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1 Introduction

Let G be a planar multigraph. Suppose that the edges incident with a vertex
v0 ∈ V (G) are labelled by integers 1, . . . , l. We are interested in finding an
embedding of G in the plane such that the number of label transitions around
v0 is minimized. By a label transition we mean two edges that are consecutive
in the local rotation around v0 and whose labels are different. The motivation
for this problem comes from investigations of minimum genus embeddings of
graphs with small separations. In particular, to compute the genus of a 2-sum
of two graphs [12], see also [6, 7, 11], it is necessary to know if a graph admits a
planar embedding with only four label transitions (where l = 2). The problem of
minimizing the number of transitions may also be of interest in bioinformatics.
Namely, problems arising in genome sequencing and in relation to phylogenetic
trees involve notions very close to the minimization of transitions. Our solution
in this paper answers a question posed by Cedric Chauve [3] in relation to a
generalization of the Consecutive Ones Property of matrices.

By deleting the vertex v0 from G and putting all edge labels onto vertices
incident with the deleted edges, we obtain an equivalent formulation of the same
problem. We may assume that the edges incident with the same vertex v 6= v0
have different labels because such edges can always be drawn next to each other
without increasing the number of label transitions. Both representations are
useful and will be treated in this paper. Let H be the graph obtained from G
by deleting v0. For each v ∈ V (H), let λ(v) be the set of all labels of edges
joining v and v0 in G. If v is not a neighbor of v0, then λ(v) = ∅. The pair
(H,λ) carries the whole information about G and the labels of edges around v0
(assuming that the edges incident with the same vertex v 6= v0 have different
labels).

Let L be a set of labels. The graph H together with the labelling λ : V (H)→
2L is a labelled graph. Let Ĥ be the graph obtained from a labelled graph H
by adding a vertex v0 to H and joining it to each vertex v by |λ(v)| edges and
labelling these edges by elements of λ(v). The vertex v0 is called the center of

Ĥ. If the graph Ĥ is planar (which can be checked in linear time, see [9]), we
are back to an instance of the original problem.

Given (H,λ) or Ĥ, v0, and the labelling of edges incident with v0, consider

an embedding Π of Ĥ in the plane (all embeddings in this paper are into the
plane). Define the label sequence Q = Q(Π) of Π to be the cyclic sequence of
labels of edges emanating from v0 in the clockwise order of the local rotation
around v0 in Π. The origin of a label L ∈ Q that came from an edge vv0 is the
vertex v. A label transition in Q is a pair of (cyclically) consecutive labels A,
B in Q such that A 6= B. The number of transitions τ(Q) of Q is the number

of label transitions in Q. The number of transitions τ(Ĥ) of Ĥ is the minimum

τ(Q(Π)) taken over all planar embeddings Π of Ĥ. When considering label

transitions, the graphs H and Ĥ are used interchangeably, i.e., we may write
τ(H) instead of τ(Ĥ).

A cutvertex in a graph G is a vertex of G whose removal increases the
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number of components of G. A vertex is nonseparating if it is not a cutvertex.
The following problem will be of our main interest:

Min-Trans. Given a planar multigraph G with edges incident to a fixed vertex
v0 labelled by 1, . . . , l and an integer k, determine if τ(G) ≤ k.

In the following, we show that Min-Trans can be solved in linear time when
v0 is nonseparating and the number of labels l is fixed.

Theorem 1 For every fixed integer l, there is a linear-time algorithm that de-
termines the minimum number of transitions τ(G) of a given planar multigraph
G with edges incident to a fixed nonseparating vertex v0 labelled by at most l dif-
ferent labels. In particular, the Min-Trans problem when v0 is nonseparating
is fixed-parameter tractable for the parameter l.

The proof of Theorem 1 is given in Sections 3 and 4. Let us observe that the
time complexity of our algorithm remains near-linear O(n1+ε) (for any ε > 0)
as long as l = o(log log log n) where n is the size of the input.

If we allow v0 to be a cutvertex, then the problem changes dramatically.
Though the formalism developed in this paper is not sufficient to deal with this
general case, we believe that it can also be solved in linear time for every fixed
l.

We also show that our algorithmic result is best possible in the sense that
Min-Trans becomes NP-complete when l is part of the input.

Theorem 2 Min-Trans is NP-complete if the number of labels l is uncon-
strained. The problem remains NP-complete even when v0 is nonseparating and
each label occurs precisely twice.

The proof of Theorem 2 is deferred to Section 5.

2 Outline

The main ideas of our algorithm are described by the following steps. First, we
simplify the input graph G so that every 2-connected component of G − v0 is
either an edge or a cycle bounding a face. We call the resulting graph a cactus.

Having obtained the simplified graph, we consider the tree-structure of its
blocks using a dynamic programming approach. Herefrom we consider a cactus
with a distinguished vertex (root). For each pair A,B of labels, we keep in-
formation about the minimum number of transitions ρ[A,B] assuming that the
label sequence starts and ends at the root and the sequence is prepended and
appended with A and B, respectively. After establishing Lemma 6 that cov-
ers concatenations of optimal label sequences, the recursive procedure is rather
straightforward, except for the case when the root has big degree. This is the
hard part and the details are presented in Section 4.

The main observation is that we only have to distinguish, for each block
incident with the root, the l2 values ρ[A,B] (where l is the fixed number of
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labels) and that the important information is only how the values differ from
ν = minA,B ρ[A,B]. The difference ρ[A,B]− ν is either 0, 1, or 2. We can store

the complete information about this difference in a variable taking at most 3l
2

different values. These values are called types. The blocks with the same type
need not be distinguished.

In order to determine an optimal sequence of blocks incident with the root,
we transform the problem into a problem of finding an optimum closed walk in
a multigraph K on l vertices (corresponding to the labels) in which each pair of

vertices is joined by 3l
2

edges (one for each possible type). In this closed walk,
the number of edges corresponding to any particular type p must be equal to the
number of blocks incident with the root whose type is equal to p. The edge of K
corresponding to the type p between vertices A and B is given weight equal to
the value of p at A,B. Although the number of closed walks is exponential, we
show that one can restrict himself to consider only a constant number of walks
in K. The details are given in Section 4.

Let W be an optimal closed walk in K. We consider W as a multiset of edges,
the multiplicities corresponding to the number of times each edge appears in
W . The walk W can be decomposed into two parts, a closed walk S and an
eulerian multiset T of edges, where S has constant size and traverses each edges
traversed by W at least once. Moreover, T contains only edges that have weight
0 and for each type p, the number np of edges in T (counted with appropriate
multiplicities of the multiset) that corresponds to p is even. An important
property of such a decomposition S, T is that there exists a multiset T ′ of edges
of K such that T ′ also satisfies the properties above and uses np edges of type
p. The set T ′ can be constructed in the following way. For each type p, we pick
an edge ep of S with weight 0 that corresponds to p. The multiset T ′ consists
of the edge ep with multiplicity np for each type p. It is not hard to check
that S and T ′ form a decomposition of a closed walk in K that has the same
total weight as the original walk. Therefore, S, T ′ also decomposes an optimal
closed walk. There are bounded number of closed walks S to be considered
and for each such closed walk, we define T ′ and check if the pair S, T ′ satisfies
the required conditions. This yields a constant-time algorithm with linear-time
preprocessing that determines the types of the blocks incident with the root.

3 Bounded Number of Labels

In this section we develop most of the formalism needed to prove Theorem 1.
In particular, it is observed that we can restrict our attention to a special class
of cactus graphs; also, the basic structure of the algorithm is presented.

Let H and G be labelled graphs with labellings λ and µ, respectively. If
every label sequence of (H,λ) is also a label sequence of (G,µ), and vice versa,
then H and G are said to be equivalent .

A connected graph G is called a cactus if every block of G is either an edge
or a cycle. (A block in a connected graph G is either a cutedge or a maximal 2-
connected subgraph of G). A labelled cactus G is leaf-labelled if every endblock
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of G is an edge, every vertex of G has at most one label, and a vertex of G is
labelled if and only if it is a leaf.

The following lemma shows that it suffices to prove Theorem 1 for the case
when H is a leaf-labelled cactus. To avoid trivialities, we shall assume that
there are at least two vertices whose label set λ(v) is non-empty.

Lemma 1 Let H be a connected labelled graph. If Ĥ is planar, then there
exists a leaf-labelled cactus G which is equivalent to H. Furthermore, G can be
constructed in linear time.

Proof: We construct G from H in the following series of steps. First, we move
the labels onto leaves. After that we remove unlabelled parts of the graph and
finally we remove the insides of cycles.

Construct H ′ from H in the following manner. For each labelled vertex
v ∈ V (H), attach |λ(v)| new vertices vL, L ∈ λ(v) to v and then remove all

labels from v. Label each vL with the label L. A planar embedding of Ĥ ′ can be
transformed to an embedding of Ĥ with the same label sequence by contracting
the edges vvL, v ∈ V (H), L ∈ λ(v), in H ′. Conversely, a planar embedding

of Ĥ can be transformed to an embedding of Ĥ ′ with the same label sequence
by subdividing the edges incident to the center of Ĥ. Hence H and H ′ are
equivalent.

Suppose that v is a cutvertex of H ′ and a component B′ of H ′ − v contains

no labels. Since every planar embedding of Ĥ ′−B′ = Ĥ ′ −B′ can be extended
to an embedding of Ĥ ′ with the same label sequence by embedding B′ in one
of the faces around v, the labelled graphs H ′ and H ′ − B′ are equivalent. For
each cutvertex v, remove all unlabelled components of H ′−v from H ′ to obtain
H ′′ that is equivalent to H ′. It follows that every endblock of H ′′ contains a
label. The subgraph H ′′ can be easily constructed in linear time by cutting off
the appropriate endblocks of H ′.

Let Π′′ be a planar embedding of Ĥ ′′ and v0 the center of Ĥ ′′. Let G be
the subgraph of H ′′ that is formed by the vertices and edges of the facial walk
in Ĥ ′′ − v0 corresponding to the face in which v0 was embedded. Note that G
contains all labelled vertices of H ′′. We claim that G is equivalent to H ′′. Since
Ĝ is a subgraph of Ĥ ′′, every embedding of Ĥ ′′ gives an embedding of Ĝ with
the same label sequence. By construction, every block of G is either an edge
or a cycle. Since every endblock of H ′′ contains a label, also every endblock of
G contains a label. Thus, in every planar embedding of Ĝ, every cycle of G is
a facial cycle. Hence, an embedding of Ĝ can be extended to an embedding of
Ĥ ′′ with the same label sequence by embedding the rest of H ′′ into the facial
cycles as given in Π′′. Hence G and H ′′ are equivalent.

Since a planar embedding of Ĥ ′′ can be obtained in linear time (see for
example [4]), G can be constructed in linear time. It is not difficult to check
that G is a leaf-labelled cactus as required. �

In our algorithm, we use a rooted version of graphs. A root r in a leaf-
labelled cactus H can be any vertex of H. The root is marked by a special label
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Lr 6∈ L. We then speak of a rooted leaf-labelled cactus, or simply a cactus (H, r).
The restriction on labels in a rooted leaf-labelled cactus is slightly relaxed, every
leaf still has precisely one label (possibly Lr) and a non-leaf vertex is labelled
only if it is the root. When a label sequence Q of H is cut at the label Lr

(and Lr is deleted), we obtain a linear sequence called a rooted label sequence
of H. Let Q(H) denote the set of all rooted label sequences of H. Similarly to
the unrooted graphs, two rooted graphs are equivalent if they admit the same
rooted label sequences.

There exists a tree-like structure, called a PC-tree (see [13]), that captures
all embeddings of a cactus in the plane. PC-trees and their rooted version, PQ-
trees, are used in testing planarity [1], see also [4]. We note that Min-Trans
(with v0 nonseparating) reduces to the problem of minimizing the number of
label transitions over all cyclic permutations of the leaves of a PC-tree that are
compatible with the PC-tree.

For every embedding Π of Ĥ, there is the flipped embedding Π′ of Ĥ where
each clockwise rotation in Π is a counter-clockwise rotation in Π′. The following
lemma formulates this for a rooted label sequence of H. For a linear sequence
Q, let QR denote the sequence obtained by reversing Q.

Lemma 2 Let (H, r) be a rooted leaf-labelled cactus. If Q is a rooted label
sequence of H, then the reversed sequence QR is also a rooted label sequence of
H.

The following lemmas establish a recursive construction of rooted label se-
quences. Let us recall that for a cutvertex v of H, a v-bridge in H is a subgraph
of H consisting of a connected component of H − v together with all edges
joining this component and v.

Lemma 3 Let (H, r) be a rooted leaf-labelled cactus where r is a leaf. Let u be
the neighbor of r. If u is labelled, then H is of order 2 and has a unique rooted
label sequence Q = λ(u). Otherwise, (H, r) is equivalent to (H − r, u).

Proof: If u is labelled, then u is a leaf and H contains precisely one label λ(u)
and therefore λ(u) is the unique rooted label sequence of H. Otherwise, take an

embedding of Ĥ − r in the plane. Recall that u as the root of H − r is given a

special label Lu and thus there is an edge connecting u and the center of Ĥ − r.
Subdividing this edge gives a planar embedding of Ĥ with the same rooted label

sequence. Similarly, one can obtain an embedding of Ĥ − r from an embedding
of Ĥ with the same rooted label sequence. �

Lemma 4 Let (H, r) be a rooted leaf-labelled cactus such that r is a cutvertex
and let B1, . . . , Bk be the r-bridges in H. Every rooted label sequence of H can
be partitioned into k consecutive parts where each of the k parts is a rooted
label sequence of one of (Bi, r). Conversely, if Qi is a rooted label sequence
of (Bi, r) (1 ≤ i ≤ k) and (i1, . . . , ik) is a permutation of (1, . . . , k), then the
concatenation Qi1Qi2 · · ·Qik is a rooted label sequence of H.
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Proof: Suppose for a contradiction that there is a rooted label sequence Q of
H with a cyclic subsequence L1L2L3L4 (in this order) such that L1 and L3

have origins in B1 and L2, L4 have origins outside B1. Let Π be an embedding
of Ĥ that corresponds to Q and v1, . . . , v4 the origins of L1, . . . , L4. Let G be
the graph obtained from Ĥ by deleting the center v0 and adding an edge uv
for every two consecutive edges uv0, vv0 in the local rotation around v0. The
embedding Π can be extended to a planar embedding Π′ of G such that the
added edges form a facial cycle. Since v1 and v3 are in B1, there is a path
P in B1 − r joining v1 and v3. Similarly, there is a path Q in H − (B1 − r)
joining v2 and v4. Since P and Q are disjoint and both are embedded inside
C, their endvertices cannot interlace on C. This contradiction proves the claim
and implies that all labels in each Bi appear consecutively in every rooted label
sequence of H. This proves the first part of the lemma.

The second part is an easy consequence of the fact that arbitrary embeddings
of B̂i (1 ≤ i ≤ k) can be combined into an embedding of Ĥ so that the cyclic
order of r-bridges around r is Bi1 , Bi2 , . . . , Bik . �

Let C be a cycle of G. For v ∈ V (C), let Dv(C) be the union of v-bridges
in G that do not contain C.

Lemma 5 Let (H, r) be a rooted leaf-labelled cactus with r in a cycle C of length
k. If Dr(C) is empty, then every rooted label sequence Q of H can be partitioned
into k− 1 (possibly empty) consecutive parts Pv, v ∈ V (C) \ {r}, where Pv is a
rooted label sequence of (Dv(C), v) and Pv appear in Q in one of the two orders
corresponding to the two orientations of C.

Proof: Let Q be a rooted label sequence of H such that the conclusion of the
lemma is not true. If labels contained in one of the subgraphs Dv(C) do not
form a consecutive subsequence of Q, we obtain a contradiction as in the proof
of Lemma 4. Suppose now that Q contains a cyclic subsequence L1L3L2L4

of labels (in this order) such that the origins u1, . . . , u4 of L1, . . . , L4 are in
Dv1(C), . . . , Dv4(C) and v1, v2, v3, v4 appear on C in this order. Let Π be an

embedding of Ĥ that corresponds to Q and let G be the graph obtained from
Ĥ by deleting the center v0 and adding an edge uv for every two consecutive
edges uv0, vv0 in the local rotation around v0. The embedding Π can be easily
modified to a planar embedding Π′ of G. It is easy to check that u1, . . . , u4, v1, v3
are the branch-vertices of a subdivision of K3,3 in G, a contradiction with G
being planar. �

We are interested in rooted label sequences that have the minimum number
of transitions. But to combine them later on, it is important to specify the first
and the last label in the rooted label sequence. This motivates the following
definition. Let Q be a set of (linear) label sequences. We say that a sequence
Q ∈ Q is AB-minimal for labels A,B ∈ L, if

τ(AQB) = min{τ(ASB) | S ∈ Q}
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where AQB is the sequence obtained from Q by adding labels A and B at the
beginning and at the end of Q, respectively. A rooted label sequence Q of (H, r)
is AB-minimal if Q is AB-minimal in Q(H). Minimal sequences are composed
of minimal sequences as the following lemma shows. This allows us to restrict
our attention to minimal sequences.

Lemma 6 Let Q be the set of all sequences that are concatenations of a sequence
in Q1 and a sequence in Q2 (in this order). Then for A,B ∈ L, every AB-
minimal sequence Q in Q is a concatenation of an AC-minimal sequence in Q1

and a CB-minimal sequence in Q2 for some label C ∈ L.

Proof: Suppose that the lemma is not true for labels A,B. Let Q = Q1Q2

be an AB-minimal sequence in Q where Qi ∈ Qi, i ∈ {1, 2}. Let C be the
first label of Q2. By assumption, either Q1 is not AC-minimal in Q1 or Q2 is
not CB-minimal in Q2. If Q1 is not AC-minimal, let Q′1 be an AC-minimal
sequence in Q1. Then τ(AQ′1C) < τ(AQ1C). It follows that

τ(AQ′1Q2B) < τ(AQ1Q2B) = τ(AQB),

a contradiction with the choice of Q. Thus, Q2 is not CB-minimal. Conse-
quently, if Q′2 is a CB-minimal sequence in Q2, then τ(CQ′2B) < τ(CQ2B) =
τ(Q2B). Hence, we have

τ(AQ1Q
′
2B) ≤ τ(AQ1CQ

′
2B) < τ(AQ1CQ2B) = τ(AQ1Q2B) = τ(AQB),

again a contradiction with the choice of Q. �

Let (H, r) be a rooted leaf-labelled cactus. We can describe “optimal” em-

beddings of Ĥ in the plane by a set of AB-minimal rooted label sequences of
H, one for each pair of labels A,B ∈ L. Let ρH [A,B] be the minimum number
of label transitions in an AB-minimal rooted label sequence of H. Note that
the values of ρH differ by at most 2 since adding labels A and B to a sequence
increases the number of label transitions by at most 2. Hence we can represent
ρH by the minimum ρH [A,B] over all labels A,B and by the individual differ-
ences from this minimum. Let nH be the minimum number of label transitions
in a rooted label sequence of H and let pH [A,B] = ρH [A,B] − nH . As noted
above, pH [A,B] ∈ {0, 1, 2}. The function pH : L × L → {0, 1, 2} is called the

type of H. It is convenient to view the type as a number between 1 and t := 3l
2

,
whose digits in the ternary system correspond to the particular values pH [A,B]
(for some linear ordering of all pairs (A,B) ∈ L × L). Note that the number
t of different types is a constant when the number of labels is fixed. We will
see in Lemma 8 that rooted cacti of the same type are interchangeable in any
ordering around a cutvertex. We call the pair (pH , nH) the descriptor of H.
For simplicity, we also call the function ρH the descriptor of H since it is easy
to compute ρH from (pH , nH), and vice versa.

Note that the “unrooted” number of transitions τ(H) can be obtained from
the descriptor of H as

τ(H) = min
A∈L

ρH [A,A].
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To see this, suppose first that Q is a cyclic label sequence of H (containing Lr)
and A is a label next to Lr in Q. Let R be the cyclic sequence obtained from Q
by replacing Lr with two labels A. Then R has the same number of transitions
as the cyclic sequence Q−Lr. By splitting R between the two new labels A, we
obtain a linear sequence ASA, where S is a rooted label sequence of H, with the
same number of transitions as in R. This shows that τ(H) ≥ minA∈L ρH [A,A].
For the other inequality, note that from a linear sequence ASA, where S is a
rooted label sequence of H, we can obtain a cyclic label sequence of H with
smaller or equal number of label transitions by joining the ends of ASA and
then deleting the two labels A.

Next, we consider how a descriptor of a rooted leaf-labelled cactus can be
computed from descriptors of its subcacti. The first non-trivial case is when the
root lies on a cycle.

Lemma 7 Let (H, r) be a rooted leaf-labelled cactus such that r is a vertex of
degree 2 in a cycle C of length k in H. Then the descriptor of H can be computed
from descriptors of (Dv(C), v), v ∈ V (C), in time O(l3k).

Proof: In contrast with rooting at a cutvertex, the order of subgraphs Dv(C)
around C is fixed. Let us take an embedding of C and let r, v1, . . . , vk−1 be the
vertices of C in the clockwise order. By Lemma 5, every sequence in Q(H) is a
concatenation of k − 1 sequences from Q(Dv1(C)), . . . ,Q(Dvk−1

(C)) in this or
the reverse order. Let Pi be the set of sequences that are concatenation of k− i
sequences from Q(Dvi(C)), . . . ,Q(Dvk−1

)(C) in this order. By Lemma 6, every
AB-minimal sequence in Pi is obtained as a concatenation of an AL-minimal
sequence in Q(Dvi(C)) and an LB-minimal sequence in Pi+1 for some L ∈ L.
Let qi[A,B] be the number of transitions in an AB-minimal sequence of Pi.
Since Pk−1 = Q(Dvk−1

(C)), qk−1[A,B] = ρDvk−1
(C)[A,B]. Lemma 6 gives that

qi[A,B] = min
L∈L
{ρDvi

(C)[A,L] + qi+1[L,B]}, for 1 ≤ i < k − 1.

Note that q1 stores the number of transitions of all AB-minimal rooted label
sequences of H when the order of C is fixed. To allow for flipping of C, we
note that an AB-minimal rooted label sequence of H is a BA-minimal rooted
sequence of H in the flipped embedding of H. Hence

ρH [A,B] = min{q1[A,B], q1[B,A]}.

For each 1 ≤ i ≤ k − 1, we compute each of the l2 values of qi in time O(l).
That gives the overall time complexity O(l3k). �

Computing the descriptor of a leaf-labelled cactus rooted at a cutvertex
turns out to be the crux. Let (H, r) be a rooted leaf-labelled cactus where r is
a cutvertex of H and let B1, . . . , Bk be the r-bridges in H. Let bH(i) be the
number of r-bridges in H of type i, i = 1, . . . , t. We view bH as an integer vector
in Zt with

∑t
i=1 bH(i) = k. A non-negative integer vector b ∈ Zt is called a

bridge vector and sum(b) =
∑t

i=1 b(i) the sum of b. Note that there are at most
O(kt+1) different non-negative integer vectors b in Zt with the sum at most k.
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Each bridge vector b describes a problem to be solved: How to order k,
k = sum(b), bridges of types given by b around a vertex so that the number of
label transitions on the boundaries between bridges is minimized. We will see
that each ordered sequence of types in b gives a sequence of labels with each
type being a connection to the next label. Although this sequence of labels is
not unique, it is a useful concept that will be heavily used in Section 4. For
fixed labels A,B, let RAB(n) be the set of sequences of n+1 labels (L0, . . . , Ln)
such that L0 = A and Ln = B. Let P = (p1, . . . , pk) be a sequence containing
all types occurring in b (with appropriate multiplicities). For such an ordering
of types in b and a sequence R ∈ RAB(k), R = (L0, . . . , Lk), let m(P,R) =∑k

i=1 pi[Li−1, Li]. Let mb[A,B] be the the minimum m(P,R) taken over all
orderings P of b and all sequences R ∈ RAB(k), k = sum(b). This minimum
depends only on the types of the bridges, not on the minimum number of label
transitions of the bridges.

The fact that computation of mb is a solution to the posed problem and that
it gives a way to compute the descriptor of a leaf-labelled cactus rooted at a
cutvertex is made precise in the following lemma.

Lemma 8 Let (H, r) be a rooted leaf-labelled cactus and let B1, . . . , Bk be the
r-bridges in H. Then

ρH [A,B] = mbH [A,B] +

k∑
i=1

nBi
.

Proof: Let Q be an AB-minimal rooted label sequence of H. By Lemma 4
and repeated application of Lemma 6, the sequence Q is a concatenation of
sequences Qj1Qj2 · · ·Qjk where Qi (i = 1, . . . , k) is an Li−1Li-minimal rooted
label sequence of (Bi, r) for some labels Li such that L0 = A and Lk = B,
and (j1, . . . , jk) is a permutation of (1, . . . , k). For i = 1, . . . , k, let pi be the
type of Bji . Let R = (L0, . . . , Lk) and P = (p1, . . . , pk). Then m(P,R) =∑k

i=1 pi[Li−1, Li] and ρH [A,B] = m(P,R) +
∑k

i=1 nBi .
Conversely, let P = (p1, . . . , pk) be a sequence of k types such that there

is a permutation (j1, . . . , jk) of (1, . . . , k) such that the type of Bji is pi. Let
R = (L0, . . . , Lk) be a sequence of k+ 1 labels and let Qi be an Li−1Li-minimal
rooted label sequence in (Bji , r). By Lemma 4, Q = Q1, Q2, . . . , Qk is a rooted

label sequence of H with τ(Q) = m(P,R)+
∑k

i=1 nBi
. This completes the proof.

�

This gives rise to the following dynamic program. Given a non-zero bridge
vector b, there are only t possibilities for the type p of the first bridge whose label
sequence starts a minimal label sequence of H (the existence of such a bridge
follows from Lemma 4). By deleting the type p from b, we obtain a smaller
bridge vector bp. The value mbp is computed recursively and then combined
with p to obtain mb. However, using this approach would yield a polynomial-
time algorithm that is not fixed parameter tractable (since there are Θ(nt)
bridge vectors of sum at most n). In the next section, we sidestep this problem
and present a linear-time algorithm for computing mb.
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Finally, let us outline an algorithm for Min-Trans that, as we show in the
next section, yields Theorem 1. We assume that the input graph has at least
three labels to avoid trivialities.

Algorithm 1:

Input: a labelled graph G
Output: the minimum number of transitions τ(G)

1 Construct the leaf-labelled cactus H that is equivalent to G (Lemma 1).
2 Root H at an arbitrary unlabelled vertex r.
3 ρH ←− Descriptor(H, r).
4 Compute τ(G) from ρH .

5 return τ(G).

Function Descriptor(H, r)

Input: a rooted leaf-labelled cactus (H, r)
Output: the descriptor ρH of H

1 switch according to the role of r do
2 case r is a leaf and its neighbor u is labelled
3 Note that F has just two vertices r and u.
4 The descriptor ρH corresponds to the single-label sequence λ(u).

5 case r is a leaf and its neighbor u is not labelled
6 ρH ←− Descriptor(H − r, u).

7 case r is in a cycle C and is of degree two
8 foreach v ∈ V (C) \ {r} do
9 Let Bv be the union of all v-bridges that do not contain C.

10 ρBv
←− Descriptor(Bv, v).

11 Use Lemma 7 to compute ρH from ρBv
.

12 case r is a cutvertex
13 foreach r-bridge Bi do
14 ρBi

←− Descriptor(Bi, r).

15 Construct the bridge vector b from ρBi .
16 Compute mb.
17 Use Lemma 8 to compute ρH from mb and ρBi

.

18 return ρH .

Note that throughout Algorithm 1, each vertex of H appears as a root in
Descriptor at most twice; once as a cutvertex and once either as a leaf or on
a cycle. Therefore, each of the cases can happen at most n times, n = |V (H)|,
and the basic recursion runs in linear time. By Lemma 7, the case when the
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root is in a cycle takes time O(l3n) since the sum of lengths of all cycles is
bounded by n. If we can compute mb for a bridge vector b in constant time,
then Algorithm 1 runs in linear time. This is the goal of the next section.

4 Dealing with Bridge Vectors

In the previous section we have sketched an algorithm for computing the mini-
mum number of label transitions in a planar multigraph when v0 is nonseparat-
ing. In this section we outline an algorithm for computing mb of a bridge vector
b in constant time (Lemma 13), the last ingredient for the proof of Theorem 1.
We start by observing that mb is bounded independently of the bridge vector
b. Let us recall that t = 3l

2

and t is the number of types.

Lemma 9 Let b be a bridge vector. Then for every A,B ∈ L,

mb[A,B] ≤ 2t+ 2.

Proof: For every type p ∈ {1, . . . , t}, there are labels Ap, Bp such that p[Ap, Bp]
= 0. By Lemma 2, p[Bp, Ap] = 0 as well. Let k = sum(b) and let P =
(p1, . . . , pk) be the sequence of types in b in the increasing order. Let R =
(L0, . . . , Lk) be the sequence of labels such that L0 = A, Lk = B, and for
i = 1, . . . , k − 1, Li = Api

if i is odd and Li = Bpi
if i is even. Note that

for i = 2, . . . , k − 1, if pi−1 = pi, then either pi[Li−1, Li] = pi[Api
, Bpi

] or
pi[Li−1, Li] = pi[Bpi

, Api
] and so pi[Li−1, Li] = 0. Since pi[A

′, B′] ≤ 2 for all
labels A′, B′ and there are at most t− 1 transitions between different types,

m(P,R) =

k∑
i=1

pi[Li−1, Li] ≤ 2(t− 1) + 4.

Thus, mb[A,B] ≤ m(P,R) ≤ 2t+ 2. �

We show next that each ordering of b given by an ordering P of types in b
and a label sequence R ∈ RA,B(sum(b)) corresponds to a walk in a particular
multigraph of constant size. Let K be the complete edge-colored and edge-
weighted multigraph on vertex set L where two vertices A,B ∈ L are joined by
t edges such that the pth edge is colored by p and has weight p[A,B]. Note that
there are t loops at every vertex of K. For a walk W in K, the weight w(W )
of W is the sum of weights of edges in W . Let P = (p1, . . . , pk) be an ordering
of types in a bridge vector b and R = (L0, . . . , Lk) be a sequence of labels. The
sequences P , R generate a walk W in K of length k where in the ith step the
edge Li−1Li with color pi is used. The weight of W is m(P,R). The walk W
uses b(p) edges of color p. The converse statement also holds: A walk W that
uses b(p) edges of color p gives an ordering P of types in b and a label sequence
R such that m(P,R) = w(W ). This gives the following lemma.

Lemma 10 Let b be a bridge vector, A,B labels, and w an integer. There is
an AB-walk W of weight w in K such that W uses b(p) edges of color p if and
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only if there is an ordering P of types in b and a label sequence R = (A, . . . , B)
such that m(P,R) = w.

In the rest of this section, we will work with multisets, that is, sets where
we remember the multiplicity of the elements in the multiset. If an element is
not in the multiset, we also say that its multiplicity is 0. In the union A of two
multisets A1 and A2, A = A1 ∪A2, the multiplicity of an element a in A is the
sum of the multiplicities of a in A1 and A2. Similarly, we define the difference of
two multisets, denoted A1 −A2. A multiset A is a submultiset of a multiset B,
A ⊆ B, if, for every a ∈ A, the multiplicity of a in A is at most the multiplicity
of a in B.

For a multigraph G and a set (multiset) S of edges in G, the subgraph G(S)
induced by S is the graph with edge-set S (the set of edges in S without their
multiplicity) and whose vertices are all those vertices of G that are incident
with an edge in S. A multiset S of edges of G is Eulerian if every vertex in G
is incident with an even number of edges in S (counting multiplicities if S is a
multiset). We shall use the following well known fact: A multiset S of edges of
a multigraph G are edges of some closed walk in G (that uses each edge in S
the same number of times as its multiplicity) if and only if S is Eulerian and
G(S) is connected.

If a multiset of edges S in G can be extended to an Eulerian multiset by
adding some edges from a multiset T , then the number of edges from T that
has to be added to S is bounded by |V (G)|2 as is shown in the following lemma.

Lemma 11 Let S, T be multisets of edges of a multigraph G on k vertices. If
S can be extended to an Eulerian multiset by adding some edges in T , then this
can be done with at most k2 edges.

Proof: Let T ′ be a subset of T such that S ∪ T ′ is Eulerian. Let T ′′ be the
subset of edges in T ′ constructed as follows. For every two vertices u and v of
G such that T ′ contains an odd number of edges joining u and v, put into T ′′

an arbitrary edge from T ′ connecting u and v. Since, for a vertex v ∈ V (G),
the degree of v in G(T ′′) and the degree of v in G(T ′) have the same parity, we
have that S ∪ T ′′ is also Eulerian. Since there are at most k2 pairs of vertices
of G, we have that |T ′′| ≤ k2. �

In the proof of Lemma 13, we will use the following technical lemma that
says that we can always find a small number of cycles in an Eulerian multiset S
of edges of K such that the rest of S contains an even number of edges of every
color.

Lemma 12 Let S be an Eulerian multiset of edges in K. Let R be the set of
colors p such that there is an odd number of edges in S with color p. Then there
is a collection of k ≤ t cycles C1, . . . , Ck in K such that ∪ki=1E(C) = T ⊆ S
(where the union is a union of multisets) and there is an odd number of edges
of color p in T if and only if p ∈ R.
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Proof: Let C1, . . . , Cm be a cycle decomposition of S. For i = 1, . . . ,m, let
xi ∈ Zt

2 be the binary vector whose pth entry counts the number of edges of
color p in Ci modulo 2. Then

∑m
i=1 xi = x where x is the characteristic vector

of R, i.e., x(p) = 1 if and only if p ∈ R.
The proof proceeds by induction on m. If m ≤ t, then we are done. Thus

m > t. Since the dimension of the vector space Zt
2 is t, there are linearly

dependent vectors xi1 , xi2 , . . . , xis such that
∑s

i=1 xji = 0. Remove the edges
of the cycles Ci1 , . . . , Cis from S to obtain an Eulerian multiset S′, S′ = S −
∪sj=1E(Cij ), with cycle decomposition of length m − s. Since xi1 , . . . , xis were
linearly dependent, the set R′ of colors p such that there is an odd number of
edges in S′ with color p is equal to R. By the induction hypothesis, there are
k cycles C ′1, . . . , C

′
k in K such that ∪ki=1E(C ′i) ⊆ S′ and that have the required

parity property. Since S′ ⊆ S, the edges of these cycles form also a submultiset
of S, yielding the result. �

The following lemma shows that, for a bridge vector b, the value mb can be
computed in constant time.

Lemma 13 Let b be a bridge vector. Then for labels A,B, mb[A,B] can be

computed in time O((l2t)4l
2t+1).

Proof: By Lemma 10, there is an AB-walk W in K that uses b(p) edges of color
p and such that w(W ) = mb[A,B]. The walk W can be viewed as a multiset of
edges of K (where the multiplicity of each edge equals the number of times the
edge appears in W ) since every AB-walk using these edges the same number of
times has the same weight. We will partition W into two multisets of edges, S
and T , such that S contains all the “important” edges in W and the size of S
is bounded by a constant.

Let S1 be the multiset of edges in W that have positive weight. By Lemma 9,
|S1| ≤ w(W ) ≤ 2t+2. Let S2 be the set of all edges of K of weight 0 that appear
in W . Note that |S2| ≤ l2t since K has l vertices and there are t loops at each
vertex and t edges joining each pair of vertices. Let S′ = S1∪S2 and let e be an
AB-edge in K. By Lemma 11, S′∪{e} can be extended to an Eulerian multiset
by adding a set S3 of at most l2 edges of W − S′. Let S′′ = S′ ∪ S3. Since
S′′ ∪ {e} is connected and Eulerian, S′′ ∪ {e} is the edge set of a closed walk in
G (by the fact stated before Lemma 11). Thus S′′ is the multiset of edges of an
AB-walk and W − S′′ is an Eulerian multiset of edges. By Lemma 12, there is
a multiset S4 of at most lt edges in W − S′′ such that there is an even number
of edges of each color in W − S′′ − S4. Let S = S′′ ∪ S4. Then |S| ≤ 4l2t since
|Si| ≤ l2t for each i = 1, . . . , 4. So W can be split into two multisets S and T
such that

(C1) S ∪ {e} is Eulerian and has at most 4l2t edges,

(C2) K(S) is connected,

(C3) every edge in T is also present in S,
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(C4) the number of edges of color p in T is even for every color p,

(C5) all edges in T have weight 0.

Let S and T be a decomposition satisfying (C1)–(C5). Let bT be the bridge
vector of T . Now, we will show that, given S and bT , we can construct a multiset
T ′ with edges given by the same bridge vector bT as T such that S and T ′ satisfy
(C1)–(C5). A color p is present in T ′ if bT (p) > 0. By (C4), bT ≡ 0 mod 2.
Let G = K(S) be the graph induced by S. By (C3) and (C5), for each color p
present in T , G has an edge ep of color p and weight 0.

Take T ′ that consists of bT (p) copies of the edge ep for each color p present
in T . Then S and T ′ satisfy conditions (C1)–(C5). Since S ∪ T ′ ∪ {e} is an
Eulerian multiset of edges and K(S ∪ T ′) is connected, we obtain that S ∪ T ′ is
a multiset of edges of an AB-walk W ′ in K. Since w(W ′) = w(S) = w(W ), we
have that mb[A,B] ≤ w(W ′) by Lemma 10.

The algorithm generates all possible multisets S and then determines if there
is a multiset T satisfying (C1)–(C5) and extending S to an AB-walk. There are

l2t edges in K, so there are at most O((l2t)4l
2t) choices for a multiset S of at

most 4l2t edges. The conditions (C1) and (C2) can be checked in O(l2t) time.
The bridge vector bT is computed from S and b in time O(t). The condition
(C4) can hold only if bT ≡ 0 mod 2 and this can be verified in time O(t).
The conditions (C3) and (C5) can hold only if, for each color p present in T ,
there is an edge of color p and weight 0 in K(S). This can be verified in time
O(l2t). Then there exists T such that the decomposition S, T satisfies (C1)–
(C5). Thus mb[A,B] ≤ w(S). Since there exists a decomposition S and T with
w(S) = mb[A,B] that satisfies (C1)–(C5), the exhaustive search will eventually

find such a set S. Hence, the total time is O(l2t(l2t)4l
2t). �

It is likely that a fixed-parameter tractable solution can also be described
by the use of min-max algebra for shortest paths, see [5] and [2], [8].

Finally, let us conclude the section by completing the proof of Theorem 1.

Proof: (Proof of Theorem 1.) The proof of the correctness of Algorithm 1
consists of several lemmas. Lemma 1 shows that any input graph can be trans-
formed to an equivalent leaf-labelled cactus. Lemmas 3, 4, and 5 justify our
recursive approach for computing the descriptors of rooted cacti.

The linearity of Algorithm 1 was established at the end of Section 3 provided
that we can compute mb in constant time. The cornerstone of the argument
was that Lemma 8 allows us to deal with bridge vectors instead with collections
of bridges. By Lemma 13, we can compute mb for a bridge vector in time
O(l4t(l2t)4l

2t) (applying the lemma for each pair of labels). Since there are at

most n cut-vertices in the graph, the algorithm runs in time O(l4t(l2t)4l
2tn). �

5 NP-Completeness

When the number of labels is not bounded, Min-Trans becomes harder. In this
section we give a proof of Theorem 2 by providing a polynomial-time reduction
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from the Hamiltonian Cycle Problem (see [10]).

Ham-Cycle. For a graph G, determine if G contains a hamiltonian cycle.

Proof: (Proof of Theorem 2.) An embedding of G with at most k transitions is
a certificate for Min-Trans which asserts that Min-Trans is in NP. To show
that Min-Trans is NP-complete, we give a polynomial-time reduction from
Ham-Cycle. Let G be a graph of order n. Let H be the graph whose vertex
set is V (H) = {w} ∪ V (G) ∪ (E(G) × {0, 1}). We connect w to each vertex in
V (G) and for each edge uv ∈ E(G) we join one of (uv, 0) and (uv, 1) with u,
and the other one with v. Only the leaves of H are labelled. Vertex (e, i) is
labelled e. Thus, the number of labels is |E(G)| and each label occurs precisely
twice. It is immediate that H can be constructed in polynomial time in |V (G)|.

We ask if the number of transitions τ(H) is smaller or equal to k for

k =
∑

v∈V (G)

(deg(v)− 1) = 2|E(G)| − |V (G)|.

In the affirmative, there is a planar embedding Π of Ĥ with τ(Π) ≤ k. The
local rotation around w gives a cyclic order π of vertices of G. Root H at
w. By Lemma 4, every label sequence of H is a concatenation of sequences
Qv, v ∈ V (G), such that Qv consists of labels on leaves of H attached to
v. Since labels in Qv are the edges adjacent to v, they are different and thus
τ(Qv) = deg(v)− 1. Hence,

τ(H) ≥
∑

v∈V (G)

(deg(v)− 1) = k. (1)

To get an equality here, we need that there are no more label transitions between
neighboring sequences Qv.

Let e1(v) and e2(v) be the first and the last label in Qv. We have an equality
in (1) if and only if for every two consecutive vertices u, v in π, e1(u) = e2(v).
This gives a cyclic sequence C of n edges that visits every vertex precisely once.
Hence C is a hamiltonian cycle in G.

On the other hand, a hamiltonian cycle C in G gives a cyclic order on
vertices of G. This and the cyclic order of the edges of C give a construction of
an embedding of Ĥ with τ(H) = k. �
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