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Abstract

The planarization method is the strongest known method to heuristi-
cally find good solutions to the general crossing number problem in graphs:
Starting from a planar subgraph, one iteratively inserts edges, represent-
ing crossings via dummy vertices.

In the recent years, several improvements both from the practical and
the theoretical point of view have been made. We review these advances
and conduct an extensive study of the algorithms’ practical implications.
Thereby, we also present the first implementation of an approximation
algorithm for the crossing number problem of general graphs. We compare
the obtained results with known exact crossing number solutions and show
that modern techniques allow surprisingly tight results in practice.
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1 Introduction

Given a graphG = (V,E), the crossing number problem asks how to drawG into
the plane with the fewest possible number of edge crossings. The planarization
method is the probably best known and most successful heuristic to tackle the
crossing number problem in practice. In its simplest form it runs in two phases:
first, a (large) planar subgraph G′ = (V,E′) of G is computed. Then, the
temporarily removed edges F := E \ E′ are re-inserted one after another, each
time solving a single edge insertion problem. This problem can be stated as
follows: Let H be a planar graph and e an edge not yet in H. We search for
a smallest planar graph H+ which represents a drawing of H + e where edge
crossings are replaced by dummy vertices of degree 4, and all these crossings
occur on the edge e. Hence, when removing the image of e from H+, we obtain
a planar embedded graph H. Using this method, each edge of F is inserted in
a planar graph until we obtain a planarization G+, representing G in a planar
way by using dummy vertices for crossings.

In the first proposal [2] of this heuristic, the insertion problem was considered
with respect to a fixed embedding (cyclic order of the edges around their incident
vertices) of the planar graph H. (I.e., after obtaining the planar subgraph G′,
one embedding of G′ is fixed and retained throughout the whole insertion phase.)
A simple linear-time BFS-algorithm in the dual graph of H suffices to find an
optimal solution. Later, and rather surprisingly, it was shown in [18] that there
exists a linear-time algorithm, using the SPQR-tree data structure, which finds
the optimal insertion path for e over all possible planar embeddings of H. In [17]
it was shown that this approach is in practice vastly superior to the former in
terms of the overall obtained number of crossings.

In recent years it was furthermore shown that there exists a (rather com-
plex) insertion algorithm [6] to optimally insert a vertex with all its incident
edges into a planar graph H, considering all possible embeddings of H (ver-
tex insertion). On the other hand, it is NP-hard to insert an arbitrary set of
edges simultaneously (multiple edge insertion), even when the embedding of the
planar graph into which to insert is fixed [35].

Most interestingly, the single edge insertion problem (over all possible em-
beddings of H) is known to approximate the crossing number of H + e within
a factor of ∆/2, where ∆ is the graph’s maximum (vertex-)degree [4, 19]. I.e.,
there exists a drawing of H+e in which no two edges of H cross and whose num-
ber of crossings is at most ∆/2 times the crossing number of H + e. Similarly,
the vertex insertion problem approximates the crossing number of the resulting
graph [8]. In particular, the proof of the latter can be generalized to show that
an optimal multiple edge insertion solution—with respect to an edge set F and
over all possible embeddings of G′—approximates the crossing number of G′+F
within a factor only dependent on ∆ and |F | [8].

Hence, the question arose whether this multiple edge insertion problem can
be efficiently approximated. After a rather complicated approach in [10], a sim-
pler and at the same time approximation-wise stronger algorithm was presented
only recently [7]. The algorithm reuses concepts of the SPQR-tree based single
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edge insertion and seems simple enough to be implemented and used in practice.
The latter paper also shows that the traditional iterative single edge insertion
algorithm cannot be an approximation strategy for the crossing number of G.

Contribution. In this paper we present recent advances of the planarization
approach from a practical point of view. On the one hand, we show how to
improve on the traditional approach of iteratively inserting single edges, via the
use of strong postprocessing routines. On the other hand, we give the first im-
plementation of a simultaneous multiple edge insertion algorithm—hence, this
is also the first practical study of any crossing number approximation algorithm
for arbitrary graphs. By considering graph classes of known crossing numbers
(either from theory or from the application of the currently strongest branch-
and-cut based exact crossing minimization algorithm [9]) we can deduce a prac-
tically very good performance of these heuristics: they usually find optimum,
or at least very-close-to-optimum, solutions.

In the next section we recapitulate the central decomposition data structures
used for the insertion algorithms. We then summarize the general strategies and
central steps of these algorithms chiefly in Section 3. Based thereon, Section 4
describes improvements and implementation and engineering choices, allowing
the algorithms to work well in practice. Finally, Section 5 contains the full
discussion of our experimental evaluation, and Section 6 concludes the paper
with some interesting open problems.

2 Preliminaries

In order to present our algorithmic choices and modifications, we first have to
briefly introduce two central decomposition structures, used in all algorithms
dealing with the insertion problem over all possible embeddings of H.

Let H be a connected graph. The BC-tree B = B(H) of H is a tree with
two different node types B and C: For each cut vertex in H, B contains a
unique corresponding C-node, and for each block, i.e., a maximal two-connected
subgraph or a bridge, in H a unique corresponding B-node. Two nodes in B

are adjacent if and only if they correspond to a block b and a cut vertex c, such
that c ∈ b. It is well-known that the size of B is linear in the size of H, and that
B can be constructed in linear time, by computing the biconnected components
of H; see [21,34].

Based thereon, we can further decompose each non-trivial block H ′ (i.e.,
a block that is not a bridge) via an SPQR-tree [12, 13] into its triconnected
components: While SPQR-trees are more complicated than BC-trees, they also
only require linear size and can be constructed in linear time [16,20]. This data
structure is particularly interesting, as it directly encodes all (exponentially
many) planar embeddings of H ′. We use the definition from [5, 7] which does
not use Q-nodes, and therefore call the decomposition SPR-tree for conciseness.
Chiefly summarizing, each tree node corresponds to a skeleton, a “sketch” of H ′

where certain subgraphs are replaced by virtual edges; a skeleton’s structure is
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Figure 1: A planar graph (top left), its SPR-tree (top right), and its decomposition
showing the skeletons (bottom). Virtual edges are represented by dotted lines.

restricted to only three simple types. By repeatedly merging the skeletons of
adjacent nodes (at their virtual edges representing each other), we can obtain
the original graph. See Figure 1 for an example.

Definition 1 (SPR-tree). Let H ′ be a biconnected graph with at least three
vertices. The SPR-tree T = T(H ′) of H ′ is the (unique) smallest tree satisfying
the following properties:

i. Each node ν in T corresponds to a skeleton Sν = (Vν , Eν) which is a “sketch”
(minor, in fact) of H: Certain subgraphs are replaced by single virtual edges.
The non-virtual edges are referred to as original edges.

ii. The tree has three different node types with specific skeleton structure:

S: The skeleton is a simple cycle; it represents a serial component.

P: The skeleton consists of two vertices and multiple edges between them;
it represents a parallel component.

R: The skeleton is a simple triconnected graph. Note that a planar tri-
connected graph has a unique embedding (up to mirroring).

iii. For the edge (ν, µ) in T we have: Sν contains a virtual edge eµ which
represents the subgraph described by Sµ, and vice versa.
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iv. We can obtain the original graph H ′ by iteratively merging the skeletons
of adjacent tree nodes: For the edge (ν, µ) in T, let eµ (eν) be the virtual
edge in ν (µ) representing the subgraph described by Sµ (Sν , respectively).
Clearly, both edges eµ and eν connect the same nodes, say u and v. We
obtain a merged graph (Vν ∪ Vµ, Eν ∪ Eµ \ (eµ, eν)) by gluing the graph
together at u and v and removing eµ and eν .

Observe that the merge operation guarantees that the end vertices of a
virtual edge are in fact a 2-cut (a split pair), i.e., their removal splits the graph
in two or more components. In fact, the skeletons are exactly the triconnected
components of H ′ discussed in [20].

In the algorithmic description of the multiple edge insertion approximation
algorithm [7], an amalgamated version of these trees is considered:

Definition 2 (Con-tree). Let H be a connected planar graph. The con-tree
C = C(H) is formed by the BC-tree B(H) which holds SPR-trees T(H ′) for all
non-trivial blocks H ′ of H.

Clearly, the linear-sized con-tree C can be obtained from H in linear time.

3 Planarization Approach

In the above sketched planarization scheme, we can assume that the original
graph G is connected, as otherwise the crossing number problem decomposes
into multiple independent problems. Furthermore, the initial planar subgraph
G′ can be assumed to be maximal (i.e., no edge of G can be added without losing
planarity) and hence also connected. For the single edge insertion algorithms, we
will usually consider any intermediate graph H; for the multiple edge insertion
algorithm we set H := G′.

3.1 Single Edge Insertion

We will briefly recapitulate the central ingredients of the exact linear-time al-
gorithm by Gutwenger et al. [18] to solve the single edge insertion problem over
all possible embeddings of H. Let v1, v2 be the vertices we want to connect in
H via a new edge. First consider a fixed embedding of H and let HD be its
dual. We define an insertion path to be a path in HD connecting a face incident
to v1 with a face incident to v2. The length of this path is then the number of
edge crossings necessary to insert the edge {v1, v2} into embedded H along this
path; each dual edge in the insertion path corresponds to an edge in H that is
to be crossed. We can directly compute the shortest insertion path via standard
breadth-first search (BFS).

Now consider H with variable embedding. Let L be the unique shortest path
in B(H) from a B-node containing v1 to a B-node containing v2. The optimal
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insertion path for {v1, v2} in G can be obtained by concatenating the optimal
insertion paths within the (non-trivial) blocks on this path L; we can always
nest blocks at a common cut vertex into each other such that there arise no
additional crossings. For a block H ′ represented by a B-node on L, let vH

′

i ,
i = 1, 2, denote vi if vi ∈ V (H ′), or the cut vertex in H ′ closest to vi otherwise.
It remains to find optimal insertion paths from any face incident to vH

′

1 to any
face incident to vH

′

2 , for each non-trivial block H ′.
Therefore, let QH′ be the unique shortest path in T(H ′) from a skeleton

containing vH
′

1 to a skeleton containing vH
′

2 . It was shown in [18] that only the
embeddings of the skeletons along QH′ matter. In a nutshell, the algorithm
walks along these skeletons and fixes suitable embeddings for the skeletons, one
after another. Finally, an optimal embedding is found and fixed, and one can
use the simple BFS algorithm on the dual graph to insert the edge {vH′

1 , vH
′

2 }
optimally.

In the following, we can consider a con-chain Q in C(H) of the edge {v1, v2}
as an extended version of L, where the “subpaths” QH′ are stored at each
non-trivial block H ′ along L.

3.2 Multiple Edge Insertion

Let us briefly review the approximation algorithm for the multiple edge insertion
problem by Chimani and Hliněný [7]. Let H := G′ be the initial planar subgraph
of G into which to insert the edges in F = {ei}1≤i≤|F |. Assume we could
independently insert each edge ei ∈ F into H. Using the above algorithm for
single edge insertions, we would obtain a con-chain Qi for each edge ei, and
therefore a so-called embedding preference for each node on Qi with respect to
ei. We obtain a common embedding of H via an iterative voting scheme on
the (in general conflicting) embedding preferences per con-tree node; see also
Section 4.2. Among other properties, the scheme ensures that at any con-tree
node at least one preference is satisfied. After realizing the so-chosen embedding,
we can once again use the simple BFS algorithm in the dual graph to insert all
edges of F (iteratively) into this fixed embedding.

The prove-wise crucial part in the algorithm is that any two con-chains
Qi, Qj are either disjoint or they intersect in one sub-chain. Hence, two con-
chains (think of simple paths) “deviate” at at most two nodes in the con-tree
(think of a usual tree): once when the two paths come together and once when
they part. It is shown in [7] that the embedding preferences may conflict only
very locally at these two “places” (called passes). Thereby, the exact definition
of pass is quite involved; here, it suffices to state that such a pass might span
over at most five con-tree nodes. Overall we can bound the number of nodes
where some con-chains disagree on the embedding preference, as well as the
additionally necessary number of crossings to route an edge through a skeleton
that is differently embedded than desired. This gives an approximation factor for
the optimal multiple edge insertion with respect to G′ and F , and, subsequently,
for the crossing number of G.

It remains to clarify what an embedding preference actually is: Observe that
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S-nodes do not allow different embeddings of their skeletons. For an R-node
(a triconnected planar graph), we have only a unique planar embedding and
its mirror. For a P-node, each inserted edge may want two particular edges of
the skeleton to be cyclicly adjacent (in, say, clockwise direction). Finally, for a
C-node each inserted edge may want a particular incident face in an adjacent
block to be identified with a particular incident face in another adjacent block.

4 Engineering

4.1 Iterative Single Edge Insertion and Postprocessing

In the traditional planarization heuristic, we will “simply” insert the temporarily
removed edges F one after another into the planar subgraph. After each inser-
tion, we replace the arising crossings by dummy vertices, and hence proceed
with a planar graph. There are various ways to fine-tune the obtained result
via postprocessing, as already discussed in [17]. The simplest—and in fact quite
effective—variant is to start the insertion process multiple times, each time with
a different, randomized order of F . Additionally, each such insertion run can be
improved: After having inserted all edges, we can again remove some original
edge e from the planarization (i.e., we remove all the subedges and dummy ver-
tices that represent e), and re-insert it, possibly requiring fewer crossings. For
this operation, we can consider either the inserted edges F (ins), all edges (all),
or the x% of the edges with the most crossings (most x, for some constant x).
In [17] it was shown, that these approaches lead to greatly improved results.

Herein, we propose a further improvement on these methods. The incremen-
tal (inc) strategy basically applies the all strategy after each single insertion
step. I.e., after the insertion of an edge e ∈ F , we try to remove and reinsert ev-
ery other edge already in the graph, in order to obtain a better crossing number,
before proceeding with the next edge from F . We will see that this approach
again dominates the previously best strategy all, though at the cost of a vastly
increased running time.

Note that all these strategies—when applied in a fixed embedding setting—
are also applicable to the multi-edge insertion problem, after fixing an embed-
ding into which all edges in F need to be inserted. Formally, the inc setting
has to restrict itself to only try to reinsert the edges in F , in order to retain
the approximation guarantee. Interestingly, after having obtained a postpro-
cessed solution in the fixed embedding, we can run the all postprocessing where
the graph’s embedding may change, i.e., using the optimal edge insertion over
all possible embeddings! As the solution value never increases, the algorithm
retains its approximation guarantee and improves the number of crossings in
practice.

From the approximation point of view, we can observe that the first part of
the algorithm (fixing a suitable overall embedding) tries to minimize the number
of crossings between edges in F and edges in G′, while the postprocessing rou-
tines most importantly try to reduce the number of crossings between edges in
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F—their quantity can only be estimated as
(|F |

2

)
in the formal quality guarantee.

4.2 Implementing Multiple Edge Insertion

In [7], certain aspects of the multiple edge insertion algorithm are described to be
suitable for a comparatively smooth approximation proof. When implementing
the algorithm, we take some different, though completely equivalent, routes. A
main point of deviation is the consideration of dirty passes. We highlight the
two main divergent choices here. Overall, our viewpoint allows a quite simpler
implementation than would be easily deduced from the theoretical proofs of [7]
alone.

The formal definition of dirty passes is very technical and lengthy, and re-
quires a couple of supplementary definitions. Hence we refer the reader to [7] for
the details, and we will only give a rough overview herein, transporting the idea
but glossing over several details. Conceptually, a dirty pass describes a “place”
in the con-tree where multiple insertion paths disagree on their preferred em-
bedding. Roughly speaking, this can only happen whenever two insertion paths
meet in the con-tree, coming from different branches of the tree, cf. Figure 2.
When satisfying the preference for one of the insertion paths, the others may
have to be routed through a “wrongly embedded” subgraph: such a routing re-
quires up to ∆/2 additional crossings. Hence, as an overall goal, the algorithm
has to make embedding decisions in order to minimize the number of dirty
passes. The “place” such a dirty pass describes is a subpath of 1–5 con-tree
nodes (i.e., 1–3 non-S-nodes, possibly interleaved by S-nodes); hence, based on
the node’s types and embeddings, a routing through several unfortunate em-
beddings may constitute a single dirty pass, or multiple distinct dirty passes.
Figure 3 shows two simple cases of dirty passes, consisting of a single P-node
and of two adjacent R-nodes, respectively.

In [7] a sizable number of different dirty pass types, including a tie-breaking
scheme to prohibit invalid overlaps of dirty passes, is required. Yet, from the
proofs it becomes clear that this is merely necessary to correctly estimate the
number of these passes. Within the algorithm, these passes are only detected
in order to identify possible flips to prohibit too many such situations. In other
words: many dirty passes are unavoidable anyhow; the algorithm can only try
to reduce a subclass of all possible dirty passes, namely, only dirty passes where
a flip along such a pass improves the situation locally.

Con-Tree. Originally, the con-tree as an amalgamated version of BC- and
SPR-trees is proposed, which allows to talk about a single con-chain (path)
for each inserted edge. In the implementation, we perform the algorithm differ-
ently: First, we compute a suitable combinatorial embedding for each non-trivial
block independently. Only then, we consider the C-nodes at which the blocks
are joined. From the formal definition of dirty passes, we can easily deduce
that C-nodes do not interact with other nodes in terms of realized embedding
preferences, and hence we can independently choose which faces to embed into
each other at cut vertices, after fixing the embeddings of the incident blocks.
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Figure 2: How dirty passes arise: the dotted lines denote insertion paths of two
different edges within an SPR-tree: when two insertion paths meet, their embed-
ding preferences may disagree—not only at a single node, but at some subpath
in the tree. The gray regions denote possible dirty passes.

(a) An insertion path through a P-node requires no crossings for single edge
insertion, as we can find a permutation such that the two “important” edges
are next to each other. When fixing a different (“wrong”) embedding, the
insertion path may cross over roughly half of the edges incident to one of the
skeleton’s two vertices.

(b) Two adjacent R-nodes; the thick edges denote the virtual edges corresponding to this
adjacency (i.e., each thick edge represents the SPR-subtree rooted at the other R-node).
Recall that R-nodes allow only a unique embedding and its mirror. Consider two different
insertion paths traversing both R-nodes. While one path (left) prefers both nodes in their
“default” embedding, the other path (middle) would want one of the R-nodes mirrored. Not
mirroring any R-node leads to additional (up to ∆/2) crossings for the second path (right).

Figure 3: Two example of dirty passes. Insertion paths are denoted by dashed edges;
arrows pointing at a (virtual) edge of a skeleton means that an insertion path
will enter the component represented by this virtual edge. In the examples, all
edges can be thought of as being virtual edges representing thick subgraphs.
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This modification allows us to consider only two-connected graphs and SPR-
trees in the following, vastly simplifying implementation details as most of the
software infrastructure necessary for single edge insertions can be reused.

Merging the Embedding & Repairing Dirty Passes. As sketched above,
the algorithm only has to identify possible flips to prohibit too many dirty
passes. For this purpose alone, a much simpler strategy than a full-blown dirty
pass classification suffices: Usually, we consider one insertion path after another.
We traverse its SPR-nodes and fix the embedding of each skeleton along this
path as preferred. When a visited node already has a fixed embedding, we try
to flip the predecessor nodes of our current path in order to avoid dirty passes.
Instead of checking the full case distinction in the dirty pass definition, it suffices
to consider the case where the currently visited nodes ν and its predecessor
(disregarding S-nodes) µ are P- and/or R-nodes:

We say that an embedding preference at a P-node agrees with a fixed embed-
ding of this node’s skeleton, if the specified two edges occur clockwise neighbor-
ingly. An embedding preference of an R-node is simply a binary flag specifying
whether to use a “default” planar embedding of the node’s skeleton or the “mir-
ror” (only these two embeddings exist). Now, we only have to flip µ and its
predecessors1 along the insertion path iff µ and ν are switching, i.e., the new
embedding preferences agree with the already fixed embedding of one of these
two nodes, and agrees with the flipped embedding of the other node.

Doing this for all such pairs ν, µ then also repairs dirty passes on node
triples, if at all possible. In all other cases of dirty passes, no flip can improve
the situation anyway and hence is not necessary. It is understood that this
procedure performs the same flips as the more abstract merge routine described
in [7], and hence the implementation retains the approximation guarantee.

5 Experiments

5.1 Experimental Setup

We implemented all algorithms using the C++ library OGDF2 and ran our
experiments on a Linux system with an Intel Core i7-940 processor (2.93 GHz,
8MB cache) and 12 GB RAM. For each graph instance, all edge insertion al-
gorithms were called with the same, pre-computed maximal planar subgraph,
which was computed using OGDF’s PQ-tree based planar subgraph algorithm
[22] (best of 250 random runs, i.e., random choices of the initial st-edge for the
st-numbering) and iteratively adding removed edges afterwards if they do not
destroy planarity (hence, all planar subgraphs were maximal).

1As in the original algorithm, we then also have to flip further nodes whose embedding is
already fixed and who are adjacent to flipped nodes. But herein, this can be viewed as only
a minor technicality.

2Open Graph Drawing Framework, see http://www.ogdf.net.

http://www.ogdf.net


JGAA, 16(3) 729–757 (2012) 739

5.2 Benchmark Sets

For creating our benchmark sets, we applied a reduction strategy to the graphs,
which removes parts of the graphs that are irrelevant for planarization-based
crossing minimization heuristics: self-loops, parallel edges, and planar blocks.
Furthermore, we iteratively remove each vertex v with degree two not contained
in a 3-cycle and add an edge connecting its two neighbors (the condition that
v is not part of a 3-cycle prevents us from introducing parallel edges). Due to
the removal of planar biconnected components, the resulting graphs can be dis-
connected; in such a case, we considered each connected component separately
as a graph.

We created four benchmark sets, namely the Rome, AT&T, ISCA, and
KnownCR graphs, as described in the following. Our whole benchmark set
(including the planar subgraphs we used) can be downloaded at:

http://ls11-www.cs.uni-dortmund.de/people/gutweng/planexp.zip

Rome Graphs. This benchmark set is based on the well-known Rome li-
brary [11], a collection of 11,528 planar and non-planar graphs ranging from
10 to 100 vertices. These graphs are quite sparse with an average density of
1.35. We applied our reduction strategy to all graphs and selected the resulting
non-planar graphs with at least 25 vertices and at least two edges removed in
the computed planar subgraphs, which are 1843 graphs with 25–58 vertices3.

Figure 4 gives an overview on the Rome benchmark set, displaying the num-
ber of graphs and the average number of edges per vertex count. Furthermore, it
shows the average number of edges deleted in the planar subgraphs and for how
many of the graphs we know the exact crossing number from the branch-and-cut
algorithm presented in [5, 9].

AT&T Graphs. The AT&T graphs are another well-known benchmark set
(available at http://graphdrawing.org/data.html), containing directed and
undirected graphs. We considered all graphs as undirected and applied the same
reduction strategy and selection criteria as for the Rome graphs. The resulting
benchmark set consists of 311 graphs with 25–312 vertices.

Figure 5 gives an overview on the AT&T benchmark set. The graphs are
grouped according to the number of crossings in the best found solutions (this
is the same grouping as used in Figure 12 and 13; see evaluation below). The
diagram shows the number of graphs in each group (left vertical axis), as well as
the average number of vertices, edges, and edges deleted in the planar subgraphs
(right vertical axis).

3These lower bounds prohibit graphs with too trivial structures with respect to the number
of P- and R-nodes, as well as the number of edges removed in the planar subgraph. Further-
more the “25” is chosen so that we have a significant number of graphs for each vertex count
(at least for the smaller graphs).

http://ls11-www.cs.uni-dortmund.de/people/gutweng/planexp.zip
http://graphdrawing.org/data.html
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Figure 4: Statistics on the Rome graphs.
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Figure 6: Statistics on the ISCA graphs.

ISCA Graphs. The ISCA graphs are hypergraphs taken from the ISCA’85
benchmark set of real world electrical networks, transformed into traditional
graphs by substituting each hyperedge h by a new hypervertex connected to
all vertices contained in h, connecting all inputs (outputs) to a new vertex sin
(sout, resp.), and introducing the edge (sin, sout). We used the same reduction
and selection strategies as described above leading to 20 graphs with 25–223
vertices.

Figure 6 gives an overview on the ISCA benchmark set; for each graph the
diagram shows its number of vertices, number of edges, and number of edges
deleted in the planar subgraph.

KnownCR Graphs. Finally, the KnownCR graphs have been introduced
in [15]. They are a collection of 1946 graphs with 9–250 vertices, for which
the crossing numbers are known by theoretical proofs. Let Cn denote the cycle
with n edges and Pn the path with n edges. Recall that, given two graphs
G1 = (V1, E1) and G2 = (V2, E2), their Cartesian product G1�G2 is the graph
that has all possible vertex pairs V1 × V2 as its vertices and holds the edges
{(v1u2, w1u2) | (v1, w1) ∈ E1, u2 ∈ V2}∪{(u1v2, u1w2) | u1 ∈ V1, (v2, w2) ∈ E2}.

The benchmark set contains four classes of graphs:

• For Cartesian products of cycles Cm�Cn with 3 ≤ m ≤ 7 and n ≥ m,
the crossing number is n(m− 2) [1]. The collection contains 251 of these
graphs with nm ≤ 250.

• Various results have been published for the crossing numbers of Cartesian
products of 5-vertex graphs Gi with paths Pn; see Table 1 in the Appendix.
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The collection contains 893 such graphs with 3 ≤ n ≤ 49.

• Similarly, there are several theoretical results for the crossing numbers of
Cartesian products of 5-vertex graphs Gi with cycles Cn; see Table 2 in
the Appendix. The collection contains 624 such graphs with 3 ≤ n ≤ 50.

• Finally, the collection contains generalized Petersen graphs P (m, 2) and
P (m, 3)4. Exo et al. [14] have shown that P (2k, 2) is planar and

cr(P (5, 2)) = 2

cr(P (2k + 1, 2)) = 3 for k ≥ 3.

Richter and Salazar [32] have shown that

cr(P (9, 3)) = 2

cr(P (3k, 3)) = k for k ≥ 4

cr(P (3k + 1, 3)) = k + 3 for k ≥ 3

cr(P (3k + 2, 3)) = k + 2 for k ≥ 3.

The collection contains the 61 graphs P (2k + 1, 2) with 2 ≤ k ≤ 62 and
the 117 graphs P (m, 3) with 9 ≤ m ≤ 125.

5.3 Evaluation

We use the following naming convention for the various planarization heuristics:
The first part refers to the edge insertion method (fix, var, multi) and the second
part to the postprocessing strategy (none, ins, all, inc). Later on, we will also
introduce a special version for multiple edge insertion with a three-part naming
scheme (none-all, inc-all, incIns-all). The following table shows the conventions
we use in diagrams for displaying the various heuristics.

4Recall that a generalized Petersen graph P (m, k) consists of 2m vertices v0, . . . , vm−1 and
w0, . . . , wm−1, paired via edges (vi, wi) for all 0 ≤ i < m. The vertex groups are connected
via edges (vi, v(i+1)modm) and (wi, w(i+k)modm), for all 0 ≤ i < m.
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Edge Insertion Method (line style)

fix blue solid lines
var red dotted lines

multi green dashed lines
multi with special orange solid lines

postprocessing

Postprocessing Strategy (marker for data points)

none l (circles)
ins n (squares)
all u (diamonds)
inc s (triangles)

none-all + (crosses)
inc-all ∗ (stars)

incIns-all − (dashes)

Solution quality compared to (near) optimal results. For the Rome
graphs, we know many optimal or near optimal solutions obtained by the exact
branch-and-cut algorithm [5]5. In the following, we use the term BEST to de-
note the best results we know for the benchmark graphs; these are either from
our experiments (including runs with 100 permutations) or from the branch-
and-cut algorithm (which gives either an optimum solution, or an upper bound
when the algorithm terminates due to its time limit). We analyze the relative
difference between heuristic solutions and BEST. Since we know the exact so-
lutions for many of the graphs, this gives a very good impression on the actual
quality of the heuristics. We note that the exact algorithm is clearly slower than
any of the considered heuristics by orders of magnitudes (see [5, 9]), and hence
we do not compare runtimes with this algorithm.

We first study the effect of postprocessing; see Figure 7(a). Our results
confirm the findings from [17] that postprocessing helps a lot, and this also holds
for multiple edge insertion. Surprisingly, our new incremental postprocessing
achieves clearly better results than the previously best all, and this holds for all
edge insertion strategies, thus supporting the assumption that trying to decrease
the number of crossings already for intermediate solutions while inserting the
edges one-by-one helps to improve the final solution. We also observe that the
advantage of multi over fix is large without postprocessing, but becomes smaller
and smaller the more postprocessing is applied. The main reason for this is that
the more postprocessing we do the more the postprocessing phase becomes the
crucial factor, and this phase is the same for both edge insertion strategies.

Inspired by this observation, we experimented with an additional postpro-
cessing for the multi strategy, where we reused the postprocessing with vari-
able embedding; see Figure 7(b). The variants multi-none-all and multi-inc-all
perform multi with no or incremental postprocessing plus postprocessing with

5Note that our reduction strategy does not change the crossing numbers for the Rome
graphs, since they do not contain multiple edges.
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Figure 7: Number of crossings for Rome graphs, relative to BEST known solutions.



JGAA, 16(3) 729–757 (2012) 745

Figure 8: Number of crossings for Rome graphs, relative to BEST known solutions,
with respect to number of deleted edges.

variable embedding afterwards for all edges; multi-incIns-all works similar as
multi-inc-all but restricts the incremental postprocessing to the inserted edges.
Whereas multi-none-all and multi-incIns-all—which retain the approximation
guarantee—are about as good as var-all, multi-inc-all—which in theory does not
give those guarantees—comes close to var-inc (for larger graphs, it lies between
var-all and var-inc).

Compared to the (near) optimal results, we can see that the best heuristics
are about 15% away from BEST. For graphs up to 40 vertices, we know the
exact crossing number for most of the graphs (cf. Figure 4), and the results
for larger graphs seem to confirm this trend. For graphs with more than 50
vertices, we do not know if BEST comes close to the exact crossing numbers,
and therefore these results must be treated with caution.

Finally, we wanted to find out if the number of edges to be inserted affects the
relative order of heuristics regarding solution quality. In Figure 8 we grouped the
graphs by number of edges deleted in the planar subgraph (instead of number
of vertices) and show the number of additional crossings compared to BEST.
We observe that the relative order is the same as when grouping the graphs by
number of vertices (see Figure 7) and also remains consistent over the whole
range of edges to be inserted.

Running times. We knew already from [17] that the var edge insertion strat-
egy is significantly slower than the fix strategy, since it requires to compute
SPR-trees frequently. It was also known that postprocessing is time-consuming.
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Figure 9: Runtimes in milliseconds for the Rome graphs.

Here, we want to focus on the new algorithms: How fast is multi edge insertion
compared to the fix and var strategies, and how much slower is inc postpro-
cessing compared to all.

Figure 9 shows the runtimes on a logarithmic scale. We can see that the
overhead of multi compared to fix is small, and even becomes negligible if post-
processing is used. The var variants are always clearly slower, as they require
a new SPR-decomposition after each edge insertion, whereas multi uses only a
single such decomposition. The inc variants take about 2–4 times longer than
all, which is acceptable regarding the achieved improvements in quality.

For our special postprocessing variants for multi with additional var -post-
processing, we observe that more intensive postprocessing with fixed embedding
reduces the effort required with the time-consuming var -postprocessing and
results in smaller runtimes (i.e., multi-inc-all is faster than multi-none-all).
Since multi-inc requires a similar runtime as var-none but is in quality even
better than var-all (the previously quality-wise best known heuristic variant),
it is a very good choice in practice.

How much can permutations improve the solutions? Beside postpro-
cessing, we can also use multiple permutations of the order of edges to be inserted
for improving the solutions, and permutations and postprocessing can also be
combined.

Figure 10 studies the effect of permutations—recall that the prior discus-
sions did not consider multiple permutations. We applied 100 permutations
and show the relative reduction of the gap between a single run of the respec-
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Figure 10: Effect of 100 permutations on the number of crossings (Rome graphs).

tive heuristic and BEST in the diagram. Hence, 100% reduction means that 100
permutations led to the best solution we know. The main message is that permu-
tations without postprocessing are not very effective, whereas the combination
of postprocessing and permutations always gets significant improvements. The
incremental postprocessing variant does not only lead to best results (for graphs
with 45 or more vertices, it finds the best known solutions in most cases), but is
also the most effective one in combination with permutations. In the following,
we will append algorithm names with “-100” to denote the variant where 100
permutations are considered.

Solution quality compared to known crossing numbers. The KnownCR
graphs allow us to further compare the heuristic results with actual crossing
numbers. Figure 11 summarizes our findings for some selected heuristics, show-
ing the average relative deviation from the crossing number for the different
graph classes. Firstly, the class P (m, 2) of graphs (which all have crossing num-
ber 2 or 3) could optimally be solved by all heuristics, hence we omit it in the
diagram. For the classes P (m, 3), Gi�Cn, and Gi�Pn, all heuristics perform
well, being only 2-13% away from the optimum, and their order with respect to
quality is as expected. The class Cn�Cm shows some unusual behavior: With-
out permutations, the edge insertion method seems to have only a very small
influence on the quality of the solution; with 100 permutations, the fix strategy
is surprisingly superior to both multi and var. After analyzing the data, we
found that this happens only for a few graphs. In these cases, the distinct runs
of fix usually find solutions that are a bit worse than multi or var, but in some
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Figure 11: Number of crossings for KnownCR graphs, relative to crossing number.

rare cases a much better solution is found. We assume that this could be caused
by the fact that accepting worse intermediate solutions while inserting the edges
can lead to a better final solution.

AT&T and ISCA graphs. Whereas the Rome graphs are fairly homoge-
neous graphs with a simple structure and the KnownCR graphs are artificial,
the AT&T and ISCA graphs are real-world graphs with quite diverse structures.

We first consider the AT&T graphs. For analyzing the results, we decided
to group the graphs according to the best found solutions (the first group con-
tains graphs with 0, . . . , 24 crossings; the last group graphs with 700, . . . , 799
crossings). Figure 12 shows the relative difference between heuristic and best
solution; the horizontal axis shows the 17 groups of graphs described above. We
can confirm that incremental postprocessing clearly dominates all for all edge
insertion strategies, and var-inc is by far the best strategy both without and
with (var-inc-100 ) permutations. Multiple edge insertion is also slightly better
than fix. We remark that multi-incIns-all (not shown in the diagrams) performs
similar as var-all, both regarding solution quality and runtime.

However, the domination of var comes at a price: Whereas fix and multi
take about the same runtime, var is more than 10 times slower (see Figure 13).
Hence, multi-inc is again a good compromise, as it is even clearly faster than
var-all (in fact, 3–10 times faster).

For the ISCA graphs, we focus on the multi and var methods. Figure 14
shows again the relative difference between heuristic and best solution, this time
for each graph in the benchmark set separately (i.e., the horizontal axis shows
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the graph instances in the ISCA benchmark set). The graphs are sorted by
increasing number of edges deleted in the planar subgraph. We omitted the var
heuristics without postprocessing, namely var-none and var-none-100, in the
diagram; these curves lie between 70% and 100% for the larger graphs, which
is a lot more than what the heuristics with postprocessing achieve, underlining
again that postprocessing is essential. We can also see that the multi variants
come quite close to the corresponding var variants. This is again accompanied
by a much better runtime of multi (see Figure 15), in this case multi-inc is about
15–30 times faster than var-inc, and multi-all even about 100 times faster. Also
observe that the runtimes for fix and multi are almost identical.

Multiple edge insertion and crossing number. The multi edge insertion
strategy computes an embedding of the planar subgraph, based on a voting
scheme that considers the optimal edge insertion paths for each edge to be
inserted. Thus, this embedding should be a good compromise for inserting all
edges. However, when computing this embedding, the crossings that will occur
between edges to be inserted are not taken into account, and these can be as
many as

(|F |
2

)
, where F denotes the set of edges to be inserted. To conclude

this section, we want to analyze if this approach is justified in practice.
Summing up the crossings that would occur if we could independently insert

each edge optimally obviously leads to a lower bound for the multiple edge
insertion problem (but not for the crossing number of the graph itself). In
Figure 16, we consider the ISCA graphs and show the additional number of
crossings relative to this lower bound; hence the horizontal line at 0% represents
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Figure 15: Runtime (in milliseconds) for ISCA graphs, sorted by number of deleted
edges.

this lower bound. We remark that the number of edges to be inserted is between
9 and 157, lower bounds lie between 12 and 469, and the relative values for

(|F |
2

)
lie between 300% and 3100%.

The insertion costs (fixed embedding) are the number of crossings that occur
when we insert the edges into the embedding computed by multi, disregarding
crossings between the inserted edges. Therefore, this is exactly the value the
multi strategy tries to minimize. We can see that this value comes quite close
to the lower bound in most cases. On the other hand, the curve best crossings
(edge insertion) gives the best solution we have for the multiple edge insertion
problem (hence regarding all crossings). As could be expected, this value is
clearly higher (roughly 50%–100%) than insertion costs (fixed embedding), but
still low enough such that disregarding the crossings between inserted edges is
still meaningful. Finally, the curve best crossings (all) shows the best number
of crossings we could obtain, and thus also shows what we can gain if we allow
that edges in the planar subgraph may cross.

6 Conclusions

We presented inc, a new practically dominating postprocessing strategy for the
planarization heuristic, and report on multi, the first implementation of any
crossing minimization approximation algorithm for general graphs. Both algo-
rithms outperform any previously known heuristic in terms of solution quality,
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Figure 16: Number of additional crossings for ISCA graphs, relative to lower bound
for edge insertion costs.

and if one cannot afford the relatively long running times for inserting all edges
iteratively into a variable embedding using inc, the multi variants give the prob-
ably best balance between running time and solution quality: while being much
faster, its solutions tend to be only slightly weaker than inc’s.

The in our opinion most interesting open questions regarding the planariza-
tion method are the following two:

Vertex insertion. How does optimal vertex insertion [6] perform in practice,
and can the (rather high) theoretical runtime be improved (in theory or
in practice)?

Multiple edge insertion. What is the complexity for inserting k edges opti-
mally, where k ≥ 2 is constant?
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[25] M. Klešč. The crossing number of K2,3×Pn and K2,3×Sn. Tatra Mountains
Mathematical Publications, 9:51–56, 1996.
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Appendix

This appendix lists the crossings numbers of products of 5-vertex graphs Gi
with paths Pn (see Table 1) and with cycles Cn (see Table 2) contained in the
KnownCR benchmark set and cites the corresponding proofs. Graph G1 = P4

is not contained in the tables, since products of G1 with paths or cycles are
planar graphs. Similarly, G8 = C5 is missing in the table for paths as those
products are also planar. Moreover, for the graphs G10, G15, G17, . . . , G21, the
crossing numbers for products with cycles are unknown.

i Gi cr(Gi�Pn) i Gi cr(Gi�Pn)

2 2(n− 1) [23] 13 n− 1 [28]

3 n− 1 [28] 14 2(n− 1) [28]

4 n− 1 [28] 15 3n− 1 [24]

5 n− 1 [28] 16 3n− 1 [27]

6 2(n− 1) [28] 17 2n [28]

7 n− 1 [28] 18 3n− 1 [24]

9 2(n− 1) [28] 19 3n− 1 [28]

10 2n [25] 20 4n [28]

11 2(n− 1) [28] 21 6n [26]

12 2(n− 1) [24]

Table 1: The crossing numbers of products of 5-vertex graphs with paths used in the
KnownCR benchmark set.
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i Gi cr(Gi�Cn) i Gi cr(Gi�Cn)

2


2 n = 3

4 n = 4

8 n = 5

2n n ≥ 6

9 2n

[23] [29]

3


1 n = 3

2 n = 4

4 n = 5

2n n ≥ 6

11

{
7 n = 3

3n n ≥ 4

[29] [30]

4 n 12 2n

[29] [29]

5 n 13

{
7 n = 3

3n n ≥ 4

[29] [29]

6


4 n = 3

6 n = 4

9 n = 5

2n n ≥ 6

14 3n

[29] [29]

7

{
4 n = 3

2n n ≥ 4
16

{
3n n even

3n+ 1 n odd

[29] [27]

8


5 n = 3

10 n = 4

3n n ≥ 5

[3, 31,33]

Table 2: The crossing numbers of products of 5-vertex graphs with cycles used in the
KnownCR benchmark set.
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