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Abstract

The nodes of a rotator graph are the permutations of n, and an arc is
directed from u to v if the first r symbols of u can be rotated one position
to the left to obtain v. Restricted rotator graphs restrict the allowable
rotations to r ∈ R for some R ⊆ {2, 3, . . . , n}. Incomplete rotator graphs
only include nodes whose final symbol is i ≤ m for a fixed maximum value
m ∈ {1, 2, . . . , n}. Restricted rotator graphs are directed Cayley graphs,
whereas incomplete rotator graphs are not Cayley graphs. Hamilton cy-
cles exist for rotator graphs (Corbett 1992), restricted rotator graphs with
R = {n−1, n} (Ruskey and Williams 2010), and incomplete rotator graphs
for all m (Ponnuswamy and Chaudhary 1994). These previous results are
based on sequence building operations that we name ‘reusing’, ‘recycling’,
and ‘rewinding’. In this article, we combine these operations to create
Hamilton cycles in rotator graphs that are (1) restricted by R = {2, 3, n},
(2) restricted by R = {2, 3, n−1, n} and incomplete for any m, and (3)
restricted by R = {n−2, n−1, n} and incomplete for any m. Result (1)
is ‘optimal’ since restricted rotator graphs are not strongly connected for
R = {3, n} when n is odd, and do not have Hamilton cycles for R = {2, n}
when n is even (Rankin 1944, Swan 1999). Similarly, we prove (3) is ‘op-
timal’. Our Hamilton cycles can be easily implemented for potential ap-
plications, and we provide O(1)-time algorithms that generate successive
rotations for (1)–(3).
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1 Introduction

The rotator graph Gn is the directed graph whose nodes are the permutations of
n symbols written as strings, and whose arcs travel between nodes whose strings
differ by the rotation of a prefix. More precisely, the nodes are the strings in
Πn, which is the set of strings representing the permutations of {1, 2, . . . , n}
written in one-line notation. For example, Π3 = {123, 132, 213, 231, 312, 321}.
The prefix-rotation of length r cyclically moves the first r symbols of a string
one position to the left and is denoted σr. For example, 541362 σ4 = 413562
since 413 is moved one position to the left and 5 “wraps around” into the
fourth position. We frequently refer to prefix-rotations simply as rotations. The
arcs in Gn are directed from α ∈ Πn to β ∈ Πn when β = α σr for some
r ≥ 2, and such an arc is labeled σr. Figure 1 (a) shows the rotator graph for
n = 3 (with arc labels omitted). The rotator graph Gn can also be described

as
−−→
Cay({σ2, σ3, . . . , σn},Sn), the directed Cayley graph on the symmetric group

generated by prefix-rotations.

213

321

132

123

231

312

213

321
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123

231

312

(a) (b)

Figure 1: (a) The rotator graph G3, and (b) a Hamilton cycle in G3. The
bidirectional arcs are two σ2 arcs, and the unidirectional arcs are σ3 arcs.

The literature has considered two natural subgraphs of the rotator graph.
First, a restricted rotator graph Rn(R) for R ⊆ {2, 3, . . . , n} is obtained by only
including arcs labelled σr for r ∈ R. Figure 2 shows the restricted rotator graph
for n = 4 and R = {3, 4}. Second, an incomplete rotator graph Mn(m) for
some fixed maximum value m ∈ {1, 2, . . . , n} is the induced subgraph using the
nodes whose final symbol is i for i ≤ m. In particular, Mn(1) is isomorphic to
Gn−1, andMn(n) = Gn. Figure 3 shows the incomplete rotator graph for n = 4
and m = 3. The restricted rotator graph Rn(R) with R = {r1, r2, . . . , rk} is

the directed Cayley graph
−−→
Cay({σr1 , σr2 , . . . , σrk},Sn), whereas the incomplete

rotator graph Mn(m) is not isomorphic to a Cayley graph when 1 < m < n.
We define a restricted incomplete rotator graph Bn(R,m) as the subgraph of

Gn that takes into account both of the prior generalizations. That is, Bn(R,m)
only includes arcs labelled σr for r ∈ R and nodes endings with i ≤ m. In
particular, Bn({2, 3, . . . , n}, n) = Gn. Figure 5 shows the restricted incomplete
rotator graph for n = 4, R = {3, 4}, and m = 3.

Rotator graphs are discussed by Corbett [3], restricted rotator graphs with
R = {n − 1, n} are discussed by Ruskey and Williams [18], and incomplete
rotator graphs for all m are discussed by Ponnuswamy and Chaudhary [15]. In
each case, the authors construct Hamilton cycles and discuss their applications.
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Figure 2: The restricted rotator graph Rn(R) for R = {3, 4}. The circular arcs
are σ3 arcs, while the remaining arcs are σ4 arcs.

For example, Corbett proposed rotator graphs as a topology for point-to-point
multiprocessor networks, where Hamilton cycles establish indexing schemes for
sorting and for mapping rings and linear arrays. In this context, Ponnuswamy
and Chaudhary generalize the size of the networks from n! to m · (n− 1)! for all
m ∈ {1, 2, . . . , n} at the expense of node-transitivity when m 6= n. On the other
hand, the result by Ruskey and Williams provides a construction for “shorthand
universal cycles for permutations”, which answered a challenge posed by Knuth
in The Art of Computer Programming [11] (exercise 112 of section 7.2.1.2).
Holroyd, Ruskey, and Williams [8, 9] extended this work by maximizing the
number of σn used by Hamilton cycles of Rn({n− 1, n}). Other applications of
rotator graphs include fault-tolerant file transmission by Hamada et al [7] and
parallel sorting by Corbett and Scherson [4]. Additional properties of rotator
graphs have been examined including minimum feedback sets by Kuo et al
[12] and node-disjoint paths by Yasuto, Ken’Ichi, and Mario [25]. Additional
variations of rotator graphs include bi-rotator graphs introduced by Lin and
Hsu [13].

In these aforementioned articles, the authors provide efficient algorithms for
generating a Hamilton sequence r1, r2, . . ., meaning that σr1 , σr2 , . . . are the arcs
of a Hamilton cycle. For example, 3, 3, 2, 3, 3, 2 is Corbett’s Hamilton sequence
in G3 as seen in Figure 1 (b). We express this Hamilton cycle as follows

321 σ3 213 σ3 132 σ2 312 σ3 123 σ3 231 σ2 (1)

where the values represent successive nodes and arcs, and the final node is
omitted since it equals the first.
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Figure 3: The incomplete rotator graph Mn(m) for n = 4 and m = 2. The
bidirectional arcs represent two σ2 arcs, the circular unidirectional arcs represent
σ3 arcs, and the remaining unidirectional arcs represent σ4 arcs.

Remark 1 Since restricted rotator graphs are Cayley graphs, the digraph Rn(R)
is node-transitive for all R.

Thus, the Hamilton cycle in 1 could have ‘started’ at any node. On the
other hand, incomplete rotator graphs are not node-transitive when 1 < m < n.
For this reason, we must specify a ‘start’ node when discussing their Hamilton
sequences. In this article we use the convention that all of our Hamilton cycles
‘start’ at the node n n−1 · · · 1. Another consequence of Remark 1 is that any
‘shift’ of a Hamilton sequence in Rn(R) is also a Hamilton sequence. A shift
of sequence S = r1, r2, . . . , rk is shift(S) = r2, r3, . . . , rk, r1, and more generally,
shifti(S) = ri+1, ri+2, . . . , rk, r1, r2, . . . , ri for i ∈ {1, 2, . . . , k}.

Remark 2 If S is a Hamilton sequence for the restricted rotator graph Rn(R),
then so is shifti(S) for any i ∈ {1, 2, . . . , n!−1}.

For example, the Hamiltonicity of the sequence 3, 3, 2, 3, 3, 2 implies the
Hamiltonicity of the sequences 3, 2, 3, 3, 2, 3 and 2, 3, 3, 2, 3, 3 in Figure 1.

When studying the Hamilton results of [3], [18], and [15], it is interesting
to note that all three algorithms are based on repeating a simple “sequence
building” operation. We refer to these operations as ‘reusing’ (from [3]), ‘recy-
cling’ (from [18]), and ‘rewinding’ (from [15]). In this article we mix the three
sequence building operations in new ways to create Hamilton cycles for several
restricted and incomplete rotator graphs. Our three main results are simple
constructions for Hamilton sequences in Bn(R,m) when

1. R = {2, 3, n} and m = n, or

2. R = {2, 3, n−1, n} and any m, or

3. R = {n−2, n−1, n} and any m.
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Our motivation for targeting these special cases is simple: In applications, there
is often special significance to the rotations σr where r is as small or as large as
possible. For example, if the sequences are used to generate successive permu-
tations stored in an array, then σ2 and σ3 are the two most efficient operations.
On the other hand, in the setting of universal cycles, σn is the most efficient
operation, as discussed in [9].

Our notation is described in Section 2. The ‘optimality’ of our main results
is discussed in Section 3 by giving non-existence results for Hamilton cycles in
various rotator graphs. Section 4 describes the three sequence building opera-
tions, and then we combine these operations to obtain our three main results in
Section 5. Efficient algorithms for generating these Hamilton sequences appear
in Section 6. Section 7 concludes with open problems.

A preliminary version of this article appeared at iwoca 2011 [20]. The
earlier version focused only on Hamilton cycles in restricted rotator graphs,
while the results on incomplete rotator graphs and ‘rewinding’ are new to this
version. The discussion of non-existence results is also new. We have changed
our notation to accommodate the increased breadth. We have also streamlined
our presentation by omitting the results on recycling Corbett’s reuse sequence
in Theorems 2 and 5 of [20], and by using an alternative to Algorithm 1 of [20].

2 Notation

Throughout this article we will be applying permutations to strings. There are
different conventions for this in the literature, and in this article we follow those
used in [9]. For example, suppose a = a1a2 · · · an and b = b1b2 · · · bn are strings,
and π = (π1 π2 · · · πk) is a permutation in cycle notation. The result of applying
π to a is denoted a π. If b = a π, then bπi = aπi+1 for all 1 ≤ i ≤ k (where the
index k + 1 is treated as 1). In other words, the permutation (π1 π2 · · · πk)
causes the πith symbol of b to be assigned the πi+1st symbol of a. Given this
convention, the prefix-rotation of length r is σr = (1 2 · · · r) since b = a σr
implies that bi = ai+1 for 1 ≤ i ≤ r − 1 and br = a1. For convenience, the
specific permutations used in this article are summarized below:

• inverse prefix-rotation σi = σ−1i = (i i−1 ··· 1) (see Sections 3 and 4.3);

• suffix-rotation ςi = (n n−1 ··· n−i+1) (see Section 4.1);

• modified prefix-rotation σ′i = (2 3 ··· i+1) (see Section 4.2).

• adjacent-transposition τi = (i−1 i) (see Section 4.3);

In each case, exponentiation denotes repeated multiplication of permutations,
so π2 = ππ. When applying multiple permutations to a string, we proceed from
left-to-right. For example,

1234567 σ5 σ4 = 2345167 σ4 = 3452167. (2)
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We use three pieces of notation to refer to multiple prefix-rotations applied to a
string. In each case, our terminology is based on the associated rotator graphs.
Given sequence S = r1, r2, . . . , rt and a ∈ Πn, the entire path is path(a, S)
(where the final string is omitted if the path is a cycle), the set of nodes visited
on the path is nodes(a, S), and the final node visited on the path is node(a, S).
For example, with respect to (2) we have S = 5, 4 and a = 1234567 and

path(1234567, 5, 4) = 1234567 σ5 2345167 σ4 3452167

nodes(1234567, 5, 4) = {1234567, 2345167, 3452167}
node(1234567, 5, 4) = 3452167.

In keeping with our graph-based terminology, we refer to nodes and strings
interchangeably, and to arcs and rotations interchangeably.

3 Non-Existence Results

In this section we prove several results on the non-existence of Hamilton cycles
in certain restricted and restricted incomplete rotator graphs. In each case
we relate these non-existence results to the new results we prove in Section 5.
The non-existence results also add merit to the previous positive results on
incomplete rotator graphs [15] and restricted rotator graphs [18].

We begin with a simple remark. Given a string a = a1a2 · · · an ∈ Πn, an
inversion is a pair of indices (i, j) such that i < j and pi > pj . The parity of a
is even or odd when its number of inversions is even or odd, respectively.

Remark 3 If a ∈ Πn, then b = a σi has the same parity as a when i is odd.

If R consists only of odd values, then Remark 3 implies that there are no
directed paths between permutations of opposite parity in Rn(R). For example,
this is verified below for the trivial case of n = 3 and R = {3}, where the odd
and even permutations appear on the left and right, respectively.

213

321

132

123

231

312

Remark 4 The restricted rotator graph Rn(R) is not strongly connected when
R only contains odd values. In particular, Rn(R) is not strongly connected when
n is odd and R = {3, n} or R = {n− 2, n}.

Remark 4 proves that the restricted rotator graphs do not always have Hamil-
ton cycles when they allow only the rotation σn and the “second smallest” ro-
tation σ3. Similarly, there is not always a Hamilton cycle when allowing σn and
the ‘smallest’ rotation σ2. This follows from a general result by Rankin [16]
whose proof was simplified by Swan [21] (also see Theorem R in [11]).
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Remark 5 ([16, 21]) The restricted rotator graph Rn(R) does not have a Hamil-
ton cycle when n is even and R = {2, n}.

The restricted rotator graph Rn(R) for R = {2, n} is known in the literature
as the directed σ-τ graph, where σ = σn and τ = τ2 = σ2. Remark 5 implies
that the directed σ-τ graph does not have a Hamilton cycle for even n. On the
other hand, it may have a Hamilton path, as illustrated for n = 4 by Figure 4.
Determining the existence of Hamilton paths and cycles in the directed σ-τ
graph is considered an interesting and difficult open problem. In particular,
Knuth rates the difficulty of finding a Hamilton cycle in Rn(2, n) (for odd n) as
48 out of 50 [11] (see exercise 71 in section 7.2.1.2). Ruskey, Jiang, and Weston
[17] investigated this problem using backtracking algorithms and were able to
find all five non-isomorphic Hamilton cycles for n = 5, as well as Hamilton paths
for n = 4 and n = 6.

The undirected σ-τ graph also includes arcs for the inverse operations τ−12 =
τ2 and σ−1n = σn. Compton and Williamson provide the only known Hamil-
ton cycle in the undirected σ-τ graph. The special structure of their solution
also provides a “doubly-adjacent Gray code” for Πn but requires 50 pages to
prove [2]. The undirected σ-τ graph can also be described as the undirected
Cayley graph Cay({σ2, σn},Sn), where Sn is the symmetric group correspond-
ing to Πn. A well-known conjecture is that a Hamilton cycle exists in every
connected undirected Cayley graph. This conjecture is often referred to as the
Lovász conjecture, although the reader should refer to the survey by Pak and
Radoic̆ić for a more detailed historical account [14]. Additional surveys on the
Hamiltonicity of Cayley graphs are due to Witte and Gallian [24], and Curran
and Gallian [5]. In this setting, the rotator graph Gn is the directed Cayley

graph
−−→
Cay({σ2, σ3, . . . , σn},Sn) with generators σr for r ∈ {2, 3, . . . , n}, and the

restricted rotator graph Rn(R) limits the generators to σr for r ∈ R.

Remarks 4 and 5 indicate that our first main result — a Hamilton cycle for
the restricted rotator graph Rn(R) with R = {2, 3, n} — is ‘optimal’ in the
sense that the result is not possible when any rotation from R is removed.

Next we consider the ‘optimality’ of our third main result: A Hamilton cycle
for the restricted incomplete rotator graph Bn(R,m) with R = {n−2, n−1, n}.
From Remark 4, the restricted rotator graph Rn(R) is not strongly connected
for R = {n−2, n} when n is odd. Thus, we need to consider R = {n−1, n} to
prove our third main result is ‘optimal’. Although the restricted rotator graph
Rn(R) with R = {n−1, n} has a Hamilton cycle [18], Proposition 1 proves that
there is no Hamilton cycle when these rotations are used in restricted incomplete
rotator graphs. In fact, these directed graphs are not strongly connected unless
m ∈ {n−1, n}. This is illustrated for n = 4 and m = 2 by Figure 6 (a).

To simplify the proof of Proposition 1 it is helpful to consider a Hamilton
cycle in the restricted incomplete rotator graph Bn(R,m) where n = 4, R =
{n− 1, n} = {3, 4} and m = n− 1 = 3. This graph appears in Figure 5, and it
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Figure 4: The restricted rotator graph Rn(R) for R = {2, 4}. The bidirectional
arcs represent two σ2 arcs, and the unidirectional arcs represent σ4 arcs. This
graph does not have a Hamilton cycle, but it does have a Hamilton path.

has the following Hamilton cycle

4321 σ3 3241 σ3 2431 σ4 4312 σ3 3142 σ4 1423 σ4

4231 σ3 2341 σ4 3412 σ4 4123 σ3 1243 σ3 2413 σ4

4132 σ3 1342 σ4 3421 σ4 4213 σ3 2143 σ4 1432 σ4 .

Observe that the underlined symbol 4 has periodicity 3 in the above Hamilton
cycle, since it appears cyclically in positions 3, 2, 1, 3, 2, 1, . . . (starting at posi-
tion 1 in 4321). This is due to the fact that strings beginning with 4 are followed
by applying σ3, and otherwise 4 is moved once to the left regardless of whether
σ3 or σ4 is applied. The proof of Proposition 1 uses the fact that exhaustive
lists of Πn,m cannot have two symbols with periodicity n−1 when n ≥ 4.

Proposition 1 The restricted incomplete rotator graph Bn(R,m) is not strongly
connected when R = {n− 1, n} and m ∈ {2, 3, . . . , n− 2}.

Proof: Assume the values of R, m, and n satisfy the stated conditions. We as-
sume n ≥ 4 since otherwise the proposition is vacuously true bym ∈ {2, 3, . . . , n−
2}. Therefore, there is a node a = a1a2 · · · an ∈ Πn,m with prefix a1a2a3a4 =
n n−2 n−1 n−3. Observe that the symbols n and n−1 have periodicity n−1
in any directed path of Bn(R,m). Therefore, there is no directed path from a
to any node b = b1b2 · · · bn ∈ Πn,m with prefix b1b2 = n n−1. Therefore, the
graph is not strongly connected. �

Our Hamilton cycle in the restricted incomplete rotator graph Bn(R,m)
with R = {n−2, n−1, n} avoids the obstruction in Proposition 1 by including
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Figure 5: The restricted incomplete rotator graph B4({3, 4}, 3). The symbol 4
has periodicity 3 in every Hamilton cycle of this graph.

the next ‘largest’ rotation σn−2. On the other hand, our second main result
— a Hamilton cycle in Bn(R,m) with R = {2, 3, n−1, n} — includes the two
‘smallest’ rotations. We now prove that the inclusion of σn−1 is necessary for
Hamiltonicity in our second main result. In fact, we underscore the importance
of σn−1 by showing that Bn(R,m) is not strongly connected when m = 2 and
R = {2, 3, . . . , n − 2} ∪ {n}, as illustrated by Figure 6 (b) for n = 4. More
generally, Proposition 2 considers the absence of many ‘larger’ rotations. (Our
second main result may not be ‘optimal’ since the Hamiltonicity of Bn(R,m)
with R = {2, n−1, n} and R = {3, n−1, n} is unknown.)

Proposition 2 The restricted incomplete rotator graph Bn(R,m) is not strongly
connected when R = {2, 3, . . . , n−m} ∪ {n} and m ∈ {2, 3, . . . , n− 1}.

Proof: Assume the values of R and m satisfy the stated conditions. Let X
be the subset of strings in Πn that have suffix 1 2 ··· m. Notice that X is a
strict subset of Πn. Fix an arbitrary string a = a1a2 · · · an ∈ X. Observe that
a1 /∈ {1, 2, . . . ,m} since m < n. Now consider arcs of the form ab in Bn(R,m).
Notice that ab is not an arc for b = a σn since b is not a node in Bn(R,m).
Thus, if ab is an arc, then b = a σi where i ∈ {2, 3, . . . , n − m}. However,
this implies that b also has suffix 1 2 ··· m. More generally, there is no arc
from a node inside X to a node outside X. Therefore, Bn(R,m) is not strongly
connected. �
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Figure 6: The restricted incomplete rotator graph Bn(R,m) for n = 4 and
m = 2 with (a) R = {3, 4}, and (b) R = {2, 4}. These directed graphs illustrate
Propositions 1 and 2.

4 Sequence Building

This section describes the three sequence building operations: reuse, recycle,
and rewind. For each operation we state the original theorems using these
operations, and discuss generalizations.

4.1 Reusing and Rotator Graphs

The reuse operation takes each integer r in a sequence and replaces it by
n, . . . , n, n + 1 − r, where n is repeated n − 1 times. We visualize this oper-
ation below.

S=r1, r2, ...−−−−−−→ reuse(S)

n−1
copies︷ ︸︸ ︷
n, ..., n, n+1−r1,

n−1
copies︷ ︸︸ ︷
n, ..., n, n+1−r2, ...−−−−−−−−−−−−−−−−−−−−→

(n = max(S) + 1)

The value of n is in parentheses since if it is not explicitly provided, then it is
implicitly set to the largest value in S plus one. We subscript the operation as
reusen(S) when n is explicitly provided. To describe repeated applications of
the operation, let U1 = 1 and Uk = reuse(Uk−1) for k > 1. For example, the
first few reuse sequences appear below.

U2 = reuse(U1) = reuse2(1) = 2, 3−1 = 2, 2

U3 = reuse(U2) = reuse3(2, 2) = 3, 3, 4−2, 3, 3, 4−2 = 3, 3, 2, 3, 3, 2

U4 = reuse(U3) = reuse4(3, 3, 2, 3, 3, 2)

= 4, 4, 4, 5−3, 4, 4, 4, 5−3, 4, 4, 4, 5−2, 4, 4, 4, 5−3, 4, 4, 4, 5−3, 4, 4, 4, 5−2

= 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 3, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 3.
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Corbett proved that these ‘canonical’ reuse sequences are Hamilton sequences
for rotator graphs.

Theorem 1 ([3]) The reuse sequence Un is a Hamilton sequence for the rotator
graph Gn.

For example, we can verify Theorem 1 for n = 4 by creating the associated
list of strings.

path(4321, U4) (3)

= path(4321, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 3, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 3)

= 4321 σ4 3214 σ4 2143 σ4 1432 σ2 4132 σ4 1324 σ4 3241 σ4 2413 σ2

4213 σ4 2134 σ4 1342 σ4 3421 σ3 4231 σ4 2314 σ4 3142 σ4 1423 σ2

4123 σ4 1234 σ4 2341 σ4 3412 σ2 4312 σ4 3124 σ4 1243 σ4 2431 σ3

Notice that every string in Π4 appears once and that the list is cyclic. Thus, U4

is a Hamilton sequence for G4. Also notice that U4 contains at least one copy
of each symbol in {2, 3, 4}. More generally, a simple inductive argument proves
that Un contains at least one copy of every symbol in {2, 3, . . . , n}, and thus Un
is not the Hamilton sequence of any (strictly) restricted rotator graph.

To understand how Theorem 1 works in general, we present one remark
and one lemma. To illustrate the remark, observe that every fourth string
in (3) is followed by its three “full rotations”. For example, 4231 is followed
by 4231 σ4 = 2314, 4231 σ2

4 = 3142, and 4231 σ3
4 = 1423. In general, this

immediately follows from the fact that reusen(r) begins with n− 1 copies of n.

Remark 6 For any sequence S, if b ∈ nodes(a, reuse(S)), then for all 1 ≤ i ≤
n − 1 it is also true that b σin ∈ nodes(a, reuse(S)). In other words, reused
sequences create lists of strings that are closed under full rotations.

To describe the lemma, let ςi = (n n−1 · · · n−i+1) denote the suffix-rotation
operation. Consider the following cycle of strings

4321 ς3 4132 ς3 4213 ς2 4231 ς3 4123 ς3 4312 ς2 . (4)

Notice that (4) contains the strings in Π4 starting with 4 in the same order
they appear in (3). Furthermore, the sequence of suffix-rotations between these
strings is 3, 3, 2, 3, 3, 2 and this sequence is precisely U3. Thus, U4 = reuse(U3)
has converted the prefix-rotations of U3 into suffix-rotations. Lemma 1 states
this result formally.

Lemma 1 If a is a string of length n, and r ∈ {2, 3, . . . , n− 1}, then

node(a, reusen(r)) = a ςr.

Proof: The proof is obtained from the following derivation

node(a, reusen(r)) = a σn−1n σn−r+1 = a σn σn−r+1 = a ςr
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where the last two equalities reflect the “reusing identity” in [20]. �

These two ingredients allow the reuse operation to be effectively applied to
any Hamilton sequence of a rotator graph. Furthermore, if the initial Hamilton
sequence is for a restricted rotator graph, then the reused sequence will be
restricted in a natural way.

Theorem 2 If S is a Hamilton sequence for the restricted rotator graph Rn−1(X),
then reuse(S) is a Hamilton sequence for the restricted rotator graph Rn(R),
where r ∈ R if and only if r = n or r = n− x+ 1 for some x ∈ X.

Proof: Since S is a Hamilton sequence for Gn−1, every string of Πn−1 appears
in nodes(n−1 n−2 ··· 1, S). Therefore, Lemma 1 implies that every string in Πn

that begins with the symbol n appears in nodes(n n−1 ··· 1, reuse(S)). However,
every string in Πn is a full rotation of one of these strings in Πn that begins
with the symbol n. Therefore, Remark 6 implies that every string of Πn appears
in nodes(n n−1 ··· 1, reuse(S)). Furthermore, Lemma 1 also implies that the
resulting list of strings is cyclic since node(n n−1 ··· 1, reuse(S)) = n n−1 ··· 1
follows from node(n−1 n−2 ··· 1, S) = n−1 n−2 ··· 1. Thus, reuse(S) is a
Hamilton sequence for Gn. More precisely, reuse(S) is a Hamilton sequence for
Rn(R) where R includes n and the following values by the definition of reuse:
n− x+ 1 for all x ∈ X. �

4.2 Recycling and Restricted Rotator Graphs

The recycle operation takes each integer r in a sequence and replaces it by
n, n, n−1, n−1, . . . , n−1, n, n, . . . , n where n−1 is repeated r−1 times, and n is
repeated n− r− 1 times at the end. Observe that recycling is similar to reusing
in the sense that each value is mapped to n new values, however, in this case
the new values always consist of n and n−1. We visualize this operation below.

S=r1, r2, ...−−−−−−→ recycle(S)
n,n,

r1−1
copies︷ ︸︸ ︷

n−1, ..., n−1,

n−r1−1
copies︷ ︸︸ ︷
n, ..., n, n,n,

r2−1
copies︷ ︸︸ ︷

n−1, ..., n−1,

n−r2−1
copies︷ ︸︸ ︷
n, ..., n,...−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(n = max(S) + 1)

The value of n is again in parentheses since if it is not explicitly provided, then
it is implicitly set to the largest value in S plus one. We subscript the operation
as recyclen(S) when n is explicitly provided. To describe repeated applications
of the operation, let C1 = 1 and Ck = recycle(Ck−1) for k > 1. For example,
the first few recycle sequences appear below.

C2 = recycle(C1) = recycle2(1) = 2, 2

C3 = recycle(C2) = recycle3(2, 2) = 3, 3, 2, 3, 3, 2

C4 = recycle(C3) = recycle4(3, 3, 2, 3, 3, 2)

= 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 4.
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Ruskey and Williams proved that these ‘canonical’ recycle sequences are Hamil-
ton sequences for restricted rotator graphs using σn−1 and σn.

Theorem 3 ([18]) The canonical recycle sequence Cn is a Hamilton sequence
for the restricted rotator graph Rn(R) with R = {n− 1, n}.

For example, we can verify Theorem 3 for n = 4 by creating the associated
list of strings.

path(4321, U4) (5)

= path(4321, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 4)

= 4321 σ4 3214 σ4 2143 σ3 1423 σ3 4213 σ4 2134 σ4 1342 σ3 3412 σ3

4132 σ4 1324 σ4 3241 σ3 2431 σ4 4312 σ4 3124 σ4 1243 σ3 2413 σ3

4123 σ4 1234 σ4 2341 σ3 3421 σ3 4231 σ4 2314 σ4 3142 σ3 1432 σ4

Notice that every string in Π4 appears once and the that list is cyclic. Thus,
C4 is a Hamilton sequence for R4(R) where R = {3, 4}.

To shed some light on how Theorem 3 works in general, we present one
lemma. Let σ′i = (2 3 · · · i+1) denote a modified prefix-rotation that begins at
the second symbol instead of the first symbol. Consider the following cycle of
strings

4321 σ′3 4213 σ′3 4132 σ′2 4312 σ′3 4123 σ′3 4231 σ′2 . (6)

Notice that (6) contains the strings in Π4 starting with 4 in the same order
they appear in (5). Furthermore, the sequence of modified prefix-rotations be-
tween these strings is 3, 3, 2, 3, 3, 2 and this sequence is precisely C3. Thus,
C4 = recycle(C3) has converted the prefix-rotations of C3 into modified prefix-
rotations. Lemma 2 states this result formally; it was proven in a slightly
different form as the second identity of Lemma 2 in [9].

Lemma 2 ([9]) If a is a string of length n, and r ∈ {2, 3, . . . , n− 1}, then

node(a, recyclen(r)) = a σ′r.

Proof: The proof is obtained from the following derivation

node(a, recyclen(r)) = a σn σn σ
r−1
n−1 σ

n−r−1
n = a σ2

n σ
r−1
n−1 σ

n−r−1
n = a σ′r

where the last equality is known as the “recycling identity” in [20]. �

While Lemma 2 gives a concise expression for every nth string in lists of the
form path(n n−1 ··· 1, recycle(S)), the intermediate strings are more difficult to
describe. In other words, there is no simple recycling analogue to Remark 6 on
reusing. For this reason, additional results on recycling have been handled on a
case-by-case basis. For example, the preliminary version of this article proved
that Corbett’s canonical reuse sequences are recyclable.

Theorem 4 ([20]) If S = Un−1 is the canonical reuse sequence, then recycle(S)
is a Hamilton sequence for the restricted rotator graph Rn(R) with R = {n−1, n}.
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Theorem 4 was proven in [20] to answer a conjecture in [9] involving short-
hand universal cycles of permutations. It also provided the basis for the main
algorithm presented in [20]. In this version of the article we simplify the presen-
tation by instead basing our main algorithm on Theorem 3. We return to the
question of recycling Hamilton sequences in the open problems of Section 7.1.

4.3 Rewinding and Incomplete Rotator Graphs

The reuse and recycle operations are similar in the sense that they transform
each individual value into n values. On the other hand, the rewind operation
repeats an entire sequence m times, but each time it leaves off one or two
symbols, and inserts n in appropriate positions to make up for loss.

To define the operation, suppose S = r1, r2, . . . is a sequence in which the
largest symbol n − 1 appears in the last two positions. For convenience, we
let T denote the remaining sequence in S. That is, S = T, n − 1, n − 1 where
max(S) = n − 1. The rewind operation creates a sequence according to the
following subsequences along with a finishing ‘tail’:

• The first subsequence is T, n− 1, n.

• The second through (m− 1)st subsequences are T, n.

• The last subsequence is T, n− 1, n.

• The tail is n, n, . . . , n (m− 2 copies).

Observe that each subsequence omits the last one or two symbols of S, and the
tail inserts copies of n to ensure the resulting sequence has length m · |S|. We
visualize this operation below.

S=r1, r2, ...−−−−−−−→
(S=r1, r2, T )

rewind(S)
T, n−1, n,

m−2
copies︷ ︸︸ ︷

T, n, ..., T, n, T, n−1, n,

m−2
copies︷ ︸︸ ︷
n, ..., n−−−−−−−−−−−−−−−−−−−−−−→

(n = max(S) + 1) (m = n)

Again, the value of n is either explicitly given, or is implicitly set to the largest
value in S plus one. Similarly, the value of m is either explicitly given, or is
implicitly set to n. In other words, by default the rewind operation results in
a sequence of length n · |S|. By convention, when both ‘optional’ parameters
are explicitly provided, n is first and m is second, and when only one ‘optional’
parameter is provided it is m. Thus, rewindj,k(S) explicitly sets m = j and
n = k, while rewindj(S) has m = j and implicitly n = max(S) + 1. To describe
repeated applications of the operation, let W2 = 2, 2 and Wk = rewind(Wk−1),
where n and m are implicit. Observe that in this one-parameter rewind sequence
Wn has length n!. For example, the ‘canonical’ one-parameter rewind sequence
for n = 3 is W3 = 2, 3, 3, 2, 3, 3 and appears below for n = 4 with its associated
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subsequences underlined

W4 = rewind(W3)

= rewind4,4(2, 3, 3, 2, 3, 3)

= 2, 3, 3, 2, 3, 4, 2, 3, 3, 2, 4, 2, 3, 3, 2, 4, 2, 3, 3, 2, 3, 4, 4, 4.

More generally, let Wk,j = rewindj(Wk−1) for j ∈ {2, 3, . . . , n}. Observe that in
this two-parameter rewind sequence Wn,m has length m · (n− 1)!. For example,
the ‘canonical’ two-parameter rewind sequences appear below for n = 4 and
m = 3, 2

W4,3 = rewind3(W3)

= rewind4,3(2, 3, 3, 2, 3, 3)

= 2, 3, 3, 2, 3, 4, 2, 3, 3, 2, 4, 2, 3, 3, 2, 3, 4, 4

W4,2 = rewind2(W3)

= rewind4,2(2, 3, 3, 2, 3, 3)

= 2, 3, 3, 2, 3, 4, 2, 3, 3, 2, 3, 4.

Ponnuswamy and Chaudhary proved that this sequence operation creates
Hamilton cycles in incomplete rotator graphs.

Theorem 5 ([15]) Repeated rewinding gives the Hamilton sequence Wn,m for
the incomplete rotator graph Mn(m).

To understand how Theorem 5 works, let us consider the associated list of
strings for n = m = 4, where the result of applying each successive subsequence
is shown on an individual row, and the crossed out strings will be explained
later.

path(4123,W4) = path(4321, 2, 3, 3, 2, 3, 4, 2, 3, 3, 2, 4, 2, 3, 3, 2, 4, 2, 3, 3, 2, 3, 4, 4, 4)

= 4321 σ2 3421 σ3 4231 σ3 2341 σ2 3241 σ3 2431 σ4

4312 σ2 3412 σ3 4132 σ3 1342 σ2 3142 σ4 �
��1432

1423 σ2 4123 σ3 1243 σ3 2413 σ2 4213 σ4 �
��2143

2134 σ2 1234 σ3 2314 σ3 3124 σ2 1324 σ3 3214 σ4

2143 σ4 1432 σ4 (7)

Notice that the first row of (7) starts with a string ending in 1 and then
contains every other string ending in 1. Similarly, the fourth row starts with
a string ending in 4 and then contains every other string ending in 4. On the
other hand, the second and third rows start with strings ending in 2 and 3,
respectively, and then contain all but one of the other strings ending in 2 and
3, respectively. The fact that these rows contain all strings in Π4,1 and Π4,4,
and all but one string in Π4,2 and Π4,3, follows from the initial string of the
respective rows and the following remark.
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Remark 7 If T, n−1, n−1 is a Hamilton sequence for Gn−1 and a ∈ Πn,x, then

1. nodes(a, T, n− 1) = Πn,x, and

2. nodes(a, T ) = Πn,x − {a σn−1}.

Observe that the second point of Remark 7 explicitly states the string that
is ‘lost’ when applying the intermediate subsequence. For example, the second
row of (7) begins with 4312, and 4312 σ3 = 1432 is lost. Similarly, the third
row begins with 1423, and 1423 σ3 = 2143 is ‘lost’. In both cases, these lost
strings are crossed out in (7).

While Remark 7 describes the set of strings obtained from each subsequence,
Remark 8 explicitly states the last string obtained by applying each subsequence.
In this remark we let τi = (i−1 i) be permutation that swaps the ith and (i−1)st
of a string. Observe that if a is a string of length n, then a σn−1 σn = a τn.

Remark 8 If T, n−1, n−1 is a Hamilton sequence for Gn−1 and a ∈ Πn,x, then

1. node(a, T, n− 1, n) = a σn−1 σn = a τn, and

2. node(a, T, n) = a σn−1 σn−1 σn = a σn−1 τn.

To see Remark 8 in action, note that the first strings in each row of (7) are

4321 τ4 4312 σ3 τ4 1423 σ3 τ4 2134 τ4 2143,

where successive strings follow from the first, second, second, and first points.
Besides Remarks 7 and 8 there are three ‘tricks’ to Ponnuswamy and Chaud-

hary’s order. First, each successive subsequence is applied to a string whose last
symbol is one larger than for the previous subsequence. For example, the first
four rows in (7) begin with strings ending in 1, 2, 3, and 4, respectively. Second,
the strings that are ‘lost’ while applying the rotations in the intermediate sub-
sequence are ‘found’ when applying the rotation in the tail. For example, 1432
and 2143 appear in the last row of (7). Third, the order can be finished ‘early’.
For example, if σ3, σ4 is applied at the end of the second row in (7) instead of
σ4, then the cyclic order finishes with 1432, thereby avoiding all strings ending
in 3 or 4. Similarly, if σ3, σ4, σ4 is applied at the end of the third row in (7)
instead of σ4, then the cyclic order finishes with 2143, 1432, thereby avoiding
all strings ending in 4.

Using this outline we generalize Theorem 5 to any Hamilton sequence ending
with two copies of its largest symbol. Furthermore, if the Hamilton sequence
is for a restricted rotator graph on strings of length n− 1, then rewinding only
adds σn to the set of rotations used.

Theorem 6 Hamilton sequences for restricted rotator graphs can be rewound
into Hamilton sequences for incomplete rotator graphs. More specifically, if
S is a Hamilton sequence for Rn−1(R) whose last two symbols are n − 1, then
rewindm(S) is a Hamilton sequence for Bn(R∪{n},m) for any m ∈ {2, 3, . . . , n}.
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Proof: Following our earlier conventions, let S = T, n − 1, n − 1. Since S
only contains symbols in R, it follows that rewindm(S) only contains symbols in
R ∪ {n} by the definition of rewind. Also, |rewindm(S)| = m|S| = m · (n − 1)!.
Thus, we need to prove that nodes(n n−1 · · · 1, rewindm(S)) contains every
string in Πn,x for each x satisfying 1 ≤ x ≤ m, and that the resulting path is a
Hamilton cycle by showing node(n n−1 · · · 1, rewindm(S)) = n n−1 · · · 1.

Towards our goal, let us focus on the last string obtained by applying each
successive subsequence. Let ai = node(a, R1, R2, . . . , Ri−1,) for all 1 ≤ i ≤ m+1
and a = n n−1 · · · 1, where R1 = T, n− 1, n and Rj = T, n for 2 ≤ j ≤ m− 1
and Rm = T, n− 1, n are the subsequences. By Remark 8 we have

a1 = n n−1 ··· 1
a2 = a1 τn = n n−1 ··· 3 1 2

a3 = a2 σn−1 τn = 1 n n−1 ··· 4 2 3

a4 = a3 σn−1 τn = 2 1 n n−1 ···5 3 4

...

am = am−1 σn−1 τn = m−2 m−3 ··· 1 n n−1 ··· m+1 m−1 m

am+1 = am τn = m−2 m−3 ··· 1 n n−1 ··· m−1.

Observe that ax ends with i for 1 ≤ x ≤ m. Therefore, by Remark 7, each of
our desired strings are in nodes(n n−1 ··· 1, rewindm(S)) except possibly for the
‘lost’ strings. The second point of Remark 7 allows us to give an expression for
the ‘lost’ strings. We provide this expression below and then compare to the
strings obtained by applying the m− 2 copies of n in the tail of rewindm(S) as
rotations to am+1

{a2 σn−1, a3 σn−1, . . . , am−1 σn−1}
= {1 n n−1 ··· 2, 2 1 n n−1 ··· 3, . . . , m−1 m−2 ··· 1 m}
⊆ nodes(m−2 m−3 ··· 1 n n−1 ··· m−1, n, n, . . . , n)

= nodes(am+1, n, n, . . . , n).

Therefore, all of the ‘lost’ strings are ‘found’. Furthermore, node(am+1, n, n, . . . , n) =
n n−1 ··· 1, so the tail finishes at the starting node to complete the cycle. �

5 New Sequences

In this section we combine our results from Section 4 in several ways. As in
Section 4 we visualize sequence building by using small diagrams. In particular,
we let recyclek denote k successive applications of the recycle operation. Thus,

1−→ recyclek
Ck−→ =

1−→ recycle −→ recycle −→ ··· −→ recycle
Ck−→ .
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In each of our results we use the above sequence as our “base sequence”. This
results in a presentation that is slightly simpler than our preliminary article
which used Theorem 4 in this capacity.

Now we present our three main results. Theorem 7 proves that the following
sequence gives a Hamilton sequence using only the rotations σ2, σ3, and σn.

1−→ recyclen−1
Cn−1−−−→ reuse −→ Hamilton sequence for

Rn(R) with R={2,3,n}.

Theorem 7 The sequence reuse(S) for S = Cn−1 is a Hamilton sequence for
the restricted rotator graph Rn(R) with R = {2, 3, n}.

Proof: By Theorem 3, S = Cn−1 is a Hamilton sequence for the restricted
rotator graph Rn−1(X) with X = {n− 2, n− 1}. By Theorem 2, reuse(S) is a
Hamilton sequence for the restricted rotator graph Rn(R) with

R = {n− (n− 2) + 1, n− (n− 1) + 1, n} = {2, 3, n}.

�

Before providing our next two results, we must address a minor issue between
reusing and recycling on one side, and rewinding on the other side. Recall that
Theorem 6 requires a sequence to end in two copies of the largest symbol before
it can be properly rewound. Unfortunately, this precondition is not always met
after recycling a sequence, nor is it ever met after reusing a sequence. To bridge
this incompatibility, we take advantage of Remark 2 from Section 1. Recall that
every shift of a Hamilton sequence in a restricted rotator graph is also a Hamilton
sequence. Furthermore, it is easy to observe that both reusing and recycling
result in sequences that begin with two copies of the largest symbol. Thus, we
can shift these sequences twice so that they meet the necessary condition.

Remark 9 If S is a sequence, then reuse(S) and recycle(S) begin with two
copies of the largest symbol max(S)+1. Thus, shift2(reuse(S)) and shift2(recycle(S))
end with two copies of the largest symbol max(S) + 1.

Visually, we denote this double-shift by shift2 . Theorem 8 proves that the
following sequence gives a Hamilton sequence for any incomplete rotator graph
using only the rotations σn−2, σn−1, and σn.

1−→ recyclen−1
Cn−1−−−→ shift2

shift2(Cn−1)−−−−−−→
m

rewindm −→
Hamilton sequence for
Bn(R,m) with
R={n−2,n−1,n}
and m∈{2,3,...,n}.

Theorem 8 The sequence rewindm(S) for S = shift2(Cn−1) is a Hamilton
sequence for the restricted and incomplete rotator graph Bn(R,m) with R =
{n− 2, n− 1, n} and any m ∈ {2, 3, . . . , n}.



JGAA, 16(4) 785–810 (2012) 803

Proof: By Theorem 3, Cn−1 is a Hamilton sequence for the restricted rotator
graph Rn−1(X) with X = {n−2, n−1}. By Remarks 2 and 9, S = shift2(Cn−1)
is also Hamilton sequence for this restricted rotator graph, and moreover S ends
with two copies of n−1. By Theorem 6, rewindm(S) is a Hamilton sequence for
the restricted and incomplete rotator graph Bn(R,m) with

R = {n− 2, n− 1} ∪ {n} = {n− 2, n− 1, n}

and any m ∈ {2, 3, . . . , n}. �

Theorem 9 proves that the following sequence gives a Hamilton sequence for
any incomplete rotator graph using only the rotations σ2, σ3, σn−1 and σn.

1−→ recyclen−2
Cn−2−−−→ reuse

reuse(Cn−2)−−−−−−→ shift2
shift2(reuse(Cn−2))−−−−−−−−−−→

m
rewindm

−→ Hamilton sequence for Bn(R,m)
with R={2,3,n−1,n} and m∈{2,3,...,n}.

Theorem 9 The sequence rewindm(S) for S = shift2(reuse(Cn−2)) is a Hamil-
ton sequence for the restricted and incomplete rotator graph Bn(R,m) with
R = {2, 3, n− 1, n} and any m ∈ {2, 3, . . . , n}.

Proof: By Theorem 3, Cn−2 is a Hamilton sequence for the restricted rotator
graph Rn−2(X) with X = {n − 3, n − 2}. By Theorem 2, reuse(Cn−2) is a
Hamilton sequence for the restricted rotator graph Rn(Y ) with

Y = {n− 1− (n− 3) + 1, n− 1− (n− 2) + 1, n− 1} = {2, 3, n− 1}.

By Remarks 2 and 9, S = shift2(reuse(Cn−2)) is also Hamilton sequence for
this restricted rotator graph, and moreover S ends with two copies of n− 1. By
Theorem 6, rewindm(S) is a Hamilton sequence for the restricted and incomplete
rotator graph Bn(R,m) with

R = {2, 3, n− 1} ∪ {n} = {2, 3, n− 1, n}

and any m ∈ {2, 3, . . . , n}. �

6 Algorithms

In this section we describe how each of the sequences in Section 5 can be gen-
erated by a loopless algorithm. In this context, a loopless algorithm creates
each successive symbol in a sequence in worst-case O(1)-time, where the hidden
constant is independent of n and m. As is customary, the algorithms call a
visit routine each time the next symbol in the sequence is created. To clarify an
important point, a loopless algorithm can take more than O(1)-time to initialize
itself and visit the first symbol in the sequence.

As a starting point, observe that Theorems 7, 8, and 9 all involve canoni-
cal recycle sequences. A loopless algorithm for generating these sequences was
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presented in [18], where 0 and 1 were used to represent n and n − 1, respec-
tively. Besides this minor difference, we also use the opportunity to slightly
simplify the algorithm and correct a problem with its last iteration. The result
is RecycleSequence found in Algorithm 1. In the algorithm, the Iverson bracket
on line 6 converts a boolean value into an integer as follows: [[true]] = 1 and
[[false]] = 0. The purpose of line 15 is explained later in this section.

Algorithm 1 RecycleSequence generates the recycle sequence Cn, which is a
Hamilton sequence for the restricted rotator graph Rn(R) with R = {n− 1, n}.
Procedure RecycleSequence(n)
1: a1 · · · an ← 0 · · · 0
2: f1 · · · fn ← 1 · · · n
3: while f1 < n
4: j ← f1
5: f1 ← 1
6: visit

(
n− (j + [[aj ≤ 1]] mod 2)

)
7: aj ← aj + 1
8: if aj = n− j
9: aj ← 0

10: fj ← fj+1

11: fj+1 ← j + 1
12: end
13: end
14: visit

(
n− (n mod 2)

)
15: f1 ← 1

Theorem 10 ([18]) RecycleSequence(n) generates each successive symbol in
the canonical recycle sequence Cn in worst-case O(1)-time.

To adapt Theorem 10 for the sequences in Section 5, we must reuse and
rewind the recycle sequence. To reuse a sequence we can replace the visit
calls in its associated algorithm with calls to the following reuse procedure.

Procedure reuse(n, r)
1: for i = 1 to n− 1
2: visit(n)
3: end
4: visit(n− r + 1)

Let RecycleSequence′(n) be the result of replacing each visit(x) by reuse(n+1, x)
on lines 6 and 14 of RecycleSequence(n). Thus, a call to RecycleSequence′(n−1)
generates reuse(Cn−1), which is the sequence from Theorem 7.

To rewind a sequence we can call its associated algorithm m times. More
precisely, if S = T, n−1, n−1 is a sequence where n−1 = max(S), and A(n−1)
is an algorithm that generates T , then the following procedure will generate
rewindm(S).
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Procedure rewind(n,m,A)
1: A(n− 1)
2: visit(n− 1)
3: visit(n)
4: for i = 1 to m− 2
5: A(n− 1)
6: visit(n)
7: end
8: A(n− 1)
9: visit(n− 1)

10: visit(n)
11: for i = 1 to m− 2
12: visit(n)
13: end

The above procedure is loopless, so long as A(n−1) is loopless and initially calls
visit in O(1)-time. At first glance, this is not true of RecycleSequence(n) since
its initialization on lines 1 and 2 takes O(n)-time. However, this initialization
does not need to be repeated on successive calls to RecycleSequence(n) since the
two arrays are reset to their initial values after line 15 is executed. This fact is
stated in Remark 10, and can be understood by referring to Algorithm M and
Algorithm H for generating multi-radix numbers in Knuth [11].

Remark 10 When RecycleSequence(n) terminates, its array variables are set
to a1 · · · an ← 0 · · · 0 and f1 · · · fn ← 1 · · ·n.

The desired portion of shift2(Cn−1) is generated by RecycleSequence(n− 1),
so long as we ‘skip’ the first two visited values. Let RecycleSequence′′(n) de-
note this necessary modification of RecycleSequence(n), with the understanding
that successive calls also skip over lines 1 and 2. The result is that a call to
rewind(n,m,A) for A = RecycleSequence′′ will generate rewindm(shift2(Cn−1)),
which is the sequence from Theorem 8. Similarly, these ideas can be used to
generate the sequence from Theorem 9. Collectively, these results imply the
following theorem.

Theorem 11 The sequences in Theorems 7, 8, and 9 can be generated by a
loopless algorithm.

Theorem 11 can be strengthened in the sense that multiple symbols can
be visited at the same time. To clarify this point, consider an algorithm that
maintains an array of length n that holds the next n symbols in the sequence of
length n! it is generating. In this situation, the algorithm would visit (n − 1)!
subsequences of n symbols, instead of n! individual symbols. The goal in this
situation is to update the entire array in worst-case O(1)-time. This can goal
can only be accomplished if successive subsequences differ in a constant number
of positions. For an example of how this situation applies to the sequences in
this article, notice that each subsequence of n symbols in reuse(Cn−1) has the
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following form

n, n,

n−2 copies︷ ︸︸ ︷
n− 1, . . . , n− 1 or n, n,

n−3 copies︷ ︸︸ ︷
n− 1, . . . , n− 1, n.

Therefore, successive subsequences of length n differ in at most one position,
and so the associated array of length n can be updated worst-case O(1)-time.
See [20] for further details on this type of optimization.

7 Final Remarks

In this article we have considered the reuse operation by Corbett, the recycle
operation by Ruskey and Williams, and the rewind operation by Ponnuswamy
and Chaudhary. We have shown that these operations can be combined to
create Hamilton sequences for restricted and incomplete rotator graphs using a
limited number of prefix-rotations σi for ‘small’ and ‘large’ values of i. In two
cases our set of rotations is ‘optimal’ in the sense of providing minimal sets of
operations that ensure the existence of Hamilton cycles. Furthermore, we have
provided loopless algorithms for generating these Hamilton sequences.

7.1 The Recycling Question

While the reuse and rewind operations have been made fairly transparent by
the results of Section 4, the recycling operation remains somewhat mysterious.
In general, we are interested in the following open problem.

Question 1 If S is a Hamilton sequence for the rotator graph Gn−1, then under
what conditions on S is recycle(S) a Hamilton sequence for the restricted rotator
graph Rn({n− 1, n})?

We would like to determine necessary and sufficient conditions on S for
answering this question. As mentioned in Section 4.2, the answer to Question 1
is ‘yes’ for the canonical reuse Un−1 and recycle sequence Cn−1. We conjecture
this is also true for the canonical rewind sequence Wn−1.

Conjecture 1 If S = Wn−1 is the canonical rewind sequence, then recycle(S) is
a Hamilton sequence for the restricted rotator graph Rn(R) with R = {n−1, n}.

Question 1 also has an affirmative answer for any Hamilton sequence using
the two ‘largest’ rotations. This result was proven as Theorem 13 in the context
of shorthand universal cycles for permutations in [9].

Theorem 12 ([9]) If S is a Hamilton sequence for the restricted rotator graph
Rn−1({n− 2, n− 1}), then recycle(S) is a Hamilton sequence for the restricted
rotator graph Rn({n− 1, n}).
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On the other hand, we now illustrate that the answer to Question 1 is not
always ‘yes’. Consider the following Hamilton sequence for G4 and Hamilton
cycle

S = 3, 3, 2, 3, 4, 2, 3, 4, 2, 3, 3, 4, 4, 2, 3, 3, 2, 3, 4, 4, 4, 3, 4, 4

path(4321, S) = 4321σ3 3241σ3 2431σ2 4231σ3 2341σ4 3412σ2 4312σ3 3142σ4

1423σ2 4123σ3 1243σ3 2413σ4 4132σ4 1324σ2 3124σ3 1234σ3

2314σ2 3214σ3 2134σ4 1342σ4 3421σ4 4213σ3 2143σ4 1432σ4 .

By Lemma 2, the underlined edges imply that path(54321, recycle(S)) contains
the following two subpaths

path(52431, recycle(2)) = 52431 σ5 24315 σ5 43152 σ4 31542 σ5 15423 σ5 54231

path(53421, recycle(4)) = 53421 σ5 34215 σ5 42153 σ4 21543 σ4 15423 σ4 54213.

The two underlined copies of node 15423 imply that recycle(S) is not a Hamil-
ton sequence, and thus the answer to Question 1 is ‘no’ for this choice of S.
The reader can also verify that the answer to Question 1 is ‘no’ for reuse(S)
and rewind(S). In other words, Theorem 4 and Conjecture 1 suggest there is
something special about the canonical reuse and rewind sequences, as opposed
to individual applications of the reuse and rewind operation.

7.2 Additional Open Problems

1. Proposition 1 proves that the restricted incomplete rotator graph Bn(R,m)
does not have a Hamilton cycle for R = {n−1, n} when m ≤ n−2. On the
other hand, Bn(R,n) = Rn(R), so there is a Hamilton cycle when m = n
[18]. This leaves the remaining case of m = n− 1 open.

2. The existence of Hamilton paths and Hamilton cycles for the restricted
rotator graph Rn(R) for R = {3, n} and R = {2, n} are open subject to
Remarks 4 and 5, respectively. These questions are also open for restricted
incomplete rotator graphs when R = {3, n−1, n} and R = {2, n−1, n}.

3. A third generalization of rotator graphs features nodes that are the per-
mutations of a multiset instead of a set. Williams proved that all “multiset
rotator graphs” have Hamilton cycles [22], and this is also true when the
rotations are restricted to R = {n−1, n} [23]. On the other hand, Cheng
proved that R = {2, n} is not sufficient, even when the multiset contains
only two distinct symbols and when σn is allowed [1]. The Hamiltonicity
of incomplete multiset rotator graphs has not been explored.

4. This article notes that R = {2, 3, n} is a minimal set of rotations required
for a Hamilton cycle in the restricted rotator graphRn(R) and provides an
efficient algorithm for generating such a Hamilton cycle. Can an efficient
algorithm be found for every minimal set of rotations?
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5. There are a number of factors involved when choosing the ‘best’ topol-
ogy for a given type of computer network. For interconnection networks,
a partial list of relevant factors includes connectivity, diameter, symme-
try, degree, bisection width, narrowness, expansion increments and the
existence of Hamilton cycles, and proposed topologies include meshes,
rings, hypercubes, shuffle exchange networks, butterfly networks, pancake
graphs, star graphs and rotator graphs (see Siegel [19] and Hsu and Lin
[10] for textbooks in this area). Further study of restricted incomplete
rotator graphs will reveal if they offer any advantages in this area.
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