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Abstract

We outline an algorithm for generating nets, a “net” being a geometric
graph embedded in a space on which some group acts transitively. We
prove that any connected net in such a space can be generated by this
process, which can also be regarded as a covering of the net by copies
of a connected “transversal” subnet. This paper outlines some of the
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currently under development. The paper begins with some background in
geometric group theory.
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1 Introduction

The problem of generating a highly symmetric graph embedded in some geomet-
ric space is not only of theoretical interest, but has applications to the computer
generation of “skeleton graphs” of geometric complexes. If we modelled these
embedded graphs as geometric complexes, we can use the algebraic machinery
of graph theory, of discrete or computational geometry, or even of combinatorial
or geometric group theory, to develop algorithms for computer generation of the
complexes outlined by these embedded graphs.

These embedded graphs are often called nets. Our primary tools for ma-
nipulating these nets are their symmetries, i.e., their automorphisms that are
induced by symmetries of the underlying geometric space. Our primary interest
is in nets embedded in some metric space, and a symmetry of such a net would
be an automorphism induced by an isometry of the underlying metric space.
For any such net, the symmetries form a group, which we can call its symmetry
group.

The specific goal is to generate an entire net, given its symmetry group and
a (small) connected subnet – and we would like the vertices to have labels that
would allow us to reconstruct the generation of this net for subsequent analysis.
We use the symmetry group of the net to generate copies of the subnet that
collectively cover the net; from the computer’s point of view, starting with
the original subnet, one generates the entire net. We would need the initial
subnet to be a transversal in the sense that it intersects each orbit of the net’s
symmetry group exactly once. We then apply the symmetry group to the subnet
to generate sufficiently many copies of that subnet to cover the original net.
The procedure is a generalization of a process for generating “uninodal nets”
as described in [10], and can be regarded as a generalization of the process of
generating “objective structures” as described in [18].

We have under development a program (described in [23] and discussed in
the last section of this article), which takes a possible transversal subnet and gen-
erates subsequent copies of fragments of that transversal, one vertex at a time.
This program is based on a variant of the process employed in combinatorial
and geometric group theory for traversing a vertex transitive graph using words
encoding paths as in [29], [16], and [31]; see [12] and [24]. The program assigns
to each edge {x, y} a pair of symmetries Γ(x, y) and Γ(y, x) of the underlying
space in which the net is embedded – and not necessarily (automorphisms) of the
net itself, where Γ(x, y)(x) = y and Γ(y, x)(y) = x. In a sense, we treat these
symmetries as trains, with vertices as stations, and we can imagine a traveler
taking symmetries from vertex to vertex, thus traversing the net. Starting with
a putative transversal, with associated symmetries, as an initial condition, we
can use algebraic conjugacies to generate an entire net, together with the space
symmetries Γ(x, y) for traversing that entire net. One eventually or at the end
of time obtains the net and a “traversal function” Γ for the entire net.

As in group or semigroup theory, we obtain words encoding walks, and
construct an “assignment function” Γ∗ so that if the word w encodes a walk
from a vertex x to a vertex y, then Γ∗(w) is a symmetry of the underlying space
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(but not necessarily of the net itself) so that Γ∗(w)(x) = y. We will define the
traversal function Γ in terms of this assignment function Γ∗. Again, we hope to
carry out subsequent computations on the net – or more precisely, on the (words
encoding the) sequences of iterations used to generate the net – we would like
the vertices to be labeled so that we can tell from the label how the vertex was
generated. The primary issues in this article are:

1. We would like to know that if we started out with a transversal subnet
within a net, with space symmetries assigned in a fashion consistent with
the symmetry group of that net, the procedure would indeed generate the
net we started with.

2. We would like Γ (and Γ∗) to reflect the symmetry of the net insofar that
if w encodes a walk from x to y, where x and y are in the same orbit of
vertices (under the symmetry group of the net), we have Γ∗(w) being a
symmetry of the net itself, not just of the underlying space.

3. In addition, if there is a symmetry of the net from one edge, {x1, y1}, to
another, {x2, y2}, via a symmetry sending x1 7→ x2 and y1 7→ y2, we would
like Γ(x1, y1) to be something like a conjugate of Γ(x2, y2).

The purpose of this article is to deal these desiderata:

1. We will confirm that using the assignment function we construct, this
procedure generates the net itself.

2. We will confirm that if w is a word encoding a walk from x to y, where x
and y are in the same orbit, then the “traversal function” Γ we construct
will have Γ∗(w) being a symmetry of the net.

3. We will only obtain a partial result for the third desideratum, showing that
there exist symmetries φ and ρ of the net such that ρΓ(x1, y1) =

φΓ(x2, y2).
We leave as an open question when the ρ can be dispensed with.

We conclude this article with a discussion of extant and planned implementa-
tions of this algorithm, which we call the Crystal Turtlebug as the computer
programs based on this article employ a three dimensional analogue of the “tur-
tle geometry” of [1]. In the last section we will discuss implementing this al-
gorithm, from both a broad and theoretical point of view, (including a cursory
discussion of its computational complexity), and from the point of view of the
Crystal Turtlebug program.

1.1 State of the Art

Before going into the algorithm, we briefly describe the context: this algorithm
was developed as part of a project to design crystals for synthesis in the labora-
tory. So while this algorithm is applicable to a wide range of finite and infinite
nets ([19] and [20]), and in theory could be used to construct any net with
finitely many orbits of vertices of finite degree, in practice this algorithm is used
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primarily for generating highly symmetric nets. The current implementation
has been a series of Crystal Turtlebug programs intended to facilitate crystal
design, and we will describe this implementation in the last section.

One of the major efforts in materials science is the development of synthetic
crystals, most notably zeolites (porous silicon-oxygen crystals - imagine porous
quartz - with impurities [3]) and metal organic materials (primarily metal ion
molecular building blocks connected to each other by organic ligands [22]). One
of the major goals is to design novel crystals (at the molecular or even atomic
level) prior to synthesis [37].

Now, the traditional (albeit not current1) definition of a crystal is of a mate-
rial composed of molecular units that repeat in three linearly independent axial
directions. Each of these units is a unit cell. A crystal can be represented - and
increasingly, is represented - by a 3-periodic (in the sense of Theorem 2.2) net
composed of unit cells, and such a graph may be precisely specified by a unit
cell. So a typical crystal design program (usually called a “crystal prediction”
or “crystal enumeration” program) will produce unit cells.

To our knowledge, in the growing crystal design and enumeration community,
there are four groups working on crystal generating programs mathematically
similar to ours in that they generate a small fragment of a net or a net-like
object and somehow expand it into an entire net. Delgado-Friedrichs et al [13]
describes an enumeration of three dimensional tilings and how to generate nets
from these. Treacy et al [32] and [33] describes an enumeration starting with
“fundamental regions” and uses Coxeter groups to generate unit cells. The
Geometrically Restrained Inorganic Structure Prediction (GRINSP) program,
described in [4], constructs fragments of the net and then uses various stochastic
programs to massage them into a net. Recently, Wilmer et al [36] developed a
program for generating metal-organic frameworks from a library of molecular
building blocks. In addition, Klee [21] proposed a heuristic for enumerating nets
based on the “vector method” as applied to the “quotient graphs” introduced
in [9]; this vector method played a major part in inspiring our approach. This
list does not include other quite different heuristics being employed; see [7].

2 Groundwork

In this article, we do not assume much specialized knowledge, but we do assume
familiarity with graphs and groups. For an accessible introduction to group
theory, see [17]. In this section, after fixing the nomenclature, we will review
some geometric group theory in order to set the main topic of this paper in
context; for an accessible introduction to geometric group theory, see [24]. We
will then outline the nomenclature popular in the crystal design literature.

This is a new field in between extant fields, and thus not only is there
limited consensus over nomenclature, there are clashes of nomenclatures. (For

1In 1992, the International Union of Crystallography announced that “... by ‘crystal’ we
mean any solid having an essentially discrete diffraction diagram” [25, Ad Interim Commission
on Aperiodic Crystals].
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a “Graph Theory”-vs.-“Chemical/Crystal Net” Dictionary, see [15].) So some
standard nomenclature will have to be adapted from various sources to deal
with novel circumstances. Because of these clashes and ambiguities, we will be
unusually pedantic in defining our terms. Here is some extant nomenclature
that we will use without comment:

• Let [n] = {1, 2, . . . , n} for any positive integer n, let Z be the set of integers,
and let Zn be the set (or group) of integers modulo n. Let Z≥0 be the set
of nonnegative integers. Let R be the set of real numbers. Given a (finite)
set S, let |S| be the cardinality of S and let S(2) = {{x, y} ⊆ S: x 6= y}.

• If x = x1x2 · · ·xn is a string, then its length is |x| = n.

• If G is a group and γ, φ ∈ G, the (left) conjugate of φ under γ is γφ =
γφγ−1. The identity of G is denoted idG, which we will often write as id
if G is understood.

• If H is a subgroup of a group G, write H ≤ G.

• If X is a set, and γ is a permutation of X , and V ⊆ X , then the restriction
of γ to V is γV . Let γ[V ] = {γ(v): v ∈ V }, and we say that V is γ-invariant
if γ[V ] = V .

• If G is a group of permutations of X , we denote composition by concate-
nation: φ(ψ(x)) = φψ(x). If V ⊆ X , let

G|V = {γV : γ ∈ G & V is γ-invariant}.

(For example, for any integer z ∈ Z, if [−z, z] = {−z,−z + 1, . . . , z} and
G is the group of bijections on Z, then for a(x) = −x and b(x) = x+1 for
all x ∈ Z, a ∈ G|[−z,z] but b ∈ G−G|[−z,z], where “−” is set difference.)

• If G is a group of permutations of a set X , and x, y ∈ X , write x ∼G y if
there exists η ∈ G such that η(x) = y. Write “x ∼ y” if G is understood;
the equivalence classes of ∼ are the orbits of G. If a set V ⊆ X is a single
orbit of (a subgroup of) G, say that G acts transitively on V . (Thus if G
is the set of automorphisms of a graph, and for any two vertices of that
graph there is an automorphism that maps one of the vertices to the other,
then the graph is vertex transitive.)

• For any set S, let S(2) = {{x, y}: x, y ∈ S & x 6= y}. If G is a graph, then
Aut(G) is the automorphism group of G. Denote G = 〈V,E〉, where V is
the set of vertices of G and E ⊆ V (2) the edges (we will identify edges as
the unordered pair of their endpoints). If S ⊆ V , let G[S] = 〈S,E ∩ S(2)〉
and

∂S = {y ∈ V − S: ∃x ∈ S s.t. {x, y} ∈ E};

thus for any x ∈ V , ∂{x} ∪ {x} is the neighborhood of x.
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2.1 Some Geometric Group Theory

Geometric group theory, like its progenitor combinatorial group theory, appears
motivated by a desire to develop graph-theoretic representations of groups. Our
interest is in the opposite direction: to develop useful algebraic tools for building
and analyzing graphs. However, in this subsection, we shall follow the main-
stream of geometric group theory and put graphs at the service of groups.

One of the standard graphical representations of a group is the Cayley di-
graph, in which the vertices represent group elements and the arcs represent
group generators.

Definition 2.1 Given a group G and a set X ⊆ G of group elements, the
subgroup generated by X is the intersection of all subgroups of G containing all
elements of X. This is itself a subgroup and is denoted 〈X〉.

Given a group G and a set X of group elements, X is a set of generators of
G if 〈X〉 = G.

And then:

Definition 2.2 Given a group G and a set of generators X, the Cayley digraph
of G with respect to X is the digraph 〈G,G× (X ∪X−1)〉, where:

• The elements of G are the vertices.

• Letting X−1 = {x−1:x ∈ X}, G × (X ∪ X−1) is the set of arcs, where
(g, x) is the arc of initial vertex g and terminal vertex xg.

The corresponding Cayley graph is the graph whose set of vertices is G and
whose edges are the unordered pairs {γ, ηγ}, γ ∈ G and η ∈ X.

For example, if the abelian group Z2 ⊕ Z3 is generated by an element a of
characteristic2 2 and another element of b of characteristic 3, then its Cayley
digraph is shown in Figure 1.

Notice that in Figure 1, we could imagine a traveler who could move from
vertex to vertex along arcs, following an itinerary consisting of a word in {a, b}∗,
reading from left to right. For example, given the word bab−1a from the vertex
at upper right, the first b moves the traveler to upper center, the next a moves
the traveler to lower center, the next b−1 moves the traveler to lower right, and
the final a moves the traveler back to upper right.

Remark 2.1 The Cayley graph of a group might not be unique. For example,
as Z2 ⊕Z3 is isomorphic to Z6, which is generated by a single element of order
six, another Cayley graph for this group is the 6-cycle.

2Recall that a group element g is of characteristic n > 0 if gn = id and for all m, 0 < m <

n =⇒ gm 6= id.
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Figure 1: At left, the Cayley digraph for the abelian group Z
2 ⊕ Z

3 as generated
by two elements, a and b, where a2 = b3 = id. Each vertex represents an element of
the group, and each arc represents one of the generators or an inverse of a generator.
At right, the corresponding Cayley graph - with unlabeled unoriented edges replacing
pairs of arcs - which could be traversed as shown a traveler using an itinerary consisting
of a single word, e.g., from the upper right vertex using the word bab−1a as shown.

But there are representations other than Cayley graphs. In Figure 2, we
could start with a vertex transitive graph and look at a set of generators for a
group of automorphisms. Here, the vertices are the integer vectors of Z2, and
our generators are the rotation a by 90◦ around the origin and the reflection b
across the line x = 1/2.

In the case of Figure 2, the alphabet represents applications of graph au-
tomorphisms, so that a traveler given a word, say ab, employs the named au-
tomorphisms to move around. The idea is that the traveler would start at a
vertex, take automorphism a to move to a second vertex, and then take auto-
morphism b to move to a third vertex. However, the traversal is undertaken
so that the itinerary can be followed in the same way as on the first vertex, so
to speak, no matter what vertex the traveler is in. For example, if the traveler
started at (1, 0), and if b represents moving from (1, 0) to the (0, 0) by reflecting
across the line between the two vertices, then whenever the traveler encounters
b in the itinerary, the traveler will want to use a reflection to move to vertex
immediately to the traveler’s left. Notice that this in this case, the traveler will



514 McColm Generating Geometric Graphs Using Automorphisms

(0, 0)

a

b

aa

a
a

b

b

b

(1, 0)

(0, 1)

Figure 2: A piece of an infinite graph 〈Z2, {{(i1, j1), (i2, j2)}: |i1− i2|+ |j1− j2| = 1}
A group of automorphisms is generated by a(i, j) = (−j, i) and b(i, j) = (−i+ 1, j).

want to move to the traveler’s left, not to the vertex an outside observer with a
global view (such as the reader looking at Figure 2) sees as left of the traveler.

Remark 2.2 This is actually how turtle geometry works [1]: a robot – called
a “turtle” – moves around on the floor, following a list of instructions of the
sort “rotate clockwise 30◦” or “move forward two feet.” It carries out each
instruction as is, regardless of its current location or orientation.

This turtle point of view is accomplished by using conjugates; recall that the
left conjugate of a bijection α under a bijection β is βα = βαβ−1. When the
traveler is given the word ab, starting at (1, 0), we imagine the traveler in some
kind of “standard orientation” standing at a starting point (1, 0). The traveler
will always imagine himself to be in standard orientation on the starting point
(1, 0), even when he’s not, and act accordingly. Then as in the right hand figure
of Figure 3, he will use automorphism a to move from (1, 0) to a(1, 0) = (0, 1),
rotating 90◦ so that now he imagines that (0, 0) is to his left. So as the next
word letter is b, he employs the conjugate ab = aba−1 to reflect to his left
to (0, 0) (the traveler’s left; the reader looking at Figure 3 (Right) sees the
traveler reflected down one vertex). The result is that the traveler has been
moved by two successive automorphisms, a and then ab to go from (1, 0) to
(ab ◦ a)(1, 0) = aba−1a(1, 0) = ab(1, 0) = (0, 0). Notice that the composition
actually employed to implement the itinerary ab winds up being the composition
ab.

In general, if a traveler wishes to use an itinerary abcd to use the conjugates of
a, b, c, and d in succession, each time acting as if the traveler was at the initial
vertex v in the initial “orientation”, the destination is computed as follows.
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a
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= a b a
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Figure 3: The path at the left represents the composition ba. The path at the right
represents the composition aba = ab.

Compute ab = aba−1 and aba = aba−1a = ab, abc = abc(ab)−1 and abcab = abc,
and abcd = abcd(abc)−1 and abcdabc = abcd:

Fact 2.1 Let a1, . . . , an be bijections on a set X, and for each k, let wk be the
string a1 · · · ak as a string of k letters. For each k, let ϕk be the automorphism
corresponding to wk as follows: ϕ1 = a1 and ϕk+1 = ϕkak+1ϕk. Then ϕn is the
composition a1 · · · ak.

This machinery was developed largely to develop graphical representations
of groups, e.g., given a group G, one desires a graph whose automorphism group
contains a subgroup isomorphic to G. We will take the opposite approach, and
use this algebraic machinery to analyze - and synthesize - graphs.

2.2 Traversing a Net Using its Symmetry Group

The precise definition of the word “net” seems to vary, but the broad, shallow
stream spanning the distance from [11] to [26] seems to lead to something like
the following:

Definition 2.3 Let X be a set and let G be a group of permutations of X. A
net over G is a graph N = 〈V,E〉 where V ⊆ X, and N ’s symmetry group with
respect to G is SymG(N ) = {γ ∈ G: γV ∈ Aut(N )}.

This nomenclature is unconventional, as the symmetry group thus consists
of permutations of the underlying space, not of the net itself. In this article, we
will deal primarily with permutations of the underlying space, and then say that
a symmetry of the net is a permutation of the underlying space that induces
an automorphism of the net. And we will usually take G as given and write
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Sym(N ) = SymG(N ). Let’s look at two popular examples. Let’s start with a
Cayley graph.

Example 2.1 Let G be a group generated by a set H ⊆ G, where id 6∈ H. We
obtain a net by setting X = V = G and E = {{γ, ηγ}: γ ∈ G & η ∈ H∪H−1} =
{{γ, ηγ}: γ ∈ G & η ∈ H}, where H−1 = {η−1: η ∈ H}. Here, 〈V,E〉 is the
Cayley graph of G that generates H.

Returning to Figure 1, we had the commutative group Z2⊕Z3 generated by
a set H = {a, b}, and our net thus consisted of vertices V = {id, a, b, ab, b2, ab2}
(note that a−1 = a and b−1 = b2) and edges E = {{id, a}, {id, b}, {id, b2},
{a, ab}, {a, ab2}, {b, ab}, {b, b2}, {ab, ab2}, {b2, ab2}}.

But the work in this paper was motivated by a quite different source, and the
following example of [35] (see also [14] on periodic nets and [38] on isometries
on Rn) is what interests crystallographers.

Example 2.2 Suppose that X = R
n for some n, and that G = In, the group

of isometries of Rn. Let Tn be the group of translations on Rn. Suppose that
N = 〈V,E〉 is a net in this space such that:

• The set V is partitioned into finitely many orbits by SymIn
(N ), and

• There is a compact subset of Rn that intersects every orbit of SymIn
(N ),

and

• V is uniformly discrete3 in Rn.

Then by the Shoenflies-Bieberbach Theorem (see, e.g., [8], [30] or [34]), N is
n-periodic in the sense that:

• There is a basis v1, . . . ,vn ∈ Rn, whose associated translations τ1, . . . , τn
are symmetries of N , and hence

• V is partitioned into finitely many orbits by (Tn ∩ SymIn
(N ))|V .

For example, in Figure 4, there is an infinite net whose vertices consist of
points on the plane, and whose edges consist of line segments joining those
vertices. The group of automorphisms of the net that are induced by plane
isometries has finitely many orbits of vertices; there is a compact subset of the
plane (in light brown) that intersects each orbit of vertices, and there is a min-
imum distance between pairs of distinct vertices. By the Shoenflies-Bieberbach
Theorem, there are two vectors associated with translations that are symmetries
of the graph in the sense that they induce automorphisms of the net.

In Example 2.1, if we wanted to imagine a traveler traversing the Cayley
graphs by taking automorphisms from vertex to vertex as a tourist takes trains

3A set O ⊆ X is uniformly discrete for a given metric δ on X if there exists ε > 0 such
that for each x, y ∈ O, x 6= y =⇒ δ(x, y) ≥ ε.
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Figure 4: There are three orbits of vertices (brass circles, blue squares and green
stars) and four orbits of edges (gray, orange, red, and purple). The compact set of
light brown points intersects each orbit of vertices, and hence there is a basis of two
black vectors whose associated translations preserve the net.

from station to station, then we would imagine the traveler carrying an itinerary
enumerating a schedule for traversing a path in the graph. In Example 2.2,
vertices can be in different orbits of the symmetry group of the net, so our
traveler has to take isometries of the underlying space from vertex to adjacent
vertex even if some of these isometries are not in the symmetry group of the
net.

Notice the local / global dichotomy.

• From the traveler’s point of view, a permutation on X is merely a vehicle
that may be available for traversing an edge. Or, for an entire journey, a
permutation onX could be a composition of such traversing permutations.

• From a global perspective, each permutation on X permutes the entire
space, and some of these permutations are symmetries of the net that the
traveler is touring.

2.3 Traversals on Fundamental Transversals

As we use these permutations to direct a traveler to traverse the net, it would be
helpful to have a function that would tell what permutation to use in traversing
any given edge from a given incident vertex to the other incident vertex; viz., if
there was an edge joining vertices v, w, then it would be nice to have a function
Γ that would tell us which permutation the traveler is to use to move from v to
w.
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Definition 2.4 Let N be a net as described in Definition 2.3, and let

AN = {(x, y) ∈ V 2: {x, y} ∈ E}

(think of these as trips the traveler could take along the edges). A traversal
function for N is a function Γ: AN → G such that for each (x, y) ∈ AN ,
Γ(x, y)(x) = y.

It is not particularly difficult to verify that if G acts transitively on X then
N admits a traversal function: just enumerate AN = {(xξ, yξ): ξ ∈ Ξ} for some
index set Ξ, and by a (possibly transfinite) induction assign to each arc (xξ, yξ)
a permutation γξ ∈ G such that γξ(xξ) = yξ. But if we consider Γ to be a book
of instructions, we would like Γ to be “small” enough for a computer to be able
to readily handle it, even if N is “large” (or even infinite); that way, we would
not need much information to move around in the net.

Definition 2.5 Given a net N as described in Definition 2.3, a traversal func-
tion Γ on N is strict if, for each (x1, y1), (x2, y2) ∈ AN , if there exists a symme-
try of N mapping x1 7→ x2 and y1 7→ y2, then for some φ ∈ Sym(N ) satisfying
φ(x1) = x2,

φΓ(x1, y1) = Γ(x2, y2).

A traversal function is semi-strict if, for each (x1, y1), (x2, y2) ∈ AN such that
there is a symmetry of N sending x1 7→ x2 and y1 7→ y2, there exist φ, ρ ∈
Sym(N ) such that φ(x1) = x2 and

φΓ(x1, y1) = ρΓ(x2, y2).

In other words, if the movement from x1 to y1 is symmetric (with respect to
the net) to the movement from x2 to y2, then the instruction that the traveler
follows is also (in a sense) symmetric.

We present the notion of a “strict” traversal since it seems the more natural
notion, but we have only been able to develop the theory for semi-strict traver-
sals. We will describe how to construct a semi-strict traversal function where
the permutations used are generated by some finitary algorithm. To do this, we
will need to treat the net as if it was composed of many small identical pieces
(which we will call “fundamental transversals”) and setting up this treatment
will require setting up a system for representing paths through the net.

We need a fact distilled in [16, Prop. I.2.6].

Proposition 2.1 Given a connected net N = 〈V,E〉 with a group G of auto-
morphisms, there exists a set S ⊆ V such that:

• The set S intersects each orbit of G in V , with that intersection consisting
of one vertex.

• The induced subgraph N [S] is connected.
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Their proof was for graphs alone, but the proof in [24] is readily adapted.4

Let us call such a set S a fundamental G-transversal, or just a fundamental
transversal when G is clear or implied. Observe also that the number of orbits
– and the fundamental G-transversal itself – depends on the original group G

(see Figure 5). For different groups G, one obtains different fundamental G-
transversals.

A

B

C

Figure 5: Here is a net N on the plane. If G1 was the group of plane isometries, a
fundamental G1-transversal would be a single vertex (A). If G2 was the group of plane
isometries generated by the translations and the reflection across the vertical axis –
i.e., by the reflection (x, y) 7→ (−x, y) – we would need two vertices for a fundamental
G2-transversal, as in (B). If G3 was just the group of plane translations, we would
need four vertices for a fundamental G3-transversal, as in (C).

Our plan is to start with a single fundamental transversal and cover the
net with copies of it. More precisely, we will start with a single fundamental
transversal and cover the net with copies of corresponding vertices from that
fundamental transversal. In order to do this, we will encode paths through

4 Start with any vertex v0 and let S0 = {v0}. For any n, if there are any vertices in V

not in an orbit intersecting Sn, choose a vertex v in an unrepresented orbit and a path from
a vertex in Sn to v, and let v′ be the first vertex on that path in an orbit unrepresented in
Sn+1. There must be a vertex vn+1 ∈ ∂Sn+1 such that vn+1 ∼ v′, so let Sn+1 = Sn∪{vn+1}.
Continue until all orbits are represented.
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the net. Keeping the goal of semi-strictness in mind, we will use a fundamental
transversal for this encoding. To get started from a given fundamental transver-
sal, we need the function that can take any vertex from the net and produce
the equivalent node in the fundamantal transversal.

Definition 2.6 Given a fundamental G-transversal S for a net N (embedded in
a space X on which a group G acts transitively), we define a function κ: V → S
as follows. For any x ∈ V , let κ(x) be the unique y ∈ S such that x ∼Sym

G
(N ) y.

For the rest of this paper, we will presume G and N and write “x ∼ y.”

3 Traversing the Net

We outline a method for generating a traversal function given a fundamental
transversal, and for generating words (“itineraries”) defining paths through the
net, employing appropriate traversal functions.

3.1 Itineraries

We develop a formal system for encoding paths using words. In order to get
the alphabet, and to obtain a representation of the symmetry that moves the
traveler from one vector to an adjacent vector, we employ a gadget built upon
the notion of a fundamental transversal.

Definition 3.1 A transversal diagram of a net N = 〈V,E〉 embedded in a space
X on which a group G of permutations act transitively (and where G induce a
corresponding group of automorphisms of N ) is a tuple S = 〈S, ∂S,Σ〉 where S
is a fundamental G-transversal and Σ = {(u, v) ∈ S × (S ∪ ∂S): {u, v} ∈ E}.

We use the set Σ to generate words for traversing the net by starting at
the appropriate vertex in the (given) fundamental transversal and follow the
symbols of the word as if they enumerate a list of instructions. We need to
characterize those words that the traveler may use for travelling, i.e., those
words that the traveler can actually use as itineraries.

Definition 3.2 Fix a transversal diagram 〈S, ∂S,Σ〉. The itineraries of Σ are
the strings from Σ defined by the following recursion.

A itinerary w will have an initial vertex init(w) ∈ S, a terminal vertex
term(w) ∈ S, and be generated as follows.

• For each v ∈ S, the blank for v, denoted ǫv, is an itinerary with init(ǫv) =
term(ǫv) = v. (The word ǫv means “you are on the vertex v, and you stay
there.”)

• Σ consists of individual instructions (which we well call “steps”), so that
for any (u, v) ∈ Σ, we have init((u, v)) = u and term((u, v)) = v. (The
word (u, v) means that “you are on the vertex u and you move to the
adjacent vertex v along the sole connecting edge using the scheduled per-
mutation for (u, v).”)
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• If v and w are itineraries, and if term(v) = init(w), then vw is an
itinerary with init(vw) = init(v) and term(vw) = term(w). In particular,
if v is an itinerary and (x, y) ∈ Σ, then v(x, y) is a itinerary if and only
if term(v) = x. (The itinerary vw means “carry out the permutation
encoded by v and then the permutation encoded by w.”)

Denote the set of itineraries by W = WN ,G.

Notice that if G|V does not act transitively on the vertices of N , then this
set of strings generated from Σ is not a semigroup as it is not closed under
concatenation, but if G|V does act transitively on the vertices of N , it is a
monoid.

Using itineraries as (lists of) instructions, if some nice railroad engineer
has assigned appropriate permutations to each of the instructions, the traveler
can move around the net using something like a state transition function of
automata theory. The idea is that if a traveler started at some r ∈ S and
followed an itinerary v (where init(v) = r), it would reach some z ∈ V . If
provided with a next instruction (x, y), where κ(z) = x, the traveler would
move to an adjacent vertex w where the appropriate symmetry maps {x, y} to
{z, w}. These “appropriate symmetries” will be compositions of the symmetries
of N .

Definition 3.3 Fix a transversal diagram 〈S, ∂S,Σ〉. Call each pair (x, y) ∈
Σ ∩ S2 a local step, and each pair (x, y) ∈ Σ ∩ (S × ∂S) a jump step. Given
an itinerary v, let ‖v‖ be the number of jump steps in v. If ‖v‖ = 0, call v
jump-free.

A local step instructs a traveler to move from a vertex within a fundamental
transversal to another vertex within that same fundamental transversal, while
a jump step instructs a traveler to move from one fundamental transversal to
another. See Figure 6.

3.2 The Algorithm: Assigning Actions to Itineraries

The heart of the algorithm is the assignment of permutations to itineraries.
We first assign permutations to individual steps, and then to entire itinerar-

ies. We first need a convention to allow us to traverse itineraries of local steps
in reverse order: this is not quite the usual string reversal operation, for we
are also “reversing” the individual symbols – the individual local steps – in the
string as well.

Definition 3.4 Given a transversal diagram 〈S, ∂S,Σ〉 and a local step (x, y),
let (x, y)R = (y, x). Given two jump-free strings u and v, with term(u) =
init(v), let (uv)R = vRuR.

Notice that this makes sense as init(uR) = term(u) = init(v) = term(vR).
(We will not attempt to reverse strings having jump steps.) We now return to
making assignments.
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Figure 6: If the traveler is at a vertex x′, its itinerary will tell it how to move as if it
was at x. So it will move using a conjugate permutation (the conjugacy function being
a symmetry of N ). In (A), the traveler moves within the fundamental transversal,
while in (B) it jumps out to another fundamental transversal that is a copy of the first
(copied by the net symmetry Γ∗(v)βy).

Definition 3.5 Given a fundamental G-transversal S of a net N and a group
G of permutations on X, an assignment function is a function Γ∗: W → G such
that for any w ∈ W, κ(Γ∗(w)(init(w))) = term(w).

So we encode traversals across individual edges of the transversal diagram.
But first, a piece of nomenclature.

Definition 3.6 Suppose we are given a transversal diagram 〈S, ∂S,Σ〉 for a
net N . In addition, suppose that we are given a spanning tree T of the graph
〈S, {{x, y}: (x, y) ∈ Σ ∩ S2}〉 (T exists as the fundamental G-transversal is
connected). Then for each x, y ∈ S, let px,y be the itinerary representing the
unique path from x to y in T . In particular, for each x, let px,x = ǫx, the empty
string of initial and terminal vertex x.

We construct Γ∗ by recursion on the itineraries w. We start by considering
itineraries of local steps. Order the vertices of the transversal diagram as follows:
choose z1 ∈ S and order the vertices z1, . . . , z|S| of S so that for each j, if
Sj = {z1, z2, . . . , zj}, then the induced subgraph of T of vertices Sj is connected.
Thus each Sj is the set of vertices of a subtree of T .

Next, order the local steps as follows:

Σ ∩ S2 = {(x1, y1), (x2, y2), . . . , (x2c, y2c)}, (1)
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noting that a pair (x, y) is a local step (i.e., an orientation of an edge of N
within the fundamental transversal) iff (y, x) is, so that the number of local
steps is even. (Notice that each xi is some zj, just as each yl is some zl.)
For this ordering, we require that if (zi, zj) precedes (zk, zl) in the ordering of
local steps, then either max{i, j} < max{k, l}, or max{i, j} = max{k, l} and
min{i, j} < min{k, l}, or i = l < j = k. Note that typically x2i = y2i−1 and
y2i = x2i−1 for i ≤ c.

Remark 3.1 For each zj ∈ S, let j be the rank of zj. Observe that for any
x, y ∈ S, px,y represents a path in T , and by the ordering (1), either x or y
must be the highest ranked vertex in px,y. Observe also that for each j > 1,
exactly one of zj’s neighbors in T is of rank lower than j.

Finally, for each j, let Wj be the set of itineraries from Sj , so that
⋃

j Wj is
the set of all jump-free itineraries. Let W0 = ∅.

0. Γ∗ on jump-free sets. We define Γ∗ on the languages Wj by recursion
on j. As W0 = ∅, Γ∗ is vacuously defined on W0. Now, suppose that we have
defined Γ∗ on Wj so that if x, y ∈ Sj , then Γ∗(px,y)(x) = y. Define Γ∗ on
Wj+1 −Wj as follows.

i. The basis of the recursion I. Let Γ∗(ǫzj+1
) = id, the identity symmetry

of G, and observe that Γ∗(ǫzj+1
)(init(ǫzj+1

)) = Γ∗(ǫzj+1
)(zj+1) = zj+1 =

term(ǫzj+1
).

ii. The basis of the recursion II. Choose the unique (xl, yl) ∈ Σ such that
yl = zj+1, xl is of lower rank than yl, and pxl,yl

= (xl, yl), i.e., (xl, yl)
is on T . Choose Γ∗((xl, yl)) ∈ G such that Γ∗((xl, yl))(xl) = yl, and
noting that xi+1 = yl and yi+1 = xl, let Γ

∗((yl, xl)) = Γ∗((xl, yl))
−1. This

gives Γ∗((xl, yl))(init((xl, yl))) = Γ∗((xl, yl))(xl) = yl = term((xl, yl)),
and similarly Γ∗((yl, xl))(init((yl, xl))) = term((yl, xl)).

iii. Recursive step I. Let (xl, yl) be the unique step in T from xl ∈ Sj

to yl = zj+1: by Remark 3.1, pxi,xl
∈ Wj . For each (xi, yi) ∈ Σ such

that xi ∈ Sj and yi = zj+1, let Γ
∗((xi, yi)) = Γ∗((xl, yl))Γ

∗(pxi,xl
). Then

Γ∗((xi, yi))(xi) = Γ∗((xl, yl))Γ
∗(pxi,xl

)(xi) = Γ∗((xl, yl))(xl) = yl = yi by
0(ii). Let Γ∗((yi, xi)) = Γ∗((xi, yi))

−1.

iv. Recursive step II. For any w, (x, y) ∈ Wj+1 such that term(w) = x,
let Γ∗(w(x, y)) = Γ∗((x, y))Γ∗(w). Observe that Γ∗(w(x, y))(init(w)) =
Γ∗((x, y))Γ∗(w)(init(w)) = Γ∗((x, y))(x) = y.

Repeat until Γ∗ is defined on Wj+1. Repeat for all j ≤ |S|.
We should make four useful observations.

Lemma 3.1 For any jump-free u,v such that term(u) = init(v), Γ∗(uv) =
Γ∗(v)Γ∗(u). For any jump-free w, Γ∗(wR) = Γ∗(w)−1. For any jump-free w,
Γ∗(w) = Γ∗(pinit(w),term(w)). Finally, if w is jump-free and init(w) = term(w),
then Γ∗(w) = id.
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Proof. For the first claim, if u = (xs(1), ys(1)) · · · (xs(m), ys(m)) and v =
(xt(1), yt(1)) · · · (xt(n), yt(n)) and ys(m) = xt(1), then by (0)(iv) in the above re-
cursion, Γ∗(uv) is:

= Γ∗((xs(1), ys(1)) · · · (xs(m), ys(m))(xt(1), yt(1)) · · · (xt(n), yt(n)))

= Γ∗((xs(2), ys(2)) · · · (xs(m), ys(m))(xt(1), yt(1)) · · · (xt(n), yt(n)))

Γ∗((xs(1), ys(1))

= · · ·

= Γ∗((xt(1), yt(1)) · · · (xt(n), yt(n)))Γ
∗((xs(m), ys(m))) · · ·Γ

∗((xs(1), ys(1)))

= · · ·

= Γ∗((xt(1), yt(1)) · · · (xt(n), yt(n)))Γ
∗((xs(1), ys(1)) · · · (xs(m), ys(m)))

= Γ∗(v)Γ∗(u).

To prove the second claim using the first, observe that if u = (x, x′)(x′, x′′) · · ·
(x′′′, x′′′′), then

Γ∗(u) = Γ∗((x′′′′, x′′′) · · · (x′, x))

= Γ∗((x′, x)) · · ·Γ∗((x′′′′, x′′′))

=
(
Γ∗((x′′′′, x′′′))−1 · · ·Γ∗((x′, x))−1

)−1

= (Γ∗((x′′′, x′′′′)) · · ·Γ∗((x, x′)))
−1

= Γ∗((x, x′) · · · (x′′′, x′′′′))−1 = Γ∗(u)−1.

We prove the third and fourth claims by simultaneous induction. We observe
that they hold vacuously for W0 and as our Inductive Hypothesis, we assume
that both claims hold for Wj : we claim that they both hold for Wj+1.

We first prove the third claim for itineraries of the form u(x, zj+1), where
u ∈ Wj and term(u) = x. Using the first claim and the Induction Hypothesis,
if xl is the unique vertex of rank at most j adjacent to zj+1 in T , then

Γ∗(u(x, zj+1)) = Γ∗((x, zj+1))Γ
∗(pinit(u),x)

= Γ∗((xl, zj+1))Γ
∗(px,xl

)Γ∗(pinit(u),x)

= Γ∗(pinit(u),xpx,xl
(xl, zj+1)).

Recalling that our designated paths are in the tree T , let x′ be the vertex on
the path of pinit(u),xl

such that px′,x intersects pinit(u),xl
at x′: see Figure 7.

Note that px,x′ ,px′,x ∈ Wj , so by the Induction Hypothesis Γ∗(px′,xpx,x′) =
id. Thus

Γ∗(pinit(u),xpx,xl
) = Γ∗(pinit(u),x′px′,xpx,x′px′,xl

)

= Γ∗(px′,xl
)Γ∗(px′,xpx,x′)Γ∗(pinit(u),x′)

= Γ∗(px′,xl
)Γ∗(pinit(u),x′)

= Γ∗(pinit(u),x′px′,xl
)

= Γ∗(pinit(u),xl
)
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Figure 7: The purple and gray paths pinit(u),xl
and px′,x lie in T , as does the step

(xl, zj+1). As T is a tree, the leftover piece of u and the link (x, zj+1) do not lie in T .

The proof for itineraries of Wj+1 in which zj+1 appears elsewhere or repeatedly
follows by repeated application of the above, and the following observation: if
init(w) = zj+1 = term(w) with w = (zj+1, x)u(x

′, zj+1) for some u ∈ Wj , then
using the Induction Hypothesis,

Γ∗(w) = Γ∗((xl, zj+1)Γ
∗(pxl,xpx,x′px′,xl

)Γ∗((zj+1, xl))

= Γ∗((xl, zj+1))Γ
∗((zj+1, xl)) = id.

Then

Γ∗(u(x, zj+1)(zj+1, y)u
′ · · ·u′′′)

= Γ∗(pinit(u),xpx,xl
(xl, zj+1)(zj+1, xl)pxl,y · · · (zj+1, xl)pxl,term(u′′′))

= · · · = Γ∗(pinit(u),term(u′′′)).

Finally, the Fourth claim follows from the second. If init(w) = term(w)
where w = uv, then

Γ∗(w) = Γ∗(uv) = Γ∗(u)Γ∗(v) = Γ∗(pinit(u),term(u))Γ
∗(pinit(v),term(v)).

But as init(u) = term(v) and term(u) = init(v), this becomes

Γ∗(pinit(u),term(u))Γ
∗(pterm(u),init(u))

= Γ∗(pinit(u),term(u))Γ
∗(pinit(u),term(u))

−1 = id.

�

We now have assignments for all itineraries for movement within the funda-
mental transversal. If we desire to jump out, we need some additional assign-
ments. But first, we need a bit of nomenclature.

Definition 3.7 Suppose that we are given a transversal diagram 〈S, ∂S,Σ〉 for
a net N . In addition, suppose that one is given, for each y ∈ ∂S, a symmetry
βy ∈ Sym(N ) such that βy(κ(y)) = y.
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We complete the construction of Γ∗ as follows.

1. Γ∗ for one jump step. If (x, y) is a jump step, let Γ∗((x, y)) =
βyΓ

∗(px,κ(y)). Notice that Γ∗((x, y))(x) = βyΓ
∗(px,κ(y))(x) = βy(κ(y)) = y.

2. Γ∗ for adding local steps. Suppose that (x, y) is a local step and
that x = term(u). If Γ∗(u) = γΓ∗(pinit(u),x) and γ ∈ Sym(N ) (Theorem 3.1
will assure that this can be done), then set Γ(u(x, y)) = γΓ∗(pinit(u),x(x, y)) =
γΓ∗(pinit(u),y). We get Γ∗(u(x, y))(init(u)) = γΓ∗(pinit(u),y)(init(u)) = γ(y) as
desired.

3. Γ∗ for adding jump steps. Suppose that we are given u and a jump
step (x, y) such that term(u) = x. Suppose that for some γ ∈ Sym(N ), Γ∗(u) =
γΓ∗(pinit(u),x). Let Γ(u(x, y)) = γβyΓ

∗(pinit(u),xpx,κ(y)) = γβyΓ
∗(pinit(u),κ(y)).

Observe that Γ(u(x, y))(init(u)) = γβyΓ
∗(pinit(u),κ(y))(init(u)) = γβy(κ(y)) =

γ(y) as desired.

3.3 Proving the Desiderata

Before we prove the three desiderata, we need a generalization of the first claim
of Lemma 3.1.

Lemma 3.2 If Γ∗(u) = γΓ∗(px,y) and Γ∗(v) = δΓ∗(py,z), then Γ∗(uv) =
γδΓ∗(px,z).

This extends the first claim of Lemma 3.1:

Γ∗(uv) = γδΓ∗(px,z) = γδΓ∗(px,ypy,z) = γδΓ∗(py,z)Γ
∗(px,y)

= γδΓ∗(py,z)γ
−1γΓ∗(px,y) =

γ(δΓ∗(py,z))γΓ
∗(px,y)

= γΓ∗(v)Γ∗(u).

Proof of Lemma 3.2. Proceed by induction on the length of v. If v = ǫy for
y = z, this is immediate. If the Lemma is true of u and v, then there are two
cases.

First, if (z, u) is a local step so that Γ∗(v(z, u)) = δΓ∗(pinit(v),u), then by
((2) Γ∗ for adding local steps), Γ∗(uv(z, u)) = γδΓ∗(px,u). Second, if (z, u)
is a jump step, then by ((3) Γ∗ for adding jump steps), so that Γ∗(v(z, u)) =
δβyΓ

∗(pz,κ(u)), we have Γ∗(uv(z, κ(u))) = γδβyΓ
∗(px,κ(u)). Combining these

cases, we have the Inductive Step. �

We now present a normal form for the permutations defined by itineraries.
Recall that we fixed, for each y ∈ ∂S, a symmetry βy ∈ Sym(N ) such that
βy(κ(y)) = y.

Theorem 3.1 If

w = v0(x1, y1)v1(x2, y2)v2 · · ·vm−1(xm, ym)vm
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is an itinerary with vi being jump-free for each i, and for (xi, yi) being a jump
step for each i, then

Γ∗(w) =

(
m∏

i=1

βyi

)

Γ∗(pinit(v0),term(vm)).

Thus if init(w) = term(w), Γ∗(w) ∈ Sym(N ).

βy βy βy βy

v0

vm

p
x,y

βy

βy

β β
β

y y

y
1

1

m

m

2

1 2 3 m

S
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Figure 8: A normal form representation of permutations associated with itineraries.

Proof. The proof is by induction on the number of jump steps ‖w‖.
For the basis of the induction, ‖w‖ = 0 =⇒ Γ∗(w) = Γ∗(pinit(w),term(w)) =

id by Lemma 3.1.
For the inductive step, if the lemma is true of itineraries of m jumps, and

‖w‖ = m + 1, suppose w = v(x, y)u where ‖v‖ = m and (x, y) is a jump
step and u is jump-free. If the m jumps in v are to y1, y2, . . . , ym ∈ ∂S, re-
spectively, and if z = init(w), Lemma 3.2 gives us Γ∗(v(x, y)) = γΓ∗(pz,κ(y))
for some γ ∈ Sym(N ). Thus Γ∗(v(x, y)u) = γΓ∗(pz,term(w)). But Γ∗(v) =
(
∏m

i=1 βi) Γ
∗(pz,x) by the Induction Hypothesis, and Γ∗((x, y)) = βyΓ

∗(px,κ(y)),
so by Lemma 3.2 again, Γ∗(v(x, y)) = (

∏m
i=1 βi)βyΓ

∗(pz,κ(y)). So for y = yi+1,

Γ∗(w) =
(
∏m+1

i=1 βi

)

Γ∗(pz,term(w)). �

We are now ready for the desiderata. We prove the second desideratum
first: the composition of steps from a vertex to another vertex in the same
Sym(N )-orbit is itself in Sym(N ).

Theorem 3.2 If w is an itinerary such that init(w) = term(w), then Γ∗(w) ∈
Sym(N ).

Proof. This is an immediate consequence of Theorem 3.1: for some γ ∈
Sym(N ), Γ∗(w) = γΓ∗(pinit(w),term(w)) = γ ∈ Sym(N ). �

The first desideratum is the most basic: the algorithm actually generates
the net it is supposed to generate.
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Theorem 3.3 Given the net N = 〈V,E〉, the transversal diagram 〈S, ∂S,Σ〉,
the itineraries W, etc., let

V ∗ = {Γ∗(w)(x): w ∈ W & init(w) = x ∈ S}

and let E∗ be the set of all unordered pairs {Γ∗(w)(x),Γ∗(w(y, z))(x)} such that

w ∈ W & init(w) = x ∈ S & term(w) = y ∈ S & (y, z) ∈ Σ.

Then V ∗ = V and E∗ = E.

Proof. We start by proving that V ∗ = V .

First: V ∗ ⊆ V . Let init(w) = x and term(w) = y; we claim that Γ∗(w)(x) ∈
V . By Theorem 3.1, Γ∗(w) = γΓ∗(px,y) for some γ ∈ Sym(N ), so as x, y ∈ S ⊆
V , Γ∗(w)(x) = γ(y) ∈ V .

Second: V ⊆ V ∗. If y ∈ V , there exists a path κ(y) = y0, y1, y2, . . . , yn = y
from κ(y) ∈ S to y ∈ V ; we claim that yi ∈ V ∗ for each i, and hence y ∈ V ∗. We
prove this for each yi ∈ V ∗ by induction on i, starting with y0 = κ(y) ∈ S ⊆ V ,
with y0 = Γ∗(ǫκ(y)) ∈ V ∗. If yi ∈ V ∗, then yi = Γ∗(v)(κ(y)) for some v, and
note that by Theorem 3.2, Γ∗(pκ(yi),κ(y)v) ∈ Sym(N ). As yi+1 is adjacent to
yi, y

′ = Γ∗(pκ(yi),κ(y)v)
−1(yi+1) is adjacent to κ(yi), and if y′ ∈ S, then as

Γ∗(pκ(yi),κ(y)v) ∈ Sym(N ) and (κ(yi), y
′) is a local step, Theorem 3.1 gives us:

Γ∗(pκ(yi),κ(y)v(κ(yi), y
′))(κ(yi)) = Γ∗(pκ(yi),κ(y)v)Γ

∗((κ(yi), y
′))(κ(yi))

= Γ∗(pκ(yi),κ(y)v)(y
′) = yi+1

which is thus an element of V ∗. Similarly, if y′ 6∈ S, then y′ ∈ ∂S, and it follows
that Γ∗(pκ(yi),κ(y)v)βy′(κ(yi+1)) = Γ∗(pκ(yi),κ(y)v)(y

′) = yi+1 ∈ V ∗.

For the rest of the proof, we use the fact that V = V ∗ without further
comment, i.e., V consists of precisely those points y in X such that for some
x ∈ S and some itinerary w with init(w) = x, Γ∗(w)(x) = y.

We now prove that E∗ = E.

First, E∗ ⊆ E. If {x, y} ∈ E∗, then for some itinerary w with init(w) =
term(w) = x, Γ∗(w)(κ(x)) = x and some y′ ∈ S ∪ ∂S such that (κ(x), y′) ∈ Σ
we have Γ∗(w)(y′) = y. Using Lemma 3.2 and the fact that Γ∗(w) ∈ Sym(N ),
we have

Γ∗(w(κ(x), y′))(κ(x)) = Γ∗(w)Γ∗((κ(x), y′))(κ(x)) = Γ∗(w)(y′) = y.

As (κ(x), y′) ∈ Σ, {κ(x), y′} ∈ E. As Γ∗(w) ∈ Sym(N ), sending {κ(x), y′} to
{x, y}, we have {x, y} ∈ E.

And E ⊆ E∗. If {x, y} ∈ E, choose an itinerary w such that init(w) =
term(w) = κ(x) and Γ∗(w) ∈ Sym(N ), and Γ∗(w)(κ(x)) = x (we can do this
as V = V ∗). As Γ∗(w) ∈ Sym(N ),

{Γ∗(w)−1(x),Γ∗(w)−1(y)} = {κ(x),Γ∗(w)−1(y)} ∈ E
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as this is an edge within S∪∂S. Thus as (κ(x),Γ∗(w)−1(y)) ∈ Σ and Lemma 3.2
gives us

Γ∗(w(κ(x),Γ∗(w)−1(y)))(κ(x)) = Γ∗(w)Γ∗((κ(x),Γ∗(w)−1(y)))(κ(x))

= Γ∗(w)Γ∗(w)−1(y) = y,

and we have {x, y} ∈ E∗. �

Finally, we get the third desideratum. Let’s extend Γ∗ to a traversal function
Γ for the net N = 〈V,E〉 as follows. Start with a transversal diagram 〈S, ∂S,Σ〉,
and an assignment function Γ∗, and for each x ∈ V and {x, y} ∈ E, choose an
itinerary w such that Γ∗(w)(κ(x)) = x and let y′ = Γ∗(w)−1(y) ∈ S ∪ ∂S.
As Γ∗(w) ∈ Sym(N ) maps κ(x) to x and y′ to y, {κ(x), y′} ∈ E, we have
(κ(x), y′) ∈ Σ.

We define the (alleged) traversal function as follows: for each (x, y) ∈ V 2

with {x, y} ∈ E, choose an itinerary w such that Γ∗(w)(κ(x)) = x, and that
for some (κ(x), y′) ∈ Σ, Γ∗(w)(y′) = y. Then set Γ(x, y) = Γ∗(w)Γ∗((κ(x), y′)).
(Notice that we have a lot of discretion in choosing the itineraries w.) Then

Γ(x, y)(x) = Γ∗(w)Γ∗((κ(x), y′))(x) = Γ∗(w)Γ∗((κ(x), y′))Γ∗(w)−1(x)

= Γ∗(w)Γ∗((κ(x), y′))(κ(x)) = Γ∗(w)(y′) = y,

and repeating for all (x, y), Γ is a traversal function.

Theorem 3.4 The traversal function Γ is semistrict, i.e., for any x1, x2, y1, y2
∈ V such that {x1, y1}, {x2, y2} ∈ E and for some γ ∈ Sym(N ), γ(x1) = x2
and γ(y1) = y2, there exist ρ, φ ∈ Sym(N ) such that ρΓ(x2, y2) =

φΓ(x1, y1).

Proof. Suppose that the hypotheses hold and let x = κ(x1) = κ(x2). There
exist itineraries v1, v2 such that Γ∗(v1)(x) = x1 and Γ∗(v2)(x) = x2; note
that as init(v1) = term(v1) and init(v2) = term(v2), we have Γ∗(v1),Γ

∗(v2) ∈
Sym(N ). Let y′1 = Γ∗(v1)

−1(y1) and y′2 = Γ∗(v2)
−1(y2) and let y = κ(y1) =

κ(y2). Then we have

Γ∗(v1)Γ∗((x, y′1)) = Γ(x1, y1) and Γ∗(v2)Γ∗((x, y′2)) = Γ(x2, y2).

Letting βκ(y) = id (just in case y′1 = y or y′2 = y), Theorem 3.1 implies
Γ∗((x, y′1)) = βy′

1
Γ∗(px,y) and Γ∗((x, y′2)) = βy′

2
Γ∗(px,y), and we get Γ∗((x, y′2))

= βy′
2
β−1
y′
1

Γ∗((x, y′1)). Thus

Γ(x2, y2) = Γ∗(v2)Γ∗((x, y′2))

= Γ∗(v2)
(

βy′
2
β−1
y′
1

Γ∗((x, y′1))
)

= Γ∗(v2)
(

βy′
2
β−1
y′
1

)
Γ∗(v2)Γ

∗(v1)
−1

Γ(x1, y1),

so setting ρ = Γ∗(v2)
(

βy′
1
β−1
y′
2

)

and φ = Γ∗(v2)Γ
∗(v1)

−1, we have ρΓ(x2, y2) =
φΓ(x1, y1). �
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4 Implementation

Several programs implementing this algorithm or variants of this algorithm have
been composed, primarily for application in crystal design. Of course, crystal
design involves infinite nets embedded in Euclidean spaces, and this algorithm
can be applied to finite and infinite nets in many kinds of spaces. In this
last section, we consider computational complexity – or perhaps more precisely,
computational resource – considerations in implementing this algorithm. In
this brief account, we will consider finite nets generated in finite spaces, and
(infinite) periodic nets generated in Euclidean spaces.

4.1 Finite Nets Generated in Finite Spaces

Suppose we wanted a single very large but finite graph, embedded in a very
large but possibly finite space, whose given group of permutations would thus
be large. We probably would not want to generate the entire space or the entire
group; we would want to generate points in the space and elements of the group
as needed. Then an implementation might work as follows. First, we set up the
input.

• We assume a space X , on which a group G of permutations acts transi-
tively, and we can generate elements ofX andG as necessary. We are given
S, ∂S ⊆ X such that S ∩ ∂S = ∅; these are intended as a fundamental
transversal and its boundary in the net we are constructing. We are given
Σ ⊆ S2 ∪ (S × ∂S) such that for each y ∈ ∂S, there exists κ(y) ∈ S with
(κ(y), y) ∈ Σ; this is intended as the set of (oriented) edges of the initial
transversal diagram. This initial transversal diagram is S = 〈S, ∂S,Σ〉.

• For simplicity, in this implementation, we are only concerned with the
jumps in the itineraries, and not with local steps, so we can work with
jump itineraries, i.e., itineraries that tell a farsighted traveler (one able
to see an entire fundamental transversal) how to move from fundamental
transversal to fundamental transversal. For each y ∈ ∂S, we are given
βy ∈ G such that for some κ(y) ∈ S we have β(κ(y)) = y. Let Wjump be
the set of strings from the alphabet {βy: y ∈ ∂S}, and call Wjump the set
of jump itineraries.

Let ℓ: Z≤0 → Wjump enumerate jump itineraries; it will turn out that ℓ is the
critical consideration for time complexity. Starting with the initial transversal
diagram S0 = S, we enumerate S0,S1,S2, . . . while maintaining their unions
Dn = 〈

⋃

i≤n(Si ∪∂Si),
⋃

i≤n Σi〉, which can be regarded as cumulative digraphs
from which the desired net will be derived; note in the following that these
unions and cumulative digraphs are not graphs as they have “oriented edges”,
i.e., arcs.

Definition 4.1 Given a digraph (or directed graph) 〈V,A〉, call it symmetric
if, for every x, y ∈ V , either both or neither of (x, y) and (y, x) are elements
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of A. Given a symmetric digraph 〈V,A〉, say the associated graph is the graph
〈V,E〉, where E = {{x, y}: (x, y) ∈ A}.

In this implementation of the algorithm, we will also generate sets of “unused
indices”; denote the first such set by U0 = ∅. Again, we start with an initial
transversal diagram S0 = 〈S0, ∂S0,Σ0〉 and D0 = 〈S0 ∪ ∂S0,Σ0〉.

1. For the nth step, where n > 0, let ℓ(n) = (β1, β2, . . . , βm) and Sn =
β1β2 · · ·βm[S0], ∂Sn = β1β2 · · ·βm[∂S0], and

Σn = {(β1β2 · · ·βm(x), β1β2 · · ·βm(y)): (x, y) ∈ Σ0}.

and Sn = (Sn, ∂Sn,Σn).

2. Continuing the nth step, if Sn ∪ ∂Sn ⊆ Vn−1, for Dn−1 = 〈Vn−1, An−1〉,
and if Σn ⊆ An−1, then n is an “unused index” and we set Un = Un−1∪{n}
and Dn = Dn−1. On the other hand, if Sn ∪ ∂Sn 6⊆ Vn−1 or Σn 6⊆ An−1,
let Un = Un−1 and Dn = 〈Vn−1 ∪ Sn ∪ ∂Sn, En−1 ∪ Σn〉.

3. If Dn = 〈Vn, An〉 is a symmetric digraph then halt, for the graph now
consists of copies of the original fundamental transversal with no stray
edges. Output Dn’s associated graph N = 〈V,E〉 where V = Vn and
E = {{x, y}: (x, y) ∈ An} (and denote U = Un). Otherwise, return to (1)
for the n+ 1st step.

Notice that this program will halt iff the net it is generating is finite – provided
that ℓ generates all of (or enough of) Wjump.

For the rest of this subsection, for any β1, . . . , βk ∈ G, denote the composi-
tion β1 · · ·βk by [[(β1, . . . , βk)]]. Thus for ℓ: Z

≥0 → W
jump, if ℓ(k) = (β1, . . . , βk),

then [[ℓ(k)]] = β1 · · ·βk. Observe that even if ℓ enumerates each word of Wjump

only once, [[ℓ]] could enumerate the same group element repeatedly.
Perhaps the most unambiguous time measure is the number of transversals

generated before the program halts; more refined measures would involve the
time to write a group element or point of X , or the time to copy the entire
transversal diagram (which should be proportional to its size), but presuming
that such refinements will only introduce relatively small factors, we overlook
them here.

Definition 4.2 Suppose we are given a net N = 〈V,E〉 on a space X, and a
group G of permutations of X. Suppose we are given a transversal diagram S =
〈S, ∂S,Σ〉 of N (with respect to G and X). And suppose that for each y ∈ ∂S,
we are given βy ∈ G such that βy|V is an automorphism of N and that that for
some κ(y) ∈ S, βy(κ(y)) = y. Given ℓ: Z≥0 → Wjump, let time(N ,S, ℓ;G, X) be
the least t such that V =

⋃

n≤t [[ℓ(n)]][S] and for each {x, y} ∈ E, (x, y), (y, x) ∈
⋃

n≤t [[ℓ(n)]][Σ].

But counting transversals generated means that the choice of the enumera-
tion function ℓ is critical. For example ...
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Perhaps the most naive choice for ℓ is to fix an ordering of ∂S = {y1, y2, . . .,
y|∂S|}, and hence of {βyi

: i = 1, . . . , |∂S|}, and enumerate Wjump so that n < n′

=⇒ |ℓ(n)| ≤ |ℓ(n′)|, and use the ordering of ∂S to order each subsequence
ℓ(|∂S|m−1), . . . , ℓ(|∂S|m − 1) lexicographically. We will make use of this naive
enumeration, although we will find that we can often greatly reduce time com-
plexity by using an enumeration designed from properties the group elements
{βy: y ∈ ∂S}. As an extreme example of the advantage of custom-made enu-
meation, suppose that all the elements of {βy: y ∈ ∂S} commute. Then for any
k and any permutation π: [k] → [k], βπ(1)βπ(2) · · ·βπ(k)[S0] = β1β2 · · ·βk[S0], so
it would suffice if, for each k, ℓ enumerated all strings of length k of form

(βy1
, . . . , βy1

︸ ︷︷ ︸

k1

, βy2
, . . . , βy2

︸ ︷︷ ︸

k2

, βy3
, . . . , βy|∂S|−1

, βy|∂S|
, . . . , βy|∂S|

︸ ︷︷ ︸

k|∂S|

),

for k1 + k2 + · · · + k|∂S| = k, lexicographically. While the naive enumeration
would list

∑m
n=0 |∂S|

m transversals in enumerating all words of Wjump of length
at most m, which is exponentially many (with respect to m), the custom-made
enumeration would list only

m∑

n=0

(
n+ |∂S| − 1

|∂S| − 1

)

< ((|∂S| − 1)!)−1(m+ |∂S| − 1)|∂S|−1

transversals, which is polynomially many (if the transversal order and size are
fixed).

This blunt instrument gives us some crude estimates.

Proposition 4.1 Let G be a group of permutations of a space X, and let N =
〈V,E〉 be a net embedded in X. Suppose that 〈S, ∂S,Σ〉 is a transversal diagram
of N (with respect to G). Then for any appropriate set of |∂S| generators, using
the definitions above,

⌈|V |/|S|⌉−1, ⌈2|E|/|Σ|⌉−1 ≤ time(N ,S, ℓ;G, X)−U ≤ (|V |−|S|)+(2|E|−|Σ|).

Proof. First of all, observe that in the computation, for each {x, y} ∈ E,
transversal diagrams containing both (x, y) and (y, x) will have to be generated,
and thus transversal diagrams containing both x and y as interior vertices will
have to be generated. Thus the number of transversal diagrams generated (in
addition to the initial one) and used must be at least ⌈|V |/|S|⌉− 1 and at most
|V |+ 2|E| − |S| − |Σ|.

Secondly, as two ordered pairs must be generated for each edge in E, the
number of transversal diagrams generated (in addition to the initial one) must
be at least ⌈2|E|/|Σ|⌉ − 1 and at most 2|E|+ |V | − |S| − |Σ|. �

We start with two examples exhibiting the dependence of time complexity
on the enumeration function ℓ. Fix positive integers m,n, m ≤ n. Recall an old
group theoretic notation: for permutations of [n], (i1 i2 i3 · · · im) denotes the
permutation β where β(ik) = ik+1 for k < m, and β(im) = i1. Let G be the
group of permutations on [n].
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• Generate anm-clique in [n] as follows. For the transversal diagram, choose
vertex set S0 = {1}, boundary ∂S0 = {i: 1 < i ≤ m}, and oriented edges
Σ0 = {(1, i): 1 < i ≤ m}. For each i ∈ [m] − {1}, let βi = (1 i) be
the group action used to map the original fundamental transversal {1}
to a copy {i}. Then if ℓ(0) is the identity and ℓ(k) = βk−1 for k < m,
then the first m transversals are used, and after enumerating them, the
computation halts: time(N ,S, ℓ;G, [n]) = m− 1.

• Generate an m-cycle in [n] as follows. For the transversal diagram, choose
vertex {1}, boundary {2,m}, and oriented edges {(1, 2), (1,m)}. Let β+ =
(1 2 3 · · ·m) and β− = β−1

+ = (1 m m− 1 · · · 2). Let’s consider two quite
different enumerations.

– If ℓ1(k) = (β+, β+, . . . , β+) is of length k so that [[ℓ1(k)]] = βk
+ for

each k ≥ 0, then after m− 1 iterations, the algorithm has generated
m transversals making up the entire m-cycle. By Proposition 4.1,
this is optimal, as here U = 0, the number of vertices is m, the
number of vertices in the transversal is 1, and the time is m, so
⌈|V |/|S|⌉−1 ≤ time(N ,S, ℓ;G, X)−U becomesm/1−1 ≤ (m−1)−0.

– If ℓ2 enumerates the words of {β+, β−} by length and then lexi-
cographically – so that [[ℓ(0)]] = id, [[ℓ(1)]] = β+, [[ℓ(2)]] = β−,
[[ℓ(3)]] = β+β+ = β2

+, [[ℓ(3)]] = β+β− = id, [[ℓ(4)]] = β−β+ = id,
[[ℓ(5)]] = β−β− = β2

−, etc. – then generating the entire cycle will take

2⌊m/2⌋ iterations.

Here the choice of the enumeration can make the difference between linear
and exponential time.

See Figure 9.
Sometimes the optimal enumeration does not meet the inequalities of Propo-

sition 4.1. Say that a d-tree is a tree (i.e., an acyclic graph from which we select
a “root” vertex) whose root vertex is of degree d and whose non-root non-leaf
vertices are all of degree d + 1. Recall that a tree is complete if each branch
(path from the root to a leaf) is the same length, that length (counting edges)
being the rank of the tree.

Choose positive integers r and m, and suppose that X = [m+1]× [rm]. We
can embed a complete r-tree of rank m in X as follows. Let f : [r]m → [rm] be
a lexicographic ordering of [r]m, and employ the following recursion:

• Let the root of the tree be (1, 1), and its neighbors are (2, f(1, 1, . . . , 1)),
(2, f(2, 1, . . . , 1), (2, f(m, 1, . . . , 1)).

• For each k, 1 < k ≤ m, if (k, f(i1, i2, . . . , ik−1, 1, 1, . . . , 1)) is a vertex of the
tree, add edges to new vertices (k+1, f(i1, i2, . . . , ik−1, ir

m−k+1, 1, . . . , 1)),
i ∈ [r].

A fundamental transversal will then consist of the vertices of some branch.
For example, we could choose as our initial transversal diagram the branch
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Figure 9: Left. A 5-clique N may be generated on [6] by taking one point
1 as a fundamental transversal, leaving one point, 1 in blue, not in the clique.
The transversal diagram then consists of that point, four other points 2, 3, 4, and
5, and edges connecting 1 to each i, 1 < i < 6. For each such i, let βi be
the permutation (1 i), and the original transversal diagram S (in red) together
with the additional four copies βi[S ] make up the 5-clique (purple and red). A
breadth-first enumeration ℓ satisfies time(N ,S , ℓ; Perm([6]), [6]) = 5 and U = 0.
Right. A cycle may be generated from the original transversal diagram S (in red)
applying one of the two permutations β+ = (1 2 3 4 5) and β− = β−1

+ =
(1 5 4 3 2) repeatedly: such a depth first enumeration succeeds after gener-
ating five transversals: S , β+[S ], β

2
+[S ], β

3
+[S ], β

4
+[S ], with U = 0. However, a

breadth first enumeration (with “+” preceding “−” lexicographically) generates
S , β+[S ], β−[S ], β

2
+[S ], β+β−[S ], β−β+[S ], β

2
−[S ], with time(N ,S , ℓ; Perm([6]), [6]) = 7

and U = 2.

of vertices (k, f(1, 1, . . . , 1)), k ∈ [m + 1], having the internal oriented edges
((k, f(1, 1, . . . , 1)), (k+1, f(1, 1, . . . , 1))) and ((k+1, f(1, 1, . . . , 1), (k, f(1, 1, . . .,
1)), and with exterior oriented edges ((k, f(1, 1, . . . , 1), (k + 1, f(2, 1, . . . , 1)) to
boundary vertices (k + 1, f(2, 1, . . . , 1). For each k, let βk be the permutation
of X defined by

βk(i, n) =







(i, n) i < k
(i, n+ rm−k+1) i ≥ k & n+ rm−k+1 ≤ rm

(i, n+ rm−k+1 − rm) i ≥ k & n+ rm−k+1 > rm

and notice that κ((k, f(1, 1, . . . , 1, 2, 1, . . . , 1))) = (k, f(1, 1, . . . , 1, 1, 1, . . . , 1)),
where the 2 is in the k + 1st argument. See Figure 10.

For definitiveness, suppose that G is the set of permutations of X generated
by elements

γd1,d2,...,dm+1
(i, n) =

{
(i, n+ di) n+ di ≤ rm

(i, n+ di − rm) otherwise.

(In addition, to make G act transitively on X , add as a generator the permuta-
tion

γ(i, n) =

{
(i+ 1, n) i < m+ 1
(1, n) i = m+ 1.)

Notice that G is abelian.
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To cover this tree with copies of the first transversal, it suffices to enumerate
rm transversal diagrams, including the first one, each having its own leaf. This
can be done by enumerating words

(β2, . . . , β2
︸ ︷︷ ︸

e2

, β3, . . . , β3
︸ ︷︷ ︸

e3

, β4, . . . , βm, βm+1, . . . , βm+1
︸ ︷︷ ︸

em+1

) ∈ W
jump,

for if we took S0 as the first fundamental transversal, then the images

βe2
2 β

e3
3 · · ·β

em+1

m+1 [S0]

cover the leaves, and hence the entire tree, with rm transversals: for the tree N ,
given the initial branch for the transversal diagram S, time(N ,S, ℓ;G, X) = rm

and U = 0.

Figure 10: Embed a 2-tree of rank m = 3 into X = [3 + 1] × [23]; the blue points
are those that are not vertices of the tree. The red vertices being a fundamental
transversal, and the red edges the resulting alphabet of the transversal diagram, the
green vertices being the boundary vertices, and the purple vertices the rest.

Since the tree consists of (1 + o(1))rm vertices, the time complexity for a
complete r-tree – assuming an optimal enumeration ofWjump – is proportional to
the order of the tree. (Of course, as the the transversal diagram is of logarithmic
size with respect to the size of the entire tree, we are overlooking a logarithmic
factor in this rough estimate.) However, in this case the transversal diagrams
generated are not mutually disjoint, and in fact while the optimal ordering gave
U = 0, so that the inequalities of Proposition 4.1 became

(1 + o(1))rmm−1 = ⌈|V |/|S|⌉ − 1 ≤ time(N ,S, ℓ;G, X)

≤ |V |+ 2|E| − |S| − |Σ| = 3(1 + o(1))rm,

and it is the right inequality that gives the better estimate, albeit off by a factor
of 3. And that estimate cannot be improved upon as all automorphisms of the
tree require fundamental transversals of m+ 1 vertices.

We conclude that for naive implementations of this algorithm, for generating
very large graphs, the time complexity is highly dependent on the enumeration ℓ
of Wjump. The result is a tradeoff: the more ℓ is intelligently designed, the lower
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is U . Clearly, for any net N embedded in any space X with given fundamental
transversal and group elements, there is an enumeration ℓ of Wjump such that
the corresponding sequence of transversal diagrams covers N with U = 0. On
the other hand, the computational complexity of ℓ itself may become an issue.
So we conclude this subsection with a question.

Question 4.1 Given a net N generated from a fundamental transversal S using
words of Wjump from a group G of permutations on a finite space X, what upper
bounds on the time complexity hold for the enumeration function ℓ and the
generation of N from copies of the initial transversal diagram?

5 The Crystal Turtlebug Programs

The previous subsection involved generating nets we knew we would obtain from
given transversals. Suppose that all we wanted was some net (with nice proper-
ties) that we do not know, which would be generated from putative transversal
diagrams, given some space and group. Then the computational resources re-
quired depends not only on the complexity of the implemented algorithm (and
the enumeration of group elements) but also on the geometry of the underlying
space. We concentrate on the motivating application: a program that enumer-
ates blueprints for crystal design. For details on crystallographic groups in the
following discussion, see [38].

If all we wanted was a unit cell of a net we knew, then as a unit cell for a
three dimensional crystal net requires at most 48 fundamental transversals, such
a computation would not be onerous. But what a chemist desires is a not one
net consisting of a single unit cell of a known crystal; this is, in fact, the sort of
image readily available in such databases as the Reticular Chemistry Structure
Resource (RCSR, [27]), TOPOS ([5] and [6]), and the Euclidean Patterns in
Non-Euclidean Tilings (EPINET, [28])5. In fact, what a chemist, crystallogra-
pher, or chemical engineer desires is a catalogue of chemically plausible nets for
novel crystals. We typically do not know fundamental transversals and space
groups that generate chemically plausible nets, so the Crystal Turtlebug pro-
gram described in [23] traverses a search space of fundamental transversals (with
vertices at integer points, so there are countably many of these) and crystallo-
graphic space groups (which may be specified by selecting three vectors (also
integer vectors) representing the unit cell, and then which of the 230 conjugacy
classes of crystallographic space groups to employ). (Actually, the current ver-
sion of The Crystal Turtlebug uses a less efficient but more modularly adjustable
variant of this algorithm.) The cost of the catalogue arises from the size of the
search space of transversal diagrams – and of vectors and parameters defining
cyrstallographic groups.

For example, the first program, described in [10], generates uninodal (i.e.,
vertex transitive) nets. The fundamental transversal consists of a single node

5 These are crystal enumeration databases; the big database used by the crystallographic
community is the Cambridge Structural Database, maintained by the Cambridge Crystallo-
graphic Data Centre, with 596,810 entries as of 1 January 2012; see, e.g., [2].
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(at (0, 0, 0) ∈ R3) and e orbits of edges; each orbit of edges can be fixed by
a single edge (the rest generated by application of the group elements), which
can be fixed by an integer vector. Then one chooses a crystallographic space
group, which (in the most naive implementation) consists of selecting three
vectors (also integer vectors) representing the unit cell, and then which of the
230 conjugacy classes of crystallographic space groups to employ. Thus one
chooses e + 3 vectors in Z3, and an element of a set of 230. Assuming that
the edge vectors were somewhat smaller than the unit cell vectors, one could
imagine selecting the former from a m ×m ×m cube and the latter from an
M ×M ×M cube, and the most naive implementation will run the algorithm
on 230m3eM3 initial conditions. For three orbits of edges, with m = 3 and
M = 10, that’s 4.5 billion nets to generate. And that’s just for uninodal nets.

Figure 11: Two isomorphic nets found by a early version of the Crystal Turtlebug
program, but were unknown to Systre and the RCSR database. The vertices of the
net at left has (non-planar) tetrahedral and (planar) quadrilateral vertex figures, while
the net at right has two orbits of vertices with (non-planar) tetrahedral vertex figures.
Thus the two nets are not congruent, even though Systre confirmed that they are
isomorphic. For more examples, and more extended discussion of them, see [23].

From the mathematician’s point of view, the exponential explosion is a prob-
lem if one intends to use a program like the Crystal Turtlebug to do experimental
mathematics. After all, these nets are geometric objects, and it would be inter-
esting to explore their properties. They seem to resist analysis: after a century
of being subjects of great scientific interest, the mathematical theory of these
rather difficult objects is still a bit thin. Surveys and studies of these nets could
prove helpful in suggesting directions for the theory to be developed, but the ex-
ponential explosion suggests that even highly restricted comprehensive surveys
are out of the question.

But the demand for crystal designs is likely to grow substantially during the
coming decades. And hence, the demand for a better theoretical understanding
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of these designs, and of algorithms for their synthesis and analysis, is likely to
grow as well.
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