.

Suppose, for a contradiction, that td′(f) belongs to P (wl, wr).

If the source sd′(f) of f in Gd′ belongs to P (wl, wr), then the edges of the
path between sd′(f) and td′(f) delimiting f and different from P (wl, wr) are
directed in the same way in Gd′ and in Gd′′ , hence the cycle delimiting f is a
directed cycle in Gd′′ , a contradiction.

If sd′(f) does not belong to P (wl, wr), then rotate the coordinate axes in
such a way that P (wl, wr) lies on the positive x-axis. Then, when applied to
the origin of the axes, the direction d′′ is in the second quadrant, arbitrarily
close to the positive y-axis, and by convexity, the direction of the half-line from
sd′(f) through td′(f) lies in the fourth quadrant. Thus, such two directions
create an angle larger than π

2 . By Property 4, the drawing is not monotone, a
contradiction.

Still on the relationship between convexity and monotonicity, we have:
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Lemma 4 Consider a strictly convex drawing Γ of a graph G. Let u, v, and
w be three consecutive vertices incident to the outer face of Γ. Let d be any
half-line that is not orthogonal to any edge in Γ and that splits the angle ûvw
into two angles smaller than π

2 . Then, for each vertex t of G, there exists a path
from v to t in Γ that is monotone with respect to d.

Proof: Orient each edge of G according to d, hence obtaining a directed graph
G′. Observe that, as no edge is orthogonal to d, there is no ambiguity in the
orientation of the edges. Since d splits ûvw into two angles smaller than π

2 , all
the edges incident to v exit v in G′. Further, since Γ is convex, every vertex
different from v has at least one entering edge. It follows that v is the unique
source of G′. Therefore, for each vertex t of G there exists a path from v to t
in G′, and hence a path from v to t in Γ that is monotone with respect to d.

Next, we provide a powerful tool for “transforming” monotone drawings.

Lemma 5 An affine transformation applied to a monotone drawing yields a
monotone drawing.

Proof: Consider a path P (u1, un) = (u1, u2, . . . , un) that is monotone with
respect to an oriented line l. Suppose, without loss of generality, that l does not
intersect P (u1, un). Construct a graph G whose vertices are u1, u2, . . . , un and
their projections v1, v2, . . . , vn on l, and whose edges are (ui, ui+1), (vi, vi+1), for
i = 1, . . . , n−1, and (ui, vi), for i = 1, . . . , n. Observe that G is planar and that
edges (ui, vi), for i = 1, . . . , n, are parallel. The affine transformation preserves
the planarity of G, the parallelism of edges (ui, vi), for i = 1, . . . , n, and the
collinearity of vertices vi, for i = 1, . . . , n. In particular, vertices v1, . . . , vn
appear in this order on the line passing through them. Therefore, they appear
in the same order when projected on any line perpendicular to (ui, vi), for
i = 1, . . . , n, and the statement follows.

4 Monotone Drawings of Trees

In this section we study monotone drawings of trees.
We present two properties concerning monotone drawings of trees. The

first one is about the relationship between monotonicity and planarity. Such
a property directly descends from the fact that every monotone path is planar
(by Property 5) and that in a tree there exists exactly one path between every
pair of vertices.

Property 6 Every monotone drawing of a tree is planar.

The second property relates monotonicity and convexity. A convex drawing
of a tree T [4] is a straight-line planar drawing such that replacing each edge
between an internal vertex u and a leaf v with a half-line starting at u through
v yields a partition of the plane into convex unbounded polygons. A convex
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drawing of a tree might not be monotone, because of the presence of two parallel
edges. However, we will show that if such two edges do not exist, then any
convex drawing is monotone. Define a strictly convex drawing of a tree T as a
straight-line planar drawing such that each maximal set of parallel edges induces
a collinear path and such that replacing every edge of T between an internal
vertex u and a leaf v with a half-line starting at u through v yields a partition
of the plane into convex unbounded polygons. We have the following:

Property 7 Every strictly convex drawing of a tree is monotone.

Proof: In order to prove the property we need to introduce some defini-
tions. Consider a tree T . Suppose that T is rooted at some node r and is
embedded in the plane. For any node x 6= r, define the clockwise path C(x) as
the path (w1, w2, . . . , wy) such that w1 = x, wi+1 is the child of wi such that
edge (wi, wi+1) immediately follows the edge from wi to its parent in the coun-
terclockwise order of the edges incident to wi, and wy is a leaf. The counter-
clockwise path CC(x) of any node x 6= r is defined analogously. See Fig. 9.
Consider a node x with parent y in T and consider two edges e1 = (ua, ub)

CC(x)

x=w1

w2

w3
w4 w5

C(x)

parent of w1

Figure 9: The clockwise path C(x) and the counter-clockwise path CC(x) of a
node x in a tree T .

and e2 = (va, vb) in the subtree T (x) of T rooted at x, where ua and va are
the parents of ub and vb, respectively. Then we say that e1 clockwise precedes
(clockwise follows) e2 if the edges (x, y), e1, and e2 come in this clockwise order
(resp. in this counter-clockwise order) if they are translated so that x, ua, and
va are at the same point.

We have the following claim, whose statement is illustrated in Fig. 10:

Claim 1 The slope of every edge in a subtree T (x) of T rooted at a node x 6= r
clockwise follows the slope of the last edge of CC(x) and clockwise precedes the
slope of the last edge of C(x). Moreover, denote by (x, x1), (x, x2), . . . , (x, xk)
the clockwise order of the edges incident to x starting at the edge (x, y), where y
is the parent of x, and denote by T (xi) the subtree of T (x) rooted at xi. Then,
the slope of each edge in T (xi) ∪ (x, xi) clockwise strictly precedes the slope of
each edge in T (xi+1) ∪ (x, xi+1), for each 1 ≤ i ≤ k − 1.
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slopes of
T (x5) ∪ (x, x5)

slopes of
T (x4) ∪ (x, x4)

slopes of

T (x3) ∪ (x, x3)

slopes of
T (x2) ∪ (x, x2)

slopes of
T (x1) ∪ (x, x1)

last edge of CC(x1)

last edge of C(x1)

last edge of CC(x2)

last edge of C(x2)

last edge of CC(x3)

last edge of CC(x4)

last edge of C(x3)

last edge of C(x4)
last edge of CC(x5)

last edge of C(x5)

edge from y to x

O

Figure 10: Illustration for the statement of Claim 1, with k = 5. The slopes of
all the edges in T (x) are shown as applied at the same point O. The slope of
the edge from y to x is directed to O.

Proof: We prove the statement by induction on the number N of edges in
the longest path from x to a leaf. If N = 1, then the statement is trivially true.
Suppose that the statement holds for a certain N . We prove that it holds for
N + 1.

We start by proving the second part of the statement. Observe that, by
definition of strictly convex drawing, the path (x, xi) ∪ C(xi) (whose last edge
is elongated to infinity) and the path (x, xi+1) ∪ CC(xi+1) (whose last edge is
elongated to infinity) form a convex unbounded polygon. Then, the slope of
each edge in (x, xi) ∪ C(xi) clockwise strictly precedes the slope of each edge
in (x, xi+1)∪C(xi+1). By induction, the slope of every edge in T (xi) clockwise
strictly precedes the slope of the last edge of C(xi) and the slope of every edge in
T (xi+1) clockwise strictly follows the slope of the last edge of CC(xi+1). Hence,
the slope of every edge in T (xi) clockwise strictly precedes the slope of every
edge in T (xi+1). Moreover, the slope of (x, xi) clockwise precedes the slope of
the last edge of C(xi), since the path (x, xi)∪C(xi) (whose last edge is elongated
to infinity) and the path (x, xi+1) ∪ CC(xi+1) (whose last edge is elongated to
infinity) form a convex unbounded polygon. Hence, the slope of (x, xi) clockwise
strictly precedes the slope of every edge in T (xi+1). Analogously, the slope of
(x, xi+1) clockwise strictly follows the slope of every edge in T (xi). Finally, the
slope of (x, xi) clockwise strictly precedes the slope of (x, xi+1), thus proving
the second part of the statement.

Concerning the first part of the statement, since the slope of each edge in
T (xi) ∪ (x, xi) clockwise strictly precedes the slope of each edge in T (xi+1) ∪
(x, xi+1), for each 1 ≤ i ≤ k − 1, it follows that the slope of every edge in
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T (x)\{T (x1), (x, x1)} clockwise follows the slope of every edge in T (x1) and the
slope of every edge in T (x)\{T (xk), (x, xk)} counter-clockwise follows the slope
of every edge in T (xk). By induction, the slope of every edge in T (x1) clockwise
strictly follows the slope of the last edge in CC(x1). Finally, by definition of
strictly-convex drawing, path (x, x1) ∪ CC(x1) is part of the boundary of a
convex polygon, hence the slope of (x, x1) clockwise follows the slope of the
last edge of CC(x1). Hence, the slope of every edge in T (x) clockwise follows
the slope of the last edge of CC(x1) which is also the last edge of CC(x).
Analogously, the slope of every edge in T (x) clockwise precedes the slope of the
last edge of C(xk) which is also the last edge of C(x).

We now prove the property. Suppose, for a contradiction, that there exists a
strictly convex drawing Γ of a tree T that is not monotone. Then, there exists a
path P (u, v) = (u, z1, z2, . . . , zk, v) connecting two vertices u and v of T that is
not monotone. Suppose w.l.o.g. that P (u, v) is a minimal non-monotone path,
that is, every subpath of P (u, v) is monotone. Root T at u and orient all the
edges of T away from u. Then, edges (u, z1), (zk, v), and an edge (zi, zi+1),
for some 1 ≤ i ≤ k − 1, are such that the angle smaller than π defined by
the directions of any two of them does not include the direction of the third
edge, when such directions are applied at the origin. Assume, w.l.o.g. up to a
reflection of the whole drawing, that d(u, z1), d(zi, zi+1), and d(zk, v) come in
this counter-clockwise order around the origin.

Consider edge (zi, zi+1) and consider the edge e∗ following (zi, zi+1) in the
clockwise order of the edges incident to zi. Notice that e∗ could connect zi
either to one of its children or to its parent. In any case, the angle described by
a clockwise rotation bringing d(zi, zi+1) to coincide with d(e∗) is smaller than
π, as otherwise the polygon having (zi, zi+1) and e∗ as consecutive sides would
not be strictly convex. Since, by Claim 1, every edge in T (zi+1), including
(zk, v), clockwise precedes e

∗, the angle described by a clockwise rotation bring-
ing d(zi, zi+1) to coincide with d(zk, v) is smaller than π. Since, by assumption,
d(u, z1) is between d(zi, zi+1) and d(zk, v) in the clockwise order around the ori-
gin, d(u, z1) is contained in a wedge delimited by d(zi, zi+1) and d(zk, v) having
an angle smaller than π, a contradiction.

A simple modification of the algorithm presented in [4] constructs strictly
convex drawings of trees. Hence, monotone drawings exist for all trees.

However, in order to obtain monotone drawings of trees on a grid with
polynomial area, we introduce slope-disjoint drawings of trees and show that
they are monotone. Then, we provide two algorithms for constructing slope-
disjoint drawings of trees in O(n1.6) × O(n1.6) area and O(n2) × O(n) area,
respectively.

Let T be a tree rooted at a node r. Denote by T (u) the subtree of T rooted
at a node u. A slope-disjoint drawing of T (see Fig. 11) is such that:

(P1) For every node u ∈ T , there exist two angles α1(u) and α2(u), with 0 <
α1(u) < α2(u) < π, such that, for every edge e that is either in T (u) or
that connects u with its parent, it holds that α1(u) < slope(e) < α2(u);
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(P2) for every two nodes u, v ∈ T with v child of u, it holds that α1(u) <
α1(v) < α2(v) < α2(u);

(P3) for every two nodes v1, v2 with the same parent, it holds that either
α1(v1) < α2(v1) < α1(v2) < α2(v2) or α1(v2) < α2(v2) < α1(v1) <
α2(v1).

u

α1(u)

α2(u)
v2

v1

Figure 11: A slope-disjoint drawing of a tree.

We have the following:

Theorem 1 Every slope-disjoint drawing of a tree is monotone.

Proof: Let T be a tree and let Γ be a slope-disjoint drawing of T . We show
that, for every two vertices u, v ∈ T , a monotone path between u and v exists
in Γ. Observe that, by Property 2, it is sufficient to study only the cases when
u and v are leaves of T .

Let w be the lowest common ancestor of u and v in T , and let u′ and v′ be the
children of w in T such that u ∈ T (u′) and v ∈ T (v′). Path P (u, v) is composed
of path P (u,w) and of path P (w, v). First observe that, by Property P1 applied
to vertex u′, for every edge e ∈ P (u,w), it holds −π < α1(u

′)− π < slope(e) <
α2(u

′) − π < 0. Hence, P (u,w) is monotone with respect to a half-line with
slope −π/2 and it holds α1(u

′) < slope(l) < α2(u
′) for each half-line l contained

in opp(P (u,w)). Analogously, P (w, v) is monotone with respect to a half-line
with slope π/2 and it holds α1(v

′) < slope(l) < α2(v
′) for each half-line l

contained in range(P (w, v)). Further, since u′ and v′ are children of the same
node w, by Property P3 we have α1(u

′) < α2(u
′) < α1(v

′) < α2(v
′) (the

case in which α1(v
′) < α2(v

′) < α1(u
′) < α2(u

′) being symmetric). Hence,
opp(P (u,w)) ∩ range(P (w, v)) = ∅. By Corollary 1, P (u, v) is monotone.

By Theorem 1, as long as the slopes of the edges in a drawing of a tree T
guarantee the slope-disjoint property, one can arbitrarily assign lengths to such
edges always obtaining a monotone drawing of T .

In the following we present two algorithms for constructing slope-disjoint
drawings of trees. In both algorithms, we individuate a suitable set of elements
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of the Stern-Brocot tree SB. Each of such elements is then used as a slope of
an edge of T in the drawing.

Algorithm BFS-based: Consider the first ⌈log2(n)⌉ levels of the Stern-Brocot
tree SB. Such levels contain a total number of at least n − 1 elements y/x of
SB. Order such elements by increasing value of the ratio y/x and consider the
first n− 1 elements in such an order S, say s1 = y1/x1, s2 = y2/x2, . . . , sn−1 =
yn−1/xn−1.

Each subtree of T is assigned a subset of such elements that are consecutive in
S as follows. First, consider the subtrees of r, say T1(r), T2(r), . . . , Tk(r)(r) and

assign to each subtree Ti(r) the |Ti(r)| elements of S from the (1+
∑i−1

j=1 |Tj(r)|)-

th to the (
∑i

j=1 |Tj(r)|)-th. Then, for every node u of T , suppose that a sub-
sequence S(u) = sa, sa+1, . . . , sb of S has been assigned to T (u), where |T (u)| =
b−a+1. Consider the subtrees T1(u), T2(u), . . . , Tk(u)(u) of u and assign to Ti(u)

the |Ti(u)| elements of S(u) from the (1+
∑i−1

j=1 |Tj(u)|)-th to the (
∑i

j=1 |Tj(u)|)-
th.

Now we illustrate how to exploit the above described assignment to construct
a grid drawing of T . Place r at (0, 0). For each node u of T , suppose that a
sequence S(u) = sa, sa+1, . . . , sb of S has been assigned to T (u) and suppose
that the parent p(u) of u has been already placed at grid point (px(u), py(u)).
Place u at grid point (px(u) + xb, py(u) + yb), where sb = yb/xb. See Fig. 12 for
an example. We have the following:

a

b k

c d e f

g h

i j

l

m n o p
a

k

l

o
m

np j

ih

e
g

cdf

b

(a) (b)

Figure 12: (a) A tree T . (b) The drawing of T constructed by Algorithm BFS-
based.

Theorem 2 Let T be a tree. Then, Algorithm BFS-based constructs a mono-
tone drawing of T on a grid of area O(n1.6)×O(n1.6).

Proof: We prove that the drawing Γ constructed by Algorithm BFS-based is
slope-disjoint and hence, by Theorem 1, monotone. In order to do this, we
describe how to choose values α1(u) and α2(u) for every node u ∈ T . Recall
that a sequence S(u) is associated to each node u ∈ T in such a way that the



JGAA, 16(1) 5–35 (2012) 23

edge connecting u to its parent and all the edges in T (u) have slopes in S(u).
Choose as α1(r) any angle larger than 0◦ and smaller than the smallest angle
arctan( yx), for all elements y/x in S(r). Analogously, choose as α2(r) any angle
smaller than 90◦ and larger than the largest angle arctan( yx), for all elements
y/x in S(r). Now suppose that values α1(u) and α2(u) have been set for a node
u ∈ T and not for a child v of u. Choose as α1(v) any angle: (i) smaller than
the smallest angle arctan( yx ), for all elements y/x in S(v), (ii) larger than α1(u),
(iii) larger than the largest angle arctan( y1

x1

), for all elements y1/x1 not in S(v)
such that y1/x1 < y2/x2, for some element y2/x2 in S(v), and (iv) larger than
the largest value α2(z), where z is a child of u such that α2(z) has been already
set and y1/x1 < y2/x2, for some element y2/x2 in S(v) and some element y1/x1

in S(z). Set α2(v) in a symmetric way. It is easy to see that Properties P1–P3
are satisfied by the assignment of values α1(u) and α2(u) for every node u ∈ T .

It remains to show that Γ lies on a grid with area O(n1,6) × O(n1,6). Con-
sider the node z of T which has greatest x-coordinate and consider the path
P (z, r) from z to r. An edge (u, v) of such a path, where u is the parent of
v, has x-extension equal to x1, where y1/x1 is an element of SB. Hence, the
x-extension of P (z, r) and the x-extension of Γ are bounded by the sum of all

the x-coordinates of the elements of SB. By Property 1 and by
∑i−1

j=0 3
j < 3i,

the x-extension of Γ is O(3log2
n) = O(n1/ log

3
2) = O(n1.6). Analogously, the

y-extension of Γ is O(n1.6) and the theorem follows.

Algorithm DFS-based: Consider the sequence S composed of the first n− 1
elements 1/1, 2/1, . . . , n−1/1 of the rightmost path of SB. Assign sub-sequences
of S to the subtrees of T and construct a grid drawing in the same way as in
Algorithm BFS-based. We have the following.

Theorem 3 Let T be a tree. Then, Algorithm DFS-based constructs a mono-
tone drawing of T on a grid of area O(n2)×O(n).

Proof: The proof that the drawing Γ constructed by Algorithm DFS-based is
slope-disjoint and hence monotone is the same as for Algorithm BFS-based.

We show that Γ lies on a grid with area O(n2) × O(n). Every edge has
x-extension equal to 1, hence the width of Γ is O(n). The y-extension of an
edge is at most n− 1, hence the height of Γ is O(n2).

As a further consequence of Theorem 1, we have the following:

Corollary 2 Every (even non-planar) graph admits a monotone drawing.

Namely, for any graph G, construct a monotone drawing of a spanning tree
T of G with vertices in general position. Draw the other edges of G as segments,
obtaining a straight-line drawing of G in which, for any pair of vertices, there
exists a monotone path (the one whose edges belong to T ). Such a drawing is
a monotone drawing of G.
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5 Planar Monotone Drawings of Biconnected

Graphs

First, we restate, using the terminology of this paper, the well-known result of
Chiba and Nishizeki [6, 5].

Lemma 6 [5] Let G be a biconnected planar graph with a given planar em-
bedding such that each split pair {u, v} is incident to the outer face and each
maximal split component of {u, v} has at least one edge incident to the outer
face except, possibly, for edge (u, v). Then, G admits a strictly convex drawing
with the given embedding in which the outer face is drawn as an arbitrary strictly
convex polygon.

Second, we introduce some further definition concerning monotonicity.
Let Γ be a monotone drawing, d any direction, and k a positive value. A

directional-scale, denoted by DS(d, k), is an affine transformation defined as
follows. Rotate Γ and d by an angle δ until d is orthogonal to the x-axis. Scale
Γ by (1, k) (i.e., multiply its y-coordinates by k). Rotate back the obtained
drawing by an angle −δ.

Lemma 7 Let Γ be a monotone drawing and let d be a direction such that no
edge in Γ is orthogonal to d. For any α > 0 there exists a directional-scale
DS(d − π

2 , k(Γ, α)) that transforms Γ into a monotone drawing in which the
slope of any edge is between d− α and d+ α.

Proof: First observe that, when Γ and d are rotated of an angle δ until d− π
2 is

orthogonal to the x-axis, when Γ is scaled, and when Γ and d are rotated back
of an angle δ, by Lemma 5, Γ remains monotone.

Consider any edge (v, w) ∈ Γ such that the projection of v on d appears
before the projection of w on d. Let β be the smaller angle created by the
elongation of (v, w) and d. As (v, w) is not orthogonal to d, it holds β < π

2 .

Further, tan(β) =
∆y

∆x
, where ∆y = y(w) − y(v) and ∆x = x(w) − x(v) when Γ

and d have been rotated in such a way that d− π
2 is orthogonal to the x-axis.

Observe that scaling Γ by (1, k), with k < 1, reduces ∆y by a factor of 1
k ,

while it keeps ∆x unchanged. Hence, tan(β) is reduced by a factor of 1
k , which

implies that β is reduced by a factor linear in 1
k . As k → 0 implies β → 0, it

follows that for every α > 0 there exists a k > 0 such that β < α.

A path monotone with respect to a direction d is (α, d)-monotone if, for each
edge e, d− α < slope(e) < d+ α. Observe that α < π

2 . A path from a vertex u
to a vertex v is an (α, d1, d2)-path if it is a composition of an (α, d1)-monotone
path from u to a vertex w and of an (α, d2)-monotone path from w to v.

Finally, we describe an algorithm to construct a planar monotone drawing
of any biconnected graph G. Such an algorithm is based on a bottom-up visit
of the SPQR-tree T of G, rooted at any edge e. At each step of the visit, a
monotone drawing of the pertinent graph of a node µ of T is constructed inside
a particular polygon, called boomerang and described in the following, that is
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completely reserved to it, in such a way to satisfy certain properties that allow
the construction of an analogous drawing for the parent node of µ.

Namely, let µ be a node of T . The boomerang of µ, denoted by boom(µ),
is a quadrilateral (pN (µ), pE(µ), pS(µ), pW (µ)) such that point pW (µ) is in-

side triangle △(pN (µ), pS(µ), pE(µ)), angle ̂pW (µ)pS(µ)pE(µ) is equal to angle
̂pW (µ)pN (µ)pE(µ), angle ̂pW (µ)pS(µ)pN (µ) is equal to angle ̂pW (µ)pN (µ)pS(µ),

and ̂pW (µ)pS(µ)pN (µ) + 2 ̂pW (µ)pS(µ)pE(µ) <
π
2 (see Fig. 13).

pW (µ) pE(µ)

pS(µ)

pN(µ)

βµ
αµ

dN(µ)

dS(µ)

βµ αµ

Figure 13: A boomerang.

We prove that G admits a planar monotone drawing by means of an inductive
algorithm which, given a node µ of T with poles u and v, and a boomerang
boom(µ), constructs a drawing Γµ of pert(µ) satisfying the following properties.

Let dN (µ) be the half-line from pE(µ) passing through pN (µ), let dS(µ)

be the half-line from pE(µ) through pS(µ), let αµ be ̂pW (µ)pS(µ)pE(µ) =
̂pW (µ)pN (µ)pE(µ), and let βµ be ̂pW (µ)pS(µ)pN (µ) = ̂pW (µ)pN (µ)pS(µ) (see

Fig. 13).

(A) Γµ is monotone;

(B) Γµ is planar and, with the possible exception of edge (u, v), it is contained
inside boom(µ), with u drawn on pN(µ) and v on pS(µ);

(C) each vertex w ∈ pert(µ) belongs to a (αµ,−dN (µ), dS(µ))-path from u to v.

We first prove a lemma stating the monotonicity of any (αµ,−dN (µ), dS(µ))-
path connecting the poles of a node of T .

Lemma 8 Let µ be a node of T with poles u and v. Every (αµ,−dN (µ), dS(µ))-
path from u to v is monotone with respect to the half-line from u through v.
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Proof: The proof is based on the fact that βµ + 2αµ < π
2 . Namely, rotate

the coordinate axes in such a way that both u and v lie on the y-axis. As
βµ + 2αµ < π

2 , the direction of any edge of the (αµ,−dN (µ))-monotone path
is contained in the fourth quadrant, while the direction of any edge of the
(αµ, dS(µ))-monotone path is contained in the third quadrant. It follows that
the range of any (αµ,−dN (µ), dS(µ))-path P (u, v) from u to v contains the
negative y-axis, that coincides with the direction defined by the half-line from
u through v. This implies that P (u, v) is monotone with respect to such a
half-line.

Then, we describe how to compose the inductively constructed drawings
Γµ1

, . . . ,Γµk
of the children µ1, . . . , µk of µ in T , with poles (u1, v1), . . . , (uk, vk),

in order to construct a drawing Γµ of pert(µ) satisfying Properties A–C.

If µ is a Q-node, then draw an edge between pN (µ) and pS(µ).

If µ is an S-node (see Fig. 14(a)), then let p be the intersection point be-

tween segment pW (µ)pE(µ) and the bisector line of ̂pW (µ)pN (µ)pE(µ). Consider
k equidistant points p1, . . . , pk on segment pN (µ)p such that p1 = pN(µ) and
pk = p. For each µi, with i = 1, . . . , k − 1, consider a boomerang boom(µi) =
(pN (µi), pE(µi), pS(µi), pW (µi)) such that pN (µi) = pi, pS(µi) = pi+1, and
pE(µi) and pW (µi) determine βµi

+ 2αµi
<

αµ

2 . Apply the inductive algo-
rithm to µi and boom(µi). Also, consider a boomerang boom(µk) = (pN (µk),
pE(µk), pS(µk), pW (µk)) such that pN (µk) = p, pS(µk) = pS(µ), and pE(µk)
and pW (µk) determine βµk

+ 2αµk
<

αµ

2 . Apply the inductive algorithm to µk

and boom(µk).

pW (µ)
pE(µ)

pN(µ) = pN(µ1)

pS(µ1) = pN(µ2)

p = pS(µk−1) = pN(µk)

pS(µ) = pS(µk) pS(µ)

pN(µ)

pE(µ)

pE(µ2k)
=

pW (µ)

pW (µ1)
=

(a) (b)

Figure 14: The construction rules for an S-node (a) and for a P-node (b).

If µ is a P-node (see Fig. 14(b)), then consider 2k points p1, . . . , p2k on

segment pW (µ)pE(µ) such that p1 = pW (µ), p2k = pE(µ), and ̂pipN (µ)pi+1 =
αµ

2k−1 , for each i = 1, . . . , 2k − 1. For each µi, with i = 1, . . . , k, consider a
boomerang boom(µi) = (pN (µi), pE(µi), pS(µi), pW (µi)) such that pN (µi) =
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pN(µ), pS(µi) = pS(µ), pW (µi) = p2i−1, and pE(µi) = p2i. Apply the inductive
algorithm to µi and boom(µi).

If µ is an R-node, then consider the graph G′ obtained by removing v and its
incident edges from skel(µ). Since skel(µ) is triconnected, G′ is a biconnected
graph whose possible split pairs are incident to the outer face. Further, each
of such split pairs separates at most three maximal split components, and in
this case one of them is an edge. By Lemma 6, G′ admits a convex drawing
whose outer face is represented by any strictly convex polygon. Consider a
strictly convex polygon C with one vertex placed on pN (µ), one vertex placed
on pE(µ), and m−2 vertices placed inside boom(µ) so that they are visible from
pS(µ) inside boom(µ) and so that the internal angle incident to pE(µ) is smaller
than π

2 (see Fig. 15(a)).
Construct a convex drawing Γ(G′) of G′ such that the vertices of the outer

face of G′ are placed on the vertices of C, with u placed on pN (µ). By Lemma 2,
Γ(G′) is monotone. Slightly perturb the position of the vertices of Γ(G′) so that
no two parallel edges exist and no edge is orthogonal to dN (µ). Then, apply a
directional-scale DS(dN (µ)− π

2 , k(Γ(G
′),

αµ

2 )) to Γ(G′). By Lemma 7, for every
edge e ∈ G′, slope(−dN(µ)) − αµ

2 < slope(e) < slope(−dN(µ)) +
αµ

2 . Further,
by Lemma 4 and by the fact that the internal angle of C incident to pN (µ) is
smaller than

αµ

2 < π
2 , for every vertex w ∈ G′, a (

αµ

2 ,−dN (µ))-monotone path
exists from u to w.

pW (µ)
pE(µ)

pS(µ)

pN(µ)

C

pW (µ)

G′

pN(µ)

pE(µ)

pS(µ)

dN −
π
2

(a) (b)

Figure 15: Two phases of the construction for an R-node: (a) definition of the
strictly convex polygon C and (b) the directional-scale applied to G′.

Let Γ(skel(µ)) be the drawing of skel(µ) obtained from Γ(G′) by placing v on
pS(µ) and drawing its incident edges as straight-line segments (see Fig. 15(b)).
We have the following:

Claim 2 Γ(skel(µ)) is monotone.

Proof: Every two vertices different from v are connected in Γ(skel(µ)) by
the same monotone path as in Γ(G′). Also, for every vertex w ∈ skel(µ),
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consider a path P (u, v) from u to v that is a composition of a (
αµ

2 ,−dN(µ))-
monotone path from u to a vertex w′ adjacent to v passing through w and of the
(αµ, dS(µ))-monotone path composed only of edge (w′, v). Observe that P (u, v)
is an (αµ,−dN(µ), dS(µ))-path. Since, by Lemma 8, P (u, v) is monotone, the
subpath of P (u, v) between w and v is monotone, by Property 2.

Consider a drawing Γ′(skel(µ)) of a subdivision of skel(µ) obtained as a
subdivision of Γ(skel(µ)). We have the following:

Claim 3 Γ′(skel(µ)) is monotone.

Proof: Consider a graph G∗ obtained by adding edge (u, v) to skel(µ) and
consider a drawing Γ∗ of G∗ obtained by adding a straight-line edge between
u and v in Γ(skel(µ)). Note that Γ∗ is convex and has no two parallel edges.
Hence, any subdivision Γ′

∗
of Γ∗ is monotone, by Lemma 3. We prove that for

each pair of vertices in Γ′

∗
there exists a monotone path not containing (u, v).

Observe that this implies the claim, as every path in Γ′

∗
not containing (u, v) is

also a path in Γ′(skel(µ)).
Consider any two vertices a and b both different from u and v. Consider any

path P (a, b) from a to b containing edge (u, v) and consider the two vertices
a′ and b′ (possibly with a′ = a and b′ = b) such that edges (a′, u) and (v, b′)
belong to P (a, b). Rotate the coordinate axes in such a way that u and v
lie on the y-axis. Since u and v are the highest and the lowest point of Γ′

∗
,

respectively, we have that â′uv + ûvb′ < π. Hence, when applied to the origin,
d(u, v) coincides with the negative y-axis, that is, it separates the third and the
fourth quadrant. Moreover, d(a′, u) lies in the second quadrant and d(v, b′) lies
in the first quadrant. Thus, there exists no wedge with an angle smaller than
π that contains all of d(a′, u), d(u, v), and d(v, b′), which implies that P (a, b) is
not monotone. We conclude that any monotone path between a and b, which
exists by the fact that Γ′

∗
is monotone, does not contain (u, v).

Consider any two vertices such that one of the vertices is a pole, say u,
and the other is a vertex w (possibly w = v). If w is also a vertex of skel(µ),
then a monotone path between u and w exists by the fact that Γ(skel(µ)) is
monotone. Otherwise, if w is a subdivision vertex, then let (w1, w2) be the edge
of skel(µ) whose subdivision vertex is w. Assume, without loss of generality,
that the projection of w1 on dN (µ) appears after the projection of w2 on dN (µ).
Consider the path P (u, v) from u to v that is a composition of the monotone
path P (u,w1) between u and w1, of the monotone path (w1, w, w2), and of the
monotone path from w2 to v. As dN (µ) − αµ < slope(w1, w) < dN (µ) + αµ,
P (u, v) is monotone, and hence the subpath of P (u, v) between u and w is
monotone, by Property 2.

Consider the pair of vertices x, y belonging to the subdivision of skel(µ)
such that the range range(P (x, y)) of the monotone path P (x, y) between them
in Γ′(skel(µ)) creates the largest angle ∠(x, y) among all the pairs of vertices.
Let γ = π − ∠(x, y). Let δ be the smallest angle between two adjacent edges
in Γ(skel(µ)). For each µi, with i = 1, . . . , k, let pN (µi) and pS(µi) be the
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points where ui and vi have been drawn in Γ(skel(µ)), respectively. Consider a
boomerang boom(µi) = (pN (µi), pE(µi), pS(µi), pW (µi)) such that pE(µi) and
pW (µi) determine βµi

+2αµi
< min{ δ

2 ,
γ
2 }. For each µp such that either pN (µp)

and pS(µp) lie on the vertices of C or pS(µp) = pS(µ), choose points pW (µp)
and pE(µp) inside boom(µ). Then, apply the inductive algorithm to µi, with
poles ui and vi, and boom(µi) (see Fig. 16).

pW (µ) pE(µ)

pS(µ)

pN(µ)

Figure 16: Inductive step when µ is an R-node.

In the following we prove that the above described algorithm constructs a
planar monotone drawing of every biconnected planar graph.

Theorem 4 Let G be an n-vertex biconnected planar graph. Then, it is possible
to compute a planar straight-line monotone drawing of G in O(n) time.

Proof: Let T be the SPQR-decomposition of G, rooted at any Q-node µe

corresponding to an edge e. Let boom(µe) = (pN (µe), pE(µe), pS(µe), pW (µe))
be a boomerang such that:

• x(pN (µe)) = x(pS(µe)) < x(pW (µe)) < x(pE(µe)),

• y(pS(µe)) < y(pW (µe)) = y(pE(µe)) < y(pN (µe)), and

• βµe
+ 2αµe

< π
2 .

Apply the inductive algorithm described above to µe and boom(µe). We prove
that the resulting drawing is monotone by showing that at each step of the
induction the constructed drawing satisfies Properties A–C. This is trivial if
µ is a Q-node. Otherwise, µ is an S-node, a P-node, or an R-node and the
statement is proved by the following claims:

Claim 4 If µ is an S-node, Γµ satisfies Properties A, B and C.

Proof: We prove that Γµ satisfies Property A. Refer to Fig. 17(a). Let
µ1, . . . , µk be the child nodes of µ. Consider any two vertices w′, w′′ ∈ pert(µ)
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u

v

w
′

w
′′

w1

w3 wb

wa

dN (µb)

dN (µa)

dS(µa)

dS(µb)

u

v

dN(µb)

−dN(µa)dS(µa)

αµb

αµa

(a) (b) (c)

Figure 17: Γµ satisfies Property A (a) if µ is an S-node and (b)–(c) if µ is a
P-node.

and the nodes µa and µb, with 1 ≤ a, b ≤ k, such that w′ ∈ pert(µa) and
w′′ ∈ pert(µb). If a = b, then a monotone path between w′ and w′′ exists
by induction. Otherwise, for each µi, with i = 1, . . . , k, consider a vertex
wi, where wa = w′ and wb = w′′, and a (αµi

,−dN(µi), dS(µi))-path P (ui, vi)
from ui to vi containing wi. Observe that such paths exist since, for each
µi, Γµi

satisfies Property C. Consider a path P (ui, vi) with 1 ≤ i ≤ k − 1.
Since βµi

+ 2αµi
<

αµ

2 , and since pN (µi) and pS(µi) lie on the bisector line of
αµ, for each edge e ∈ P (ui, vi), it holds slope(e) < βµ +

αµ

2 + βµi
+ 2αµi

<
βµ + αµ < βµ + 2αµ = −dN(µ) + αµ, and slope(e) > βµ +

αµ

2 − (βµi
+ 2αµi

) >
βµ = −dN(µ) − αµ. Hence, P (ui, vi) is (αµ,−dN(µ))-monotone. Analogously,
P (uk, vk) is (αµ, dS(µ))-monotone. Therefore, the path P (u, v) composed of all
the paths P (ui, vi) is an (αµ,−dN (µ), dS(µ))-path. By Lemma 8, P (u, v) is
monotone. Hence, by Property 2, the subpath of P (u, v) between w′ and w′′ is
monotone, as well, and Γµ satisfies Property A.

We prove that Γµ satisfies Property B. Observe that, for each node µ1, . . . ,

µk−1, boom(µi) is such that pN(µi) and pS(µi) lie on segment pN (µ)p, which
creates angles equal to

αµ

2 with pN (µ)pW (µ) and with pN(µ)pE(µ). Further,
βµi

+ αµi
< βµi

+ 2αµi
<

αµ

2 . Hence, boom(µi) is contained inside boom(µ).
Analogously, it is possible to show that boom(µk) is contained inside boom(µ).
As, by induction (Property B), pert(µi), for each i = 1, . . . , k, is drawn inside
boom(µi) without crossings, Property B holds for Γµ.

We prove that Γµ satisfies Property C. Observe that, for every vertex w ∈
pert(µ), it is possible to choose a vertex w′ ∈ pert(µ) such that w and w′ do not
belong to the same node µi and to show that there exists an (αµ,−dN (µ), dS(µ))-
path P (u, v) from u to v passing through w and w′ with the same argument as
in the proof that Γµ satisfies Property A.
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Claim 5 If µ is a P-node, Γµ satisfies Properties A, B, and C.

Proof: We prove that Γµ satisfies Property A. Let µ1, . . . , µk be the child
nodes of µ. Consider any two vertices wa, wb ∈ pert(µ) and the nodes µa and
µb, with 1 ≤ a, b ≤ k, such that wa ∈ pert(µa) and wb ∈ pert(µb). If a = b,
then a monotone path between wa and wb exists by induction. Otherwise,
consider the (αµa

,−dN(µa), dS(µa))-path Pa(u, v) from u to v through wa and
the (αµb

, dN (µb),−dS(µb))-path Pb(v, u) from v to u through wb, which exist by
induction (Property C). Suppose that wb lies on the (αµb

, dN (µb))-monotone
path P (wb, u) from wb to u that is a subpath of Pb(v, u) (see Fig. 17(b)), the
other case being analogous. Consider the (αµa

,−dN (µa), dS(µa))-path P (u,wa)
that is a subpath of Pa(u, v). We show that the path P (wb, wa) composed of
P (wb, u) and P (u,wa) is monotone. Refer to Fig. 17(c). Rotate the coordinate
axes in such a way that u and v lie on the y-axis. Then, when translated
to the origin of the axes, dN (µb) is in the second quadrant, −dN(µa) in the
fourth quadrant, and dS(µa) in the third quadrant. By construction, the wedge
delimited by dN (µb) and −dN (µa) and containing the third quadrant has an
angle smaller than or equal to π − 2

αµ

2k−1 . Since, by definition, every edge of

P (wb, u) creates an angle with dN (µb) that is smaller than αµb
=

αµ

2k−1 and
every edge of P (u,wa) creates an angle with −dN (µa) that is smaller than
αµa

=
αµ

2k−1 , it follows that the slopes of all the edges of P (wb, wa) lie inside a
wedge having an angle smaller than π. Hence, P (wb, wa) is monotone.

We prove that Γµ satisfies Property B. Each boomerang boom(µi) is con-
tained inside boom(µ), by construction, and pert(µi) is drawn inside boom(µi)
without crossings, by induction (Property B).

We prove that Γµ satisfies PropertyC. It is sufficient to observe that, for each
vertex w ∈ pert(µ), the (αµ,−dN (µ), dS(µ))-path passing through w coincides
with the (αµi

,−dN(µi), dS(µi))-path passing through w, where µi is the node
such that w ∈ pert(µi), which exists by induction (Property C).

Claim 6 If µ is an R-node, Γµ satisfies Properties A, B, and C.

Proof: We prove that Γµ satisfies Property A. Consider any two vertices wa

and wb of pert(µ) and the nodes µa and µb such that wa ∈ pert(µa) and wb ∈
pert(µb). Let ea and eb be the virtual edges of skel(µ) corresponding to µa and
µb, respectively. If a = b, by induction, there exists a monotone path between wa

and wb. Otherwise, consider the monotone drawing Γ′(skel(µ)) of a subdivision
of skel(µ) and the monotone path P (ua, ub) between the subdivision vertex ua of
ea and the subdivision vertex ub of eb. By construction, π− range(P (ua, ub)) ≥
γ. As βµi

+ 2αµi
< min{ δ

2 ,
γ
2} ≤ γ

2 , for the path P (wa, wb) that is obtained by
replacing each edge ei of P (ua, ub) with the corresponding path of pert(µei), it
holds that range(P (wa, wb)) < π.

We prove that Γµ satisfies Property B. First observe that the constructed
drawing of skel(µ) is planar (even convex) by construction. Also, for each node
µp whose corresponding virtual edge is incident to the outer face of skel(µ),
points pW (µp) and pE(µp) are inside boom(µ), by construction. Further, as for
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each node µi it holds βµi
+ 2αµi

< min{ δ
2 ,

γ
2} ≤ δ

2 , there is no intersection
between any two boomerangs boom(µp) and boom(µq), with p 6= q. As, by
induction, pert(µi), for each i = 1, . . . , k, is drawn inside boom(µi) without
crossings, Property B holds for Γµ.

We prove that Γµ satisfies Property C. Let Γ(G′) be the drawing of the
subgraph of skel(µ) induced by the vertices of skel(µ) \ {v}. Observe that, as
the position of the vertices in Γ(G′) has been perturbed before applying the
directional-scale DS(dN (µ) − π

2 , k(Γ(G
′),

αµ

2 )), every edge e in Γ(G′) is such
that dN (µ)− αµ

2 < slope(e) < dN (µ) +
αµ

2 .
Consider any vertex w ∈ pert(µ) and let µp be the child such that w ∈

pert(µp). Let (up, vp) be the virtual edge in Γ(skel(µ)) corresponding to µp.
Two cases are possible: either (up, vp) is adjacent to v or not. In the first case,
consider the path P (u, v) from u to v that is a composition of the (

αµ

2 ,−dN(µ))-
monotone path P (u, up) between u and up and of the (αµp

,−dN (µp), dS(µp))-
path P (up, vp) from up to vp = v passing through w, which exists by induction.
As βµi

+ 2αµi
< min{ δ

2 ,
γ
2} ≤ δ

2 , P (u, v) is an (αµ,−dN (µ), dS(µ))-path. In
the latter case, assume, without loss of generality, that (up, vp) has a negative
projection on dN (µ). Consider the path P (u, v) from u to v that is a compo-
sition of the (

αµ

2 ,−dN(µ))-monotone path P (u, up) between u and up, of the
(αµp

,−dN(µp), dS(µp))-path P (up, vp) from up to vp passing through w, which
exists by induction, and of the (

αµ

2 ,−dN (µ))-monotone path P (vp, w
′) between

vp and a vertex w′ adjacent to v in skel(µ), and of a (
αµ

2 , dS(µ))-monotone path

P (w′, v) from w′ to v, which exists by induction. As βµi
+2αµi

< min{ δ
2 ,

γ
2 } ≤ δ

2 ,
P (u, v) is a (αµ,−dN (µ), dS(µ))-path.

We perform the computational complexity analysis of the algorithm. First,
the SPQR-tree T of G can be computed in linear time [9, 10, 12].

Then, consider a node µ of T . If µ is an S- or a P-node, the algorithm
only computes the points and the angles defining the boomerangs inside which
a drawing of the children µ1, . . . , µk of µ will be inductively constructed. Such
an operation can be performed in O(k) time for each S- or P-node, and hence
in total O(n) time over all the S- and the P-nodes of T . If µ is an R-node, a
convex drawing of the graph G′ obtained by removing vertex v from the skeleton
of µ can be computed in O(k) time [7, 6, 5], where k is the number of children
of µ. Then, a drawing of the skeleton can be found in O(k) time by simply
reinserting v and connecting it to its neighbors. Finally, the computation of
the angles αµi

and βµi
defining the boomerangs inside which a drawing of the

children µ1, . . . , µk of µ will be inductively constructed can be performed in
O(k) time. Hence, the computational complexity over all the R-nodes of T is
still O(n), and the statement of Theorem 4 follows.

6 Conclusions and Open Problems

In this paper we have initiated the study of monotone graph drawings.
Concerning trees, we have shown that every monotone drawing is planar,
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that every strictly convex drawing is monotone, and that monotone drawings
exist on polynomial-size grids. We believe that simple modifications of the al-
gorithms we described allow one to construct strictly convex drawings of trees
on polynomial-size grids. Another possible extension of our results is to char-
acterize the monotonicity of a drawing in terms of the angles between adjacent
edges. Our definition of slope-disjointness goes in this direction, although it
introduces some non-necessary restrictions on the slopes of the edges (like the
one that all the edge slopes are between 0 and π).

Further, we have proved that every biconnected planar graph admits a planar
monotone drawing. Extending such a result to general connected graphs seems
to be non-trivial. Observe that there exist planar graphs that do not have a
monotone drawing (see Fig. 18(a)) if the embedding is given. However, we are
not aware of any planar graph not admitting a planar monotone drawing for
any of its embeddings.

u v

(a) (b)

Figure 18: (a) A planar embedding of a graph with no monotone drawing. (b)
A drawing of a planar triangulation that is not strongly monotone.

Several area minimization problems concerning monotone drawings are, in
our opinion, worth of study.

• Determining tight bounds for the area requirements of grid drawings of
trees appears to be an interesting challenge. An improvement of the
bounds achieved by Algorithms DFS-based and BFS-based could be pos-
sibly obtained by reusing in the subtree rooted at a vertex v the same
slope of the edge connecting v to its parent.

• Modifying our tree drawing algorithms so that they construct grid draw-
ings in general position would lead to algorithms for constructing mono-
tone drawings of non-planar graphs on a grid of polynomial size.

• The drawing algorithm we presented for biconnected planar graphs con-
structs drawings in which the ratio between the lengths of the longest and
of the shortest edge is exponential in n. Is it possible to construct planar
monotone drawings of biconnected planar graphs in polynomial area?

Finally, we introduce a new drawing standard which is definitely related to
monotone drawings. A path from a vertex u to a vertex v is strongly monotone
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if it is monotone with respect to the half-line from u through v. A drawing of
a graph G is strongly monotone if for each pair of vertices u, v ∈ G a strongly
monotone path P (u, v) exists. Strong monotonicity appears to be even more
desirable than general monotonicity for the readability of a drawing. However,
designing algorithms for constructing strongly monotone drawings seems to be
harder than for monotone drawings and it appears to be true that only restricted
graph classes admit strongly monotone drawings. Note that a subpath of a
strongly monotone path is, in general, not strongly monotone; notice also that,
while convexity implies monotonicity, it does not imply strong monotonicity,
even for planar triangulations (see Fig. 18(b)).
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